JPH04280677A - Laminated type solid-state image pickup device - Google Patents

Laminated type solid-state image pickup device

Info

Publication number
JPH04280677A
JPH04280677A JP3069336A JP6933691A JPH04280677A JP H04280677 A JPH04280677 A JP H04280677A JP 3069336 A JP3069336 A JP 3069336A JP 6933691 A JP6933691 A JP 6933691A JP H04280677 A JPH04280677 A JP H04280677A
Authority
JP
Japan
Prior art keywords
pixels
photosensor
image pickup
pickup device
state image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3069336A
Other languages
Japanese (ja)
Inventor
Tatsuji Oda
小田 達治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP3069336A priority Critical patent/JPH04280677A/en
Publication of JPH04280677A publication Critical patent/JPH04280677A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent false signals from occurring in a laminated type solid-state image pickup device due to the capacitive coupling between pixels by a method wherein a parasitic capacitance between the pixels is eliminated. CONSTITUTION:In a laminated type solid-state image pickup device of structure composed of the pasted substrates 1 and 2, photosensors 3 arranged on the substrate 1 as unit pixels are separately surrounded with conductive materials, and the conductive materials are kept at a certain potential so as to shield the pixels from each other.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は固体撮像装置に関し、特
に基板同士を貼り合わせた構造のいわゆる積層型固体撮
像装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid-state imaging device, and more particularly to a so-called stacked solid-state imaging device having a structure in which substrates are bonded together.

【0002】0002

【従来の技術】HDTV(高精細度テレビジョン)用の
固体撮像装置では、200万画素程度の多画素化が必要
とされる。この多画素化に伴う諸問題を解決する構造と
して、画素単位の複数個のフォトセンサ部が2次元的に
配列されて形成された半導体基板と、フォトセンサ部で
発生した信号電荷を転送するための電荷転送部が形成さ
れた半導体基板とを貼り合わせた構造の積層型固体撮像
装置が、本願出願人により特願平2−219985号明
細書にて提案されている。
2. Description of the Related Art A solid-state imaging device for HDTV (high-definition television) is required to have a large number of pixels, about 2 million pixels. As a structure to solve the problems associated with this increase in the number of pixels, a semiconductor substrate is formed by two-dimensionally arranging a plurality of photosensor sections in pixel units, and a structure for transferring signal charges generated in the photosensor sections. The present applicant has proposed a stacked solid-state imaging device in Japanese Patent Application No. 2-219985, which has a structure in which a semiconductor substrate having a charge transfer section formed thereon is bonded to the semiconductor substrate.

【0003】0003

【発明が解決しようとする課題】この基板同士の貼合わ
せによる積層型固体撮像装置においては、単位画素のフ
ォトセンサ部に入射した光により発生したフォトキャリ
アを、そのフォトセンサ部内に閉じ込める構造であるた
めに、トレンチ(溝)あるいはPN接合により画素間を
アイソレーションする必要がある。このアイソレーショ
ンを絶縁膜あるいはフローティングのPN接合によって
行うと、画素間に寄生容量による電荷の結合が生じ、あ
る画素に光が入射しその隣りの画素に光が入射しない場
合を考えると、画素間の寄生容量による容量結合によっ
て光が入射していない画素のフォトセンサ部にも電荷が
誘起され、偽信号が発生されるという問題がある。
[Problem to be Solved by the Invention] This stacked solid-state imaging device made by bonding substrates together has a structure in which photocarriers generated by light incident on the photosensor section of a unit pixel are confined within the photosensor section. Therefore, it is necessary to isolate pixels using trenches or PN junctions. When this isolation is performed using an insulating film or a floating PN junction, charge coupling occurs between pixels due to parasitic capacitance. There is a problem in that capacitive coupling due to parasitic capacitance causes charges to be induced even in the photosensor portion of the pixel to which no light is incident, resulting in generation of false signals.

【0004】そこで、本発明は、画素間の寄生容量をな
くし、この寄生容量による容量結合に起因する偽信号の
発生を防止した積層型固体撮像装置を提供することを目
的とする。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a stacked solid-state imaging device that eliminates the parasitic capacitance between pixels and prevents the generation of false signals due to capacitive coupling due to the parasitic capacitance.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、画素単位の複数個のフォトセンサ部が2
次元的に配列されて形成された第1の半導体基板と、フ
ォトセンサ部で発生した信号電荷を転送するための電荷
転送部が形成された第2の半導体基板とを貼り合わせた
構造の積層型固体撮像装置において、複数個のフォトセ
ンサ部の各々を導電材で囲み、この導電材を一定の電位
に保つ構成を採っている。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides that a plurality of photosensor sections in each pixel are
A laminated type having a structure in which a first semiconductor substrate formed in a dimensional arrangement and a second semiconductor substrate formed with a charge transfer section for transferring signal charges generated in a photosensor section are bonded together. A solid-state imaging device employs a configuration in which each of a plurality of photosensor sections is surrounded by a conductive material and the conductive material is maintained at a constant potential.

【0006】[0006]

【作用】本発明による積層型固体撮像装置では、画素単
位で配された複数個のフォトセンサ部の各々が導電材に
よって囲まれており、この導電材を一定の電位に保つこ
とで、各画素間をシールドできる。これにより、画素間
の寄生容量をなくすことができる。その結果、画素間の
寄生容量による容量結合がないため、画素間の容量結合
に起因する偽信号の発生(混色)を防止できる。
[Operation] In the stacked solid-state imaging device according to the present invention, each of the plurality of photosensor sections arranged in pixel units is surrounded by a conductive material, and by keeping this conductive material at a constant potential, each pixel You can shield between. Thereby, parasitic capacitance between pixels can be eliminated. As a result, since there is no capacitive coupling due to parasitic capacitance between pixels, generation of false signals (color mixing) due to capacitive coupling between pixels can be prevented.

【0007】[0007]

【実施例】以下、本発明の実施例を図面に基づいて詳細
に説明する。本発明による積層型固体撮像装置は、図1
の断面構造図に示すように、2枚のシリコン基板1,2
を貼り合わせて積層した構造を有し、一方のシリコン基
板1にフォトセンサ部3が配され、他方のシリコン基板
2に電荷転送部4が配される。シリコン基板1は単結晶
の半導体基板であり、このシリコン基板1には画素単位
の複数個のフォトセンサ部3が水平及び垂直方向にて2
次元的に配列されて形成される。フォトセンサ部3は、
表面側のP+ 型領域5及びその下部に配されるN型領
域6からなるフォトダイオード構成となっており、入射
光に応じた信号電荷を発生し蓄積する。フォトセンサ部
3間には、各フォトセンサ部3の周囲を囲むようにシリ
コン酸化膜7が形成されて画素毎の分離がなされ、さら
には導電性材料である例えばアルミニウムからなるシー
ルド材8が埋め込まれかつ一定の電位Vに保たれること
で画素間のシールドがなされている。シールド材8は、
各画素間の遮光をなすアルミニウムからなる遮光膜10
と一体に形成されている。図2に示すように、遮光膜1
0の平面パターンは格子状とされ、その格子の目の部分
に各フォトセンサ部3が位置することになる。これら遮
光膜10とフォトセンサ部3の表面側には、保護膜9が
形成される。
Embodiments Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The stacked solid-state imaging device according to the present invention is shown in FIG.
As shown in the cross-sectional structure diagram, two silicon substrates 1 and 2
The photo sensor section 3 is arranged on one silicon substrate 1, and the charge transfer section 4 is arranged on the other silicon substrate 2. The silicon substrate 1 is a single-crystal semiconductor substrate, and a plurality of photosensor sections 3 in pixel units are arranged horizontally and vertically on this silicon substrate 1.
It is formed by dimensional arrangement. The photosensor section 3 is
It has a photodiode configuration consisting of a P+ type region 5 on the front side and an N type region 6 disposed below it, and generates and accumulates signal charges according to incident light. A silicon oxide film 7 is formed between the photosensor parts 3 so as to surround each photosensor part 3 to separate each pixel, and a shielding material 8 made of a conductive material such as aluminum is embedded. The pixels are shielded by being held at a constant potential V. The shield material 8 is
A light shielding film 10 made of aluminum that blocks light between each pixel
is formed integrally with. As shown in FIG. 2, the light shielding film 1
The plane pattern of 0 is in the form of a lattice, and each photosensor section 3 is located at the mesh portion of the lattice. A protective film 9 is formed on the surface side of the light shielding film 10 and the photosensor section 3.

【0008】シリコン基板2もシリコン基板1と同様に
単結晶の半導体基板であり、このシリコン基板2にはC
CD(Charge Coupled Device)
 構造の電荷転送部4が形成される。すなわち、N型基
板11上にはP型のウェル領域12が形成され、このウ
ェル領域12の表面には埋め込みチャネルとして機能す
るN− 型領域13が形成され、さらに基板主面には各
垂直列を分離するためのチャネルストップ14が形成さ
れる。N− 型領域13上には、絶縁膜16を介して2
層の転送電極15a,15bが形成される。この転送電
極15a,15bに例えば4相の駆動パルスを印加する
ことにより、図1の断面に垂直な方向に信号電荷の転送
が行われる。転送電極15a,15bは絶縁膜16によ
って被覆されている。この絶縁膜16を貫通するように
コンタクトホール17が形成され、このコンタクトホー
ル17の底部には電荷供給用のN+ 型領域18が形成
される。このN+ 型領域18はN− 型領域13と離
間した位置に設けられている。そして、領域18,13
間の領域上に延在する転送電極15aの電位によって、
両領域18,13は導通する。コンタクトホール17内
にはN型の不純物を含有するポリシリコンが充填されて
おり、そのポリシリコン層19は絶縁膜16上まで延在
する。フォトセンサ部3をマトリクス状に配設したシリ
コン基板1は、そのポリシリコン層19の面19aで貼
着されており、このポリシリコン層19により結局2つ
のシリコン基板1,2が貼り合わせられている。
The silicon substrate 2 is also a single-crystal semiconductor substrate like the silicon substrate 1, and this silicon substrate 2 contains carbon.
CD (Charge Coupled Device)
A charge transfer section 4 of the structure is formed. That is, a P-type well region 12 is formed on an N-type substrate 11, an N- type region 13 that functions as a buried channel is formed on the surface of this well region 12, and each vertical column is formed on the main surface of the substrate. A channel stop 14 is formed to separate the . On the N- type region 13, 2
Layer transfer electrodes 15a, 15b are formed. By applying, for example, four-phase drive pulses to the transfer electrodes 15a and 15b, signal charges are transferred in a direction perpendicular to the cross section in FIG. Transfer electrodes 15a and 15b are covered with an insulating film 16. A contact hole 17 is formed so as to penetrate this insulating film 16, and an N+ type region 18 for charge supply is formed at the bottom of this contact hole 17. This N+ type region 18 is provided at a position separated from the N- type region 13. And areas 18 and 13
Due to the potential of the transfer electrode 15a extending over the region between
Both regions 18 and 13 are electrically connected. Contact hole 17 is filled with polysilicon containing N-type impurities, and polysilicon layer 19 extends to above insulating film 16 . The silicon substrate 1 on which the photosensor parts 3 are arranged in a matrix is attached to the surface 19a of the polysilicon layer 19, and the two silicon substrates 1 and 2 are eventually bonded together by this polysilicon layer 19. There is.

【0009】かかるCCD固体撮像装置において、その
受光面(撮像面)に光が照射されると、先ず、シリコン
基板1の各フォトセンサ部3で入射光に応じて信号電荷
が発生する。発生した信号電荷はポリシリコン層19を
介してシリコン基板2のN+ 型領域18に送られる。 例えば、転送電極15a,15bを3値レベルで駆動す
る場合、転送電極15aの電位が最も高くなるときにN
+ 型領域18とN− 型領域13の間にチャネルが形
成されるようにすることで、N+ 型領域18の信号電
荷を埋め込みチャネル層であるN− 型領域13に転送
できる。そして、転送電極15a,15bに例えば4相
の駆動パルスを印加することで、N− 型領域13の信
号電荷が垂直方向(図1の断面に垂直な方向)に転送さ
れ、しかる後水平方向に転送されて最終的に読み出され
ることになる。
In such a CCD solid-state imaging device, when the light receiving surface (imaging surface) is irradiated with light, first, signal charges are generated in each photosensor section 3 of the silicon substrate 1 in accordance with the incident light. The generated signal charges are sent to the N+ type region 18 of the silicon substrate 2 via the polysilicon layer 19. For example, when driving the transfer electrodes 15a and 15b at three levels, when the potential of the transfer electrode 15a is highest, N
By forming a channel between + type region 18 and N- type region 13, signal charges in N+ type region 18 can be transferred to N- type region 13, which is a buried channel layer. Then, by applying, for example, four-phase drive pulses to the transfer electrodes 15a and 15b, the signal charges in the N- type region 13 are transferred in the vertical direction (direction perpendicular to the cross section in FIG. 1), and then in the horizontal direction. It will be transferred and finally read.

【0010】また、上記構造のCCD固体撮像装置では
、画素単位でマトリクス状に配された複数個のフォトセ
ンサ部3の各々がシールド材8によって囲まれており、
このシールド材8を一定の電位V、例えば接地レベルに
保つことで、各画素間をシールドできるため、画素間の
寄生容量をなくすことができる。これにより、寄生容量
による画素間の容量結合がないため、画素間の容量結合
に起因する偽信号の発生(混色)を防止できることにな
る。
Further, in the CCD solid-state imaging device having the above structure, each of the plurality of photosensor sections 3 arranged in a matrix on a pixel basis is surrounded by a shield material 8,
By keeping this shielding material 8 at a constant potential V, for example, at the ground level, each pixel can be shielded, so that parasitic capacitance between pixels can be eliminated. Thereby, since there is no capacitive coupling between pixels due to parasitic capacitance, generation of false signals (color mixture) due to capacitive coupling between pixels can be prevented.

【0011】なお、上記実施例では、シールド材8の材
料としてアルミニウムを用い、このシールド材8を各画
素間の遮光をなす遮光膜10と一体に形成した場合につ
いて説明したが、シールド材8の材料としてアルミニウ
ム以外にポリシリコン(doped−Polysili
con) 等の導電性材料を用いることも可能であり、
また図3に示すように、例えばポリシリコンからなるシ
ールド材8を遮光膜10と別体で形成するようにしても
良い。
In the above embodiment, aluminum is used as the material of the shield material 8, and the shield material 8 is formed integrally with the light shielding film 10 that blocks light between each pixel. In addition to aluminum, doped-Polysilicon is also used as a material.
It is also possible to use conductive materials such as
Further, as shown in FIG. 3, a shield material 8 made of polysilicon, for example, may be formed separately from the light shielding film 10.

【0012】0012

【発明の効果】以上説明したように、本発明によれば、
基板同士を貼り合わせた構造の積層型固体撮像装置にお
いて、複数個のフォトセンサ部の各々を導電材(シール
ド材)で囲み、この導電材を一定の電位に保つ構成とし
たことにより、画素間の寄生容量がなくなるため、画素
間の寄生容量による容量結合に起因する偽信号の発生を
防止できる効果がある。
[Effects of the Invention] As explained above, according to the present invention,
In a stacked solid-state imaging device with a structure in which substrates are bonded together, each of the multiple photosensor parts is surrounded by a conductive material (shielding material), and this conductive material is kept at a constant potential. Since the parasitic capacitance is eliminated, it is possible to prevent the generation of false signals due to capacitive coupling due to parasitic capacitance between pixels.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明による積層型固体撮像装置の一実施例を
示す断面構造図である。
FIG. 1 is a cross-sectional structural diagram showing an embodiment of a stacked solid-state imaging device according to the present invention.

【図2】図1の平面構造図である。FIG. 2 is a plan view of the structure of FIG. 1;

【図3】本発明の他の実施例を示す要部の断面構造図で
ある。
FIG. 3 is a cross-sectional structural diagram of main parts showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1,2  シリコン基板 3  フォトセンサ部 4  電荷転送部 8  シールド材 10  遮光膜 14  チャネルストップ 15a,15b  転送電極 17  コンタクトホール 1, 2 Silicon substrate 3 Photo sensor section 4 Charge transfer section 8 Shield material 10 Light shielding film 14 Channel stop 15a, 15b Transfer electrode 17 Contact hole

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  画素単位の複数個のフォトセンサ部が
2次元的に配列されて形成された第1の半導体基板と、
前記フォトセンサ部で発生した信号電荷を転送するため
の電荷転送部が形成された第2の半導体基板とを貼り合
わせた構造の積層型固体撮像装置において、前記複数個
のフォトセンサ部の各々を導電材で囲み、この導電材を
一定の電位に保つことを特徴とする積層型固体撮像装置
1. A first semiconductor substrate formed by two-dimensionally arranging a plurality of photo sensor sections in pixel units;
In a stacked solid-state imaging device having a structure in which a second semiconductor substrate is bonded to a second semiconductor substrate on which a charge transfer section for transferring signal charges generated in the photosensor section is formed, each of the plurality of photosensor sections is bonded together. A stacked solid-state imaging device characterized by being surrounded by a conductive material and maintaining the conductive material at a constant potential.
JP3069336A 1991-03-08 1991-03-08 Laminated type solid-state image pickup device Pending JPH04280677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3069336A JPH04280677A (en) 1991-03-08 1991-03-08 Laminated type solid-state image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3069336A JPH04280677A (en) 1991-03-08 1991-03-08 Laminated type solid-state image pickup device

Publications (1)

Publication Number Publication Date
JPH04280677A true JPH04280677A (en) 1992-10-06

Family

ID=13399611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3069336A Pending JPH04280677A (en) 1991-03-08 1991-03-08 Laminated type solid-state image pickup device

Country Status (1)

Country Link
JP (1) JPH04280677A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6028577A (en) * 1997-01-24 2000-02-22 Nec Corporation Active-matrix type liquid-crystal display
EP1122790A2 (en) * 2000-02-03 2001-08-08 Agilent Technologies Inc. a Delaware Corporation A conductive mesh bias connection for an array of elevated active pixel sensors
JP2008028057A (en) * 2006-07-20 2008-02-07 Sony Corp Solid-state image sensing element and method for manufacturing the same
JP2008259244A (en) * 2001-03-13 2008-10-23 Ecchandesu:Kk Image sensor
JP2008263119A (en) * 2007-04-13 2008-10-30 Powerchip Semiconductor Corp Image sensor and its manufacturing method
JP2009065167A (en) * 2007-09-07 2009-03-26 Dongbu Hitek Co Ltd Image sensor, and manufacturing method thereof
JP2009158957A (en) * 2007-12-27 2009-07-16 Dongbu Hitek Co Ltd Method of manufacturing image sensor
JP2009164603A (en) * 2007-12-28 2009-07-23 Dongbu Hitek Co Ltd Image sensor and manufacturing method therefor
JP2013175494A (en) * 2011-03-02 2013-09-05 Sony Corp Solid state imaging device, method of fabricating solid state imaging device, and electronic instrument
US9602743B2 (en) 2014-10-23 2017-03-21 Panasonic Intellectual Property Management Co., Ltd. Imaging device and image acquisition device
JP2017168869A (en) * 2017-06-19 2017-09-21 ソニー株式会社 Solid imaging device and electronic apparatus
EP3306666A1 (en) * 2016-10-04 2018-04-11 Omnivision Technologies, Inc. Stacked image sensor with shield bumps between interconnects
US10141365B2 (en) 2009-02-10 2018-11-27 Sony Corporation Solid-state imaging device having improved light-collection, method of manufacturing the same, and electronic apparatus

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6028577A (en) * 1997-01-24 2000-02-22 Nec Corporation Active-matrix type liquid-crystal display
EP1122790A2 (en) * 2000-02-03 2001-08-08 Agilent Technologies Inc. a Delaware Corporation A conductive mesh bias connection for an array of elevated active pixel sensors
EP1122790A3 (en) * 2000-02-03 2003-12-03 Agilent Technologies, Inc. (a Delaware corporation) A conductive mesh bias connection for an array of elevated active pixel sensors
JP2008259244A (en) * 2001-03-13 2008-10-23 Ecchandesu:Kk Image sensor
JP2008028057A (en) * 2006-07-20 2008-02-07 Sony Corp Solid-state image sensing element and method for manufacturing the same
JP2008263119A (en) * 2007-04-13 2008-10-30 Powerchip Semiconductor Corp Image sensor and its manufacturing method
JP2009065167A (en) * 2007-09-07 2009-03-26 Dongbu Hitek Co Ltd Image sensor, and manufacturing method thereof
JP2009158957A (en) * 2007-12-27 2009-07-16 Dongbu Hitek Co Ltd Method of manufacturing image sensor
JP2009164603A (en) * 2007-12-28 2009-07-23 Dongbu Hitek Co Ltd Image sensor and manufacturing method therefor
US10141365B2 (en) 2009-02-10 2018-11-27 Sony Corporation Solid-state imaging device having improved light-collection, method of manufacturing the same, and electronic apparatus
US11735620B2 (en) 2009-02-10 2023-08-22 Sony Group Corporation Solid-state imaging device having optical black region, method of manufacturing the same, and electronic apparatus
US9502450B2 (en) 2011-03-02 2016-11-22 Sony Corporation Solid-state imaging device, manufacturing method of solid-state imaging device, and electronic device
US9673235B2 (en) 2011-03-02 2017-06-06 Sony Corporation Solid-state imaging device, manufacturing method of solid-state imaging device, and electronic device
US9923010B2 (en) 2011-03-02 2018-03-20 Sony Corporation Solid-state imaging device, manufacturing method of solid-state imaging device, and electronic device
US10128291B2 (en) 2011-03-02 2018-11-13 Sony Corporation Solid-state imaging device, manufacturing method of solid-state imaging device, and electronic device
US9595557B2 (en) 2011-03-02 2017-03-14 Sony Corporation Solid-state imaging device, manufacturing method of solid-state imaging device, and electronic device
JP2022046719A (en) * 2011-03-02 2022-03-23 ソニーグループ株式会社 Solid-state imaging device and electronic apparatus
JP2013175494A (en) * 2011-03-02 2013-09-05 Sony Corp Solid state imaging device, method of fabricating solid state imaging device, and electronic instrument
US9602743B2 (en) 2014-10-23 2017-03-21 Panasonic Intellectual Property Management Co., Ltd. Imaging device and image acquisition device
US10057518B2 (en) 2014-10-23 2018-08-21 Panasonic Intellectual Property Management Co., Ltd. Imaging device and image acquisition device
US10142570B1 (en) 2014-10-23 2018-11-27 Panasonic Intellectual Property Management Co., Ltd. Imaging device and image acquisition device
EP3306666A1 (en) * 2016-10-04 2018-04-11 Omnivision Technologies, Inc. Stacked image sensor with shield bumps between interconnects
JP2017168869A (en) * 2017-06-19 2017-09-21 ソニー株式会社 Solid imaging device and electronic apparatus

Similar Documents

Publication Publication Date Title
KR101207052B1 (en) Back-illuminated type solid-state imaging device and method of manufacturing the same
JP2594992B2 (en) Solid-state imaging device
KR20180038148A (en) Image sensor
US20070210239A1 (en) Image sensor with high fill factor pixels and method for forming an image sensor
JPH0523505B2 (en)
JPH04280677A (en) Laminated type solid-state image pickup device
US6608299B2 (en) Photoelectric conversion apparatus, driving method thereof, and information processing apparatus
US20060261242A1 (en) Image sensor with vertical photo-detector and related method of fabrication
JPH0666914B2 (en) Solid-state imaging device
JPH11121729A (en) Band gap designed active pickcell cell
JPH0778959A (en) Solid state image sensor
JPH04103168A (en) Solid-state image sensing element
JPH05291549A (en) Lamination type solid-state image sensing device
KR960001182B1 (en) Solid state image pick-up device
US4908684A (en) Solid-state imaging device
JP3238160B2 (en) Stacked solid-state imaging device
JPH10209417A (en) Solid-state radiation detecting device
JPH0799297A (en) Solid-state image pick-up device
JP2000022121A (en) Solid-state image-pickup device
EP0487989B1 (en) Solid-state imaging device
JP5030323B2 (en) Solid-state image sensor
JP2901649B2 (en) Semiconductor device and camera using the same
JPH0135546B2 (en)
US20220285414A1 (en) Image sensing device
JPS6251254A (en) Solid-state image pickup device