JPS6251254A - Solid-state image pickup device - Google Patents

Solid-state image pickup device

Info

Publication number
JPS6251254A
JPS6251254A JP60189780A JP18978085A JPS6251254A JP S6251254 A JPS6251254 A JP S6251254A JP 60189780 A JP60189780 A JP 60189780A JP 18978085 A JP18978085 A JP 18978085A JP S6251254 A JPS6251254 A JP S6251254A
Authority
JP
Japan
Prior art keywords
electrode
substrate
channel
main surface
recess part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60189780A
Other languages
Japanese (ja)
Inventor
Akio Azuma
昭男 東
Kazuhiro Kawajiri
和廣 川尻
Haruji Shinada
品田 春治
Hiroshi Tamura
宏 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP60189780A priority Critical patent/JPS6251254A/en
Publication of JPS6251254A publication Critical patent/JPS6251254A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To obtain a device having a CCD, which can perfectly transfer charge generated in a light sensitive region without decreasing a dynamic range, by forming a plurality of electrodes in parallel with the inner surface of a recess part formed in the main surface of a substrate, and forming a channel region formed by a charge transfer means in parallel with the inner surface of the recess part, thereby making an optical vignetting factor large. CONSTITUTION:A plurality of electrodes 20 for transferring charge accumulated in light sensitive regions 10 are formed in parallel with the inner surface of a recess part 24 formed in the main surface of a substrate 12. A channel region 26 formed by a charge transfer means is formed in parallel with the inner surfdeeof the recess part 24. For example, the side surface of the recess part 24 is formed vertically in the main surface of the substrate 12. Each electrode 20 is provided along the inner side surface and the bottom surface of the recess part 24. The electrode 20 is provided along the main surface of the substrate 12 at the outside of the recess part 24. Thus an (n) channel 26 of a CCD is formed along the recess part 24 based on the shape of the electrode 20. The electrodes 20 are constituted so that every other electrode 20 is overlapped on the end part of the neighboring electrode 20. Every other electrode 20 has a gate electrode 28 for transferring the optical charge accumulated in the light sensitive region 10 to the (n) channel 26 of the CCD.

Description

【発明の詳細な説明】 技術分野 本発明は固体撮像装置に関し、特に電荷転送型の固体撮
像素子たる電荷結合素子(CCD)を用いた  ゛固体
撮像装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a solid-state imaging device, and more particularly to a solid-state imaging device using a charge-coupled device (CCD), which is a charge transfer type solid-state imaging device.

11亘( CODを用いた固体撮像装置は、例えばインターライン
転送方式の場合、行列状に配列された感光領域に蓄積さ
れた光電荷を、垂直転送用のCC口により垂直転送し、
さ5に水平転送用のCCDにより水平に転送して出力す
る。
For example, in the case of an interline transfer method, a solid-state imaging device using COD vertically transfers photocharges accumulated in photosensitive areas arranged in a matrix using a CC port for vertical transfer.
In step 5, the image is transferred horizontally using a CCD for horizontal transfer and output.

感光領域は半導体基板の一方の主面に形成され、この感
光領域に入射光に応じて励起された光電荷がCCDに転
送され、CCDにより垂直および水平に転送される。
A photosensitive region is formed on one main surface of the semiconductor substrate, and photocharges excited in the photosensitive region in response to incident light are transferred to a CCD, and vertically and horizontally transferred by the CCD.

最近CODを用いた固体撮像装置は解像度を向上させφ
ため高密度化され、以前の1チツプ20万画素のものに
比較して高密度のもの、例えばlチップ30万画素また
は40万画素のものが製造されるようになった。一方、
チップのサイズは歩留りの向上、低コスト化のため縮小
化され、1/2インチ、または81鵬角のものとなって
いる。
Recently, solid-state imaging devices using COD have improved resolution and φ
Therefore, the density has been increased, and compared to the previous 200,000 pixels per chip, higher density ones, for example, 1 chip with 300,000 or 400,000 pixels, have been manufactured. on the other hand,
The size of the chip has been reduced to improve yield and reduce cost, and is now 1/2 inch or 81 degrees square.

したがって感光領域、CC口の転送電極の面積を小さく
する必要があるが、感光領域を形成する面積を小さくす
ると蓄積できる電荷が減るためタイナミックレンジが低
下する欠点がある。またGCDの転送電極の面積を小さ
くすると、電極に沿って形成されるチャネルの容量が小
さくなるため、感光領域に発生した電荷を完全に転送す
ることができず、蓄積された電荷の読み残しが生じ、読
み出された信号が不完全となり、感光領域に読み残され
た電荷を例えば垂直ブランキング期間に掃き出す処理が
必要だった。
Therefore, it is necessary to reduce the area of the photosensitive region and the transfer electrode of the CC port, but if the area where the photosensitive region is formed is made smaller, the amount of charge that can be accumulated decreases, resulting in a reduction in the dynamic range. Furthermore, if the area of the GCD transfer electrode is made smaller, the capacitance of the channel formed along the electrode becomes smaller, making it impossible to completely transfer the charges generated in the photosensitive area, resulting in unread accumulated charges. As a result, the readout signal becomes incomplete, and a process is required to sweep out the charge left unread in the photosensitive area, for example, during the vertical blanking period.

目   的 本発明はこのような従来技術の欠点を解消し、光学開口
率を大きくしてタイナミックレンジを低下させず、しか
も感光領域に発生した電荷を完全に転送することのでき
るCCDを有する固体撮像装置を提供することを目的と
する。
Purpose The present invention eliminates the drawbacks of the prior art, and provides a solid-state imaging device having a CCD that can increase the optical aperture ratio without reducing the dynamic range, and can completely transfer the charges generated in the photosensitive area. The purpose is to provide equipment.

発明の開示 本発明によれば、半導体基板と、゛ト導体基板の一方の
主面に形成Jれ、入射光を受けて入射光に応じた光電荷
を励起するように配列された複数の感光領域と、感光領
域に蓄積された電荷を転送するため、感光領域に隣接し
て配列された複数の電極を有する電荷転送手段とを有し
、入射光によって励起された光電荷を電荷転送手段を通
して読み出す固体撮像装置は、複数の電極が基板の主面
に形成された凹部の内面に平行に形成され、電荷転送手
段により形成されるチャネル領域が凹部の内面に平行に
形成されるものである。
DISCLOSURE OF THE INVENTION According to the present invention, a plurality of photosensitive elements are formed on one main surface of a semiconductor substrate and a conductor substrate and are arranged to receive incident light and excite photocharges corresponding to the incident light. and a charge transfer means having a plurality of electrodes arranged adjacent to the photosensitive area to transfer the charges accumulated in the photosensitive area, and the photocharge excited by the incident light is passed through the charge transfer means. In the solid-state imaging device for reading, a plurality of electrodes are formed parallel to the inner surface of a recess formed on the main surface of the substrate, and a channel region formed by the charge transfer means is formed parallel to the inner surface of the recess.

実施例の説明 次に添付図面を参照して本発明による固体撮像装置の実
施例を詳細に説明する。
DESCRIPTION OF EMBODIMENTS Next, embodiments of a solid-state imaging device according to the present invention will be described in detail with reference to the accompanying drawings.

第1図、第2図に本発明の一実施例が示されている。感
光領域lOを含む撮像セルが多数行列状に配列され、2
次元の撮像セルアレイを構成している。この感光領域1
0には入射した光により光電荷が励起され蓄積される。
An embodiment of the present invention is shown in FIGS. 1 and 2. FIG. A large number of imaging cells each including a photosensitive area 1O are arranged in a matrix, and 2
It constitutes a three-dimensional imaging cell array. This photosensitive area 1
At zero, photocharges are excited and accumulated by the incident light.

第2図のI−I線断面図を示す第1図かられかるように
、本実施例ではn型シリコン基板12の一方の主表面の
毛にp型不純物の拡散によってp型層14を形成し、感
光領域lOはこのp型層14の上にn型不純物の拡散に
よってn÷領域16を形成し、n+領域16とp型層1
4によりpn接合を形成している。
As can be seen from FIG. 1, which shows a cross-sectional view taken along the line II in FIG. The photosensitive region IO is formed by diffusing n-type impurities on this p-type layer 14 to form an n÷ region 16, and forming an n+ region 16 and a p-type layer 1.
4 forms a pn junction.

感光領域lOに入射した光によって励起された光電荷は
、この接合領域に蓄積される。
Photocharges excited by light incident on the photosensitive region IO are accumulated in this junction region.

感光領域10に隣接して複数の電極20が第2図の列方
向(第1図の紙面に垂直な方向)に配列され、垂直転送
用のGCDを構成している。電極20は多結晶シリコン
により有利に形成され、第2図に示すようにリード22
により行方向の他の電極20と接続されている。第1図
および電極20を示す第3図かられかるように、基板1
2には凹部24が形成され、凹部24の側面は基板12
の主面に垂直に形成されている。電極20はこの凹部2
4の内面に平行に形成される。すなわち電極20は、凹
部24の内部においては凹部24の側面および底面に沿
って設けられ、凹部24の外部においては基板12の1
面に沿って設けられるように略V形状に形成されている
A plurality of electrodes 20 are arranged adjacent to the photosensitive area 10 in the column direction of FIG. 2 (in a direction perpendicular to the paper plane of FIG. 1), forming a GCD for vertical transfer. Electrode 20 is advantageously formed of polycrystalline silicon and has leads 22 as shown in FIG.
is connected to other electrodes 20 in the row direction. As can be seen from FIG. 1 and FIG. 3 showing the electrode 20, the substrate 1
A recess 24 is formed in the substrate 12, and the side surface of the recess 24 is connected to the substrate 12.
It is formed perpendicular to the main surface of. The electrode 20 is placed in this recess 2
It is formed parallel to the inner surface of 4. That is, the electrode 20 is provided along the side and bottom surfaces of the recess 24 inside the recess 24, and is provided along one side of the substrate 12 outside the recess 24.
It is formed in a substantially V shape so as to be provided along the surface.

このような電極20の形状により、第1図に示すように
GCDのnチャネル26が凹部24に沿って略■形状に
形成される。
Due to the shape of the electrode 20, the GCD n-channel 26 is formed in a substantially square shape along the recess 24, as shown in FIG.

電極20は第2図、第3図に示すように1つおきの電極
20が隣接する電極20の端部に重なるように構成され
、また、1つおきの電極20は感光領域lOに蓄積され
た光電荷をCC口のnチャネル26に転送するためのゲ
ート電極部28を有している。
The electrodes 20 are configured such that every other electrode 20 overlaps the end of an adjacent electrode 20, as shown in FIGS. 2 and 3, and every other electrode 20 is accumulated in the photosensitive area lO. It has a gate electrode portion 28 for transferring the photocharges generated by the photoelectric charge to the n-channel 26 of the CC port.

電極20とp型層14の間およびn十領域16の表面に
はS iO2の絶縁層18が設けられている。CC口と
隣接する他の画素の感光領域lOとの間には、p型層1
4にp十領域30が形成5れ、素子分離のためのチャネ
ルストッパを形成している。チャネルストッパのp十領
域30は、第1図においてはLOGOSフィールド酸化
膜下に形成されているが、LOGO3構造を形成しない
p十領域30のみであってもよい。
An insulating layer 18 of SiO2 is provided between the electrode 20 and the p-type layer 14 and on the surface of the n+ region 16. A p-type layer 1 is provided between the CC port and the photosensitive region IO of another adjacent pixel.
A p-type region 30 is formed at 5 to form a channel stopper for element isolation. In FIG. 1, the p+ region 30 of the channel stopper is formed under the LOGOS field oxide film, but it may be only the p+ region 30 that does not form the LOGO3 structure.

電極20および感光領域lOの1−面にはPSG  (
リンを含むシリケートガラス)の絶縁層40が形成され
、絶縁層40の1−而には金属などの光を通過させない
材料によりシールド層42が画素分離のため形成されて
いる。
PSG (
An insulating layer 40 (silicate glass containing phosphorus) is formed, and a shield layer 42 is formed of a material such as metal that does not allow light to pass through the insulating layer 40 for pixel separation.

次に本実施例の動作を説明する。Next, the operation of this embodiment will be explained.

感光領域lOに入射した光により光電荷が励起され、前
記のようにpn接合領域に蓄積される。ゲート電極部2
8を有する電極20に正のパルスが印加されると、ゲー
ト電極部28の下部のp型層14内にnチャネル(図示
せず)が形成され、感光領域!0に蓄積された電荷はこ
のnチャネルを通過してCODのnチャネル2Bに転送
される。
Photocharges are excited by the light incident on the photosensitive region IO and are accumulated in the pn junction region as described above. Gate electrode part 2
When a positive pulse is applied to the electrode 20 with 8, an n-channel (not shown) is formed in the p-type layer 14 below the gate electrode portion 28, and the photosensitive region! The charges accumulated at 0 pass through this n-channel and are transferred to the n-channel 2B of the COD.

次に複数の電極20に駆動クロック信号が印加され、C
C口のnチャネル26に蓄積された電荷が一斉にnチャ
ネル26を通過して垂直(列方向)に転送される。垂直
に1画素分だけすべての電荷が転送されると、水平転送
用のcCn  (図示せず)側の端部の1画素分の電荷
は水平転送用のCODに転送され、水平転送用のGCD
により水平(行方向)に転送される。水平転送用のCC
Dに転送された電荷がすべて水平に転送されて出力され
ると、再び複数の電極20に駆動クロック信号が印加さ
れてすべての電荷が1画素分だけ垂直に転送され、水平
転送用のCCD側の端部の1画素分の電荷は水平転送用
のCODに転送され、水平転送用のCC口により水平に
転送され出力される。同様の動作を繰り返して感光領域
10に照射された光に応じた出力信号が得られる。
Next, a drive clock signal is applied to the plurality of electrodes 20, and C
The charges accumulated in the n-channel 26 of the C port pass through the n-channel 26 all at once and are transferred vertically (in the column direction). When all the charges for one pixel are transferred vertically, the charges for one pixel at the end on the cCn (not shown) side for horizontal transfer are transferred to the COD for horizontal transfer, and then to the GCD for horizontal transfer.
is transferred horizontally (in the row direction). CC for horizontal transfer
When all the charges transferred to D are transferred horizontally and output, the driving clock signal is applied again to the plurality of electrodes 20, and all the charges are transferred vertically by one pixel, and the CCD side for horizontal transfer is transferred vertically by one pixel. The charge for one pixel at the edge of is transferred to the horizontal transfer COD, and then horizontally transferred and outputted by the horizontal transfer CC port. By repeating similar operations, an output signal corresponding to the light irradiated onto the photosensitive area 10 is obtained.

本実施例によればCODの転送電極20が前記のように
基板12の主面に形成された凹部24の内面に平行に形
成されているから、CCDのnチャネル2Bがこの電極
20に沿って凹部24の側面および底面に平行に形成さ
れる。したがって基板12の主面の面積に対して大きな
容量のチャネルを形成することができる。
According to this embodiment, since the transfer electrode 20 of the COD is formed parallel to the inner surface of the recess 24 formed on the main surface of the substrate 12 as described above, the n-channel 2B of the CCD is formed along this electrode 20. It is formed parallel to the side and bottom surfaces of the recess 24. Therefore, a channel having a large capacity can be formed with respect to the area of the main surface of the substrate 12.

本実施例の効果を明確にするため従来例と比較して説明
する。
In order to clarify the effects of this embodiment, it will be explained in comparison with a conventional example.

第4図に従来例の断面図が示されている。FIG. 4 shows a sectional view of a conventional example.

感光領域lOに隣接してCCDを構成する複数の電極2
00は、基板12の主面に平行に形成されている。この
従来例においては、 CODのnチャネル280は電極
200の下部に形成されるから、基板12の主面に平行
に広く形成される。したがってnチャネル260の形成
のために基板12の主面の大きな面積を要するから、装
置の高密度化によりnチャネル260の形成のための主
面の面積を小さくすれば、感光領域lOに蓄積した電荷
を完全に転送することができない、また、莞全に転送す
るためにnチャネル260の形成のための主面の面積を
大きくすれば、光学開口率が小さくなり、感光領域10
を形成する面積が小さくなるため、光電荷蓄積容量が小
さくなりダイナミックレンジが小さくなる。
A plurality of electrodes 2 constituting a CCD adjacent to the photosensitive area IO
00 is formed parallel to the main surface of the substrate 12. In this conventional example, since the COD n-channel 280 is formed under the electrode 200, it is formed broadly parallel to the main surface of the substrate 12. Therefore, since a large area of the main surface of the substrate 12 is required to form the n-channel 260, if the area of the main surface for forming the n-channel 260 is reduced by increasing the density of the device, the amount of light accumulated in the photosensitive region IO can be reduced. If the area of the main surface for forming the n-channel 260 is increased in order to completely transfer the charges, the optical aperture ratio becomes smaller and the photosensitive area 10
Since the area in which the photoelectric charge is formed becomes smaller, the photocharge storage capacity becomes smaller and the dynamic range becomes smaller.

これに対して本実施例によれば、前述のように基板12
の主面の面積が小さい部分に大きな容量のCCDのチャ
ネルを形成することができるから、微細な撮像セル構造
としても感光領域10に生成、蓄積された電荷を完全に
転送することができ、従来のようにチ+ネルの容量が小
さいために感光領域に電荷を一部残した不完全転送とな
ることはない。
On the other hand, according to this embodiment, as described above, the substrate 12
Since a large-capacitance CCD channel can be formed in a small area of the main surface of the CCD, the charges generated and accumulated in the photosensitive area 10 can be completely transferred even in the case of a fine imaging cell structure. Since the capacitance of the channel is small as shown in FIG.

また、光学開口率が向上し、感光領域lOの面積を大き
くすることができるから、微細な撮像セル構造をとって
高い解像度を得ながら大きな光電荷蓄積容量を有し、大
きなダイナミックレンジが達成される。
In addition, since the optical aperture ratio is improved and the area of the photosensitive region IO can be increased, a fine imaging cell structure can be used to obtain high resolution while having a large photocharge storage capacity and achieving a large dynamic range. Ru.

1部24の深さは、0.5〜2.0’pm程度が好まし
い、この程度の凹部24を設けて電極20を凹部24の
内1!に平行に配置することにより、nチャネルの表面
積は10〜50μm 程度増加する。したがって1、n
チャネルの容量を従来のものと同一とすれば、チャネル
幅、を25〜70%に縮小することができ、光学開口率
が向−1−シ、感光領域10の面積を大きくすることが
できるから、ダイナミックレンジを1..5〜2.5倍
に増加させることができる。
The depth of the first part 24 is preferably about 0.5 to 2.0' pm, and by providing the recess 24 of this extent, the electrode 20 can be placed in one of the recesses 24! By arranging them in parallel to , the surface area of the n-channel increases by about 10 to 50 μm. Therefore 1, n
If the capacity of the channel is the same as that of the conventional one, the channel width can be reduced to 25 to 70%, the optical aperture ratio can be reduced to -1, and the area of the photosensitive region 10 can be increased. , the dynamic range is 1. .. It can be increased by 5 to 2.5 times.

例えば凹部24のiさを2Bmとすると、nチャネルの
長さが17pmの場合には、nチャネルの増加面積は2
m17x2=B4 ILm  となる。
For example, if the i of the recess 24 is 2Bm, and the length of the n-channel is 17pm, the increased area of the n-channel is 2Bm.
m17x2=B4 ILm.

なお、上記実施例においては凹部24の形状は基板12
の主面に垂直な側面を有するものとされているが、凹部
24の中央部を最深部とし傾斜を有する底面により形成
された断面が三角形のもの、基板12の深部に向って凸
となる曲面を有するものなど、基板12の主面に平行な
方向以外の方向にもnチャネル26が形成されるように
電極が配置されていればよい。
Note that in the above embodiment, the shape of the recess 24 is different from that of the substrate 12.
The substrate 12 has side surfaces perpendicular to the main surface of the substrate 12, but there are cases in which the central portion of the recess 24 is the deepest point and the cross section formed by the inclined bottom surface is triangular, and a curved surface that is convex toward the deeper part of the substrate 12. It is sufficient if the electrodes are arranged so that the n-channel 26 is formed in a direction other than the direction parallel to the main surface of the substrate 12, such as one having the following.

またCC口はnチャネルが形成されるものの他、pチャ
ネルが形成されるものでもよい。
Further, the CC port may have a p-channel instead of an n-channel.

効  果 このように本発明では、CCDの電極が基板の主面に形
成された凹部の内面に平行に形成され、CCDのチャネ
ルが凹部の内面に平行に形成されているから、チャネル
の容量を大きくすることができる。したがって、感光領
域に蓄積された電荷を完全に転送することができる。ま
た、光学開口率を向−にできるから、微細なセル構造を
とって高い解像度を得る場合にも感光領域は大きな電荷
蓄積容量を有し、大きなダイナミックレンジを得ること
ができる。
Effect As described above, in the present invention, since the electrode of the CCD is formed parallel to the inner surface of the recess formed on the main surface of the substrate, and the channel of the CCD is formed parallel to the inner surface of the recess, the capacitance of the channel can be reduced. It can be made larger. Therefore, the charges accumulated in the photosensitive area can be completely transferred. In addition, since the optical aperture ratio can be improved, even when a fine cell structure is used to obtain high resolution, the photosensitive region has a large charge storage capacity and a large dynamic range can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による固体撮像装置の一実施例の構造を
示す第2図におけるI−I線断面図、第2図は本発明に
よる固体撮像装置の一実施例の構造を示す乎面図、 第3図は第1図の電極を示す斜視図、 第4図は従来の11III体撮像装置の構造を示す断面
図である。 主要部分の符号の説明 10、、、感光領域 12、、、基板 14・・・p層 1f1.、、n+領領 域0、、、電極 24、、、凹部 2B、、、nチャネル 28、、、ゲート電極部 特許出願人 富士写真フィルム株式会ン1代 理 人 
香取 孝雄
FIG. 1 is a sectional view taken along the line II in FIG. 2 showing the structure of an embodiment of the solid-state imaging device according to the present invention, and FIG. 2 is a top view showing the structure of the embodiment of the solid-state imaging device according to the invention. , FIG. 3 is a perspective view showing the electrode of FIG. 1, and FIG. 4 is a sectional view showing the structure of a conventional 11III body imaging device. Explanation of symbols of main parts 10, . . . Photosensitive region 12, . . . Substrate 14...p layer 1f1. ,,n+ region 0,,,electrode 24,,,concavity 2B,,,n channel 28,,,gate electrode section Patent applicant Fuji Photo Film Co., Ltd. 1 agent
Takao Katori

Claims (1)

【特許請求の範囲】 1、半導体基板と、 該半導体基板の一方の主面に形成され、入射光を受けて
該入射光に応じた光電荷を励起するように配列された複
数の感光領域と、 該感光領域に蓄積された電荷を転送するため、該感光領
域に隣接して配列された複数の電極を有する電荷転送手
段とを有し、 前記入射光によって励起された光電荷を該電荷転送手段
を通して読み出す固体撮像装置において、該装置は、 前記複数の電極が前記基板の主面に形成された凹部の内
面に平行に形成され、前記電荷転送手段により形成され
るチャネル領域が前記凹部の内面に平行に形成されてい
ることを特徴とする固体撮像装置。 2、特許請求の範囲第1項記載の装置において、前記凹
部は、その側面が前記基板の主面に垂直に形成されてい
ることを特徴とする固体撮像装置。
[Claims] 1. A semiconductor substrate, and a plurality of photosensitive regions formed on one main surface of the semiconductor substrate and arranged so as to receive incident light and excite photocharges according to the incident light. , a charge transfer means having a plurality of electrodes arranged adjacent to the photosensitive area in order to transfer the charges accumulated in the photosensitive area, and the photoelectric charge excited by the incident light is transferred to the photosensitive area. A solid-state imaging device that performs readout through means, wherein the plurality of electrodes are formed parallel to the inner surface of a recess formed on the main surface of the substrate, and the channel region formed by the charge transfer means is parallel to the inner surface of the recess. A solid-state imaging device characterized by being formed parallel to. 2. A solid-state imaging device according to claim 1, wherein the recess has a side surface perpendicular to the main surface of the substrate.
JP60189780A 1985-08-30 1985-08-30 Solid-state image pickup device Pending JPS6251254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60189780A JPS6251254A (en) 1985-08-30 1985-08-30 Solid-state image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60189780A JPS6251254A (en) 1985-08-30 1985-08-30 Solid-state image pickup device

Publications (1)

Publication Number Publication Date
JPS6251254A true JPS6251254A (en) 1987-03-05

Family

ID=16247077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60189780A Pending JPS6251254A (en) 1985-08-30 1985-08-30 Solid-state image pickup device

Country Status (1)

Country Link
JP (1) JPS6251254A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5029321A (en) * 1988-12-19 1991-07-02 Mitsubishi Denki Kabushiki Kaisha Solid state image sensing device formed of charge coupled devices
US5051798A (en) * 1989-04-07 1991-09-24 Mitsubishi Denki Kabushiki Kaisha Solid state image sensing device having an overflow drain structure
US5083173A (en) * 1986-11-28 1992-01-21 Matsushita Electronics Corporation Charge coupled device for a solid state image pick-up device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51148385A (en) * 1975-06-14 1976-12-20 Fujitsu Ltd Semiconductor memory cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51148385A (en) * 1975-06-14 1976-12-20 Fujitsu Ltd Semiconductor memory cell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5083173A (en) * 1986-11-28 1992-01-21 Matsushita Electronics Corporation Charge coupled device for a solid state image pick-up device
US5029321A (en) * 1988-12-19 1991-07-02 Mitsubishi Denki Kabushiki Kaisha Solid state image sensing device formed of charge coupled devices
US5086010A (en) * 1988-12-19 1992-02-04 Mitsubishi Denki Kabushiki Kaisha Method for manufacturing solid state image sensing device formed of charge coupled devices on side surfaces of trenches
US5051798A (en) * 1989-04-07 1991-09-24 Mitsubishi Denki Kabushiki Kaisha Solid state image sensing device having an overflow drain structure
US5114865A (en) * 1989-04-07 1992-05-19 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing a solid-state image sensing device having an overflow drain structure

Similar Documents

Publication Publication Date Title
US7738021B2 (en) Imaging device
JPH0135549B2 (en)
JPS58138187A (en) Solid-state image sensor
US4748486A (en) Solid-state image sensor
JPH06204450A (en) Solid-state image pickup device
JP2000340784A (en) Solid-state image pickup device
JPS6251254A (en) Solid-state image pickup device
US5397730A (en) Method of making a high efficiency horizontal transfer section of a solid state imager
JPH0425714B2 (en)
JPS61289659A (en) Solid-state image pickup device
JP3047965B2 (en) Solid-state imaging device
JPH0135546B2 (en)
JP3179080B2 (en) Charge coupled device and solid-state imaging device provided with the device
JP3562128B2 (en) Solid-state imaging device
JP2000260972A (en) Solid-state image pickup device and its manufacture
JP2980196B2 (en) Solid-state imaging device
JPH05190828A (en) Solid-state image-sensing element
JPS59196667A (en) Solid-state image pickup device
JPS6255961A (en) Solid state image pick-up device
JP2671151B2 (en) Semiconductor device
JPH0671071B2 (en) Solid-state image sensor
JP2001111028A (en) Solid state image sensor
JPH02159062A (en) Solid-state image-sensing device
JPH01123468A (en) Solid-state image sensing element
JPS59132655A (en) Solid-state image pickup device