JP2008262921A - 3次元構造観察用試料作製装置、電子顕微鏡及びその方法 - Google Patents

3次元構造観察用試料作製装置、電子顕微鏡及びその方法 Download PDF

Info

Publication number
JP2008262921A
JP2008262921A JP2008182177A JP2008182177A JP2008262921A JP 2008262921 A JP2008262921 A JP 2008262921A JP 2008182177 A JP2008182177 A JP 2008182177A JP 2008182177 A JP2008182177 A JP 2008182177A JP 2008262921 A JP2008262921 A JP 2008262921A
Authority
JP
Japan
Prior art keywords
sample
electron microscope
axis
protrusion
ion beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008182177A
Other languages
English (en)
Inventor
Ruriko Tokida
るり子 常田
Hiroshi Kakibayashi
博司 柿林
Masanari Takaguchi
雅成 高口
Kuniyasu Nakamura
邦康 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2008182177A priority Critical patent/JP2008262921A/ja
Publication of JP2008262921A publication Critical patent/JP2008262921A/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

【課題】微細に加工された半導体デバイス内の所望の箇所の3次元的構造を観
察するための電子顕微鏡用試料作製装置、電子顕微鏡及びその方法を提供する。
【解決手段】試料片10の加工にダイサーを用い、試料片上の観察対象となる
部分を突起状に削り出す加工に集束イオンビーム加工を用い、試料片10を1軸
全方向傾斜試料ホルダに、突起11の中心軸と試料傾斜軸Zを一致させて固定し
、高角に散乱された電子で結像したTEM像を投影像として用い、再構成を行う

【選択図】図4

Description

本発明は、微細に加工された半導体デバイス内の所望の箇所における構造を3次元的に
観察するための3次元構造観察用試料作製装置及びその観察手段と方法に関する。
半導体デバイスでは試料構造が微細になるにつれ、高空間分解能を持つ透過電子顕微鏡
(以下略してTEM)による観察の重要性が高まってきている。それに加え、様々なパタ
ーン形状を重ね合わせて作製される半導体デバイスの構造を3次元的に評価したいという
要求も高まってきている。
これらの要求に対し、TEMを用いて試料の3次元構造を観察する試みがなされてきた
。以下、従来の観察法の手順を示す。
まず観察対象のTEM像を観察するために、試料を薄膜化する。試料内を電子線が透過
できる距離は短く、透過電子顕微鏡の入射電圧100から300kVでは、電子線が透過
できる距離は100nm以下である。観察対象の厚さを100nm以下にするために、研
磨剤を用いて試料を100μm程度まで薄膜化する。
更に観察対象近傍をすり鉢状に研磨して厚さ数10μmにした後、例えば特開平5−31270
0 号記載のTEM試料の作製装置を用いて100nm以下に薄膜化する。
薄膜化した試料片をリング状の試料台に固定し、上記試料台の周辺部を、例えば特開平
6−139986 号記載の電子顕微鏡の試料支持方法及び装置に示される試料ホルダに固定した
後試料室に挿入し、観察対象のTEM像を観察する。3次元構造を評価するには試料片を
試料室内で傾斜させて複数方向から観察したTEM像を用いる。
更に3次元構造を定量的に評価するには、TEM像を投影像として用い、3次元再構成
を行う。結晶性試料のTEM像を投影像として用いるためには、特願平3−110126 号記載
の3次元原子配列観察装置を用いて試料内の原子によって高角に散乱された電子で結像し
た高角散乱電子像を用いる必要がある。これはTEM像のコントラストには主に電子散乱
能を反映した散乱コントラストだけでなく、主に結晶構造を反映した回折コントラストが
混在しており、TEM像を投影像として用いるには回折コントラストを低減させる必要が
あるからである。上記高角散乱電子像を用い、特願平3−110126 号記載の方法で3次元構
造再構成を行う。
まず投影切断面定理を用いて各2次元断面を再構成し、それらを積み重ねて3次元構造を
構築する。
特開平3−110126号公報
従来のTEM観察用試料片では、観察対象はすり鉢状に加工された試料片の中心近傍に
存在する。この様な形状では、試料片を大きく傾斜させると電子線を通過させる試料厚さ
が厚くなり、電子線が透過できないためにTEM像が得られなくなる。また従来のTEM
観察用試料ホルダでは、試料ホルダを大きく傾斜させるとリング状の試料台や試料ホルダ
が電子線の経路を塞いでしまうため、TEM像が得られなくなる。つまり従来の試料片形
状及び試料ホルダを用いる限り、試料傾斜角度範囲に制限があり、観察対象を任意の方向
から観察することはできない。汎用TEMにおける傾斜角度範囲は±60度程度であり、
高空間分解能の TEMほど電子レンズのギャップは狭く設計されているため、試料ホル
ダを挿入する試料室の幅が狭くなり、更に傾斜角度範囲は狭くなっている。
更に試料傾斜角度範囲の制限は、3次元再構成において非常に大きな障害となる。画像
再構成で用いられる投影面切断定理とは、試料f(x,y)のθ方向からの投影データp
(r,θ)の1次元フーリエ変換は、試料の2次元フーリエ変換F(μ,ν)のθ方向の
切断面のラインプロファイルと一致するという定理である(図17(a))。つまり全方
向の投影データが得られれば、試料構造に関する全ての情報は得られたことになる(図1
7(b))。
しかし投影角度範囲が制限されると、図17(c)に示す様に必要な情報が欠落してし
まい、正確な再構成像を得ることが原理的に困難となる。投影角度制限下で再構成を行う
と、再構成像上に激しいアーティファクトが発生し、上記アーティファクトのために試料
構造の解析ができないこともある。上記アーティファクトを画像復元処理によって低減す
る方法が検討されてきたが、試料構造に関する様々な仮定が必要であったり、また復元処
理を適用できる試料形状が限定されたりしていた。また同一構造と思われる試料を複数個
用意し、上記試料を異なる方向から薄膜化して試料の全方向の投影像を得る試みもなされ
ているが、デバイス不良箇所の解析の様に不良素子がただ1つしか存在しない場合には適
用できなかった。
本発明では3次元観察用試料片として、観察対象を内包する突起部分を持つ形状に加工
した試料片を用いる。上記試料片では突起の中心軸回りの全方向から観察対象を観察でき
る。上記形状に試料片を加工するために、ダイサー,集束イオンビーム加工装置等を用い
る。上記集束イオンビーム加工装置は観察対象を内包する突起作製用のイオンビーム偏向
器及びブランカを有する。更に試料ホルダとして1軸全方向傾斜試料ホルダを用いる。上
記1軸全方向傾斜試料ホルダは保持筒と上記保持筒によって支えられた棒状支持具によっ
て構成され、上記棒状支持具は1軸全方向に傾斜できる様に設計されている。上記試料片
を上記棒状支持具の先端に突起の中心軸と試料傾斜軸を合わせて設置すれば、観察対象を
突起の中心軸回りに360°傾斜して観察できる。つまり観察対象の全方向のTEM像を
得ることができる。
本発明を用いれば、観察対象を突起の中心軸回りの任意の方向から観察した TEM像
を得られるので、3次元的な試料構造を直接評価できる様になる。また、試料の3次元構
造を再構成するための必要条件ある全方向の投影像の観察が実現される。従って試料に関
する既知情報を用いる必要はなく、任意の試料形状を1つの試料片から正確に再構成でき
る。
本発明によって、3次元的に構築されたデバイス構造内の任意形状及び任意位置の試料
構造を3次元的に解析し、デバイスのプロセスのチェックや最適化さらにはデバイス設計
に関する重要な情報を提供することができる。
図1は本発明の実施例で用いた透過電子顕微鏡の基本構成である。電子銃1,コンデン
サレンズ2,電子線偏向コイル3,対物レンズ4,試料ホルダ5,試料傾斜機構6,イン
カラム(in−column)型7またポストカラム(post-column)型35のエネルギフィルタ、
画像記録装置8及び制御用ソフトと画像処理ソフトを備えた計算機9から構成されている
図2に本実施例で用いる試料片10の形状を示す。試料片10はある面に突起部分11
を持つチップに加工されている。突起11の中心軸をz軸とする。突起部分11は観察対
象12を内包している。上記領域における突起の直径2Rは電子線が通過できる範囲内に
する。直径2Rは入射電子線の加速電圧に依存し、加速電圧が高くなるほど電子線が透過
する距離は長くなる。加速電圧100〜300kVの場合には2Rは100nm以下、3MVの
場合には10μm以下である。
前記試料片10を図3に示す試料台13に固定する。試料台13の上部には試料片10
を設置する台、下部には試料台13を棒状支持具15に固定するネジ 16が設けられて
いる。試料片10を接着剤で固定する試料台(図3(a))とネジで固定する試料台(図
3(b))がある。
図3(a)の試料台13では試料台13の上部と試料片10の下面を接着剤で固定する
。装置構造が単純なので小型化が容易であるという特徴を持つ。図3 (b)の試料台1
3は試料台13の上部に試料を設置する凹状部分を有し、上記凹状部分の外枠に取り付け
られている4本のネジ40で試料片10を固定する。
この構造では、試料台内の試料位置の微調整を4本のネジで行える。また試料片10の脱
着が容易なので、一度観察した試料片10に他の装置で処理を施した後、同じ試料片10
を観察することも可能である。また接着剤を用いないので、試料室内の真空度の劣化を避
けられる。
図4に1軸全方向傾斜ホルダの構成図を示す。1軸全方向傾斜試料ホルダは保持筒14
によって支えられた棒状支持具15を有し、上記棒状支持具15は1軸全方向に傾斜でき
る。試料傾斜軸方向をZ軸,電子線の入射方向をY軸,前記2つの軸と直交する方向をX
軸とする。試料片10の並行移動は従来のTEM用試料ホルダと同様に、パルスモータと
テコを用いたホルダ微動機構により、試料ホルダ全体をXYZ方向に移動させて実現する
。試料片10を固定した試料台13は棒状保持具15の先端に設けられたネジ穴に試料台
13下部のネジ16を差し込んで取り付ける。
試料台13には、試料台固定の際に突起11の破壊を防ぐため、図7に示すような保護
カバー34が取り付けられる。上記保護カバー34は筒状の形状をしており、側面に縦長
の穴があいている。図7(a)に示すように保護カバー34を上げてネジ41で固定して
おくと、作業中に誤って突起11を破壊することがかなり防止できる。突起11を側面か
ら加工・観察する際は、図7(b)に示すように保護カバー34を下げ、ネジ41で固定
して使用する。
ネジ16の中心軸と試料傾斜軸Zを一致させてあるので、棒状支持具15を傾斜させる
と試料台13はネジ16の中心軸回りに傾斜する。更に突起11の中心軸とネジ16の中
心軸を一致させて試料片10を試料台13に固定すれば、突起11つまり観察対象12を
1軸全方向に傾斜して観察できる。
突起11の中心軸zと試料傾斜軸Zを一致させるための装置としては、例えば以下の2
つがある。
1つは前記試料台13に図5(a)に示す様に付けられた目印17と光軸上に十字のパ
ターン18が挿入された光学顕微鏡を用いるものである。上記目印17は前記試料台13
上部に向かい合わせに2組付けられており、各目印を結ぶ直線は試料台13を棒状支持具
15に固定した際にZ軸で交差する様になっている。
試料台13の目印17を結ぶ直線と十字パターン18が一致する様に試料台13を設置し
、上記試料台13に突起11の先端が十字パターン18の中心と一致するよう試料を固定
すれば、突起11の中心軸zと試料ホルダの試料傾斜軸Zが一致する。
もう1つは、試料台13を差し込めるネジ穴を有した試料台回転装置(図5 (b))
と光学顕微鏡を用いるものである。上記回転台19は上記試料台13をネジ16の中心軸
回りに回転させることができる。試料片10を乗せた試料台 13を回転させ、光学顕微
鏡で突起11の移動を観察する。突起11の中心軸zが試料台と回転軸と一致すれは、突
起11の中心位置は回転しなくなる。
なお図2に示す形状以外の試料片、例えば支持棒の先端に観察対象が付着している試料
や様々な形状の生物試料などを立体的に観察する場合、試料台13を各試料形状に応じて
加工し、上記加工された試料台の下部に試料台13と共通のネジ16を設ければ、共通の
棒状支持具15に装着できる。つまり試料形状に応じて加工する箇所は試料台のみで良い
また他の計測装置で試料片を観察する際、上記計測装置の試料ホルダに前記試料台固定
用ネジに対応するネジ穴を設けておけば、試料台13を共通使用できる。例えば図6に示
す走査電子顕微鏡(以下略してSEM)用試料ホルダにネジ 16に適応するネジ穴を設
けておけば、試料片の加工形状を高分解能でSEM観察できる。
次に3次元構造解析用試料片作製装置である集束イオンビーム加工装置の基本構成を図
8に示す。液体金属イオン源21,コンデンサレンズ22,ブランカ 23,イオンビー
ム偏向器24,対物レンズ25,試料ホルダ26,試料傾斜機構27,試料冷却機構28
,2次イオン検出及び2次イオン質量分析器29及び画像記録と制御用の計算機30から
構成される。試料ホルダ26として、前記試料ホルダ5を含む他の試料ホルダを使用でき
る。上記偏向器24は計算機30の制御によってを任意の走査方式で走査できる。また上
記ブランカ23及び偏向器24は計算機30によって制御されており、集束イオンビーム
が指定領域を走査しようとするとブランカ23によって試料片10へのイオン照射が中断
される機能を有する。
次に3次元解析用試料作製法について説明する。本工程によって図2に示す形状に試料
片10を加工する。
まずダイサーを用いて太めの突起11を持つチップに加工する。ダイサーの加工精度で
は突起11の幅は数10μmである。上記方法としては、突起11を作製してからチップ
に切り分ける方法と、チップに切り分けてから突起11を作製する方法の2つがある。
まず前者の手順を図9に示す。ウェハをダイサーにセットし、幅の厚いダイサー31を
用いて突起11以外の部分を削り取る(図9(a))。その後幅の薄いダイサー31で図
3に示す試料台13に固定できる大きさのチップを切り出す (図9(b))。本法はウ
ェハ内で同一の加工パターンが繰り返されている試料に有効である。
次に後者の手順を図10に示す。ダイサー31でウェハをチップに切り出した後、突起
以外の部分をダイサー31で切り出すあるいは削り取る。前者の方法ではウェハ表面と直
交する突起11つまり結晶成長方向と同じ方向の突起11しか作製できないのに対し、本
法では任意方向の突起11を作製できる。
次に前記試料片10を前記試料台13に、太めの突起11の中心軸と試料傾斜軸を一致
させて固定する工程を示す。試料片10が試料台13の中心から大きく外れると、後の工
程の障害となる。例えば試料片10を回転させながら集束イオンビームを加工する際、試
料片10の回転によって突起11が移動してしまうと、突起11の加工精度が低下する。
位置ずれが大きい場合にはそれを補正するための工夫が必要である。例えば、位置ずれを
補正する試料ホルダ微動機構、位置ずれに追随する集束イオンビーム照射機構等が必要と
なってくる。
突起11の中心軸と試料傾斜軸を一致させるために、光学顕微鏡に挿入された十字のパ
ターン18と試料台13の目印17を結ぶ直線とが一致する様に試料台13を設置する方
法(図5(a))や、図5(b)に示す様に試料台13を回転させながら突起11の中心
の運動を光学顕微鏡で観察し、突起11の中心位置が回転しなくなる様に試料位置を微調
整する方法を用いる。
次に図11,図12に集束イオンビームを用いて、電子線が透過できる太さに突起11
を細線化する工程を示す。上記工程には集束イオンビームを突起11の中心軸zに対して
ほぼ並行な方向から入射する方法と直交する方向から入射する方法がある。
まず、図11では集束イオンビーム33を突起11の中心軸zに対してほぼ並行な方向
から入射する工程を示す。試料片10を突起11の中心軸zと集束イオンビーム33の入
射方向が並行になるように集束イオンビーム試料室に設置し、2次イオン像を観察する。
この観察像を計算機に入力して画像表示装置に表示し、突起領域111を指定する。突起
領域111の中心つまり加工後突起先端となる位置に集束イオンビームを用いて目印32
をマーキングする。細線化された突起11をz軸方向から観察した像から突起内の解析対
象12の位置を特定するのは一般に困難だからである。尚、太めの突起11に加工した時
点で観察対象の位置を見失う試料は、太めの突起11に加工する前に目印32を付けてお
く必要がある。また本工程によって観察対象近傍の突起11の太さは100nm以下にな
るので突起は非常に破損し易くなる。突起の破損防止のためには突起形状を円柱状よりも
円錐状にすることが望ましい。
従来の集束イオンビーム加工法では試料上で集束イオンビーム33を図11 (a)に
示す様に走査していた。本法では突起領域111を残して集束イオンビーム33を走査し
なければならない。例えば図11(a)に示す様に突起領域 111を指定した場合、集
束イオンビーム33を図11(b)に示す様に円状に走査すれば突起以外の領域のみを削
除できる(図11(c))。楕円や正方形など形状に加工したい場合は集束イオンビーム
33を楕円または正方形に走査すれば良い。突起形状を円錐状にする場合は、突起中心近
傍が残るように、中心近傍における集束イオンビーム走査速度を周辺近傍よりも速くなる
ように調整する。
本法は従来の集束イオンビーム加工装置の集束イオンビーム偏向器の制御プログラムを書
替えれば実現できる。
また別の方法として図12のように、計算機制御されたブランカ23を利用する方法が
ある。集束イオンビーム33は従来と同様に走査し(図12(a))、集束イオンビーム
33が突起領域111を走査する時には計算機制御されたブランカによって集束イオンビ
ーム照射が中断される(図12(b))。突起形状を円錐状にする場合は、集束イオンビ
ーム照射中断領域を同心円的に拡大・縮小し、中心近傍が残るように調整する。前記図1
1の加工法はでは集束イオンビーム走査モードがTVの走査モードと異なるため、加工中
に試料の2次イオン像を得ることができないが、本法では試料加工中の2次イオン像をT
V画面上で常に監視しながら加工を行える。
次に、集束イオンビーム33を突起11の中心軸zに対してほぼ直交する方向から入射
する工程を示す。試料片10を突起11の中心軸zと集束イオンビーム33の入射方向が
直交するように集束イオンビーム試料室に設置し、2次イオン像を観察する。例えば図1
3(a)の様に突起の根本近傍に目印32をマーキングする。突起領域111を指定し、
他の領域は集束イオンビーム33を照射して削除する。上記領域の削除が終了すると試料
を傾斜し、上記工程を繰り返し(図13(b))、所望の形状に試料を加工する(図13
(c))。集束イオンビーム33の入射方向と突起11の中心軸zを並行に設定して加工
する方法では試料加工中に突起11の真上からしか観察できなかったが、本法では突起1
1を横方向から観察できるので、突起11の根本近傍のデバイスパターン形状を参照しな
がら、観察対象の位置を指定することができる。
また試料片10を回転させながら集束イオンビーム33を照射しても良い。図14に示
す様に試料片10をZ軸回りに回転させながら集束イオンビーム33を照射する。その際
集束イオンビーム33の入射位置を突起11の中心軸Zの位置よりも所望の半径Rだけず
らして指定する。集束イオンビーム33の試料表面に対する入射角度θは、突起半径rが
大きいときは急角度(θ1)で入射するので、試料ダメージは大きいが加工速度は速くな
る(図15(a))。突起半径rが小さくなるに従って試料入射角度が小さくなる(θ2
)ので、加工速度は遅くなるが試料ダメージは少なくなる(図15(b))。突起半径r
が所望の半径Rよりも小さくなると集束イオンビーム照射は自動的に終了する(図15(
c))。
なお、突起11の中心軸zと試料回転軸Zの位置がずれていると、試料を回転させた時
に突起11の中心軸の位置がずれるので、予め幾つかの回転角度における突起11の中心
軸の位置を測定して計算機に入力し、上記位置ずれを追跡するように試料回転と同期させ
ながら集束イオンビームを走査する。本法には集束イオンビームのビーム径よりも細い突
起を比較的容易に作製できるという特徴がある。また加工が進むに連れて試料ダメージが
小さくなることから、試料の仕上げ工程として有効である。
以上の方法を用いて試料を加工する。試料が所望の形状に加工されたかの判断は2次イ
オン像による形状観察、または2次イオン質量分析法による組成解析、2次電子像による
高空間分解能の形状観察等を用いる。
なお突起状に加工する工程において、試料を観察してから解析対象を決定する場合もあ
る。つまりあるデバイスで不良原因となり得る箇所が複数箇所存在し、TEM像で観察し
てからでなければ3次元的に解析したい領域が決定できない場合がある。例えば図16に
示す様に、パターン形状の一部が断線している場合、まず図16(a)に示すような板状
に試料を加工してTEMで観察し、断線箇所を観察対象12と特定した後、上記観察対象
12を内包する突起(図16(b))に加工し、断線状態を3次元的に観察する。
前記工程によって作製された試料片10の観察は従来のTEM観察と同様に行う。試料
片10が固定されている試料台13を保持筒14内の棒状支持具15に固定し、TEM試
料室に挿入し、加速した電子線を観察対象12に照射し、そのTEM像を得る。観察対象
12をz軸回りに自由に傾斜させながら3次元構造を観察する。
本発明を用いれば、例えばある不良箇所近傍のデバイスパターン形状及びその周辺の析
出物の3次元分布等を直接評価できる。また本技術によって全方向の投影像を得ることが
可能となり、3次元再構成のための必要条件が初めて満たされたのである。本法によって
、ただ1つの試料片から任意形状の構造を再構成することが可能となる。
なお、観察対象12の領域が広範囲である場合、観察対象12を内包する突起の直径2
Rは必然的に大きくなってしまう。突起の直径2Rが大きくなると、試料内で散乱される
電子が増加するため、観察像の空間分解能が低下してしまう。
加速電圧100kV〜300kVで通常のTEM像を得る際、試料厚さを数10nm程度
にして観察しており、これ以上厚くすると観察像が不鮮明になってくる。厚膜試料観察に
対しては、エネルギフィルタを用いた非弾性散乱電子の除去が効果を発揮する。試料内を
通過した電子のうち弾性散乱電子のみが通過できる様にエネルギフィルタのスリットを設
定して非散乱電子を除去すれば、フィルタなしの場合の数倍の厚さの試料が観察できるよ
うになる。
本発明の実施例で用いた透過電子顕微鏡の全体構成図。 3次元観察用試料片の形状を示す概念図。 試料片を設置する試料台の構成図。 1軸全方向試料ホルダの構成図。 試料片の加工位置調整の説明図。 SEM用標準試料ホルダの断面図。 試料破損保護カバーの構成図。 本発明の一実施例の集束イオンビーム加工装置の基本構成図。 ダイサーを用いて太めの突起を切り出す工程を示す説明図。 ダイサーを用いて太めの突起を切り出す工程を示す説明図。 試料片の加工工程の説明図。 試料片の加工工程の説明図。 試料片の加工工程の説明図。 試料片の加工工程の説明図。 試料片に形成する突起部の半径とイオンビーム加工位置の関係を示す説明図。 試料片上の観察対象部の説明図。 投影切断面定理の説明図。
符号の説明
1…電子銃、2…コンデンサレンズ、3…電子偏向コイル、4…対物レンズ、5…試料
ホルダ、6…試料傾斜機構、7…in−column型エネルギフィルタ、8…画像記録装置、9
…制御用ソフトと画像処理用ソフトを備えた計算機、10…試料片、11…突起、12…
観察対象、13…試料台、14…保持筒、15…棒状支持具、16…試料台固定用ネジ、
17…試料片位置調整用の目印、18…光学顕微鏡の光軸上に挿入された十字パターン、
19…試料台回転装置、20…SEM 用標準試料台、21…液体金属イオン源、22…コン
デンサレンズ、23…ブランカ、24…イオンビーム偏向器、25…対物レンズ、26…
試料ホルダ、27…試料傾斜機構、28…試料冷却機構、29…質量分析機、30…画像
記録装置及び制御用計算機、31…ダイサー、32…観察対象の位置参照に用いる目印、
33…イオンビーム、34…試料破損保護カバー、35…post−column型エネルギフィル
タ、111…突起領域。

Claims (5)

  1. 電子線が透過可能な透過部を有する試料を保持する試料台と、前記試料台を試料傾斜軸周りに傾斜させるための支持具と、を備える試料ホルダと、
    前記試料を傾斜させる試料傾斜機構と、
    前記試料傾斜機構を制御する計算部と、を有し、
    前記試料台は前記支持具に対し装着が可能であり、
    前記試料は前記電子線の光軸上に配置され、
    前記支持具が、前記試料傾斜軸に対して1軸全方向に傾斜することにより、前記試料台に保持された前記試料に前記試料傾斜軸まわりの任意傾斜角度から前記電子線を照射できる構造であることを特徴とする電子顕微鏡。
  2. 前記試料ホルダは前記支持具を保持し、前記電子線の入射方向に対して開口部を備えた保持筒を有することを特徴とする電子顕微鏡。
  3. 請求項1に記載の電子顕微鏡において、
    前記支持具または前記試料台は、試料ホルダを備えた他の荷電粒子線装置と共通の支持具または試料台を用いることを特徴とする電子顕微鏡。
  4. 請求項1に記載の電子顕微鏡において、
    前記透過部は前記電子線が透過可能な突起部であり、
    前記突起部の形状は、柱状形状または円錐形状または板状形状を含むことを特徴とする電子顕微鏡。
  5. 請求項1に記載の電子顕微鏡において、
    前記試料傾斜軸に対し任意角度傾斜した前記試料に前記電子線を照射して、前記試料傾斜軸に対する任意傾斜角度から得られた複数の観察像から、三次元像を構成する手段を備えることを特徴とする電子顕微鏡。
JP2008182177A 2008-07-14 2008-07-14 3次元構造観察用試料作製装置、電子顕微鏡及びその方法 Withdrawn JP2008262921A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008182177A JP2008262921A (ja) 2008-07-14 2008-07-14 3次元構造観察用試料作製装置、電子顕微鏡及びその方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008182177A JP2008262921A (ja) 2008-07-14 2008-07-14 3次元構造観察用試料作製装置、電子顕微鏡及びその方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007322720A Division JP4232848B2 (ja) 2007-12-14 2007-12-14 3次元構造観察用試料作製装置、電子顕微鏡及びその方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009051471A Division JP4433092B2 (ja) 2009-03-05 2009-03-05 三次元構造観察方法

Publications (1)

Publication Number Publication Date
JP2008262921A true JP2008262921A (ja) 2008-10-30

Family

ID=39985207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008182177A Withdrawn JP2008262921A (ja) 2008-07-14 2008-07-14 3次元構造観察用試料作製装置、電子顕微鏡及びその方法

Country Status (1)

Country Link
JP (1) JP2008262921A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012162929A1 (zh) * 2011-05-31 2012-12-06 北京工业大学 透射电镜用双轴倾转的原位力、电性能综合测试样品杆

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012162929A1 (zh) * 2011-05-31 2012-12-06 北京工业大学 透射电镜用双轴倾转的原位力、电性能综合测试样品杆
US8569714B2 (en) 2011-05-31 2013-10-29 Beijing University Of Technology Double tilt transmission electron microscope sample holder for in-situ measurement of microstructures

Similar Documents

Publication Publication Date Title
US9733164B2 (en) Lamella creation method and device using fixed-angle beam and rotating sample stage
US8227781B2 (en) Variable-tilt specimen holder and method and for monitoring milling in a charged-particle instrument
JP4699168B2 (ja) 電子顕微鏡用試料の作製方法
JP4433092B2 (ja) 三次元構造観察方法
US20120001068A1 (en) Method of Electron Diffraction Tomography
CN110021513B (zh) 用于tem薄片制备的样品取向的方法
JP3677895B2 (ja) 3次元構造観察用試料作製装置、電子顕微鏡及びその方法
KR20160119840A (ko) 시료에 따른 전자 회절 패턴 분석을 수행하는 방법
US9627176B2 (en) Fiducial formation for TEM/STEM tomography tilt-series acquisition and alignment
JP5309552B2 (ja) 電子線トモグラフィ法及び電子線トモグラフィ装置
TW201643927A (zh) 針對自動s/tem擷取及計量學而使用已知形狀的層狀物之型樣匹配
JP4283432B2 (ja) 試料作製装置
US9514913B2 (en) TEM sample mounting geometry
TWI768191B (zh) 用於自動對準掃描透射電子顯微鏡以便旋進電子衍射資料映射的方法
KR20150092087A (ko) 하전 입자 빔 샘플 준비과정에서 커트닝을 감소하기 위한 방법 및 시스템
JP4393352B2 (ja) 電子顕微鏡
JP2020064780A (ja) 荷電粒子ビーム装置、試料加工観察方法
JP4232848B2 (ja) 3次元構造観察用試料作製装置、電子顕微鏡及びその方法
JP2011222426A (ja) 複合荷電粒子ビーム装置
US9947506B2 (en) Sample holder and focused ion beam apparatus
JP2008262921A (ja) 3次元構造観察用試料作製装置、電子顕微鏡及びその方法
JP4988175B2 (ja) 荷電粒子装置用試料台
JP2004301852A (ja) 3次元構造観察用試料作製装置、電子顕微鏡及びその方法
JP4845452B2 (ja) 試料観察方法、及び荷電粒子線装置
JP2004301851A (ja) 3次元構造観察用試料作製装置、電子顕微鏡及びその方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090309