JP2008261307A - 内燃機関の空燃比制御装置 - Google Patents

内燃機関の空燃比制御装置 Download PDF

Info

Publication number
JP2008261307A
JP2008261307A JP2007105962A JP2007105962A JP2008261307A JP 2008261307 A JP2008261307 A JP 2008261307A JP 2007105962 A JP2007105962 A JP 2007105962A JP 2007105962 A JP2007105962 A JP 2007105962A JP 2008261307 A JP2008261307 A JP 2008261307A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
fuel
value
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007105962A
Other languages
English (en)
Other versions
JP4835497B2 (ja
Inventor
Norihisa Nakagawa
徳久 中川
Takahiko Fujiwara
孝彦 藤原
Taiga Hagimoto
大河 萩本
Junichi Kako
純一 加古
Naoto Kato
直人 加藤
Shuntaro Okazaki
俊太郎 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007105962A priority Critical patent/JP4835497B2/ja
Priority to PCT/IB2008/000881 priority patent/WO2008125952A1/en
Priority to US12/595,767 priority patent/US8406980B2/en
Priority to CN200880011986.5A priority patent/CN101657626B/zh
Priority to DE112008000982T priority patent/DE112008000982B4/de
Publication of JP2008261307A publication Critical patent/JP2008261307A/ja
Application granted granted Critical
Publication of JP4835497B2 publication Critical patent/JP4835497B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1455Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor resistivity varying with oxygen concentration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1456Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control
    • F02D41/2461Learning of the air-fuel ratio control by learning a value and then controlling another value
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

【課題】燃料増量・減量制御の実行後であっても、実際の空燃比を適切に目標空燃比にすることができる空燃比制御装置を提供する。
【解決手段】空燃比制御装置は機関排気通路内に設けられた三元触媒20の上流側に配置された空燃比センサ23と、下流側に配置された酸素センサ24とを具備し、空燃比センサの出力値に基づいて燃料供給量を制御するメインフィードバック制御と、空燃比センサのずれを補償すべく酸素センサの出力値に基づいて燃料供給量を補正するサブフィードバック制御とを実行する。サブフィードバック制御における燃料供給量の補正量は下流側空燃比センサの出力値と目標空燃比との偏差量を積算した積分項の値に基づいて算出され、目標空燃比と無関係に燃料供給量の増量又は減量が行われる燃料増量・減量制御が実行されたときには、燃料増量・減量制御の完了後所定期間に亘ってサブフィードバック制御における積分項の値の積算が停止される。
【選択図】図7

Description

本発明は、内燃機関の空燃比制御装置に関する。
内燃機関本体から排出された排気ガス中には炭化水素(HC)、一酸化炭素(CO)及び窒素酸化物(NOX)等の成分が含まれており、従来からこれら成分を浄化するために三元触媒が利用されている。斯かる三元触媒は排気ガスの空燃比(以下、「排気空燃比」と称す)がほぼ理論空燃比となっているときにその浄化能力が高くなることから、三元触媒によって排気ガスの浄化を行う際には排気空燃比がほぼ理論空燃比となるように燃焼室への燃料供給量等を制御する必要がある。
このため、多くの内燃機関では、三元触媒の排気上流側において機関排気通路内に排気空燃比を検出することができる空燃比センサを設け、この空燃比センサによって検出される排気空燃比がほぼ理論空燃比になるように燃焼室への燃料供給量を調整するフィードバック(F/B)制御が行われている。
しかし、三元触媒の上流側においては排気ガスが十分混合していないことにより空燃比センサの出力がばらついたり、排気ガスの熱により空燃比センサが劣化したりすることにより、空燃比センサが実際の空燃比を正確に検出することができない場合があり、このような場合には上述したF/B制御による空燃比の制御精度が低下してしまう。
そこで、三元触媒の排気下流側にも機関排気通路内に排気空燃比を検出することができる空燃比センサを設け、下流側空燃比センサの出力に基づいて上流側空燃比センサの出力値が実際の排気空燃比と一致するように上流側空燃比センサの出力値を(結果的には燃料供給量を)補正するサブF/B制御を行うことにより空燃比の制御精度を改善するダブルセンサシステムが既に実用化されている。
そして、このダブルセンサシステムにおいては、上流側空燃比センサの出力値と実際の排気空燃比との間の定常的なずれに対応する学習値をサブF/B制御における補正量に基づいて算出すると共に、算出された学習値に基づいて上流側空燃比センサの出力値を補正する学習制御が行われる。このような学習値は例えば機関停止時にもECUのRAMに保存されるため、内燃機関の再始動後であってサブF/B制御によって上流側空燃比センサの出力値が十分に補正されていなくても学習値によって適切に補正されることになるため、空燃比の制御精度の悪化を防止することができ、よって排気エミッションの悪化を防止することができる。
ところで、機関運転中に目標空燃比と無関係に燃料供給量の増量又は減量が行われる燃料増量・減量制御(例えば、燃料カット制御や機関始動時における燃料増量制御)の実行後には、排気浄化触媒に過剰な酸素や過剰な燃料が蓄積されている。斯かる状態においては、例えば燃焼室から排出される排気ガスの空燃比と排気浄化触媒から流出する排気ガスの空燃比とが大きく異なる値となってしまう。このため、斯かる状態で上記メインF/B制御、サブF/B制御、学習制御等を実行すると、適切に空燃比を制御することができなくなってしまう。
そこで、燃料カット制御の完了後の一定期間において、学習制御を禁止することが提案されている(特許文献1参照)。これにより、燃焼室から排出される排気ガスの空燃比と排気浄化触媒から流出する排気ガスの空燃比とが大きく異なっているときに、すなわち下流側空燃比センサの出力が不適切であるときに学習値を更新することが防止され、その結果、空燃比の不適切な制御を抑制することができる。
特開2005−105834号公報 特開2005−61356号公報
ところで、上述したように、サブF/B制御では、下流側空燃比センサの出力に基づいて上流側空燃比センサの出力値が実際の排気空燃比と一致するように上流側空燃比センサの出力値を(結果的には燃料供給量を)補正すべくPID制御又はPI制御が行われる。そして、上記学習制御では、サブF/B制御における積分制御において用いられる積分項の値に基づいて学習値を変更しており、一般に積分項の値が大きくなるほど学習値の変更量が大きくなる。
一方、上述したように燃料カット制御等終了後の一定期間に亘って下流側空燃比センサによって検出される排気ガスの空燃比は燃焼室から排出される排気ガスの空燃比とは異なるものとなっている。ここで、上記特許文献1に記載の装置では燃料カット制御等終了後の一定期間において学習制御は禁止しているが、サブF/B制御における積分制御は禁止していない。このため、サブF/B制御における積分項の値については上記一定期間中において燃焼室から排出される排気ガスの空燃比とは異なる空燃比に基づいて積算が行われる。従って、この一定期間が終了する頃には積分項の値の誤差は極めて大きくなっている。よって、上記一定期間の終了後に学習制御を再開すると、誤差の極めて大きい積分項の値に基づいて学習値が算出されることになるため、学習値が不適切な値となってしまい、結果的に排気エミッションの悪化を招くことになる。
そこで、本発明の目的は、燃料増量・減量制御の実行後であっても、実際の空燃比を適切に目標空燃比にすることができる空燃比制御装置を提供することにある。
上記課題を解決するために、第1の発明では、機関排気通路内に設けられた排気浄化触媒の排気上流側に配置され且つ排気ガスの空燃比を検出する上流側空燃比センサと、上記排気浄化触媒の排気下流側に配置され且つ排気ガスの空燃比を検出する下流側空燃比センサとを具備し、上記上流側空燃比センサの出力値に基づいて排気空燃比が目標空燃比となるように燃料供給量を制御するメインフィードバック制御と、上記上流側空燃比センサの出力値と実際の排気空燃比とのずれを補償すべく上記下流側空燃比センサの出力値に基づいて排気空燃比が目標空燃比となるように燃料供給量を補正するサブフィードバック制御とを実行する内燃機関の空燃比制御装置において、上記サブフィードバック制御における燃料供給量の補正量は下流側空燃比センサの出力値と目標空燃比との偏差量を積算した積分項の値に基づいて算出され、目標空燃比と無関係に燃料供給量の増量又は減量が行われる燃料増量・減量制御が実行されたときには、該燃料増量・減量制御の完了後所定期間に亘って上記サブフィードバック制御における積分項の値の積算が停止される。
第1の発明によれば、燃料増量・減量制御の完了後所定期間に亘ってサブフィードバック制御における積分項の値の積算が停止される。このため、上記所定期間中においては燃焼室から排出される排気ガスの空燃比とは異なる空燃比に基づいて積算が行われてしまうことが防止され、よって積分項の値の誤差は極めて大きくなってしまうことが防止される。従って、例えば学習制御を行っている場合であっても、誤差の極めて大きい積分項の値に基づいて学習値が算出されることはなく、よって学習値が不適切な値とるのが防止される。
第2の発明では、第1の発明において、上記上流側空燃比センサの出力値と実際の排気空燃比との間の定常的なずれに対応する学習値を上記積分項の値に基づいて算出すると共に、算出された学習値に基づいて上記燃料供給量を補正する学習手段をさらに具備する。
第3の発明では、第2の発明において、上記燃料増量・減量制御の完了後所定期間中であっても上記学習手段による学習値の算出が行われる。
第4の発明では、第1〜第3のいずれか一つの発明において、上記サブフィードバック制御における燃料供給量の補正量は上記積分項の値に加えて下流側空燃比センサの出力値と目標空燃比との偏差に比例ゲインを乗算した比例項の値に基づいて算出され、上記燃料増量・減量制御の完了後所定期間中においては、該所定期間以外の期間に比べて上記比例項の値を大きくするようにした。
第5の発明では、第1〜第4のいずれか一つの発明において、上記所定期間は燃料増量・減量制御が完了してから排気浄化触媒から排出される排気ガスの空燃比が目標空燃比近傍となるまでの期間である。
本発明によれば、燃料増量・減量制御の実行後であっても、学習値が不適切な値とるのが防止されるため、実際の空燃比を適切に目標空燃比にすることができる。
以下、図面を参照して本発明の内燃機関の空燃比制御装置について説明する。図1は本発明の制御装置が搭載される内燃機関全体の図である。図1に示した実施形態では本発明の空燃比制御装置が筒内直噴型火花点火式内燃機関に用いられた場合を示しているが、他の火花点火式内燃機関や圧縮自着火式内燃機関等にも用いることができる。
図1を参照すると1は機関本体、2はシリンダブロック、3はシリンダブロック2内で往復動するピストン、4はシリンダブロック2上に固定されたシリンダヘッド、5はピストン3とシリンダヘッド4との間に形成された燃焼室、6は吸気弁、7は吸気ポート、8は排気弁、9は排気ポートをそれぞれ示す。図1に示したようにシリンダヘッド4の内壁面の中央部には点火プラグ10が配置され、シリンダヘッド4内壁面周辺部には燃料噴射弁11が配置される。またピストン3の頂面上には燃料噴射弁11の下方から点火プラグ10の下方まで延びるキャビティ12が形成されている。
各気筒の吸気ポート7はそれぞれ対応する吸気枝管13を介してサージタンク14に連結され、サージタンク14は吸気管15を介してエアクリーナ(図示せず)に連結される。吸気管15内にはエアフロメータ16が配置されると共にステップモータ17によって駆動されるスロットル弁18が配置される。一方、各気筒の排気ポート9は排気マニホルド19に連結され、この排気マニホルド19は三元触媒20を内蔵した触媒コンバータ21に連結される。触媒コンバータ21の出口は排気管22に連結される。排気マニホルド19、すなわち排気浄化触媒20上流側の排気通路内には空燃比センサ23が配置されると共に、排気管22、すなわち三元触媒20下流側の排気通路内には酸素センサ24が配置される。
電子制御ユニット31はディジタルコンピュータからなり、双方向性バス32を介して相互に接続されたRAM(ランダムアクセスメモリ)33、ROM(リードオンリメモリ)34、CPU(マイクロプロセッサ)35、入力ポート36および出力ポート37を具備する。エアフロメータ16は吸入空気流量に比例した出力電圧を発生し、その出力電圧は対応するAD変換器38を介して入力ポート36に入力される。また、空燃比センサ23は、図2に示したように、排気マニホルド19内を通過する排気ガス中の酸素濃度に基づいて、斯かる排気ガスの空燃比にほぼ比例した出力電圧(出力値)を発生する。一方、酸素センサ24は、図3に示したように、排気管22内を通過する排気ガス、すなわち三元触媒20を通過した後の排気ガス中の酸素濃度に基づいて、斯かる排気ガスの空燃比が理論空燃比(約14.7)よりもリッチであるかリーンであるかによって大きく異なる出力電圧(出力値)を発生する。これら出力電圧は対応するAD変換器38を介して入力ポート36に入力される。なお、空燃比センサ23及び酸素センサ24はいずれも排気ガスの空燃比を検出することができればよく、斯かる点ではいずれについても空燃比センサと称することができる。
また、アクセルペダル40にはアクセルペダル40の踏込み量に比例した出力電圧を発生する負荷センサ41が接続され、負荷センサ41の出力電圧は対応するAD変換器38を介して入力ポート36に入力される。クランク角センサ42は例えばクランクシャフトが30度回転する毎に出力パルスを発生し、この出力パルスが入力ポート36に入力される。CPU35ではこのクランク角センサ42の出力パルスから機関回転数が計算される。一方、出力ポート37は対応する駆動回路39を介して点火プラグ10、燃料噴射弁11およびステップモータ17に接続される。
上述した三元触媒20は、酸素吸蔵能力を有しており、これにより三元触媒20に流入する排気ガスの空燃比がリーンであるときには排気ガス中の酸素を吸蔵すると共に、三元触媒20に流入する排気ガスの空燃比がリッチであるときには吸蔵している酸素を放出することにより排気ガス中に含まれるHC、COを酸化・浄化する。
このような三元触媒20の酸素吸蔵能力を効果的に利用するためには、排気ガスの空燃比がその後リッチ及びリーンのいずれになっても排気ガスを浄化することができるように、三元触媒20中に吸蔵されている酸素の量を所定量(例えば、最大酸素吸蔵量の半分)に維持することが必要である。三元触媒20の酸素吸蔵量が上記所定量に維持されていれば、三元触媒20は常に或る程度の酸素吸蔵作用及び酸素放出作用を発揮することが可能であり、結果として三元触媒20により常に排気ガス中の成分の酸化・還元を行うことができるようになる。このため、本実施形態では、三元触媒20による排気浄化性能を維持すべく、三元触媒の酸素吸蔵量を一定に維持するように空燃比制御を行うこととしている。
そこで、本実施形態では、三元触媒20よりも排気上流側に配置された空燃比センサ(上流側空燃比センサ)23によって排気空燃比(三元触媒20上流側の排気通路、燃焼室5および吸気通路に供給された空気と燃料との比率)を検出すると共に、空燃比センサ23の出力値が理論空燃比に対応した値となるように燃料噴射弁11からの燃料供給量についてF/B制御を行うこととしている(以下、このF/B制御を「メインF/B制御」と称す)。これにより、排気空燃比は理論空燃比付近に維持され、その結果三元触媒の酸素吸蔵量が一定に維持され、よって排気エミッションを改善することができる。
以下、メインF/B制御について具体的に説明する。まず、本実施形態では、燃料噴射弁11から各気筒へと供給すべき燃料量(以下、「目標燃料供給量」と称す)Qft(n)は下記式(1)によって算出される。
Qft(n)=Mc(n)/AFT+DQf(n−1) …(1)
ここで、上記式(1)においてnはECU31における計算回数を示す値であり、例えばQft(n)は第n回目の計算によって算出された目標燃料供給量を表している。また、Mc(n)は、吸気弁6の閉弁時までに各気筒の筒内に吸入されたと予想される空気量(以下、「筒内吸入空気量」と称す)を示している。筒内吸入空気量Mc(n)は、例えば機関回転数Neと吸気管15内を通過した空気の流量(以下、「吸気管通過空気流量」と称す)mtとを引数としたマップ又は計算式を予め実験的に又は計算によって求め、このマップ又は計算式をECU31のROM34に保存し、機関運転中に機関回転数Ne及び吸気管通過空気流量mtを検出してこれら検出値に基づいて上記マップ又は計算式により算出される。また、AFTは、排気空燃比の目標値(目標空燃比)であり、本実施形態では理論空燃比(14.7)である。さらに、DQfは、後述するメインF/B制御に関して算出される燃料補正量である。燃料噴射弁11では、このようにして算出された目標燃料供給量に対応する量の燃料が噴射される。
なお、上記説明では、筒内吸入空気量Mc(n)は、機関回転数Neと吸気管通過空気流量mtとを引数としたマップ等に基づいて算出されるとしているが、例えばスロットル弁18の開度及び大気圧等に基づいた計算式等、他の方法によって求められてもよい。
図4は、燃料噴射弁11からの目標燃料供給量Qft(n)を算出する目標燃料供給量算出制御の制御ルーチンを示すフローチャートである。図示した制御ルーチンは所定時間間隔の割り込みによって行われる。
まず、ステップ101において、クランク角センサ42及びエアフロメータ16によって機関回転数Ne及び吸気管通過空気流量mtが検出される。次いで、ステップ102では、ステップ101において検出された機関回転数Ne及び吸気管通過空気流量mtに基づいてマップにより又は計算式により時刻nにおける筒内吸入空気量Mc(n)が算出される。次いで、ステップ103では、ステップ102で算出された筒内吸入空気量Mc(n)及び後述するメインF/B制御において算出された時刻n−1における燃料補正量DQf(n−1)に基づいて上記式(1)により目標燃料供給量Qft(n)が算出され、制御ルーチンが終了せしめられる。燃料噴射弁11ではこのように算出された目標燃料供給量Qft(n)に相当する量の燃料が噴射せしめられる。
次に、メインF/B制御について説明する。本実施形態では、メインF/B制御として、PI制御が行われており、空燃比センサ23の出力に基づいて算出された実際の燃料供給量と、上述した目標燃料供給量Qftとの燃料偏差量ΔQfを各計算時毎に算出し、この燃料偏差量ΔQfがゼロになるように燃料補正量DQfを算出している。より具体的には、本実施形態では燃料補正量DQfは下記式(2)により算出される。下記式(2)において、Kmpは比例ゲイン、Kmiは積分ゲインをそれぞれ示している。また、Kmp・ΔQf(n)は比例項を、Kmi・ΣΔQfは積分項をそれぞれ示している。比例ゲインKmp、積分ゲインKmiは予め定められた一定の値であってもよいし、機関運転状態に応じて変化する値であってもよい。
Figure 2008261307
なお、本実施形態では、メインF/B制御としてPI制御を行っているが、燃料偏差量ΔQfがゼロになるように燃料補正量DQfを算出することができればPID制御等、如何なる制御を行ってもよい。
図5は、燃料補正量DQfを算出するメインF/B制御の制御ルーチンを示すフローチャートである。図示した制御ルーチンは所定時間間隔の割り込みによって行われる。
まず、ステップ121では、メインF/B制御の実行条件が成立しているか否かが判定される。メインF/B制御の実行条件が成立している場合とは、例えば内燃機関の冷間始動中ではないこと(すなわち、機関冷却水温が一定温度以上であって始動時燃料増量等が行われていないこと)や、機関運転中に燃料噴射弁からの燃料噴射を停止する燃料カット制御中ではないこと等が挙げられる。ステップ121においてメインF/B制御の実行条件が成立していると判定された場合には、ステップ122へと進む。
ステップ122では、第n回目の計算時における空燃比センサ23の出力値VAF(n)が検出される。次いで、ステップ123では、後述するサブF/B制御の制御ルーチンによって算出された空燃比センサ23の出力補正値efsfb(n)及び後述するサブF/B学習値efgfsbをステップ122で検出された出力値VAF(n)に加算することで、空燃比センサ23の出力値が補正されて第n回目の計算時における補正出力値VAF’(n)が算出される(VAF’(n)=VAF(n)+efsfb(n)+efgfsb(n))。
次いで、ステップ124では、ステップ123で算出された補正出力値VAF’(n)に基づいて図2に示したマップを用いて時刻nにおける実空燃比AFR(n)が算出される。このようにして算出された実空燃比AFR(n)は、第n回目の計算時における三元触媒20に流入する排気ガスの実際の空燃比にほぼ一致した値となっている。
次いで、ステップ125では、下記式(3)により、空燃比センサ23の出力に基づいて算出された燃料供給量と目標燃料供給量Qftとの燃料偏差量ΔQfが算出される。なお、下記式(3)において、筒内吸入空気量Mc及び目標燃料供給量Qftについては第n回目の計算時における値が用いられているが、第n回目の計算時よりも前の値が用いられてもよい。
ΔQf(n)=Mc(n)/AFR(n)−Qft(n) …(3)
ステップ126では、上記式(2)により時刻nにおける燃料補正量DQf(n)が算出され、制御ルーチンが終了せしめられる。算出された燃料補正量DQf(n)は、図4に示した制御ルーチンのステップ103において用いられる。一方、ステップ121においてメインF/B制御の実行条件が成立していないと判定された場合には、燃料補正量DQf(n)が更新されることなく制御ルーチンが終了せしめられる。
ところで、排気ガスの熱によって空燃比センサ23が劣化すること等により空燃比センサ23の出力にはずれが生じる場合がある。このような場合、本来図2に実線で示したような出力値を発生させる空燃比センサ23が、例えば図2に破線で示したような出力値を発生させてしまう。このように空燃比センサ23の出力値にずれが生じると、空燃比センサ23は例えば本来であれば排気空燃比が理論空燃比になっているときに発生させる出力値を、理論空燃比よりもリーンであるときに発生させてしまう。そこで、本実施形態では、酸素センサ(下流側空燃比センサ)24を用いたサブF/B制御により空燃比センサ23の出力値に生じたずれを補償して、空燃比センサ23の出力値が実際の排気空燃比に対応した値となるようにすることとしている。
すなわち、酸素センサ24は、図3に示したように、排気空燃比が理論空燃比よりもリッチであるかリーンであるかを検出することができ、理論空燃比よりもリッチであるかリーンであるかの判定にずれを生じることがほとんどない。このため、実際の排気空燃比がリーンとなっているときには酸素センサ24の出力値は低い値となっており、実際の排気空燃比がリッチとなっているときには酸素センサ24の出力値は高い値となっている。したがって、実際の排気空燃比がほぼ理論空燃比となっているとき、すなわち理論空燃比付近で上下を繰り返しているときには、酸素センサ24の出力値は高い値と低い値との間で反転を繰り返す。このような観点から、本実施形態では、酸素センサ24の出力値が高い値と低い値との間で反転を繰り返すように空燃比センサ23の出力値を補正することとしている。
図6は、実際の排気空燃比と、酸素センサの出力値と、空燃比センサ23の出力補正値efsfbと、サブF/B学習値efgfsbとのタイムチャートである。図6のタイムチャートは、実際の排気空燃比が理論空燃比になるように制御しているにも関わらず、空燃比センサ23にずれが生じていて実際の排気空燃比が理論空燃比となっていない場合に、空燃比センサ23に生じているずれが補償されていく様子を示している。
図6に示した例では、時刻t0において、実際の排気空燃比は理論空燃比となっておらず、理論空燃比よりもリーンとなっている。これは、空燃比センサ23にずれが生じていて、実際の排気空燃比が理論空燃比よりもリーンである空燃比となっているときに空燃比センサ23により理論空燃比に対応する出力値が出力されているためである。このとき酸素センサ24の出力値は低い値となっている。
空燃比センサ23の出力補正値efsfbは、上述したように、図5のステップ123において補正出力値VAF’(n)を算出するために出力値VAF(n)に加算される。従って、この出力補正値efsfbが正の値となっている場合には空燃比センサ23の出力値はリーン側に補正され、負の値となっている場合には空燃比センサ23の出力値はリッチ側に補正される。そして出力補正値efsfbの絶対値が大きいほど空燃比センサ23の出力値が大きく補正される。
空燃比センサ23の出力値がほぼ理論空燃比となっているにも関わらず酸素センサ24の出力値が低い値となっているときには空燃比センサ23の出力値がリッチ側にずれていることを意味する。そこで、本実施形態では、酸素センサ24の出力値が低い値となっているときには、図6に示したように、出力補正値efsfbの値を増大させて、空燃比センサ23の出力値をリーン側へ補正することとしている。一方、空燃比センサ23の出力値がほぼ理論空燃比となっているにも関わらず酸素センサ24の出力値が高い値となっているときには、出力補正値efsfbの値を減少させて、空燃比センサ23の出力値をリッチ側へ補正することとしている。
具体的には出力補正値efsfbの値は下記式(4)により計算される。なお、下記式(4)において、ΔVO(n)は、第n回目の計算時における酸素センサ24の出力値と目標出力値(本実施形態では、理論空燃比に対応する値)との出力偏差を示しており、Kspは比例ゲイン、Ksiは積分ゲインをそれぞれ示している。また、Ksp・ΔVO(n)は比例項を、Ksi・ΣΔVOは積分項をそれぞれ示している。比例ゲインKsp、積分ゲインKsiは予め定められた一定の値であってもよいし、機関運転状態に応じて変化する値であってもよい。
Figure 2008261307
なお、本実施形態では、サブF/B制御としてPI制御を行っているが、積分制御が入っていればPID制御等、如何なる制御を行ってもよい。
このように、図6に示した例では、空燃比センサ23の出力補正値efsfbの値が増大するにつれて、空燃比センサ23の出力値に生じているずれが補正され、実際の排気空燃比が徐々に理論空燃比に近づいていく。
このようにしてサブF/B制御により空燃比センサ23の出力値は適宜補正されるが、例えば内燃機関を停止させた場合や燃料カット制御を行った場合等にはサブF/B制御が中断せしめられ、その結果、出力補正値efsfbの値はゼロにリセットされる。その後、再び内燃機関を始動させた場合や燃料カット制御を終了した場合等には、サブF/B制御が再開されるが、出力補正値efsfbがゼロにリセットされているため、空燃比センサ23の出力値を再び適切な値にまで補正するには時間がかかる。
そこで、本実施形態では、空燃比センサ23の出力値と実際の排気空燃比に対応する値との間に生じている定常的なずれに対応するサブF/B学習値efgfsbを上記サブF/B制御における出力補正値efsfbの積分項の値に基づいて算出すると共に、図5のステップ123に示したように、算出されたサブF/B学習値efgfsbに基づいて空燃比センサ23の出力値VAFを補正することとしている(以下、このような制御を「学習制御」と称す)。このようにして算出されたサブF/B学習値efgfsbは、例えば内燃機関を停止させてもゼロにリセットされることはなく、よって内燃機関の停止等の後でもサブF/B制御により比較的早期に空燃比センサ23の出力値を再び適切な値にまで補正することができるようになる。
具体的には、前回の学習時期(すなわち、サブF/B学習値efgfsbの算出時期)から所定時間ΔTが経過したときの出力補正値efsfbが正の値である場合にはサブF/B学習値efgfsbを増大させると共に、出力補正値efsfbが負の値である場合にはサブF/B学習値efgfsbを減少させるようにしている。また、サブF/B学習値efgfsbの増大量又は減少量は、出力補正値efsfbの絶対値が大きくなるほど多くなるようにしている。
特に本実施形態では、前回の学習時期から所定時間ΔTが経過したときの出力補正値efsfb及びサブF/B学習値efgfsbはそれぞれ下記式(5)及び(6)により更新される。なお、下記式(5)及び(6)において、αはなまし率であり、予め定められた1以下の正の値となる(0<α≦1)。したがって、図6に示した例では、時刻t1において出力補正値efsfbが正の値となっているため、下記式(5)及び(6)により出力補正値efsfbが低下せしめられると共にサブF/B学習値efgfsbが増大せしめられ、同様に時刻t2においても出力補正値efsfbが正の値となっているため、下記式(5)及び(6)により出力補正値efsfbが低下せしめられると共にサブF/B学習値efgfsbが増大せしめられる。
Msi=efsfb−Msi・α …(5)
efgfsb=efgfsb+Msi・α …(6)
このようにして算出されたサブF/B学習値efgfsbは、空燃比センサ23の出力補正値efsfbは、上述したように、図5のステップ123において補正出力値VAF’(n)を算出するために出力値VAF(n)に加算される。そしてサブF/B学習値efgfsbは内燃機関の停止時等にリセットされない。このため、内燃機関の停止後、運転を再開したときに、出力補正値efsfbがゼロにリセットされていても空燃比センサ23の出力値を迅速に適切な値に補正することができる。
ところで、機関運転状態によっては、燃焼室に供給された混合気の空燃比が目標空燃比以外の値となるように制御される場合、すなわち目標空燃比とは無関係に燃料供給量の増量又は減量が行われる場合がある。このような場合としては、例えば内燃機関の冷間始動時に機関本体1や三元触媒20を昇温すべく行われる燃料増量制御や、内燃機関の減速時に行われる燃料減量制御又は燃料カット制御や、三元触媒20の温度が高すぎる時に排気浄化触媒の温度を低下させるべく行われる燃料増量制御や、機関負荷が高いときに内燃機関の出力を高めるべく行われる燃料増量制御等が挙げられる。
このような燃料供給量の増量又は減量制御(以下、「燃料増量・減量制御」と称す)中は、燃焼室5に供給される混合気の空燃比は目標空燃比になるように制御されていない。従って、このときの排気空燃比に基づいてサブF/B制御や学習制御を実行すると、空燃比センサ23の出力値を適切に補償することができなくなってしまう。そこで、従来から、燃料増量・減量制御の実行中にはサブF/B制御や学習制御を中止し、燃料増量・減量制御の終了後に再びサブF/B制御や学習制御を開始することが提案されている。
ところが、燃料増量・減量制御の終了後にメインF/B制御によって燃焼室5に供給される混合気の空燃比が理論空燃比に制御されても、燃料増量・減量制御の終了直後においては三元触媒20から排出される排気ガスの空燃比は理論空燃比になっていないことが多い。すなわち、燃料増量制御の実行中には三元触媒20に未燃の燃料等が付着し、燃料減量制御の実行中には三元触媒20内に酸素が吸蔵される。このため、たとえ三元触媒20に流入する排気ガスの空燃比が理論空燃比になっていても、三元触媒20から排出される排気ガス中には三元触媒20内の未燃の燃料や酸素が含まれることになるため、三元触媒20から排出される排気ガスの空燃比は理論空燃比とは異なる空燃比となる。よって、三元触媒20の排気下流側に配置された酸素センサ24によっては燃焼室5内に供給された混合気の空燃比を正確に検出することができない。
そこで、本実施形態では、燃焼増量・減量制御の終了後、三元触媒20内の雰囲気が適切になるまで、すなわち三元触媒20内に含まれていた過剰な未燃の燃料や過剰な酸素がなくなってほぼ理論空燃比となるまで、上記サブF/B制御における積分項の値の積算を停止することとしている。
図7は、燃料カット制御時における、燃料カット制御実行の有無、酸素センサ24の出力値、サブF/B制御における積分項積算実行の有無、学習制御実行の有無、サブF/B制御における積分項の値、サブF/B学習値のタイムチャートである。
図7に示した例では、時刻t3において燃料カット制御が開始される。燃料カット制御開始前には酸素センサ24の出力値は高い値となっており、三元触媒20から流出した排気ガスの空燃比が理論空燃比よりもリッチであることを示している。燃料カット制御が開始されると、酸素センサ24の出力値が急激に低下して低い値となり、三元触媒20から流出した排気ガスの空燃比が理論空燃比よりも極めてリーンであることを示す出力となる。また、燃料カット制御の開始と同時にサブF/B制御における積分項の値の積算が停止せしめられる。このため、燃料カット制御の開始からサブF/B制御における積分項の値は一定の値となる。一方、本実施形態では、燃料カット制御が開始された後であっても学習制御は停止されない(図7中の実線)。
その後、時刻t4において燃料カット制御が終了せしめられる。燃料カット制御が終了せしめられても、三元触媒20内に多量の酸素が吸蔵されていることから、酸素センサ24の出力値は低いままである。そして、本実施形態では、燃料カット制御が終了してもなおサブF/B制御における積分項の値の積算は行われない。一方、学習制御は実行され続ける。
このように、燃料カット制御中及び燃料カット制御終了後においても学習制御が実行され続けるため、斯かる期間中においても上記式(5)及び(6)により積分項の値の一部がサブF/B学習値に取り込まれる。図7に示した例では、燃料カット制御中及び燃料カット制御終了後においては、まず前回の積分項の値の取り込みから所定時間ΔT経過後の時刻t5において積分項の値の取り込みが行われ、時刻t5から所定時間ΔT経過後の時刻t6、時刻t6から所定時間ΔT経過後の時刻t7においてそれぞれ積分項の値の取り込みが行われる。
その後、時刻t8において、酸素センサ24の出力が低い値から高い値へと反転すると、すなわち酸素センサ24を通過する排気ガスの空燃比がリーンからリッチへと変化すると、三元触媒20内に含まれていた過剰な酸素がなくなったと考えられるため、サブF/B制御における積分項の値の積算が再開される。
すなわち、本実施形態では、燃料カット制御が開始されてから酸素センサ24の出力値が反転するまでの間においては、サブF/B制御における積分項の値の積算のみが停止され、積分項の値のサブF/B学習値への取り込み等は継続せしめられる。換言すると、本実施形態によれば、燃料カット制御により三元触媒20に酸素が吸蔵されていて、三元触媒20から排出される排気ガスの空燃比が燃焼室5内に供給された混合気の空燃比とは異なる空燃比となっている場合、すなわち酸素センサ24によっては燃焼室5内に供給された混合気の空燃比を正確に検出することができない場合には、サブF/B制御における積分項の値の積算が停止せしめられる。これにより、サブF/B制御における積分項の値が酸素センサ24の不適切な出力に基づいて更新されることがなくなる。このため、サブF/B制御における積分項の値は燃料カット制御が行われても比較的適切な値に維持されると共に、これに伴ってサブF/B学習値も適切な値に維持される。特に、積分項の値のサブF/B学習値への取り込みは燃料カット制御中及び燃料カット制御終了後一定期間においても行われるため、この期間中にサブF/B学習値を適切に更新することができる。
また、本実施形態では、サブF/B制御における積分項の値の積算を停止しているときには、積分項の値の積算を停止していないときに比べて比例項の値が大きくされる。具体的には、燃料カット制御中及び燃料カット制御終了後一定期間においては、比例ゲインKsiの値を大きくしたり、上記式(4)の比例項の値に1以上の補正係数βを乗算したりすることによって比例項の値が大きくされる。
ここで、積分項の値の積算を停止するとサブF/B制御における出力補正値の応答性が悪化する場合がある。特に、上述したように酸素センサ24からの出力値の反転に基づいて上記一定期間を定めている場合、すなわちこの出力値の反転に基づいて積分項の値の積算を停止している期間を定めている場合、比例制御だけでは酸素センサ24の出力値が反転しない場合がある。
これに対して、本実施形態のように、積分項の値の積算を停止している期間中において比例項の値を大きくすることにより、サブF/B制御の応答速度を維持することができるようになる。また、三元触媒20に吸蔵されていた酸素が少なくなると、酸素センサ24からの出力値が反転するようになり、よって積分項の値の積算を適切に再開することができるようになる。
なお、上記実施形態では、燃料カット制御の実行中及び燃料カット制御終了後一定期間においても、積分項の値のサブF/B学習値への取り込みを行っているが、斯かる期間において積分項の値のサブF/B学習値への取り込みを停止してもよい。この場合、斯かる期間中にサブF/B学習値の更新は行われないため、燃料カット制御開始直前における積分項の値に誤差が生じる可能性があるような場合にはサブF/B学習値が不適切に更新されてしまうのを防止することができる。
また、上記実施形態では、積分項の値の積算の再開の条件を酸素センサ24の出力値が一回反転するまでとしているが、一回反転するまでに限らず、複数回反転するまでとしてもよい。また、斯かる条件は、酸素センサ24の反転回数に限られず、三元触媒20内の雰囲気が適切になるときであれば如何なる条件であってもよく、例えば燃料カット制御終了からの時間等に基づいて定められてもよい。
図8及び図9は、出力補正値efsfbを算出するサブF/B制御の制御ルーチンを示すフローチャートである。図示した制御ルーチンは所定時間間隔の割り込みによって行われる。
まず、ステップ141では、時刻nにおける酸素センサ24の出力値VO(n)が検出される。次いで、ステップ142では、ステップ141で検出された酸素センサ24の出力値VO(n)と目標出力値VOTとの出力偏差ΔVO(n)が算出される(ΔVO←(n)VO(n)−VOT)。ステップ143では、下記式(7)により時刻nにおける微分項Msp(n)の値が算出される。
Msp(n)=Ksp・ΔVO(n) …(7)
次いで、ステップ144では、積分フラグXintが1であるか否かが判定される。積分フラグXintは積分項の値Msiの積算中に1とされ、それ以外のときに0とされるフラグである。従って、ステップ144では、現在積分項の値Msiの積算の停止中であるか否かが判定される。ステップ144において、現在積分項の値Msiの積算の停止中ではないと判定された場合(Xint=0)にはステップ145へと進む。ステップ145では、燃料増量・減量制御が開始されたか否かが判定される。燃料増量・減量制御が開始されたと判定された場合にはステップ146へと進む。ステップ146では、積分フラグXintが1とされ、ステップ147へと進む。燃料増量・減量制御が開始されていないと判定された場合にはステップ146がスキップされる。
ステップ147では、下記式(8)により時刻nにおける積分項の値Msi(n)が算出される。すなわち、ステップ147においては通常通り積分項の値の積算が行われる。その後、ステップ152へと進む。
Msi(n)=Msi(n−1)+Ksi・VO(n) …(8)
一方、ステップ144において、現在積分項の値Msiの積算の停止中であると判定された場合(Xint=1)にはステップ148へと進む。ステップ148では、酸素センサ24の出力がリーンを表す値からリッチを表す値へ、又はその逆へ変化したか否か、すなわち酸素センサ24の出力が反転したか否かが判定される。酸素センサ24の出力が反転したと判定された場合にはステップ149へと進み、積分フラグXintが0にリセットされ、その後ステップ150へと進む。一方、ステップ148において、酸素センサ24の出力が反転していないと判定された場合にはステップ149がスキップされる。ステップ150では、時刻nにおける積分項の値Msi(n)が時刻n−1における積分項の値Msi(n−1)とされる。すなわち、ステップ150においては積分項の値Msiの積算が行われない。次いで、ステップ151では、ステップ143で算出された比例項の値Msp(n)に係数β(1よりも大きい値)を乗算したものが比例項の値とされる(Msp(n)=Msp(n)・β)。その後、ステップ152へと進む。
ステップ152では、現在が学習タイミングであるか否か、すなわち前回の学習時期から上記所定時間ΔTが経過しているか否かが判定される。学習タイミングであると判定された場合にはステップ153へと進む。ステップ153では、上記式(5)及び(6)により、積分項の値Msi(n)が所定量だけ減少又は増加せしめられると共に、サブF/B学習値efgfsbが上記所定量だけ増加又は減少せしめられ、ステップ154へと進む。一方、ステップ152において現在が学習タイミングでないと判定された場合にはステップ153がスキップされる。
次いで、ステップ154では、下記式(9)により出力補正量efsfb(n)が算出され、制御ルーチンが終了せしめられる。
efsfb(n)=Msp(n)+Msi(n) …(9)
上記実施形態ではセンサの出力値を補正しているが、燃料噴射量を補正するようにしてもよい。
上記実施形態では、PI制御を行っている例を示しているが、積分制御さえ入っていればよい。
本発明の空燃比制御装置が用いられる内燃機関全体の図である。 排気空燃比と空燃比センサの出力電圧との関係を示した図である。 排気空燃比と酸素センサの出力電圧との関係を示した図である。 目標燃料供給量を算出する目標燃料供給量算出制御の制御ルーチンを示すフローチャートである。 燃料補正量を算出するメインF/B制御の制御ルーチンを示すフローチャートである。 排気空燃比、酸素センサの出力値、空燃比センサの出力補正値及びサブF/B学習値のタイムチャートである。 燃料カット制御時における各種パラメータのタイムチャートである。 出力補正値を算出するサブF/B制御の制御ルーチンを示すフローチャートの一部である。 出力補正値を算出するサブF/B制御の制御ルーチンを示すフローチャートの一部である。
符号の説明
1 機関本体
3 ピストン
5 燃焼室
6 吸気弁
8 排気弁
10 点火栓
11 燃料噴射弁
31 ECU
41 負荷センサ
42 クランク角センサ

Claims (5)

  1. 機関排気通路内に設けられた排気浄化触媒の排気上流側に配置され且つ排気ガスの空燃比を検出する上流側空燃比センサと、上記排気浄化触媒の排気下流側に配置され且つ排気ガスの空燃比を検出する下流側空燃比センサとを具備し、上記上流側空燃比センサの出力値に基づいて排気空燃比が目標空燃比となるように燃料供給量を制御するメインフィードバック制御と、上記上流側空燃比センサの出力値と実際の排気空燃比とのずれを補償すべく上記下流側空燃比センサの出力値に基づいて排気空燃比が目標空燃比となるように燃料供給量を補正するサブフィードバック制御とを実行する内燃機関の空燃比制御装置において、
    上記サブフィードバック制御における燃料供給量の補正量は下流側空燃比センサの出力値と目標空燃比との偏差量を積算した積分項の値に基づいて算出され、
    目標空燃比と無関係に燃料供給量の増量又は減量が行われる燃料増量・減量制御が実行されたときには、該燃料増量・減量制御の完了後所定期間に亘って上記サブフィードバック制御における積分項の値の積算が停止される、内燃機関の空燃比制御装置。
  2. 上記上流側空燃比センサの出力値と実際の排気空燃比との間の定常的なずれに対応する学習値を上記積分項の値に基づいて算出すると共に、算出された学習値に基づいて上記燃料供給量を補正する学習手段をさらに具備する、請求項1に記載の内燃機関の空燃比制御装置。
  3. 上記燃料増量・減量制御の完了後所定期間中であっても上記学習手段による学習値の算出が行われる、請求項2に記載の内燃機関の空燃比制御装置。
  4. 上記サブフィードバック制御における燃料供給量の補正量は上記積分項の値に加えて下流側空燃比センサの出力値と目標空燃比との偏差に比例ゲインを乗算した比例項の値に基づいて算出され、
    上記燃料増量・減量制御の完了後所定期間中においては、該所定期間以外の期間に比べて上記比例項の値を大きくするようにした、請求項1〜3のいずれか1項に記載の内燃機関の空燃比制御装置。
  5. 上記所定期間は燃料増量・減量制御が完了してから排気浄化触媒から排出される排気ガスの空燃比が目標空燃比近傍となるまでの期間である、請求項1〜4のいずれか1項に記載の内燃機関の空燃比制御装置。
JP2007105962A 2007-04-13 2007-04-13 内燃機関の空燃比制御装置 Active JP4835497B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007105962A JP4835497B2 (ja) 2007-04-13 2007-04-13 内燃機関の空燃比制御装置
PCT/IB2008/000881 WO2008125952A1 (en) 2007-04-13 2008-04-11 Air-fuel ratio control device and air-fuel ratio control method for internal combustion engine
US12/595,767 US8406980B2 (en) 2007-04-13 2008-04-11 Air-fuel ratio control device and air-fuel ratio control method for internal combustion engine
CN200880011986.5A CN101657626B (zh) 2007-04-13 2008-04-11 用于内燃机的空燃比控制装置和空燃比控制方法
DE112008000982T DE112008000982B4 (de) 2007-04-13 2008-04-11 Luft-Kraftstoff-Verhältnis-Steuervorrichtung und Luft-Kraftstoff-Verhältnis-Steuerungsverfahren für eine Brennkraftmaschine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007105962A JP4835497B2 (ja) 2007-04-13 2007-04-13 内燃機関の空燃比制御装置

Publications (2)

Publication Number Publication Date
JP2008261307A true JP2008261307A (ja) 2008-10-30
JP4835497B2 JP4835497B2 (ja) 2011-12-14

Family

ID=39650998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007105962A Active JP4835497B2 (ja) 2007-04-13 2007-04-13 内燃機関の空燃比制御装置

Country Status (5)

Country Link
US (1) US8406980B2 (ja)
JP (1) JP4835497B2 (ja)
CN (1) CN101657626B (ja)
DE (1) DE112008000982B4 (ja)
WO (1) WO2008125952A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010110084A1 (ja) * 2009-03-26 2010-09-30 ヤンマー株式会社 エンジン回転速度制御装置
JP2014227843A (ja) * 2013-05-20 2014-12-08 川崎重工業株式会社 内燃機関における理論空燃比推定装置およびその方法、触媒の酸素吸蔵量推定方法、内燃機関装置、及び内燃機関装置を搭載した自動二輪車
JP2015113827A (ja) * 2013-12-16 2015-06-22 トヨタ自動車株式会社 内燃機関の制御装置

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4835692B2 (ja) * 2006-10-12 2011-12-14 トヨタ自動車株式会社 多気筒内燃機関の空燃比制御装置
EP2546502A1 (en) * 2010-03-11 2013-01-16 Toyota Jidosha Kabushiki Kaisha Controller for internal combustion engine
JP5585225B2 (ja) * 2010-06-11 2014-09-10 いすゞ自動車株式会社 排ガス浄化システム
EP2615282B1 (en) * 2010-09-09 2016-08-31 Toyota Jidosha Kabushiki Kaisha Air-fuel ratio control device
DE102010063119A1 (de) * 2010-12-15 2012-06-21 Robert Bosch Gmbh Verfahren zur Regelung und Adaption eines Luft-/Kraftstoffgemischs in einem Verbrennungsmotor
WO2012160651A1 (ja) * 2011-05-24 2012-11-29 トヨタ自動車株式会社 センサの特性補正装置
EP2781727B1 (en) * 2011-11-17 2018-12-26 Toyota Jidosha Kabushiki Kaisha Internal combustion engine control apparatus
US10563606B2 (en) * 2012-03-01 2020-02-18 Ford Global Technologies, Llc Post catalyst dynamic scheduling and control
DE102012019907B4 (de) 2012-10-11 2017-06-01 Audi Ag Verfahren zum Betreiben einer Brennkraftmaschine mit einer Abgasreinigungseinrichtung sowie entsprechende Brennkraftmaschine
JP5360312B1 (ja) * 2013-01-29 2013-12-04 トヨタ自動車株式会社 内燃機関の制御装置
BR112015018169B1 (pt) * 2013-01-29 2021-08-31 Toyota Jidosha Kabushiki Kaisha Sistema de controle do motor de combustão interna
US8887490B2 (en) * 2013-02-06 2014-11-18 General Electric Company Rich burn internal combustion engine catalyst control
JP5648706B2 (ja) * 2013-04-19 2015-01-07 トヨタ自動車株式会社 内燃機関の空燃比制御装置
DE102014210847A1 (de) * 2014-06-06 2015-12-17 Robert Bosch Gmbh Verfahren und Vorrichtung zur Erkennung eines Luftfehlers und eines Kraftstofffehlers
JP6507824B2 (ja) * 2015-04-27 2019-05-08 三菱自動車工業株式会社 エンジンの制御装置
KR101734713B1 (ko) * 2015-12-10 2017-05-24 현대자동차주식회사 연료소모저감을 위한 삼원촉매 제어방법과 삼원촉매제어시스템 및 차량
DE102016219689A1 (de) * 2016-10-11 2018-04-12 Robert Bosch Gmbh Verfahren und Steuereinrichtung zur Regelung einer Sauerstoff-Beladung eines Dreiwege-Katalysators
JP7091922B2 (ja) * 2018-08-07 2022-06-28 トヨタ自動車株式会社 内燃機関の制御装置
JP7070217B2 (ja) * 2018-08-07 2022-05-18 トヨタ自動車株式会社 内燃機関の制御装置
CN112081677B (zh) * 2020-08-28 2021-12-28 奇瑞汽车股份有限公司 空燃比控制方法及装置
CN112160841B (zh) * 2020-09-29 2023-05-23 潍柴动力股份有限公司 一种空气过量系数的调制方法、装置和可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004332714A (ja) * 2003-04-15 2004-11-25 Toyota Motor Corp 触媒の劣化判断装置および劣化判断方法
JP2006063949A (ja) * 2004-08-30 2006-03-09 Toyota Motor Corp 内燃機関の空燃比制御装置
JP2006104978A (ja) * 2004-10-01 2006-04-20 Toyota Motor Corp 内燃機関の空燃比制御装置
JP2006170098A (ja) * 2004-12-16 2006-06-29 Toyota Motor Corp 内燃機関の燃料噴射制御装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5115639A (en) * 1991-06-28 1992-05-26 Ford Motor Company Dual EGO sensor closed loop fuel control
US5832724A (en) * 1995-01-27 1998-11-10 Mazda Motor Corporation Air-fuel ratio control system for engines
JP3704884B2 (ja) * 1997-05-09 2005-10-12 トヨタ自動車株式会社 内燃機関の空燃比制御装置
JP4088412B2 (ja) * 2000-12-26 2008-05-21 トヨタ自動車株式会社 内燃機関の空燃比制御装置
JP3693942B2 (ja) * 2001-09-03 2005-09-14 三菱電機株式会社 内燃機関の空燃比制御装置
JP4111041B2 (ja) * 2003-04-15 2008-07-02 トヨタ自動車株式会社 内燃機関の空燃比制御装置
JP4292909B2 (ja) * 2003-07-30 2009-07-08 トヨタ自動車株式会社 内燃機関の空燃比制御装置
JP2005061356A (ja) 2003-08-18 2005-03-10 Toyota Motor Corp 内燃機関の制御装置
JP2005105834A (ja) * 2003-09-26 2005-04-21 Toyota Motor Corp 内燃機関の燃料供給制御装置
JP4039380B2 (ja) * 2004-03-24 2008-01-30 トヨタ自動車株式会社 内燃機関の空燃比制御装置
JP2005344598A (ja) * 2004-06-02 2005-12-15 Mitsubishi Electric Corp 内燃機関の空燃比制御装置
JP4438681B2 (ja) * 2005-04-27 2010-03-24 トヨタ自動車株式会社 内燃機関の空燃比制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004332714A (ja) * 2003-04-15 2004-11-25 Toyota Motor Corp 触媒の劣化判断装置および劣化判断方法
JP2006063949A (ja) * 2004-08-30 2006-03-09 Toyota Motor Corp 内燃機関の空燃比制御装置
JP2006104978A (ja) * 2004-10-01 2006-04-20 Toyota Motor Corp 内燃機関の空燃比制御装置
JP2006170098A (ja) * 2004-12-16 2006-06-29 Toyota Motor Corp 内燃機関の燃料噴射制御装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010110084A1 (ja) * 2009-03-26 2010-09-30 ヤンマー株式会社 エンジン回転速度制御装置
JP2010229874A (ja) * 2009-03-26 2010-10-14 Yanmar Co Ltd エンジン回転数制御装置
US8660774B2 (en) 2009-03-26 2014-02-25 Yanmar Co., Ltd. Engine governor
JP2014227843A (ja) * 2013-05-20 2014-12-08 川崎重工業株式会社 内燃機関における理論空燃比推定装置およびその方法、触媒の酸素吸蔵量推定方法、内燃機関装置、及び内燃機関装置を搭載した自動二輪車
JP2015113827A (ja) * 2013-12-16 2015-06-22 トヨタ自動車株式会社 内燃機関の制御装置

Also Published As

Publication number Publication date
DE112008000982T5 (de) 2010-02-04
US8406980B2 (en) 2013-03-26
CN101657626B (zh) 2013-01-02
CN101657626A (zh) 2010-02-24
WO2008125952A1 (en) 2008-10-23
US20100108046A1 (en) 2010-05-06
DE112008000982B4 (de) 2012-07-26
JP4835497B2 (ja) 2011-12-14

Similar Documents

Publication Publication Date Title
JP4835497B2 (ja) 内燃機関の空燃比制御装置
JP3941828B2 (ja) 内燃機関の空燃比制御装置
JP4957559B2 (ja) 内燃機関の空燃比制御装置
JP5001183B2 (ja) 内燃機関の空燃比制御装置
JP2009024613A (ja) 内燃機関の触媒の劣化度合い取得装置
JP4007384B2 (ja) 内燃機関の空燃比制御装置
JP4487971B2 (ja) 内燃機関の空燃比制御装置
US10100765B2 (en) Control apparatus for internal combustion engine
JP4661691B2 (ja) 内燃機関の空燃比制御装置
JP5116868B2 (ja) 内燃機関の空燃比制御装置
JP2009150264A (ja) 内燃機関の空燃比制御装置
JP2008274795A (ja) 内燃機関の空燃比制御装置
JP2007032438A (ja) 内燃機関の空燃比制御装置
JP4419952B2 (ja) 内燃機関の空燃比制御装置
JP5331931B2 (ja) 内燃機関の空燃比制御装置
JP5077047B2 (ja) 内燃機関の制御装置
JP2005207286A (ja) 触媒劣化判定装置
JP2009144568A (ja) 内燃機関の空燃比制御装置
JP2681965B2 (ja) 内燃機関の空燃比制御装置
JP2007247405A (ja) 内燃機関の排気浄化装置
JP2006083795A (ja) 内燃機関の空燃比制御装置
JP2007278186A (ja) 内燃機関の空燃比制御装置
JP2003155947A (ja) 内燃機関の空燃比制御装置
JP2008280854A (ja) 内燃機関の空燃比制御装置
JP2006307706A (ja) 内燃機関の空燃比制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110912

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4835497

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3