JP2008256580A - 加速度検出装置 - Google Patents

加速度検出装置 Download PDF

Info

Publication number
JP2008256580A
JP2008256580A JP2007100168A JP2007100168A JP2008256580A JP 2008256580 A JP2008256580 A JP 2008256580A JP 2007100168 A JP2007100168 A JP 2007100168A JP 2007100168 A JP2007100168 A JP 2007100168A JP 2008256580 A JP2008256580 A JP 2008256580A
Authority
JP
Japan
Prior art keywords
circuit
phase
output
resonance
acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007100168A
Other languages
English (en)
Inventor
Jun Watanabe
潤 渡辺
Takahiro Kameda
高弘 亀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyazaki Epson Corp
Original Assignee
Miyazaki Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyazaki Epson Corp filed Critical Miyazaki Epson Corp
Priority to JP2007100168A priority Critical patent/JP2008256580A/ja
Publication of JP2008256580A publication Critical patent/JP2008256580A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Gyroscopes (AREA)

Abstract

【課題】温度感度安定度に優れ、強い加速度が加わっても破壊されることなく安定して動作する加速度検出装置を提供することを目的とする。
【解決手段】基準信号を出力する基準発振回路2と、第1の音叉型水晶振動素子20aにより決定される共振周波数に基づいて基準発振回路2から出力される出力信号を移相する第1の共振回路4と、第2の音叉型水晶振動素子20bにより決定される共振周波数に基づいて基準発振回路2から出力される出力信号を移相する第2の共振回路8と、第1の共振回路4から出力される出力信号と第2の共振回路8から出力される出力信号の位相を位相比較回路6で比較し、その位相差信号の低域成分を抽出するLPF7と、LPF7から出力される出力信号を増幅する高利得増幅回路11と、を備え、高利得増幅回路11の出力信号を加速度検出信号として出力すると共に制御電圧として第2の共振回路8にフィードバックするようにした。
【選択図】図1

Description

本発明は圧電振動素子を用いて加速度を検出する加速度検出装置に関するものである。
近年、加速度を検出する加速度センサは、次世代の自動車、ロボット、宇宙産業など幅広い応用を目指して研究、開発が行われている。民生機器向けに開発されている加速度センサは、加速度検知機構を半導体プロセスにより作製したMEMS(Micro Electro Mechanical Systems)センサが良く知られている。
一方、例えば気体や液体などの圧力の測定を行う圧力センサ等においてはMEMSセンサ以外にも音叉型振動子を利用したものが開発されている。
図8は、特許文献1に開示されている従来の振動式センサ回路の構成を示した図である。図8に示す従来のセンサ回路100は、センサ部101とドライブ回路102により構成される。センサ部101はセンサ素子である振動子101a、アンプ101b、整流回路101cを有して構成される。振動子101aは、例えばチタン酸ジルコン酸鉛(PZT:lead zirconium titanate)が組付けられた振動子である。ドライブ回路102は、電圧制御発振器102a、アンプ102b、位相比較器102cを有して構成される。
このように構成されるセンサ回路100では、センサ部101の振動子101aがドライブ回路部102の電圧制御発振器102aにより駆動される。
ここで、振動子101aが物理的な応力(圧力)を受けると、振動子101aの共振周波数が変化する。振動子101aの共振周波数が変化すると、ドライブ回路102の位相比較器102cから出力される出力信号の位相が変動する。これにより、電圧制御発振器102aの出力信号は振動子101aの共振周波数と一致するように制御され、振動子101aは応力に応じた共振周波数で振動することになる。よって、ライン104または103の出力を検知信号として取り出すことで振動子101aが受けた応力値を検知することができる。
実開昭62−155336号公報
ところで、上記したような半導体プロセスにより作製したMEMSセンサ、或いは図8に示した振動式センサ回路100は、周波数−温度特性が悪いため、周囲温度によって加速度感度に誤差が生じるという欠点があった。
またMEMSセンサは、規定以上の強い加速度が加わった場合、センサが破壊されてしまうという欠点がった。
さらに、図8に示した振動式センサ回路100を加速度センサとして移動物体等に搭載した場合、移動物体の移動時に受ける加速以外の衝撃により振動子101aの共振周波数が急激に変動すると、位相比較器102cの出力信号も急激に変動する。しかし、図8に示す振動式センサ回路100は、振動子101aの出力に基づく位相比較結果を電圧制御発振器102aにフィードバックするPLL制御構成であるため、位相比較器102cの出力信号が急激に変動した場合は電圧制御発振器102aがPLL制御に追従できなくなる。この結果、電圧制御発振器102aの発振が停止する不具合が発生するおそれがあった。このため、従来の振動式センサ回路100を用いて加速検出装置を構成することはできなかった。
本発明は上記したような点を鑑みてなされたものであり、温度感度安定度に優れた加速度検出装置を提供することを目的とする。また強い加速度が加わった場合でも破壊されることがなく安定して動作する加速度検出装置を提供することを目的とする。
上記目的を達成するため、本発明の加速度検出装置は、基準信号を出力する基準発振回路と、第1の応力感応素子を備え、第1の応力感応素子により決定される共振周波数に基づいて、基準発振回路から出力される出力信号を移相する第1の共振回路と、第2の応力感応素子を備え、第2の応力感応素子により決定される共振周波数に基づいて、基準発振回路から出力される出力信号を移相する第2の共振回路と、第1の共振回路から出力される出力信号と第2の共振回路から出力される出力信号の位相を比較する位相比較回路と、位相比較回路から出力される位相差信号の低域成分を抽出するローパスフィルタと、ローパスフィルタから出力される出力信号を増幅する増幅回路と、を備え、第1及び第2の応力感応素子を、加速度を検出する加速度検出軸方向を一致させ、且つ、第1及び第2の応力感応素子において検出する加速度検出方向が逆向きとなるように配置したうえで、増幅回路の出力信号を加速度検出信号として出力すると共に、制御電圧として第2の共振回路にフィードバックするようにした。
このような本発明では、電圧制御型発振回路を設ける必要がないので、従来の振動式センサ回路のように加速度以外の強い衝撃が加わった場合に発振が停止するといったことがない。
また、第1及び第2の共振回路を、同一部品を用いて構成しているので温度特性の差分がキャンセルされ、温度特性の影響を受けないといった利点がある。
さらに、第1及び第2の応力感応素子を加速度検出方向に対して対向配置しているので、応力感応素子が1つの場合に比べて位相比較回路から出力される位相差信号のレベルが約2倍になり、加速度の検出感度を約2倍に高めることができる。
本発明の加速度検出装置は、基準信号を出力する基準発振回路と複数の加速度検出回路とからなり、各加速度検出回路は、第1の応力感応素子を備え、第1の応力感応素子により決定される共振周波数に基づいて基準発振回路から出力される出力信号を移相する第1の共振回路と、第2の応力感応素子を備え、第2の応力感応素子により決定される共振周波数に基づいて基準発振回路から出力される出力信号を移相する第2の共振回路と、第1の共振回路から出力される出力信号と第2の共振回路から出力される出力信号の位相を比較する位相比較回路と、位相比較回路から出力される位相差信号の低域成分を抽出するローパスフィルタと、ローパスフィルタから出力される出力信号を増幅する増幅回路と、を備え、第1及び第2の応力感応素子を、加速度を検出する加速度検出軸方向を一致させ、且つ、第1及び第2の応力感応素子において検出する加速度検出方向が逆向きとなるように配置したうえで、増幅回路の出力信号を加速度検出信号として出力すると共に、制御電圧として第2の共振回路にフィードバックするようにした。
このような本発明によれば、各加速度検出回路の第1及び第2の共振回路に備えられる第1及び第2の応力感応素子の検出軸を、加速度を検出すべき方向に向けて配置することで加速度検出装置の多軸化を図ることができる。
また電圧制御型発振回路を設ける必要がないので、従来の振動式センサ回路のように加速度以外の強い衝撃が加わった場合に発振が停止するといったことがない。
また第1及び第2の共振回路を、同一部品を用いて構成しているので温度特性の差分がキャンセルされ、温度特性の影響を受けないといった利点がある。
さらに第1及び第2の応力感応素子を加速度検出方向に対して対向配置しているので、応力感応素子が1つの場合に比べて位相比較回路から出力される位相差信号のレベルが約2倍になり、加速度の検出感度を約2倍に高めることができる。
また本発明の加速度検出装置は、基準発振回路から出力される基準信号を分周する分周回路を備えるようにした。
このような本発明によれば、例えば、基準発振回路に使用する振動子の発振周波数と、第1及び第2の共振回路において共振子として利用する第1及び第2の応力感応素子の共振周波数との周波数が異なる場合でも加速度検出装置を実現することができる。
また本発明の加速度検出装置は、位相比較回路に入力される入力信号の一方又は両方を矩形化する矩形化回路を備えるようにした。
このような本発明によれば、位相比較回路の前段に矩形化回路を設けたことで位相比較回路において精度の高い位相比較を行うことが可能になる。
また本発明の加速度検出装置は、基準発振回路又は分周回路の出力信号を移相する移相回路を備えるようにした。
このような本発明によれば、基準発振回路又は分周回路から分岐して出力される出力信号の一方を位相比較回路の位相特性に併せて移相回路により移相することで、位相比較回路において精度の高い位相比較を行うことが可能になる。
本発明の加速度検出装置は、移相回路が90°移相回路であることを特徴とする。このような本発明によれば、電圧制御型圧電発振回路から分岐して出力される出力信号の一方を、位相比較回路の位相特性に併せて90°移相することで、位相比較回路から出力される位相差信号により加速度の向き検出することが可能になる。
本発明の加速度検出装置は、応力感応素子が音叉型振動素子又は双音叉型振動素子であることを特徴とする。このような本発明によれば、加速度を検知する応力感応素子として音叉型振動素子、又は双音叉型振動素子を利用することが可能になり、応力感度を高めることができる。
以下、図面を参照して本発明の実施形態について説明する。
図1は本発明の第1の実施形態に係る加速度検出装置の構成を示したブロック図である。
この図1に示す加速度検出装置1は、基準発振回路2、分周回路3、第1の共振回路4、第1の矩形化回路5、位相比較回路6、90°移相回路7、第2の共振回路8、第2の矩形化回路9、ローパスフィルタ(以下、LPFと称する)10、高利得増幅回路11、及び緩衝増幅回路(以下、バッファアンプと称する)12により構成される。
基準発振回路2は、例えばATカットの水晶振動子等を用いて構成され、所定の周波数で発振する。分周回路3は、基準発振回路2からの基準信号が所定の周波数となるように分周して出力する。分周回路3の出力信号は、分岐されて第1の共振回路4、及び90°移相回路7に入力される。
第1の共振回路4は、第1の音叉型水晶振動素子20a、及びバリキャップダイオード(可変容量素子)等の容量素子を備え、第1の音叉型水晶振動素子20aと容量素子とにより決定される共振周波数に基づいて分周回路3の出力信号を移相して出力する。なお、容量素子は、例えば基準状態である定速度の状態における第1の共振回路4の共振周波数と第2の共振回路8の共振周波数とを一致させるために設けられたものであり、本実施の形態では、第2の共振回路8に備えられているバリキャップダイオードと同等のバリキャップダイオードのカソードとアノード間に所定の電圧を印加することにより構成される。
そして、第1の音叉型水晶振動素子20aと第2の音叉型水晶振動素子20bとに同種類のものを適用した構成とすれば、第1の共振回路4と第2の共振回路8の電気的特性や温度特性をほぼ同じにできる。従って、周囲温度の影響による周波数変動や位相変動が共振回路4、8に発生したとしても位相比較回路6の出力はこれら電気的特性の変動をキャンセルしたものとなる。なお、バリキャップダイオードの代わりに第2の共振回路8に備えられているバリキャップダイオードと同等容量のコンデンサを用いるようにしても良い。
第1の矩形化回路5は、例えばコンパレータなどにより構成され、第1の共振回路4から出力信号を矩形波信号に変換すると共に、出力レベルの調整を行って位相比較回路6に出力する。
一方、90°移相回路7は、分周回路3から出力される出力信号の位相を90°移相する。なお、90°移相回路7の構成にもよるが、通常、90°移相回路7において移相可能な信号波形は正弦波とされるので、分周回路3は、その出力信号波形が正弦波形となるように回路を構成することが望ましい。
第2の共振回路8は、第2の音叉型水晶振動素子20b及びバリキャップダイオード等の可変容量素子を備え、第2の音叉型水晶振動素子20bと可変容量素子により決定される共振周波数に基づいて分周回路3の出力信号を移相して出力する。
第2の矩形化回路9は、例えばコンパレータなどにより構成され、第2の共振回路8から出力信号を矩形波信号に変換すると共に、出力レベルの調整を行って位相比較回路6に出力する。
位相比較回路(乗算回路)6は、第1の矩形化回路5からの出力信号と第2の矩形化回路9からの出力信号との位相を比較し、その比較結果を出力する。このとき、位相比較回路6は、90°の位相差を基準に位相比較を行って、その位相差を位相差信号として出力する。なお、位相比較回路6において位相比較を行う場合には、入力信号の少なくとも一方の波形が矩形である必要があるため、本実施形態では、位相比較回路6の前段に夫々第1及び第2の矩形化回路5、9を設けるようにしたが、矩形化回路は、少なくとも何れか一方だけを設けるようにすれば良い。
また、分周回路3の出力波形が矩形波であれば、第1及び第2の矩形化回路5、9は必ずしも設ける必要はない。但し、通常、第1及び第2の共振回路4、8や90°移相回路7等に入力する信号波形を正弦波形にする必要があるため、本実施形態のように分周回路3の出力波形を正弦波形とし、位相比較回路6に入力する際に第1、第2の矩形化回路5、9により矩形化することが望ましい。
さらに、位相比較回路6に入力される2つの信号のレベルが一致していないと検波結果に2つの入力信号の位相差以外に信号レベルの差に基づく値も含まれてしまい正確な加速度検知結果を得ることができない可能性がある。従って、このような不具合の発生を防止するためにも第1、第2の矩形化回路5、9により矩形化(波形整形)することが望ましい。
LPF10は、位相比較回路6から出力される位相差信号の低周波数成分だけを抽出して出力する。このとき、LPF10の出力は常に一定に制御される。
高利得増幅回路11は、LPF10からの出力信号を高利得で増幅して出力する。高利得増幅回路11で増幅された信号は、バッファアンプ12を介して加速度検出信号Sαとして出力すると共に、その一部は制御電圧Vcontとして第2の共振回路8にフィードバックするようにしている。
図2は本実施の形態の加速度検出装置に備られる音叉型水晶振動素子の構成を模式的に示した図である。
図2に示すように第1及び第2の音叉型水晶振動素子20a、20bは、それぞれ並列に配置された2本の振動腕21a、21bと、この2本の振動腕21a、21bの延長方向一端を結合する結合部22とから成る。そして、第1及び第2の音叉型水晶振動素子20a、20bの各結合部22を、当該音叉型水晶振動素子20a、20bがそれぞれ搭載される基板(図示しない)に固定するようにしている。
なお、結合部22は基板と接続する固定部である。このとき、第1の音叉型水晶振動素子20aの各振動腕21a、21bと第2の音叉型水晶振動素子20bの各振動腕21a、21bの延長方向を加速度検出軸方向に一致させ、且つ、第1の音叉型水晶振動素子20aの振動腕21a、21bの自由端部と第2の音叉型水晶振動素子20bの振動腕21a、21bの自由端部を対向配置する、或いは第1の音叉型水晶振動素子20aの結合部22と第2の音叉型水晶振動素子20bの結合部22を対向配置するようにした。即ち、振動腕21a、振動腕21bの延長方向が各音叉型水晶振動素子20a、20bとの間で互いに逆向きとなるように対向配置した。
このように構成される第1及び第2の音叉型水晶振動素子20a、20bは、図示しない駆動電極に交流電圧を印加すると、並列する2本の振動腕21a、21bが破線で示すように対称的に屈曲振動する。そして、屈曲振動している状態で、例えば、図2に示す矢印方向の加速度αが加わると、第1の音叉型水晶振動素子20aには見かけ上では加速度αの方向とは逆方向の慣性力が発生するので、この影響により音叉型水晶振動素子20aの振動腕21a、21bは加速度αに対して逆の方向へ引っ張られる引張応力を受けることになる。
この場合、第1の音叉型水晶振動素子20aの周波数は引張応力の影響を受けて高くなる。一方、第2の音叉型水晶振動素子20bにも見かけ上では加速度αの方向とは逆方向の慣性力が発生するので、この影響により音叉型水晶振動素子20bの振動腕21a、21bは、結合部22の方向へ圧縮する圧縮応力を受けることになる。この場合、第2の音叉型水晶振動素子20bの周波数は圧縮応力の影響を受けて低くなる。そこで、第2の実施形態では、このような第1及び第2の音叉型水晶振動素子20a、20bに加速度が加わったとき発生する周波数変化に基づき加速度検出信号Sαを得るようにしている。
このような音叉型水晶振動素子20a、20bは、従来のMEMS加速度センサに比べて、ダイナミックレンジが広く(例えば±3g〜±400g)、しかも高リニアリティ(例えば、0.05%F.S.)で温度感度安定度が良いといった利点がある。また、低消費電力化が可能になる。さらに、加速度検出軸方向と振動腕21a、21bとの延長方向とを一致させることができるので加速度検出軸方向と垂直方向(基板面に垂直な方向)に対する低背化にも有利である。なお、図2においては説明を分かり易くするために音叉型水晶振動素子20a、20bの屈曲振動の概念を破線により示したが、実際には音叉型水晶振動素子20の形状自体は殆ど変位しないものである。
また、本実施形態の加速度検出装置1では、音叉型水晶振動素子20a、20bの形状自体は殆ど変位しないので、規定以上の強い加速度が加わった場合でも素子自体が破損することがない。従って、本実施形態の加速度検出装置1では、規定以上の強い加速度が加わった場合でも素子自体が破損することがない。
以下、本実施の形態の加速度検出装置1の動作を説明する。
図3は、本実施の形態の共振回路の位相特性を示した図であり、(a)は第1の共振回路4の位相特性、(b)は第2の共振回路8の位相特性を示した図である。
本実施形態の加速度検出装置1においては、第1及び第2の共振4、8に備えられている第1及び第2の音叉型水晶振動素子20a、20bの加速度検出軸方向に加速度が加わっていない定速運動状態では、第1及び第2の共振回路4、8から出力される出力信号の周波数はAで一致させるようにする。つまり、定速運動状態における第1の共振回路4及び第2の共振回路8の位相特性を図3に実線で示すような特性に設定しておく。この場合、第1及び第2の共振回路4、8に周波数Aの信号が入力されたときは、入力信号とそれぞれの共振回路4、8から出力される出力信号との位相差は「0」となる。
ここで、第1及び第2の共振回路4、8の第1及び第2の音叉型水晶振動素子20a、20bの各振動腕21a、21bの延長方向へ加速運動が生じ、第1の音叉型水晶振動素子20aの振動腕21a、21bに引っ張り方向の慣性力、第2の音叉型水晶振動素子20bの振動腕21a、21bに圧縮方向の慣性力が加わったとする。すると、第1の音叉型水晶振動素子20aは慣性力の影響を受けて周波数が高くなる。また、第2の音叉型水晶振動素子20bは慣性力の影響を受けて周波数が低くなる。
第1の音叉型水晶振動素子20aの周波数が高くなった場合、第1の共振回路4の位相特性は図3(a)に実線で示した特性から破線で示した特性へと推移することになる。即ち、特性が全体的に高周波側へシフトしたようになる。従って、第1の共振回路4から出力される信号の位相は、入力した信号に対して+ΔAの位相差を有するものとなる。
また、第2の音叉型水晶振動素子20bの周波数が低くなった場合、第2の共振回路8の位相特性は図3(b)に実線で示した特性から破線で示した特性へと推移することになる。即ち、特性が全体的に低周波側へシフトしたようになる。従って、第2の共振回路8から出力される信号の位相は、入力信号に対して−ΔAの位相差を有するものとなる。
従って、加速度検出装置1の位相比較回路6において検波される位相差は、第1又は第2の共振回路4、8において検波される位相差ΔAの約2倍となる。
このとき位相比較回路6から出力される位相差信号は、加速度αの影響により位相差は広がるように変動するので、加速度αの方向を正方向の加速度とすれば周波数の変化と加速度の変化とは比例関係にある。そこで、本実施形態の加速度検出装置1では、LPF10の出力を高利得増幅回路11に増幅し、その増幅した信号を第2の共振回路8にフィードバックして第1の共振回路4と第2の共振回路8の位相のズレを補正すると共に、バッファアンプ12を介して加速度検出信号Sαとして出力することで加速度検出装置を実現するようにした。
また本実施の形態の加速度検出装置1は、安定した基準発振回路2を備えているので、後段にデジタル回路などを用いる場合に、基準発振回路2をそのクロックとして用いることが可能になる。その場合、基準クロックの共通化を図ることができるため、ノイズを低減することができる。
また、このような加速度検出装置1では、従来のように電圧制御型発振回路を設けることなく構成することができるので、従来の振動式センサ回路のように、加速度以外の強い衝撃が加わった場合でも発振が停止するといったことがない。
さらに本発明では、第1及び第2の音叉型水晶振動素子20a、20bを加速度検出方向に対して対向配置しているので、音叉型水晶振動素子が1つの場合に比べて位相比較回路6から出力される位相差信号のレベルが約2倍になり、加速度の検出感度を約2倍に高めることができる。即ち、加速度の検出感度を約2倍に高めることができる。
さらに、本実施の形態の加速度検出装置では、第1の共振回路4と第2の共振回路8とは同一部品を用いて構成しているので温度特性の差分がキャンセルされ、温度特性の影響を受けないといった利点がある。
次に、図4を用いて本実施形態の加速度検出装置1の動作遷移について説明する。
図4は、本実施形態の加速度検出装置1における速度と時間の関係、加速度と時間の関係、出力電圧と時間の関係をそれぞれ示した図である。尚、定速度状態に於いてVCXO2の出力信号とVCXO7の出力信号との位相差は90°となるよう設定されている。
この図4に示すように、加速が開始される時点t1までの期間Aでは、加速度が「0」であるため、第2の共振回路8には制御電圧Vcontとして初期定電圧Voが印加される。
次に、加速(図2に示す加速度αの逆方向の加速)が加わる時点t1から時点t2までの期間Bにおいては、加速度に伴う音叉型水晶振動素子20bの周波数の低下をPLL制御にて補正するよう第2の共振回路8には制御電圧Vcontとして初期定電圧Voより高い電圧V1が印加される。
次に、定速度運動による加速度が「0」となる時点t2から時点t3までの期間Cにおいては、音叉型水晶振動素子20bへの慣性力が「0」になり、音叉型水晶振動素子20bが初期状態に戻るため、音叉型水晶振動素子20は期間Bの状態から周波数が高くなるよう変化しようとする。従って、この場合は第2の共振回路8の共振周波数の上昇をPLL制御にて補正するよう第2の共振回路8には制御電圧Vcontとして初期定電圧Voが印加される。
次に、減速がかかる時点t3から時点t4までの期間Dにおいては、減速に伴う音叉型水晶振動素子20bの周波数の上昇をPLL制御にて補正するよう第2の共振回路8には制御電圧Vcontとして初期定電圧Voより低い電圧V2が印加される。
次に、定速度運動による減速が「0」となる時点t4以降の期間Eにおいては、音叉型水晶振動素子20bへの慣性力が「0」になり、音叉型水晶振動素子20bが初期状態に戻るため、音叉型水晶振動素子20bは期間Dの状態から周波数が低くなるよう変化しようとする。従って、この場合は第2の共振回路8の周波数下降をPLL制御にて補正するよう第2の共振回路8には制御電圧Vcontとして初期定電圧Voが印加される。
そこで、本実施形態の加速度検出装置1においては、上記したように第2の共振回路8の制御電圧Vcontである高利得増幅回路11の出力電圧を、バッファアンプ12を介して加速度検出信号Sαとして出力することで、期間B、期間Dにおいて加わる定加速度を検出することができる。尚、定速度状態に於いてVCXO2の出力信号と第2の共振回路8の出力信号との位相差を90°に設定したことにより、上述の通り加速・減速の違いに対して位相差に増減を発生させて加速度方向を検知することを可能にしている。
なお、本実施形態の加速度検出装置1では、高利得増幅回路11の出力信号の一部を制御電圧Vcontとして第2の共振回路8にフィードバックするようにしているが、バッファアンプ12の出力の一部を制御電圧Vcontとして第2の共振回路8にフィードバックすることも可能である。
また、本実施形態では第1及び第2の応力感応素子として音叉型水晶振動素子20a、20bを例に挙げて説明したが、これはあくまでも一例であり、応力感応素子として、例えば図5に示すような双音叉型水晶振動素子を用いることも可能である。
図5に示す双音叉型水晶振動素子23は、並列に配置された2本の振動腕21a、21bと、この2本の振動腕21a、21bの延長方向の両端を夫々結合した結合部22a、22bとから成る。そして、この場合は、例えば、結合部22a、22bの内、一方の結合部22aだけを、当該双音叉型水晶振動素子23が搭載される基板(図示しない)に固定し、他方を自由端とすればよい。
双音叉型水晶振動素子23を用いて本実施形態の加速度検出装置を構成した場合は、自由端側の結合部22bが重りとして機能するため、上記した音叉型水晶振動素子20a、20bより加速度感度を高めることができる。
次に、本発明の第2の実施の形態について説明する。
図6は、本発明の第2の実施形態に係る加速度検出装置の構成を示したブロック図である。なお、図1と同一部位には同一符号を付して説明は省略する。
この図6に示す加速度検出装置30は、基準発振回路2、分周回路3、及び複数の加速度検出回路31a、31b、31cから構成される。
各加速度検出回路31a、31b、31cは、それぞれ第1の共振回路4、第1の矩形化回路5、位相比較回路6、90°移相回路7、第2の共振回路8、第2の矩形化回路9、LPF10、高利得増幅回路11、及びバッファアンプ12を備えて構成される。
このとき、例えば、図7に示すように、加速度検出回路31aの第1及び第2の音叉型水晶振動素子20a、20bの加速度検出軸をX軸、加速度検出回路31bの第1及び第2の音叉型水晶振動素子20a、20bの加速度検出軸をY軸、加速度検出回路31cの第1及び第2の音叉型水晶振動素子20a、20bの加速度検出軸をZ軸に夫々合わせて配置するようにしている。これにより、加速度検出装置の多軸化を図ることができる。またこの場合は、高価な基準発振回路2を共有できるので低コストで加速度検出装置の多軸化を図ることが可能になる。
なお、本実施形態では、応力感応素子として音叉型振動素子を例に挙げて説明したが、これはあくまでも一例であり、共振周波数が加速度に応じて変化する素子であれば、所謂ATカットの水晶振動子やレゾネータといった各種圧電振動素子を応力感応素子として適用することも可能である。
本発明の第1の実施形態に係る加速度検出装置の構成を示したブロック図である。 音叉型水晶振動素子の構成を模式的に示した図である。 本実施の形態の共振回路の位相特性を示した図である。 本実施形態の加速度検出装置1における速度と時間の関係、加速度と時間の関係、出力電圧と時間の関係をそれぞれ示した図である 双音叉型水晶振動素子の構成を示した図である。 本発明の第2の実施形態に係る加速度検出装置の構成を示したブロック図である。 各加速度検出回路の検出軸方向を示した図である。 従来の振動式センサ回路の構成を示した図である。
符号の説明
1…加速度検出装置、2、7…VCXO、3…位相比較回路、4…LPF、5…高利得増幅回路、6…バッファアンプ、8…DCサーボ回路、20a、20b…音叉型水晶振動素子、21a、21b…各振動腕、22、22a、22b…結合部、23…双音叉型水晶振動素子

Claims (7)

  1. 基準信号を出力する基準発振回路と、
    第1の応力感応素子を備え、前記第1の応力感応素子により決定される共振周波数に基づいて、前記基準発振回路から出力される出力信号を移相する第1の共振回路と、
    第2の応力感応素子を備え、前記第2の応力感応素子により決定される共振周波数に基づいて、前記基準発振回路から出力される出力信号を移相する第2の共振回路と、
    前記第1の共振回路から出力される出力信号と前記第2の共振回路から出力される出力信号の位相を比較する位相比較回路と、
    前記位相比較回路から出力される位相差信号の低域成分を抽出するローパスフィルタと、
    前記ローパスフィルタから出力される出力信号を増幅する増幅回路と、を備え、
    前記第1及び第2の応力感応素子を、加速度を検出する加速度検出軸方向を一致させ、且つ、前記第1及び第2の応力感応素子において検出する加速度検出方向が逆向きとなるように配置したうえで、前記増幅回路の出力信号を加速度検出信号として出力すると共に、制御電圧として前記第2の共振回路にフィードバックすることを特徴とする加速度検出装置。
  2. 基準信号を出力する基準発振回路と複数の加速度検出回路とからなり、
    前記各加速度検出回路は、
    第1の応力感応素子を備え、前記第1の応力感応素子により決定される共振周波数に基づいて、前記基準発振回路から出力される出力信号を移相する第1の共振回路と、
    第2の応力感応素子を備え、前記第2の応力感応素子により決定される共振周波数に基づいて、前記基準発振回路から出力される出力信号を移相する第2の共振回路と、
    前記第1の共振回路から出力される出力信号と前記第2の共振回路から出力される出力信号の位相を比較する位相比較回路と、
    前記位相比較回路から出力される位相差信号の低域成分を抽出するローパスフィルタと、
    前記ローパスフィルタから出力される出力信号を増幅する増幅回路と、を備え、
    前記第1及び第2の応力感応素子を、加速度を検出する加速度検出軸方向を一致させ、且つ、前記第1及び第2の応力感応素子において検出する加速度検出方向が逆向きとなるように配置したうえで、前記増幅回路の出力信号を加速度検出信号として出力すると共に、制御電圧として前記第2の共振回路にフィードバックすることを特徴とする加速度検出装置。
  3. 前記基準発振回路から出力される基準信号を分周する分周回路を備えたこと特徴とする請求項1又は2に記載の加速度検出装置。
  4. 前記位相比較回路に入力される入力信号の一方又は両方を矩形化する矩形化回路を備えたことを特徴とする請求項1乃至3の何れか一項に記載の加速度検出装置。
  5. 前記基準発振回路又は前記分周回路の出力信号を移相する移相回路を備えたことを特徴とする請求項1乃至4の何れか一項に記載の加速度検出装置。
  6. 前記移相回路は、90°移相回路であることを特徴とする請求項5に記載の加速度検出装置。
  7. 前記応力感応素子は、音叉型振動素子、又は双音叉型振動素子であることを特徴とする請求項1乃至6の何れか一項に記載の加速度検出装置。
JP2007100168A 2007-04-06 2007-04-06 加速度検出装置 Withdrawn JP2008256580A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007100168A JP2008256580A (ja) 2007-04-06 2007-04-06 加速度検出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007100168A JP2008256580A (ja) 2007-04-06 2007-04-06 加速度検出装置

Publications (1)

Publication Number Publication Date
JP2008256580A true JP2008256580A (ja) 2008-10-23

Family

ID=39980281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007100168A Withdrawn JP2008256580A (ja) 2007-04-06 2007-04-06 加速度検出装置

Country Status (1)

Country Link
JP (1) JP2008256580A (ja)

Similar Documents

Publication Publication Date Title
US9003883B2 (en) Angular velocity sensor and synchronous detection circuit used therein
US8875578B2 (en) Electronic damper circuit for MEMS sensors and resonators
US8183944B2 (en) Method and system for using a MEMS structure as a timing source
CN106885563B (zh) 一种防电学振荡的微机械陀螺仪闭环驱动电路
US8656775B2 (en) Vibratory gyro-sensor and vibratory gyro circuit
JP5348408B2 (ja) 物理量検出装置、物理量検出装置の異常診断システム及び物理量検出装置の異常診断方法
US9252707B2 (en) MEMS mass bias to track changes in bias conditions and reduce effects of flicker noise
US20180134544A1 (en) Temperature compensation for resonant mems
JP2009236552A (ja) センサ感度調整手段及びセンサの製造方法
JP2008256580A (ja) 加速度検出装置
JP2008157766A (ja) 加速度検出装置
JP2008151632A (ja) 加速度検出装置
JP2008157767A (ja) 加速度検出装置
US20070277614A1 (en) Vibration sensor
JP5589171B2 (ja) 物理量検出装置用回路
JP2008170308A (ja) 加速度検出装置
JP5208063B2 (ja) 振動型ジャイロセンサ
JP5708458B2 (ja) 角速度検出装置
JP2008170307A (ja) 加速度検出装置
JP2008190924A (ja) 加速度検出装置
JP2008190884A (ja) 加速度検出装置
JP2008151630A (ja) 加速度検出装置
JP2008151631A (ja) 加速度検出装置
JP2015152521A (ja) ジャイロセンサ
JP2008190925A (ja) 加速度検出装置

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100706