JP2008248307A - High toughness and high speed steel-base sintered alloy - Google Patents

High toughness and high speed steel-base sintered alloy Download PDF

Info

Publication number
JP2008248307A
JP2008248307A JP2007090328A JP2007090328A JP2008248307A JP 2008248307 A JP2008248307 A JP 2008248307A JP 2007090328 A JP2007090328 A JP 2007090328A JP 2007090328 A JP2007090328 A JP 2007090328A JP 2008248307 A JP2008248307 A JP 2008248307A
Authority
JP
Japan
Prior art keywords
sintered alloy
toughness
alloy
amount
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007090328A
Other languages
Japanese (ja)
Other versions
JP5121275B2 (en
Inventor
Hiroaki Okano
宏昭 岡野
Atsushi Funakoshi
淳 舩越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2007090328A priority Critical patent/JP5121275B2/en
Publication of JP2008248307A publication Critical patent/JP2008248307A/en
Application granted granted Critical
Publication of JP5121275B2 publication Critical patent/JP5121275B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To suppress the increase in the hardness of a sintered alloy and to improve its toughness by controlling the amount of C and the amounts of carbide forming elements composed of Cr, Mo, W, V, Ti, Nb and Ta in a sintered alloy base, thus suppressing the amount of martensitic transformation upon heat treatment to a degree of securing its minimum wear resistance. <P>SOLUTION: The high toughness and high speed steel-base sintered alloy has a composition comprising, by weight, 0.5 to <1.5% C, ≤0.6% Si, ≤0.6% Mn, 0.5 to 10.0% Cr, 0.5 to 15% Mo, 0.5 to 20% W, and at least one kind selected from the group consisting of V, Ti, Nb and Ta by 0.5 to 20% in total, and the balance Fe with inevitable impurities, and in which C<SB>bal</SB>(C<SB>bal</SB>=C-C<SB>stic</SB>, and C<SB>stic</SB>=0.06Cr+0.063Mo+0.033W+0.24V+0.25Ti+0.13Nb+0.066Ta) lies in the range of -1.5 to -0.5. If required, 0.5 to 3% Ni, 1 to 0.5% N and 7 to 20% Co may be incorporated therein. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、高速度鋼系焼結合金に関し、より具体的には、耐摩耗性及び靱性にすぐれる高速度鋼系焼結合金に関する。   The present invention relates to a high-speed steel-based sintered alloy, and more specifically to a high-speed steel-based sintered alloy having excellent wear resistance and toughness.

鋼材の熱間圧延又は冷間圧延用ロール、塑性加工用金型、プラスチック成形機のシリンダー、スクリュー等は、耐摩耗性、耐肌荒れ性が要求されると共に、耐事故性が要求される。これら用途の材料として、これまで、JISに規定された合金工具鋼や高速度鋼が用いられていたが、近年では、高速度鋼系の合金組成を有する焼結合金が使用されている。   Rolls for hot rolling or cold rolling of steel materials, dies for plastic working, cylinders and screws of plastic molding machines are required to have wear resistance and rough skin resistance, as well as accident resistance. Up to now, alloy tool steels and high-speed steels defined in JIS have been used as materials for these applications, but recently, sintered alloys having a high-speed steel-based alloy composition have been used.

耐摩耗性にすぐれる高速度鋼系の合金組成を有する粉末合金として、C:1.5〜3.5%、 Si:0.6%以下、Mn:0.6%以下、 Cr:0.5〜25%、2Mo+W:1.5〜45%、 Ni:3.0%以下、V、Ti、Nb、Taの内の1種以上を総計で0.5〜12.0%、N:0.05〜0.5%及び残部実質的にFeからなるものがある(特許文献1)。   As a powder alloy having a high-speed steel-based alloy composition with excellent wear resistance, C: 1.5 to 3.5%, Si: 0.6% or less, Mn: 0.6% or less, Cr: 0.00 5 to 25%, 2Mo + W: 1.5 to 45%, Ni: 3.0% or less, 0.5% to 12.0% in total of one or more of V, Ti, Nb and Ta, N: 0 There are some which consist of 0.05 to 0.5% and the balance substantially Fe (Patent Document 1).

特開平7−166300号公報JP 7-166300 A

この特許文献に示された合金は、所定の焼入れ及び焼戻しの調質熱処理を施すことにより、マルテンサイト又はベイナイト相の硬質基地に微細な炭化物粒子が分散した組織を有し、高い硬度(例えばHRC65以上)が得られるため、すぐれた耐摩耗性を発揮することができる。しかし、硬度が高くなるほど靱性は低くなる傾向があるため、大きな応力がかかる苛酷な使用環境では靱性が不足し、耐事故性の点では必ずしも十分とは言えなかった。
使用環境の苛酷化により、耐摩耗性は多少低下しても、靱性にすぐれる合金が要請されている。
The alloy shown in this patent document has a structure in which fine carbide particles are dispersed in a hard matrix of martensite or bainite phase by performing a predetermined tempering and tempering heat treatment, and has a high hardness (for example, HRC65 Thus, excellent wear resistance can be exhibited. However, since the toughness tends to decrease as the hardness increases, the toughness is insufficient in a severe use environment where a large stress is applied, and it cannot be said that the accident resistance is sufficient.
There is a demand for an alloy having excellent toughness even if the wear resistance is somewhat lowered due to the severe use environment.

本発明の目的は、所定の硬度を具えて耐摩耗性を確保すると共に、すぐれた靱性によって耐事故性が良好な高速度鋼系焼結合金を提供することである。   An object of the present invention is to provide a high-speed steel-based sintered alloy having a predetermined hardness and ensuring wear resistance and having good accident resistance due to excellent toughness.

発明者らは、硬度と靱性が相反する性質であることに着目し、合金基地(マトリックス)中のC量、及びCr、Mo、W、V、Ti、Nb、Taからなる炭化物生成元素の量を制御することにより、熱処理時のオーステナイトからマルテンサイト変態量を、最低限の耐摩耗性を確保できる程度に、少なく抑えて合金の高硬度化を抑制することにより、所定の靱性を得られるようにした。   The inventors pay attention to the fact that hardness and toughness are contradictory properties, and the amount of C in the alloy matrix (matrix) and the amount of carbide generating elements composed of Cr, Mo, W, V, Ti, Nb, Ta. By controlling the amount of martensite transformation from austenite during heat treatment to a level that can ensure the minimum wear resistance, it is possible to obtain a predetermined toughness by suppressing the increase in hardness of the alloy I made it.

具体的には、本発明の高速度鋼系焼結合金は、重量%にて、C:0.5%以上、1.5%未満、Si:0.6%以下、Mn:0.6%以下、Cr:0.5〜10.0%、Mo:0.5〜15%、W:0.5〜20%、V、Ti、Nb及びTaからなる群から選択される少なくとも一種を合計量で0.5〜20%、残部Fe及び不可避的不純物からなり、Cbalが−1.5以上、−0.5以下の範囲、好ましくは−1.0以上、−0.5以下の範囲にあることを特徴とする。なお、Cbal=C−Csticとし、Cstic=0.06Cr+0.063Mo+0.033W+0.24V+0.25Ti+0.13Nb+0.066Taとしており、Csticは、炭化物の形成に必要なCの量を表し、Cbalはマトリックスに残るCの量を表している。
本発明の焼結合金は、必要に応じて、Ni:0.5〜3%及び/又はN:0.1〜0.5%を含むことができるし、また、Co:7〜20%を含むこともできる。
Specifically, the high-speed steel-based sintered alloy of the present invention is C: 0.5% or more, less than 1.5%, Si: 0.6% or less, Mn: 0.6% by weight%. Hereinafter, the total amount of at least one selected from the group consisting of Cr: 0.5 to 10.0%, Mo: 0.5 to 15%, W: 0.5 to 20%, V, Ti, Nb and Ta 0.5 to 20%, balance Fe and inevitable impurities, and Cbal is in the range of -1.5 or more and -0.5 or less, preferably in the range of -1.0 or more and -0.5 or less. It is characterized by being. Incidentally, the C bal = C-C stic, C stic = 0.06Cr + 0.063Mo + 0.033W + 0.24V + 0.25Ti + 0.13Nb + 0.066Ta and to have, C stic represents the amount of C necessary for forming the carbide, C bal Represents the amount of C remaining in the matrix.
The sintered alloy of the present invention may contain Ni: 0.5 to 3% and / or N: 0.1 to 0.5% as required, and Co: 7 to 20%. It can also be included.

本発明の焼結合金は、約1100〜1200℃の温度で加熱した後強制空冷による焼入れを行ない、次に、約500〜600℃の温度での焼戻しを3回繰り返すことにより、硬度がHRC50〜62、シャルピー衝撃強さ30×104J/m2以上の特性を得ることができる。好ましくは、硬度がHRC55〜60、シャルピー衝撃強さ50×104J/m2以上である。 The sintered alloy of the present invention is hardened by forced air cooling after being heated at a temperature of about 1100 to 1200 ° C., and then tempering at a temperature of about 500 to 600 ° C. three times to obtain a hardness of HRC 50 to 62, characteristics with Charpy impact strength of 30 × 10 4 J / m 2 or more can be obtained. Preferably, the hardness is HRC 55-60, and Charpy impact strength is 50 × 10 4 J / m 2 or more.

本発明の焼結合金は、硬度がHRC50〜62(好ましくはHRC55〜60)であるから、所定の耐摩耗性を具備することができる。またこの硬度は、高速度鋼系合金としては低硬度であり、シャルピー衝撃強さ30×104J/m2以上(好ましくは50×104J/m2以上)の高靱性を得ることができるから、すぐれた耐事故性を発揮することができる。
従って、硬度と靱性の効果的な組合せが重要とされる、鋼材の熱間圧延又は冷間圧延用ロール、塑性加工用金型、プラスチック成形機のシリンダー、スクリュー等の材料として有用である。
なお、これら製品の外面側又は内面側のどちらか一方の部分に、より高い硬度(例えばHRC63以上)及び耐摩耗性が所望されるときは、より高い硬度及び耐摩耗性を得ることができる合金(例えば、特許文献1の高速度鋼系合金)の第1層に、靱性にすぐれる本発明合金の第2層を一体化させた複合製品にすればよい。前記第1層と前記第2層は、製品の要求特性に応じて、第1層を外面側に、第2層を内面側に設けることができるし、その逆も可能である。
Since the sintered alloy of the present invention has a hardness of HRC 50 to 62 (preferably HRC 55 to 60), it can have predetermined wear resistance. Moreover, this hardness is low as a high-speed steel alloy, and high toughness with Charpy impact strength of 30 × 10 4 J / m 2 or more (preferably 50 × 10 4 J / m 2 or more) can be obtained. Because it can, it can demonstrate excellent accident resistance.
Therefore, it is useful as a material such as a roll for hot rolling or cold rolling of steel, a mold for plastic working, a cylinder of a plastic molding machine, a screw, etc., in which an effective combination of hardness and toughness is important.
In addition, when higher hardness (for example, HRC63 or more) and wear resistance are desired for either one of the outer surface side and the inner surface side of these products, an alloy capable of obtaining higher hardness and wear resistance. What is necessary is just to make it the composite product which integrated the 2nd layer of this invention alloy excellent in toughness with the 1st layer (for example, high speed steel type alloy of patent document 1). The first layer and the second layer can be provided on the outer surface side and the second layer on the inner surface side, or vice versa, depending on the required characteristics of the product.

本発明の高速度鋼系焼結合金は上記の組成を有し、合金マトリックスに残存するCの量、つまりCbalの値を、−1.5以上、−0.5以下の範囲に規定したことに特徴を有する。
各成分の範囲の限定理由及びCbalの意義について、以下に説明する。
High speed steel based sintered alloy of the present invention has the above composition, the amount of C remaining in the alloy matrix, i.e. the value of C bal, -1.5 or more, as specified in the range of -0.5 or less It has a special feature.
The reason for limiting the range of each component and the significance of Cbal will be described below.

C:0.5%以上、1.5%未満
Cは、炭化物形成元素であり、V、Ti、Nb、Ta、W、Mo、Cr等と結合して、MC型、M2C型、M6C型の硬質炭化物を形成し、合金の耐摩耗性を高める。このため、少なくとも0.5%以上含有させる。しかし、Cを多量に含有すると、靱性が悪化し、欠け割れが発生し易くなる。従って、上限を1.5%未満とする。
C: 0.5% or more and less than 1.5% C is a carbide forming element, which is combined with V, Ti, Nb, Ta, W, Mo, Cr, and the like to form MC type, M 2 C type, M 6 Forms C-type hard carbide to increase the wear resistance of the alloy. For this reason, it is made to contain at least 0.5% or more. However, when a large amount of C is contained, the toughness is deteriorated and cracking is likely to occur. Therefore, the upper limit is made less than 1.5%.

Si:0.6%以下
Siは脱酸作用を有する。しかし、多量に含有すると材料を脆化させるため、上限は0.6%とする。
Si: 0.6% or less Si has a deoxidizing action. However, the upper limit is made 0.6% because the material becomes brittle if contained in large amounts.

Mn:0.6%以下
Mnは脱酸作用を有する。しかし、多量に含有すると材料を脆化させるため、上限は0.6%とする。
Mn: 0.6% or less Mn has a deoxidizing action. However, the upper limit is made 0.6% because the material becomes brittle if contained in large amounts.

Cr:0.5〜10.0%
Crは、M6C型の炭化物を生成し、耐摩耗性を向上させるので少なくとも0.5%以上含有させる。しかし、あまりに多く含有すると炭化物量が過多となるため、上限は10.0%に規定する。好ましくは4〜7%である。
Cr: 0.5 to 10.0%
Cr produces M 6 C type carbide and improves wear resistance, so it is contained at least 0.5% or more. However, if the content is too large, the amount of carbide becomes excessive, so the upper limit is specified at 10.0%. Preferably it is 4 to 7%.

Mo:0.5〜15%
Moは、M2C型炭化物を生成し、耐摩耗性を向上させるので少なくとも0.5%以上含有させる。しかし、あまりに多く含有すると炭化物量が過多となるため、上限は15%に規定する。好ましくは1〜10%であり、さらに好ましくは1.5〜5%である。
Mo: 0.5 to 15%
Mo generates M 2 C type carbide and improves wear resistance, so it is contained at least 0.5% or more. However, if the content is too large, the amount of carbide becomes excessive, so the upper limit is defined as 15%. Preferably it is 1 to 10%, and more preferably 1.5 to 5%.

W:0.5〜20%
Wは、M2C型炭化物を生成し、耐摩耗性を向上させるので少なくとも0.5%以上含有させる。しかし、あまりに多く含有すると炭化物量が過多となるため、上限は20%に規定する。好ましくは3〜6%である。
W: 0.5-20%
W forms M 2 C type carbide and improves wear resistance, so it is contained at least 0.5% or more. However, if the content is too large, the amount of carbide becomes excessive, so the upper limit is defined as 20%. Preferably it is 3 to 6%.

V、Ti、Nb、Taのうちの少なくとも一種:合計量で0.5〜20%
V、Ti、Nb、Taは、MC型炭化物を生成し、耐摩耗性には、MC型炭化物が顕著な効果を奏するので、これら元素の少なくとも一種を合計量で0.5%以上含有させる。しかし、あまりに多く含有すると炭化物量が過多となるため、上限は合計量で20%に規定する。好ましくは0.5〜6%である。
At least one of V, Ti, Nb, Ta: 0.5 to 20% in total
V, Ti, Nb, and Ta produce MC type carbides, and MC type carbides have a remarkable effect on wear resistance. Therefore, at least one of these elements is contained in a total amount of 0.5% or more. However, if the content is too large, the amount of carbide becomes excessive, so the upper limit is defined as 20% in total. Preferably it is 0.5 to 6%.

bal:−1.5以上、−0.5以下
前述したように、本発明の高速度鋼系焼結合金は、合金基地(マトリックス)中のC量を制御することにより、熱処理時のマルテンサイト変態量を抑制するものである。
Cは、一般的に、炭化物形成に100%使用されるわけではなく、マトリックスに分散して残存する。マトリックスに残ったCは、熱処理時にオーステナイトから硬質のマルテンサイトへの変態を促し、合金の高硬度化をすすめ、その一方で靱性を低下させる。
そこで、合金設計上のC量と、他の元素と炭化物を形成する理論上のC量(Cstic)との差から、マトリックスに残る理論上のC量(Cbal)を算出し、Cbalを−1.5以上、−0.5以下の範囲に規定した。Cbal値が−(マイナス)を示しているが、これは理論上の値であり、Cbalが計算上この範囲にあっても、実際の合金においてはマトリックス中にCが残存する。
balが−1.5より小さいとマルテンサイト化が少なくなり、合金に必要な硬度が得られない。一方、Cbalが−0.5より大きいとマルテンサイト化が進みすぎて硬度が高くなり、本発明の目的にあった靱性を得ることができない。
なお、Csticは、炭化物形成元素の種類に応じて次式で与えられる。
stic=0.06Cr+0.063Mo+0.033W+0.24V+0.25Ti+0.13Nb+0.066Ta
本発明の高速度鋼系焼結合金は、Cbalが−1.5以上、−0.5以下の範囲となるように、C、Cr、Mo、W、V、Ti、Nb、Taの量を調整することにより、熱処理での焼入れ性能を低下させるようにした。これにより、一般的な高速度鋼と同じ条件の熱処理を施しても、得られる硬度は比較的低い範囲(HRC50〜62)であり、高い靱性を得ることができる。
C bal : -1.5 or more, -0.5 or less As described above, the high-speed steel-based sintered alloy of the present invention controls the amount of C in the alloy matrix (matrix), so It suppresses the amount of site transformation.
C is generally not used 100% for carbide formation but remains dispersed in the matrix. C remaining in the matrix promotes transformation from austenite to hard martensite during the heat treatment, and promotes higher hardness of the alloy while reducing toughness.
Therefore, the theoretical C amount (C bal ) remaining in the matrix is calculated from the difference between the C amount in the alloy design and the theoretical C amount (C stic ) that forms carbide with other elements, and C bal Was specified in the range of -1.5 or more and -0.5 or less. Although the C bal value indicates − (minus), this is a theoretical value, and even if C bal is within this range, C remains in the matrix in an actual alloy.
When Cbal is less than -1.5, martensite formation is reduced, and the hardness required for the alloy cannot be obtained. On the other hand, if C bal is larger than −0.5, the martensite is excessively advanced and the hardness becomes high, and the toughness suitable for the purpose of the present invention cannot be obtained.
C stic is given by the following equation according to the type of carbide forming element.
C stic = 0.06Cr + 0.063Mo + 0.033W + 0.24V + 0.25Ti + 0.13Nb + 0.066Ta
The high-speed steel-based sintered alloy of the present invention includes C, Cr, Mo, W, V, Ti, Nb, and Ta so that Cbal is in the range of −1.5 or more and −0.5 or less. By adjusting the above, the quenching performance in the heat treatment was lowered. Thereby, even if it heat-processes on the same conditions as general high speed steel, the hardness obtained is a comparatively low range (HRC50-62), and high toughness can be acquired.

本発明の高速度系焼結合金は、上記成分を含有し、残部Fe及び不可避の不純物からなるが、所望により、Ni、N及びCoをさらに含有させることもできる。   The high-speed sintered alloy of the present invention contains the above components and consists of the balance Fe and unavoidable impurities, but may further contain Ni, N, and Co if desired.

Ni:0.5〜3%
Niはオーステナイト相安定化元素であり、残留オーステナイト量の増加により靱性の向上に寄与する。また、耐食性を改善する元素でもある。このため、少なくとも0.5%以上含有させることが好ましい。一方、含有量が3%を越えると焼入れ性を著しく低下させるため、上限は3%に規定する。
Ni: 0.5 to 3%
Ni is an austenite phase stabilizing element and contributes to the improvement of toughness by increasing the amount of retained austenite. It is also an element that improves corrosion resistance. For this reason, it is preferable to contain at least 0.5% or more. On the other hand, if the content exceeds 3%, the hardenability is remarkably lowered, so the upper limit is defined as 3%.

N:0.1〜0.5%
Nは、Niと同様、オーステナイト相安定化元素であり、残留オーステナイト量の増加により靱性の向上に寄与すると共に耐食性を改善する。このため、少なくとも0.1%以上含有させることが好ましい。一方、含有量が0.5%を越えると焼入れ性を著しく低下を招くため、上限は0.5%に規定する。
なお、NはNiの約5倍の含有効果を有する。このため、NとNiを両方含有する場合は、Ni+5Nを、0.5〜3%の範囲で含有することが好ましい。
N: 0.1-0.5%
N, like Ni, is an austenite phase stabilizing element and contributes to the improvement of toughness by increasing the amount of retained austenite and also improves the corrosion resistance. For this reason, it is preferable to contain at least 0.1% or more. On the other hand, if the content exceeds 0.5%, the hardenability is remarkably reduced, so the upper limit is specified to 0.5%.
N has a content effect about five times that of Ni. For this reason, when both N and Ni are contained, it is preferable to contain Ni + 5N in the range of 0.5 to 3%.

Co:7〜20%
Coはマトリックスに固溶してマトリックスを強化し、高温における耐力を著しく向上させる。このため、高温に曝される部材の材料にはCoを少なくとも7%以上含有させることが好ましく、8%以上含有させることがより好ましい。一方、あまりに多く含有すると靱性の低下を招く。このため、上限は20%とするが、12%以下がより好ましい。
Co: 7-20%
Co dissolves in the matrix and strengthens the matrix, significantly improving the yield strength at high temperatures. For this reason, it is preferable to contain at least 7% or more Co in the material of the member exposed to high temperature, and it is more preferable to contain 8% or more. On the other hand, when it contains too much, the toughness will be reduced. For this reason, although an upper limit is 20%, 12% or less is more preferable.

次に本発明の具体的実施例を掲げる。
表1に示す合金成分(重量%)の高速度鋼系合金粉末(粒径約300μm以下)を原料粉末として使用し、HIP処理を施して丸棒状の焼結合金(外径50mm×長さ150mm)を得た。HIP処理条件は、温度:1150℃、加圧力:1000気圧、保持時間:3時間である。但し、No.104は、鋳造により調製した合金である。
次にこれら合金に焼入れ焼戻し熱処理を施して供試材を作製した。焼入れは、真空焼入れ炉にて1200℃に1時間保持後、常温常圧の窒素ガスを導入し、ガス冷却することにより行なった。焼戻しは、540℃に5時間保持した後放冷するヒートパターンを3回繰り返した。
Next, specific examples of the present invention will be given.
A high-speed steel alloy powder (particle size of about 300 μm or less) of the alloy components (% by weight) shown in Table 1 is used as a raw material powder, and subjected to HIP treatment to form a round bar-like sintered alloy (outer diameter 50 mm × length 150 mm) ) The HIP treatment conditions are as follows: temperature: 1150 ° C., applied pressure: 1000 atm, and holding time: 3 hours. However, No. 104 is an alloy prepared by casting.
Next, these alloys were subjected to quenching and tempering heat treatments to prepare test materials. Quenching was performed by holding nitrogen gas at normal temperature and pressure after holding at 1200 ° C. for 1 hour in a vacuum quenching furnace and cooling the gas. For tempering, a heat pattern of holding for 5 hours at 540 ° C. and then allowing to cool was repeated three times.

各供試材について、硬度測定、摩耗試験及びシャルピー衝撃試験を行なった。
硬度はロックウエル硬度計のCスケールで測定した。
摩耗試験は、大越式摩耗試験機を使用し、比摩耗量(10-14mm2/N)を測定した。試験条件は、回転輪材質:SUJ2(HRC60)、摩耗速度:3.38m/s、摩耗距離:400m、最終荷重60Nにて行なった。
シャルピー衝撃試験は、5mm×5mm×55mm、ノッチ無しの試験片を用い、常温で実施した。吸収エネルギー(J)を断面積(m2)で除した値(J/m2)を比較した。
試験結果を表1に示す。
Each specimen was subjected to hardness measurement, wear test and Charpy impact test.
The hardness was measured with a C scale of a Rockwell hardness tester.
In the abrasion test, a specific abrasion amount (10 −14 mm 2 / N) was measured using an Ogoshi type abrasion tester. The test conditions were as follows: rotating wheel material: SUJ2 (HRC60), wear rate: 3.38 m / s, wear distance: 400 m, and final load 60 N.
The Charpy impact test was performed at room temperature using a 5 mm × 5 mm × 55 mm, non-notched test piece. Absorbing energy (J) was compared by dividing the value (J / m 2) by the cross-sectional area (m 2).
The test results are shown in Table 1.

Figure 2008248307
Figure 2008248307

表1を参照すると、No.1〜No.19は本発明の実施例であり、No.101〜No.109は比較例である。
発明例中、No.1〜No.3は、NiとNを両方とも含まない例であり、No.4〜No.19は、Ni及びNのうちの少なくとも一種を含む例である。これら発明例は、比較例No.101〜No.109と比べて、耐摩耗性(硬度及び比摩耗量)及び靱性(シャルピー衝撃値)について効果的な組合せを有することがわかる。
Referring to Table 1, No. 1 to No. 19 are examples of the present invention, and No. 101 to No. 109 are comparative examples.
In the inventive examples, No. 1 to No. 3 are examples that do not include both Ni and N, and No. 4 to No. 19 are examples that include at least one of Ni and N. It can be seen that these inventive examples have an effective combination of wear resistance (hardness and specific wear) and toughness (Charpy impact value) as compared with Comparative Examples No. 101 to No. 109.

発明例の中で、Cbalの値が同じ−0.64であるNo.4、No.6及びNo.7と、Ni及びNを両方とも含まないNo.2とを比較すると、前者は後者よりも衝撃値が向上していることが認められる。これは、Ni、Nの含有によりオーステナイトが安定化して残留オーステナイト量が増加し、高硬度化が抑えられたためと考えられる。 Among the invention examples, No.4 value of C bal is the same -0.64, the No.6 and No.7, is compared with the No.2 free both of the Ni and N, the former to the latter It is recognized that the impact value is improved. This is presumably because the austenite was stabilized by the inclusion of Ni and N, the amount of retained austenite increased, and the increase in hardness was suppressed.

比較例中、No.101及びNo.102は、Cの含有量が本発明の上限を越えており、耐摩耗性は良好であるが、靱性が著しく劣っている。
No.103は、Niの含有量が本発明の上限を越える例であり、Cbalの値は本発明の範囲内にあるが、十分な硬度が得られず、耐摩耗性に劣る。焼入れ性が低下したためである。
No.104〜No.109は、Cbalの値が本発明の範囲から逸脱する例である。
No.104、No.105及びNo.108は、NiとNを両方含まず、Cbalの値が本発明の範囲よりも大きい例である。NiとNを含まない発明例(No.1〜No.3)と比較すると、耐摩耗性はすぐれるが衝撃値が著しく劣る。なお、Ni、Nを含む比較例No.106及びNo.107についても、同様な結果を示している。これらの比較例は、熱処理時のマルテンサイト変態量が多すぎるためである。
No.109は、NiとNを両方含まず、Cbalの値が本発明の範囲よりも小さい例である。マトリックスに残存するCがあまりにも少ないため、十分な硬度が得られず、所定の耐摩耗性を確保することができない。
In the comparative examples, No. 101 and No. 102 have the C content exceeding the upper limit of the present invention, and the wear resistance is good, but the toughness is remarkably inferior.
No. 103 is an example in which the Ni content exceeds the upper limit of the present invention, and the value of C bal is within the range of the present invention, but sufficient hardness cannot be obtained and the wear resistance is inferior. This is because the hardenability has decreased.
No.104~No.109 the value of C bal are examples departing from the scope of the present invention.
No. 104, No. 105 and No. 108 are examples in which both Ni and N are not included and the value of Cbal is larger than the range of the present invention. Compared with the invention examples containing no Ni and N (No. 1 to No. 3), the wear resistance is excellent, but the impact value is remarkably inferior. Similar results are shown for Comparative Examples No. 106 and No. 107 containing Ni and N. These comparative examples are because the amount of martensitic transformation during heat treatment is too large.
No. 109 is an example in which both Ni and N are not included and the value of C bal is smaller than the range of the present invention. Since there is too little C remaining in the matrix, sufficient hardness cannot be obtained, and predetermined wear resistance cannot be ensured.

本発明の焼結合金を用いた部材は、耐摩耗性及び耐事故性にすぐれるから、これらの特性が重要な鋼材の熱間圧延又は冷間圧延用ロール、塑性加工用金型、プラスチック成形機のシリンダー、スクリュー等の材料として有用である。   Since the member using the sintered alloy of the present invention is excellent in wear resistance and accident resistance, a roll for hot rolling or cold rolling of steel materials in which these characteristics are important, a mold for plastic working, plastic molding It is useful as a material for machine cylinders and screws.

Claims (4)

重量%にて、C:0.5%以上、1.5%未満、Si:0.6%以下、Mn:0.6%以下、Cr:0.5〜10.0%、Mo:0.5〜15%、W:0.5〜20%、V、Ti、Nb及びTaからなる群から選択される少なくとも一種を合計量で0.5〜20%、残部Fe及び不可避的不純物からなり、Cbal(但し、Cbal=C−Csticとし、Cstic=0.06Cr+0.063Mo+0.033W+0.24V+0.25Ti+0.13Nb+0.066Taとする)が−1.5以上、−0.5以下の範囲にあることを特徴とする高靱性高速度鋼系焼結合金。 C: 0.5% or more, less than 1.5%, Si: 0.6% or less, Mn: 0.6% or less, Cr: 0.5-10.0%, Mo: 0.005% by weight. 5 to 15%, W: 0.5 to 20%, consisting of at least one selected from the group consisting of V, Ti, Nb and Ta in a total amount of 0.5 to 20%, the balance Fe and inevitable impurities, C bal (where C bal = C−C stic and C stic = 0.06Cr + 0.063Mo + 0.033W + 0.24V + 0.25 Ti + 0.13Nb + 0.066 Ta) is in the range of −1.5 or more and −0.5 or less. A high toughness, high speed steel sintered alloy characterized by being. Ni:0.5〜3%及びN:0.1〜0.5%のうちの少なくとも一種を含んでいる請求項1の焼結合金。   The sintered alloy according to claim 1, comprising at least one of Ni: 0.5-3% and N: 0.1-0.5%. Co:7〜20%を含んでいる請求項1又は請求項2の焼結合金。   The sintered alloy according to claim 1 or claim 2, comprising Co: 7 to 20%. 硬度がHRC50〜62、シャルピー衝撃強さが30×104J/m2以上である請求項1乃至請求項3の何れかに記載の焼結合金。 The sintered alloy according to any one of claims 1 to 3, wherein the hardness is HRC 50 to 62, and the Charpy impact strength is 30 x 10 4 J / m 2 or more.
JP2007090328A 2007-03-30 2007-03-30 High toughness high speed steel sintered alloy Expired - Fee Related JP5121275B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007090328A JP5121275B2 (en) 2007-03-30 2007-03-30 High toughness high speed steel sintered alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007090328A JP5121275B2 (en) 2007-03-30 2007-03-30 High toughness high speed steel sintered alloy

Publications (2)

Publication Number Publication Date
JP2008248307A true JP2008248307A (en) 2008-10-16
JP5121275B2 JP5121275B2 (en) 2013-01-16

Family

ID=39973603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007090328A Expired - Fee Related JP5121275B2 (en) 2007-03-30 2007-03-30 High toughness high speed steel sintered alloy

Country Status (1)

Country Link
JP (1) JP5121275B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015127455A (en) * 2013-11-27 2015-07-09 山陽特殊製鋼株式会社 Powder high speed tool steel
JP2016211022A (en) * 2015-04-30 2016-12-15 山陽特殊製鋼株式会社 Nitrided powder high speed tool steel excellent in hardness, toughness and wear resistance

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55122801A (en) * 1979-03-15 1980-09-20 Daido Steel Co Ltd High speed steel powder and sintered body thereof
JPS58144456A (en) * 1982-02-18 1983-08-27 Nachi Fujikoshi Corp Powder high speed tool steel
JPH01119645A (en) * 1987-10-30 1989-05-11 Daido Steel Co Ltd Powdery high-speed steel
JPH01152242A (en) * 1987-12-10 1989-06-14 Sanyo Special Steel Co Ltd High-toughness and high-speed steel by powder metallurgy
JPH04221044A (en) * 1990-12-19 1992-08-11 Kubota Corp High speed steel type sintered alloy
JPH04221046A (en) * 1990-12-19 1992-08-11 Kubota Corp High speed steel type sintered alloy
JPH05132743A (en) * 1991-11-09 1993-05-28 Daido Steel Co Ltd Bearing
JPH05163551A (en) * 1991-12-11 1993-06-29 Hitachi Metals Ltd Powder high-speed tool steel
JPH05239602A (en) * 1992-02-25 1993-09-17 Daido Steel Co Ltd High bearing pressure parts
JPH062080A (en) * 1992-06-16 1994-01-11 Kubota Corp High speed steel series sintered alloy
JPH062082A (en) * 1992-06-16 1994-01-11 Kubota Corp High speed steel series sintered alloy
JPH1046300A (en) * 1996-08-05 1998-02-17 Hitachi Metals Ltd Powder high speed tool steel excellent in toughness and wear resistance

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55122801A (en) * 1979-03-15 1980-09-20 Daido Steel Co Ltd High speed steel powder and sintered body thereof
JPS58144456A (en) * 1982-02-18 1983-08-27 Nachi Fujikoshi Corp Powder high speed tool steel
JPH01119645A (en) * 1987-10-30 1989-05-11 Daido Steel Co Ltd Powdery high-speed steel
JPH01152242A (en) * 1987-12-10 1989-06-14 Sanyo Special Steel Co Ltd High-toughness and high-speed steel by powder metallurgy
JPH04221044A (en) * 1990-12-19 1992-08-11 Kubota Corp High speed steel type sintered alloy
JPH04221046A (en) * 1990-12-19 1992-08-11 Kubota Corp High speed steel type sintered alloy
JPH05132743A (en) * 1991-11-09 1993-05-28 Daido Steel Co Ltd Bearing
JPH05163551A (en) * 1991-12-11 1993-06-29 Hitachi Metals Ltd Powder high-speed tool steel
JPH05239602A (en) * 1992-02-25 1993-09-17 Daido Steel Co Ltd High bearing pressure parts
JPH062080A (en) * 1992-06-16 1994-01-11 Kubota Corp High speed steel series sintered alloy
JPH062082A (en) * 1992-06-16 1994-01-11 Kubota Corp High speed steel series sintered alloy
JPH1046300A (en) * 1996-08-05 1998-02-17 Hitachi Metals Ltd Powder high speed tool steel excellent in toughness and wear resistance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015127455A (en) * 2013-11-27 2015-07-09 山陽特殊製鋼株式会社 Powder high speed tool steel
JP2016211022A (en) * 2015-04-30 2016-12-15 山陽特殊製鋼株式会社 Nitrided powder high speed tool steel excellent in hardness, toughness and wear resistance

Also Published As

Publication number Publication date
JP5121275B2 (en) 2013-01-16

Similar Documents

Publication Publication Date Title
TWI424067B (en) Carburized steel, carburized steel parts, and manufacturing method of carburized steel
EP2418296B1 (en) Case hardening steel superior in cold workability, machinability and fatigue characteristics after carburized quenching and method of production of same
JP5231101B2 (en) Machine structural steel with excellent fatigue limit ratio and machinability
EP3266899B1 (en) Steel material for hardening and method for producing the same
US20110000587A1 (en) Steel, process for the manufacture of a steel blank and process for the manufacture of a component of the steel
KR20170026220A (en) Steel for mold and mold
JP3771254B2 (en) High speed steel manufactured by powder metallurgy
JP2011094169A (en) Case hardening steel having excellent crystal grain coarsening prevention characteristic
JP6073167B2 (en) Case-hardening steel with excellent surface fatigue strength and cold forgeability
JP2020501027A (en) Powder metallurgically produced steel material comprising hard material particles, a method for producing parts from such steel material, and parts produced from steel material
JP2007308784A (en) Alloy steel
CN111386356A (en) Hard alloy and composite hard alloy roller for rolling
JP5121276B2 (en) High-speed steel alloy composite products
JP6710484B2 (en) Powder high speed tool steel
JP5121275B2 (en) High toughness high speed steel sintered alloy
JP5212772B2 (en) Hot work tool steel with excellent toughness and high temperature strength
KR20170035133A (en) Ductile cast iron roll and method of manufacturing the same
KR20190071746A (en) Powder metallurgy produced steels, methods of making parts of this type of steel, and parts made of such steels
JP6537342B2 (en) High-speed nitrided powder tool steel with excellent hardness, toughness and wear resistance
JP4381210B2 (en) High wear-resistant roll material and high wear-resistant composite roll
JP6195727B2 (en) Cast iron castings and manufacturing method thereof
JP5582296B2 (en) Iron-based material and manufacturing method thereof
JP2009221594A (en) Hot-working tool steel having excellent toughness
JP6415899B2 (en) Method for producing outer layer material of composite roll for rolling and method for producing composite roll for rolling
JP6345945B2 (en) Powdered high-speed tool steel with excellent wear resistance and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121023

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5121275

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees