JPH05163551A - Powder high-speed tool steel - Google Patents

Powder high-speed tool steel

Info

Publication number
JPH05163551A
JPH05163551A JP32726191A JP32726191A JPH05163551A JP H05163551 A JPH05163551 A JP H05163551A JP 32726191 A JP32726191 A JP 32726191A JP 32726191 A JP32726191 A JP 32726191A JP H05163551 A JPH05163551 A JP H05163551A
Authority
JP
Japan
Prior art keywords
amount
tool steel
speed tool
toughness
ceq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32726191A
Other languages
Japanese (ja)
Inventor
Junichi Nishida
純一 西田
Norimasa Uchida
憲正 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP32726191A priority Critical patent/JPH05163551A/en
Publication of JPH05163551A publication Critical patent/JPH05163551A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a powder high-speed tool steel resistant to high-temp. temper softening capable of coping with the high speed at which the tool is used and also having high toughness. CONSTITUTION:The powder high-speed tool steel contains by weight, 0.7-2.0% C, <=1.0% Si, <=0.6% Mn, 3.0-6.0% Cr, 14-20% of (W+2Mo), <=5.0% V, 2.0-7.0% Nb where Nb/V >=0.5, <=15.0% Co and the balance Fe with inevitable impurities. In this case, the Ceq=0.24+0.033.W+0.063.Mo+0.2V+0.1.Nb is controlled to -0.30 to 0.05.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、切削工具や圧造工具に
用いられ、特に高温における硬さと耐摩耗性が要求され
る高速使用条件下において、優れた耐摩耗性と同時に高
い靭性を有する粉末高速度工具鋼に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a powder for use in cutting tools and forging tools, which has excellent wear resistance and high toughness, especially under high-speed use conditions requiring hardness and wear resistance at high temperatures. It relates to high speed tool steel.

【0002】[0002]

【従来の技術】切削工具、圧造工具に用いられる高速度
工具鋼は、高硬度で耐摩耗性が優れること、および靭性
に優れること、の2つの要求を満足することが望まれて
いる。溶製高速度工具鋼の靭性を向上させる方法として
は、Nb等の元素を微量添加し、結晶粒を微細化させて
靭性を向上する方法(例えば特開昭58-73753号、同58-11
7863号等)、Nbと希土類元素を複合添加することによ
り、Nbを主体としたMC型炭化物を均一微細化する方
法(特公昭61-896号)等種々提案されている。
2. Description of the Related Art High-speed tool steels used for cutting tools and forging tools are required to satisfy the two requirements of high hardness and excellent wear resistance and toughness. As a method of improving the toughness of the molten high speed tool steel, a method of adding a trace amount of an element such as Nb and refining the crystal grains to improve the toughness (for example, JP-A-58-73753 and JP-A-58-11).
No. 7863), and a method of uniformly refining MC type carbide mainly composed of Nb by adding Nb and rare earth elements in combination (Japanese Patent Publication No. 61-896).

【0003】一方、耐摩耗性を向上させる方法として
は、炭化物を均一微細に分布させ、かつ結晶粒の微細化
が可能な粉末高速度工具鋼において、炭化物量を増大さ
せる方法が最も一般的である。例えば、特公昭57-2142
号、特開昭55-148747号は、主にW当量を高めることに
より、W,Moを主体とするM6C型炭化物量を増加さ
せ、高硬度化により耐摩耗性の向上を図ったものであ
る。また、粉末高速度工具鋼において、結晶粒の微細化
と、さらには、焼入温度を高めても結晶粒を粗大化させ
ないことを目的として、Nbを含有せしめることが検討
されている{Metall.Trans.19A(1988) P1395〜1401,特
開平1-212736号}。
On the other hand, the most general method for improving wear resistance is to increase the amount of carbide in powder high speed tool steel in which carbide is uniformly and finely distributed and crystal grains can be refined. is there. For example, Japanese Examined Sho 57-2142
And JP-A-55-148747, the amount of M 6 C type carbides mainly containing W and Mo is increased by mainly increasing the W equivalent, and the wear resistance is improved by increasing the hardness. Is. Further, in the powder high speed tool steel, it is considered to contain Nb for the purpose of refining the crystal grains and further preventing the crystal grains from being coarsened even if the quenching temperature is raised {Metall. Trans. 19A (1988) P1395 to 1401, Japanese Patent Laid-Open No. 1-212736}.

【0004】[0004]

【発明が解決しようとする課題】しかし、前記特開昭58
-73753号、同58-117863号の溶製高速度工具鋼では、Nb
を過度に添加すると、Nbを主体としたNbCの粗大な炭
化物を晶出し、W,Moを主体とするM6C型炭化物も、
凝固時に粗大な炭化物を晶出させるために、結晶粒微細
化による靭性向上効果が減殺され、かえって靭性が低下
するといった問題点があった。また、上記の粉末高速度
工具鋼で、耐摩耗性を向上させる目的で、炭化物量の富
化や工具の高硬度化が行なわれてきたが、靭性が低下し
てしまい、工具の折損や欠けが問題となっていた。
However, the above-mentioned Japanese Patent Laid-Open No. 58-58
-73753 and 58-117863 melted high speed tool steels have Nb
When N is excessively added, coarse NbC carbides mainly composed of Nb are crystallized, and M 6 C type carbides mainly composed of W and Mo are also
Since a coarse carbide is crystallized during solidification, there is a problem that the effect of improving the toughness by refining the crystal grains is diminished and the toughness is rather lowered. Further, in the above powder high-speed tool steel, the amount of carbide and the hardness of the tool have been increased for the purpose of improving wear resistance, but the toughness is lowered, and the tool is broken or chipped. Was a problem.

【0005】また、前記特開昭55-148747号に、Nbを添
加した粉末高速度鋼が提案されているが、この例ではN
bをVの代替として添加し、硬質の炭化物を形成するこ
とを主眼においたものである。さらに、Metall.Trans.1
9A(1988) P1395〜P1401、特開平1-212736号に開示され
る高速度工具鋼は、Nbを添加することにより、結晶粒
を粗大化せずに焼入温度を高めることを可能としている
が、本発明者の考えによると合金元素量、特にW当量が
低いために、苛酷な工具使用条件下では高温焼もどし軟
化抵抗が不十分である。
Further, Japanese Patent Laid-Open No. 55-148747 proposes a powder high-speed steel containing Nb.
The main purpose is to add b as a substitute for V to form a hard carbide. Furthermore, Metall.Trans.1
The high speed tool steel disclosed in 9A (1988) P1395 to P1401 and Japanese Patent Application Laid-Open No. 1-212736 makes it possible to increase the quenching temperature without coarsening the crystal grains by adding Nb. According to the inventor's consideration, the alloying element amount, particularly the W equivalent, is low, so that the high temperature temper softening resistance is insufficient under severe tool use conditions.

【0006】したがって、以上説明した従来の高速度工
具鋼は、高速化が要求されている近時の工具使用条件に
対応することが困難であった。そこで、本発明は工具使
用条件の高速化に対応できる高温焼もどし軟化抵抗特性
を高め、かつ高靭性の粉末高速度工具鋼の提供を課題と
する。
Therefore, it has been difficult for the conventional high-speed tool steel described above to meet the recent tool usage conditions in which high speed is required. Therefore, an object of the present invention is to provide a powder high-speed tool steel having high toughness and high-temperature tempering softening resistance characteristics capable of accommodating high-speed tool use conditions.

【0007】[0007]

【課題を解決するための手段】近年、工具の使用条件が
高速化されるにつれ、工具の高硬度化が重要な要因とな
っている。特に工具使用中に、工具が高温になるため、
焼もどし軟化抵抗特性が最も重要である。
In recent years, as the use conditions of tools have become faster, increasing the hardness of the tools has become an important factor. Especially when using the tool, the temperature of the tool becomes high,
The tempering softening resistance characteristics are the most important.

【0008】本発明は、この知見を考慮してなされたも
ので、下記の2点を基本的な技術思想とするものであ
る。焼もどし軟化抵抗を最大限に高めるために、化学
成分上、特に、C−Ceqを特定範囲内に規制することが
有効であることを見出した。C量は他の炭化物形成元素
量との兼ね合いで決める必要があり、C−Ceqで調整さ
れる。高い焼もどし軟化抵抗を得るためには、C−Ceq
を規制し、マトリックス中に固溶するC量を確保するこ
とが必要である。
The present invention has been made in view of this knowledge, and the following two points are the basic technical ideas. It has been found that in order to maximize the temper softening resistance, it is effective to regulate C-Ceq within a specific range in terms of chemical composition. The amount of C needs to be determined in consideration of the amounts of other carbide forming elements, and is adjusted by C-Ceq. In order to obtain high temper softening resistance, C-Ceq
It is necessary to regulate C and secure the amount of C that forms a solid solution in the matrix.

【0009】多くの合金元素をマトリックス中へ固溶
せしめんとして焼入温度を高くすると、結晶粒が粗大化
するが、これをNbを含有せしめ、かつそのNb/V比
を規制することにより、結晶粒の粗大化を防止し、微細
結晶粒を確保し、靭性の低下を防止する。NbはVと同
様MC炭化物を形成するが、結晶粒の粗大化を防止する
のに有効な1μm以下の微細NbCを形成するためには、
原子比でVよりも多いNbを含有しなければならない。
重量比ではNb/Vが0.5以上必要である。
[0009] When many quenching temperatures are used as a solid solution of many alloying elements in the matrix, the crystal grains become coarse. However, by containing Nb and controlling the Nb / V ratio, Prevents coarsening of crystal grains, secures fine crystal grains, and prevents deterioration of toughness. Nb forms MC carbides like V, but in order to form fine NbC of 1 μm or less, which is effective for preventing coarsening of crystal grains,
It must contain more Nb than V in atomic ratio.
In weight ratio, Nb / V should be 0.5 or more.

【0010】そして、これらは以下に示すような成分バ
ランスをさらに満たして、はじめて上記の特性を満足で
きることを見い出した。すなわち本発明は、重量比でC
0.7〜2.0%、Si≦1.0%、Mn≦0.6%、Cr 3.0〜6.0%、
WまたはさらにMoをW+2Moで 14〜20%かつ、V≦5.0
%、Nb 2.0〜7.0%、但しNb/V≧0.5、残部がFeおよび
不可避的不純物よりなり、C−Ceqが−0.30〜0.05(Ceq
=0.24+0.033・W+0.063・Mo+0.2V+0.1・Nb)の関係
を満たすことを特徴とする粉末高速度工具鋼である。
It has been found that the above characteristics can be satisfied for the first time by satisfying the following component balance. That is, the present invention uses C by weight.
0.7-2.0%, Si≤1.0%, Mn≤0.6%, Cr 3.0-6.0%,
W or further Mo with W + 2Mo of 14 to 20% and V ≦ 5.0
%, Nb 2.0 to 7.0%, but Nb / V ≧ 0.5, the balance is Fe and inevitable impurities, and C-Ceq is -0.30 to 0.05 (Ceq
= 0.24 + 0.033 · W + 0.063 · Mo + 0.2V + 0.1 · Nb) is a powder high-speed tool steel.

【0011】また、本発明は重量比でC 0.7〜2.0%、S
i≦1.0%、Mn≦0.6%、Cr 3.0〜6.0%、Wまたはさらに
MoをW+2Moで 14〜20%かつ、V≦5.0%、Nb 2.0〜7.
0%、但しNb/V≧0.5、Co 15.0%以下、残部がFeおよ
び不可避的不純物よりなり、C−Ceqが−0.30〜0.05(C
eq=0.24+0.033・W+0.063・Mo+0.2V+0.1・Nb)の関
係を満たすことを特徴とする粉末高速度工具鋼である。
In the present invention, C 0.7 to 2.0% by weight and S
i ≦ 1.0%, Mn ≦ 0.6%, Cr 3.0 to 6.0%, W or further Mo is W + 2Mo, 14 to 20%, and V ≦ 5.0%, Nb 2.0 to 7.
0%, but Nb / V ≧ 0.5, Co 15.0% or less, the balance is Fe and inevitable impurities, and C-Ceq is -0.30 to 0.05 (C
eq = 0.24 + 0.033 · W + 0.063 · Mo + 0.2V + 0.1 · Nb) is a powder high-speed tool steel.

【0012】[0012]

【作用】以下に成分の限定理由を説明する。Cは同時に
添加されるCr,W,Mo,V,Nbと硬い炭化物を形成して
耐摩耗性向上に寄与する。さらに、焼入時にマトリック
ス中に固溶して焼もどし2次硬化を向上する作用もあ
る。しかし、多すぎるとマトリックス中に固溶する炭素
量が著しく増え靭性を低下させる。したがって、C量は
Cr,W,Mo,V,Nb含有量との兼ね合いで決める必要が
あり、本発明では0.7〜2.0%の範囲とC-Ceqの値が-0.3
00.05の関係を満足するようC量を調整する。この関係
を満足させることにより、高い高温焼もどし軟化抵抗を
得るための1条件が達成される。
The reason for limiting the components will be described below. C forms a hard carbide with Cr, W, Mo, V, and Nb added at the same time, and contributes to the improvement of wear resistance. Further, it has a function of improving the secondary hardening by solid solution in the matrix during quenching. However, if the amount is too large, the amount of carbon solid-dissolved in the matrix increases remarkably and the toughness decreases. Therefore, the amount of C must be determined in consideration of the contents of Cr, W, Mo, V and Nb. In the present invention, the range of 0.7 to 2.0% and the value of C-Ceq are -0.3.
The amount of C is adjusted so as to satisfy the relationship of 00.05. By satisfying this relationship, one condition for achieving high high temperature temper softening resistance is achieved.

【0013】Si,Mnは脱酸剤として添加するが、多量
に添加すると靭性を害する等の問題があるので、Si 1.
0%以下、Mn 0.6%以下に限定する。Crは焼入性を高
め、また焼もどし2次硬化性を高める目的で3〜6%添加
する。3%より少ないと上記効果が少なく、逆に6%より多
いとCrを主体とするM236型の炭化物が極端に増えて
全体の靭性を害し、さらに焼もどし時に炭化物の凝集を
速め軟化抵抗を減ずる。
Si and Mn are added as deoxidizing agents, but if added in a large amount, there is a problem such as impairing toughness.
It is limited to 0% or less and Mn 0.6% or less. Cr is added in an amount of 3 to 6% for the purpose of enhancing the hardenability and the secondary hardening of the temper. If it is less than 3%, the above effect is small. On the contrary, if it is more than 6%, the amount of M 23 C 6 type carbides mainly composed of Cr is extremely increased and the toughness of the whole is impaired. Reduce resistance.

【0014】また、耐摩耗性を付与するためには、硬い
炭化物を多量に分散させ、しかもマトリックス硬度を高
める必要がある。本発明で、W,Mo量は、上記の目的
で重要な元素である。WまたはさらにMoをW+2Moで14
〜20%とする。14%より少ないと上記効果が少ない。しか
し、W+2Moが20%を越えると、連結した炭化物が増加
し、マトリックス中に固溶する合金元素も多くなって靭
性が低下するので、WまたはさらにMoをW+2Moで14
〜20%とする。
Further, in order to impart wear resistance, it is necessary to disperse a large amount of hard carbide and increase the matrix hardness. In the present invention, the amounts of W and Mo are important elements for the above purpose. W or even Mo with W + 2Mo 14
~ 20% If it is less than 14%, the above effect is small. However, if W + 2Mo exceeds 20%, the amount of connected carbides increases, the alloying elements that form a solid solution in the matrix also increase, and the toughness decreases, so that W or even Mo of W + 2Mo is 14%.
~ 20%

【0015】Vもまた耐摩耗性を高めるのに有効な元素
である。耐摩耗性の目的からは、できるだけ多く含有さ
せたい。しかし、5%を越えると粗大なMC型炭化物が晶
出し易くなり、靭性や工具の被研削性を害するので、5%
以下とした。Nbは、本発明において最も重要な元素の
一つである。Nbを特定の成分範囲に限定すると、耐摩
耗性に有効な1〜5μmのNbを主体とした硬質の炭化物
と、1μm以下の微細な炭化物が晶出する。
V is also an element effective in enhancing wear resistance. For the purpose of abrasion resistance, it is desirable to contain as much as possible. However, if it exceeds 5%, coarse MC type carbides are likely to crystallize, which impairs toughness and grindability of the tool.
Below. Nb is one of the most important elements in the present invention. When Nb is limited to a specific component range, a hard carbide mainly composed of 1 to 5 μm Nb effective for wear resistance and a fine carbide of 1 μm or less are crystallized.

【0016】本発明者は、この微細なNbCが結晶粒成
長を抑制し、焼入温度を高めても結晶粒の粗大化を効果
的に抑制する成分範囲を見出した。この微細なNbCは
Nb量、Nb/V比と密接に関係しておりNb量及びNb/V
比が低いと、微細なNbCがほとんど晶出しないため、
Nb≧2%およびNb/V≧0.5となるようNb量を調整し
た。しかし、Nbが7%を越えると、極めて粗大なNbCを
晶出し、靭性や被研削性を害するので、7%以下とした。
The present inventors have found a range of components in which this fine NbC suppresses the growth of crystal grains and effectively suppresses the coarsening of crystal grains even if the quenching temperature is raised. This fine NbC is closely related to the Nb amount and the Nb / V ratio, and the Nb amount and the Nb / V ratio.
If the ratio is low, fine NbC is hardly crystallized,
The amount of Nb was adjusted so that Nb ≧ 2% and Nb / V ≧ 0.5. However, when Nb exceeds 7%, extremely coarse NbC is crystallized and impairs toughness and grindability, so it was set to 7% or less.

【0017】Coは本発明鋼の焼きもどし軟化抵抗の向
上するために極めて有効な元素である。マトリックス中
に固溶し、炭化物の析出および凝集を遅らせ、高温にお
ける硬さと強度を著しく向上させる効果があり、切削工
具、エンドミル等の工具とワークの接触部が特に高温に
なる用途にとって極めて重要な添加元素である。しか
し、Coが15.0%を越えると固溶によるCo単独相の晶出
が生ずることにより靭性が低下するので15.0%以下とし
た。また、Co添加による焼きもどし軟化抵抗を著しく
向上するためにはCoは4%以上含有することが好まし
い。
Co is an extremely effective element for improving the temper softening resistance of the steel of the present invention. It forms a solid solution in the matrix, delays the precipitation and agglomeration of carbides, and has the effect of significantly improving the hardness and strength at high temperatures, which is extremely important for applications where the contact part between the tool and the work such as cutting tools and end mills is particularly hot. It is an additive element. However, if Co exceeds 15.0%, the toughness decreases due to crystallization of the Co single phase due to solid solution, so the content was made 15.0% or less. Further, in order to remarkably improve the tempering softening resistance by adding Co, Co is preferably contained at 4% or more.

【0018】[0018]

【実施例】【Example】

(実施例1)表1に窒素ガスアトマイズ粉末をHIP
(熱間静水圧プレス処理)する方法により作製した8種類
の実験材の化学組成を示す。それぞれの材料は、HIP
を行ない、鍛伸により約16mm角とした後、該鍛伸材を86
0℃で焼なまし、表2に示す熱処理条件で15分間のオー
ステナイト化を行なった後、550℃の熱浴焼入を行ない
試料を得た。なお、焼もどし温度は560℃で行った。な
お、表1中のΔCはC−Ceqの値である。
(Example 1) In Table 1, nitrogen gas atomized powder was HIPed.
The chemical compositions of eight types of experimental materials produced by the method of (hot isostatic pressing) are shown below. Each material is HIP
And forging to about 16 mm square, the forged material is
After annealing at 0 ° C. and austenitizing for 15 minutes under the heat treatment conditions shown in Table 2, a hot bath quenching at 550 ° C. was performed to obtain a sample. The tempering temperature was 560 ° C. In addition, ΔC in Table 1 is a value of C−Ceq.

【0019】この試料の焼もどし後の硬さ、インターセ
プト法による結晶粒度(焼入後)および各試料を650℃で1
時間加熱保持後、空冷した際の硬さ(焼もどし軟化抵抗
と称する)を測定した。また、この試料の靭性を評価す
るため、上記した焼入れ,焼もどしの熱処理を施した
後、支点間距離 50mmの試験片で曲げ試験を行なった。
これらの結果を表2に示す。
The hardness of this sample after tempering, the grain size by the intercept method (after quenching) and each sample at 650 ° C.
After heating and holding for a period of time, the hardness upon cooling with air (referred to as tempering softening resistance) was measured. In addition, in order to evaluate the toughness of this sample, a bending test was performed on a test piece with a fulcrum distance of 50 mm after performing the above-mentioned heat treatment of quenching and tempering.
The results are shown in Table 2.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【表2】 [Table 2]

【0022】表1に示す合金のうち、試料No.1〜5は、
V量およびNb量を変化させたものである。No.1および
No.2は、本発明鋼よりもNb量の少ない比較鋼であり、
焼入温度が1200℃を越えて高くなると、結晶粒が急激に
粗大化し、抗折力が280kgf/mm2以下となるため焼入温度
を1200℃に設定した。しかし、表2に示すようにこの12
00℃の焼入温度ではマトリックス中への合金元素の固溶
量が不十分で、十分な焼もどし軟化抵抗が得られないも
のであった。また、試料No.3およびNo.4は本発明鋼で
あり、表2より1250℃の焼入温度において、比較鋼に比
べ高い焼もどし軟化抵抗、高い硬さおよび280kgf/mm2
上の高い抗折力を有することが確認できた。また、試料
No.5は、Nb量が本発明の規定範囲を越えた比較鋼であ
り、5μm以上のNbCの巨大炭化物が発生し、抗折強度
が著しく低下していた。
Of the alloys shown in Table 1, Sample Nos. 1 to 5 are
The amount of V and the amount of Nb were changed. No. 1 and No. 2 are comparative steels containing less Nb than the steels of the present invention,
When the quenching temperature exceeded 1200 ° C and became high, the crystal grains suddenly became coarse and the transverse rupture strength became 280 kgf / mm 2 or less, so the quenching temperature was set to 1200 ° C. However, as shown in Table 2, this 12
At a quenching temperature of 00 ° C, the solid solution amount of alloying elements in the matrix was insufficient, and sufficient tempering softening resistance could not be obtained. Samples No. 3 and No. 4 are steels of the present invention, and Table 2 shows that, at a quenching temperature of 1250 ° C., they have higher temper softening resistance, higher hardness and higher resistance than 280 kgf / mm 2 as compared with the comparative steel. It was confirmed to have folding strength. Further, Sample No. 5 is a comparative steel in which the amount of Nb exceeded the specified range of the present invention, and giant carbide of NbC of 5 μm or more was generated, and the transverse rupture strength was remarkably lowered.

【0023】また、試料No.6〜8は、W量およびMo量
を変えることによってW+2Moの値を変化させたもので
ある。試料No.6は、W+2Moの値が13.1%と低く、マト
リックス中に固溶し得る合金元素量が不十分で、本発明
鋼試料No.7に比べ、熱処理後の硬さおよび焼もどし軟
化抵抗が低いものであった。また、試料No.8は、W+2
Moの値が21.1%と高すぎるために抗折力が280kgf/mm2
下に低下し好ましくないものであった。
Samples Nos. 6 to 8 are obtained by changing the value of W + 2Mo by changing the amounts of W and Mo. Sample No. 6 has a low W + 2Mo value of 13.1%, and the amount of alloying elements that can form a solid solution in the matrix is insufficient. Therefore, compared with Steel sample No. 7 of the present invention, hardness after heat treatment and temper softening resistance Was low. In addition, sample No.8 is W + 2
Since the Mo value was as high as 21.1%, the transverse rupture strength was undesirably reduced to 280 kgf / mm 2 or less.

【0024】(実施例2)C−Ceqの値が硬さ、焼もど
し軟化抵抗および抗折力に及ぼす影響を確認するため
に、実施例1と同様にして表3に示すC量を変化させた
化学組成の試料を得た。ここで、C−CeqはΔCとして
示す。これら試料に対して実施例1と同様に焼もどし後
の硬さ、結晶粒度、焼もどし軟化抵抗および抗折力を測
定した。結果を表4に示す。
(Example 2) In order to confirm the effect of the value of C-Ceq on hardness, temper softening resistance and transverse rupture strength, the amount of C shown in Table 3 was changed in the same manner as in Example 1. A sample of different chemical composition was obtained. Here, C-Ceq is shown as ΔC. Hardness after tempering, grain size, temper softening resistance and transverse rupture strength were measured for these samples in the same manner as in Example 1. The results are shown in Table 4.

【0025】[0025]

【表3】 [Table 3]

【0026】[0026]

【表4】 [Table 4]

【0027】表4よりΔCの値が-0.30未満である試料
No.9およびΔCの値が0.05を越える試料No.12は、本
発明鋼である試料No.10およびNo.11に比べて硬さ、焼
もどし軟化抵抗および抗折力のいずれかが劣り好ましく
ないことが確認された。
From Table 4, sample No. 9 having a value of ΔC of less than -0.30 and sample No. 12 having a value of ΔC of more than 0.05 were harder than the samples No. 10 and No. 11 of the present invention. It was confirmed that either the temper softening resistance or the transverse rupture strength was inferior and not preferable.

【0028】(実施例3)実施例1と同様にして表5に
示す試料を得た。また、表5に示す試料に対して実施例
1と同様に焼もどし後の硬さ、結晶粒度、焼もどし軟化
抵抗および抗折力を測定した。結果を表6に示す。試料
No.13〜17は本発明鋼であり、HRC67以上の硬さと、HRC
58以上の焼もどし軟化抵抗と280kgf/mm2以上の抗折力を
有する材料であることが確認できた。また、本発明鋼の
うち試料No.15〜17はCoを含む試料であり、Co量が増
加するにしたがって、焼もどし軟化抵抗が高くなり、C
oの添加により焼もどし軟化抵抗が改善された。なお、
Coを添加する場合は残留オーステナイトが存在するの
を防ぐため、焼もどしは3回行なった。一方、Coの添
加量が15%を越える比較鋼である試料No.18では、焼も
どし軟化抵抗は高い値を示すものの、抗折力が著しく低
下し好ましくないものであった。
Example 3 Samples shown in Table 5 were obtained in the same manner as in Example 1. Further, with respect to the samples shown in Table 5, the hardness after tempering, the grain size, the temper softening resistance and the transverse rupture strength were measured in the same manner as in Example 1. The results are shown in Table 6. Sample Nos. 13 to 17 are the steels of the present invention, and have hardnesses of HRC67 or higher and HRC.
It was confirmed that the material had a tempering softening resistance of 58 or more and a bending strength of 280 kgf / mm 2 or more. Further, among the steels of the present invention, samples No. 15 to 17 are samples containing Co, and as the amount of Co increases, the tempering softening resistance increases, and
The addition of o improved the temper softening resistance. In addition,
When Co was added, tempering was performed three times in order to prevent the presence of residual austenite. On the other hand, in sample No. 18, which is a comparative steel containing more than 15% of Co, the temper softening resistance was high, but the transverse rupture strength was significantly reduced, which was not preferable.

【0029】[0029]

【表5】 [Table 5]

【0030】[0030]

【表6】 [Table 6]

【0031】[0031]

【発明の効果】本発明によれば、従来不十分であった高
温での軟化抵抗特性を大幅に向上できるので高温での耐
摩耗性を顕著に改善することができた。また結晶粒が微
細なままで、靭性も従来と同等以上に高いため、工具の
高速使用条件下で、大幅な寿命向上が達成できる。
According to the present invention, the softening resistance characteristic at high temperature, which has been insufficient in the past, can be remarkably improved, so that the wear resistance at high temperature can be remarkably improved. Further, since the crystal grains remain fine and the toughness is as high as or higher than that of the conventional one, it is possible to significantly improve the service life under the high-speed use condition of the tool.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量比でC 0.7〜2.0%、Si≦1.0%、Mn
≦0.6%、Cr 3.0〜6.0%、WまたはさらにMoをW+2Mo
で 14〜20%かつ、V≦5.0%、Nb 2.0〜7.0%、但しNb/
V≧0.5、残部がFeおよび不可避的不純物よりなり、C
−Ceqが−0.30〜0.05(ただしCeq=0.24+0.033・W+0.0
63・Mo+0.2V+0.1・Nb)の関係を満たすことを特徴と
する粉末高速度工具鋼。
1. C 0.7 to 2.0% by weight ratio, Si ≦ 1.0%, Mn
≤0.6%, Cr 3.0-6.0%, W or even Mo is W + 2Mo
14 to 20% and V ≦ 5.0%, Nb 2.0 to 7.0%, but Nb /
V ≧ 0.5, balance of Fe and inevitable impurities, and C
-Ceq is -0.30 to 0.05 (however, Ceq = 0.24 + 0.033 ・ W + 0.0
Powder high speed tool steel characterized by satisfying the relationship of 63 · Mo + 0.2V + 0.1 · Nb).
【請求項2】 重量比でC 0.7〜2.0%、Si≦1.0%、Mn
≦0.6%、Cr 3.0〜6.0%、WまたはさらにMoをW+2Mo
で 14〜20%かつ、V≦5.0%、Nb 2.0〜7.0%、但しNb/
V≧0.5、Co ≦15.0%、残部がFeおよび不可避的不純
物よりなり、C−Ceqが−0.30〜0.05(ただしCeq=0.24
+0.033・W+0.063・Mo+0.2V+0.1・Nb)の関係を満た
すことを特徴とする粉末高速度工具鋼。
2. C 0.7-2.0% by weight ratio, Si ≦ 1.0%, Mn
≤0.6%, Cr 3.0-6.0%, W or even Mo is W + 2Mo
14 to 20% and V ≦ 5.0%, Nb 2.0 to 7.0%, but Nb /
V ≧ 0.5, Co ≦ 15.0%, the balance Fe and unavoidable impurities, and C-Ceq is -0.30 to 0.05 (where Ceq = 0.24).
+0.033 ・ W + 0.063 ・ Mo + 0.2V + 0.1 ・ Nb) powder high speed tool steel.
JP32726191A 1991-12-11 1991-12-11 Powder high-speed tool steel Pending JPH05163551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32726191A JPH05163551A (en) 1991-12-11 1991-12-11 Powder high-speed tool steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32726191A JPH05163551A (en) 1991-12-11 1991-12-11 Powder high-speed tool steel

Publications (1)

Publication Number Publication Date
JPH05163551A true JPH05163551A (en) 1993-06-29

Family

ID=18197145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32726191A Pending JPH05163551A (en) 1991-12-11 1991-12-11 Powder high-speed tool steel

Country Status (1)

Country Link
JP (1) JPH05163551A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1011021A5 (en) * 1996-01-16 1999-04-06 Hitachi Powdered Metals Source material sintered powder for wear-resistant.
WO2007021243A1 (en) * 2005-08-18 2007-02-22 Erasteel Kloster Aktiebolag Powder metallurgically manufactured steel, a tool comprising the steel and a method for manufacturing the tool
JP2008248308A (en) * 2007-03-30 2008-10-16 Kubota Corp High speed steel base alloy composite product
JP2008248307A (en) * 2007-03-30 2008-10-16 Kubota Corp High toughness and high speed steel-base sintered alloy

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1011021A5 (en) * 1996-01-16 1999-04-06 Hitachi Powdered Metals Source material sintered powder for wear-resistant.
WO2007021243A1 (en) * 2005-08-18 2007-02-22 Erasteel Kloster Aktiebolag Powder metallurgically manufactured steel, a tool comprising the steel and a method for manufacturing the tool
EP1917376A1 (en) * 2005-08-18 2008-05-07 Erasteel Kloster Aktiebolag Powder metallurgically manufactured steel, a tool comprising the steel and a method for manufacturing the tool
EP1917376A4 (en) * 2005-08-18 2017-05-17 Erasteel Kloster Aktiebolag Powder metallurgically manufactured steel, a tool comprising the steel and a method for manufacturing the tool
JP2008248308A (en) * 2007-03-30 2008-10-16 Kubota Corp High speed steel base alloy composite product
JP2008248307A (en) * 2007-03-30 2008-10-16 Kubota Corp High toughness and high speed steel-base sintered alloy

Similar Documents

Publication Publication Date Title
EP0483668B1 (en) High speed tool steel produced by sintering powder and method of producing same
KR20050077008A (en) Alloy tool steel
GB2065700A (en) Hot work steel
EP2682491B1 (en) Hot work tool steel having excellent toughness, and process of producing same
KR950005927B1 (en) Wear-resistant steel
EP0930374B1 (en) Production of cold working tool steel
JP3565960B2 (en) Bearing steel, bearings and rolling bearings
JP2021031695A (en) Hot work-tool steel excellent in toughness
JPH02175846A (en) Powder high-speed tool steel
JPH08100239A (en) Alloy tool steel
JPH1161351A (en) High hardness martensite-based stainless steel superior in workability and corrosion resistance
JP2684736B2 (en) Powder cold work tool steel
JPH05163551A (en) Powder high-speed tool steel
JPH05171373A (en) Powder high speed tool steel
JPH0978199A (en) Cold tool steel with high hardness and high toughness
JPH02247357A (en) Steel for form rolling die
JP2960496B2 (en) Cold tool steel
JPH02277745A (en) High hardness and high toughness cold tool steel
JP4223414B2 (en) Powdered high-speed tool steel for rolling rolls with excellent wear resistance and toughness
EP0178894A2 (en) A method of heat treating high chromium cast ferrous-based alloys and a wearing element formed of a high chromium cast ferrous based alloy
JPH05171374A (en) Powder high speed tool steel
JPH07116550B2 (en) Low alloy high speed tool steel and manufacturing method thereof
JPS58117863A (en) High speed tool steel with high wear resistance and toughness
JPH0539552A (en) Powdery steel for high speed tool and its production
JP2755974B2 (en) Powder high speed tool steel