JP2015127455A - Powder high speed tool steel - Google Patents

Powder high speed tool steel Download PDF

Info

Publication number
JP2015127455A
JP2015127455A JP2014222003A JP2014222003A JP2015127455A JP 2015127455 A JP2015127455 A JP 2015127455A JP 2014222003 A JP2014222003 A JP 2014222003A JP 2014222003 A JP2014222003 A JP 2014222003A JP 2015127455 A JP2015127455 A JP 2015127455A
Authority
JP
Japan
Prior art keywords
carbide
powder
steel
speed tool
maximum diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014222003A
Other languages
Japanese (ja)
Other versions
JP6516440B2 (en
Inventor
裕一 永富
Yuichi Nagatomi
裕一 永富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2014222003A priority Critical patent/JP6516440B2/en
Publication of JP2015127455A publication Critical patent/JP2015127455A/en
Application granted granted Critical
Publication of JP6516440B2 publication Critical patent/JP6516440B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a powder high speed tool steel capable of achieving long life of cutting tools, by excellent abrasion resistance and toughness.SOLUTION: There is provided a powder high speed tool steel by solidification molding a metallic powder consisting of, by mass%, C:1.30 to 2.30%, Si:0.1 to 1.0%, Mn:0.1 to 1.0%, Cr:3.0 to 5.0%, Mo:0.5 to 5.0%, W:5.0 to 20.0%, V:3.0 to 7.5% and the balance Fe with inevitable impurities by HIP or extrusion and conducting a heating treatment, having a maximum diameter of MC carbide of 3.5 to 10 μm and the maximum diameter of MC carbide satisfying 2.5 μm or less shown in Figure 1 in a hardened and tempered micro structure.

Description

本発明は、切削工具や金型等に使用される粉末高速度工具鋼に関する。   The present invention relates to powder high-speed tool steel used for cutting tools, dies, and the like.

従来、高速度工具鋼はC、Cr、W、Mo、V、Co等の合金元素を多量に加えて高温で硬さや耐摩耗性を一層高めた工具鋼であり、エンドミルやドリルのように比較的靱性が要求される切削工具の素材として汎用されている。ところで、このような高速度工具鋼は、従来では溶製法によって製造されていたのであるが、この溶製法によって得られた高速度工具鋼では、粗大炭化物の存在や偏析という問題があったことから、近年では、従来の溶製法に代わって、粉末冶金法を用いた粉末高速度工具鋼が広く使用されるようになっている。この粉末高速度工具鋼は、高速度工具鋼の溶湯をアトマイズ法によって急冷凝固粉末とし、この粉末を熱間静水圧加圧(HIP)等の粉末冶金法によって製造される。   Conventionally, high-speed tool steel is a tool steel that has been further increased in hardness and wear resistance at high temperatures by adding a large amount of alloying elements such as C, Cr, W, Mo, V, Co, etc. Compared to end mills and drills It is widely used as a material for cutting tools that require high toughness. By the way, such a high-speed tool steel has been conventionally produced by a melting method, but the high-speed tool steel obtained by this melting method has problems such as the presence of coarse carbides and segregation. In recent years, powder high-speed tool steel using a powder metallurgy method has been widely used in place of the conventional melting method. This powder high-speed tool steel is produced by a powder metallurgy method such as hot isostatic pressing (HIP) using a molten metal of the high-speed tool steel as a rapidly solidified powder by an atomizing method.

一方、上記のような粉末高速度工具鋼を切削工具の素材として実際使用した場合には、耐摩耗性および靱性が不十分なことから、工具の切削性能の向上という要求に十分対応できない。このようなことから、耐摩耗性および靱性をより高めて工具の切削性能をより向上させるという観点で、これまでにも様々な粉末高速度工具鋼について提案されている。
例えば、特許文献1に開示されているように、質量%で、C:1.2〜3%、Si:3.0%以下、Mn:3.0%以下、Cr:3〜6%、W:10〜15%、Mo:1.0%以下、V:3〜5%、Co:10%以下を含有する高速度工具鋼用粉末が提案されている。
On the other hand, when the powder high-speed tool steel as described above is actually used as a material for a cutting tool, the wear resistance and toughness are insufficient, so that it is not possible to sufficiently meet the demand for improving the cutting performance of the tool. For this reason, various powder high-speed tool steels have been proposed so far in terms of further improving wear resistance and toughness to further improve the cutting performance of the tool.
For example, as disclosed in Patent Document 1, in mass%, C: 1.2 to 3%, Si: 3.0% or less, Mn: 3.0% or less, Cr: 3 to 6%, W : High-speed tool steel powder containing 10-15%, Mo: 1.0% or less, V: 3-5%, Co: 10% or less has been proposed.

特許文献2は、重量比で、C:0.7〜2.0%、Si:≦1.0%、Mn:≦0.6%、Cr:3.0〜6.0%、WまたはさらにMoをW+2Moで14〜20%かつV:≦5.0%、Nb:2.0〜7.0%、但しNb/V≧0.5、残部がFeおよび不可避的不純物よりなる粉末高速度工具鋼が提案されている。   Patent Document 2 describes, in weight ratio, C: 0.7 to 2.0%, Si: ≦ 1.0%, Mn: ≦ 0.6%, Cr: 3.0 to 6.0%, W or further Powder high speed tool in which Mo is 14 to 20% in W + 2Mo and V: ≦ 5.0%, Nb: 2.0 to 7.0%, Nb / V ≧ 0.5, the balance being Fe and inevitable impurities Steel has been proposed.

また、特許文献3に開示されているように、NiおよびCoを含むMo系高速度工具鋼であって、Nbを0.5〜2.0%含有すると共に、炭化物の平均粒径が0.40〜0.80μmであり、かつ最大粒径が5μm以下である耐摩耗性および耐チッピング性に優れた粉末高速度工具鋼が提案されている。   Further, as disclosed in Patent Document 3, it is a Mo-based high-speed tool steel containing Ni and Co, containing 0.5 to 2.0% of Nb, and having an average particle size of carbide of 0.1. A powder high-speed tool steel excellent in wear resistance and chipping resistance having a maximum particle diameter of 40 μm to 0.80 μm and 5 μm or less has been proposed.

特開2001−294986号公報JP 2001-294986 A 特開平05−163551号公報Japanese Patent Laid-Open No. 05-163551 特開平09−59748号公報JP 09-59748 A

上述した、特許文献1は成分制御により耐摩耗性、靱性の改善を狙っているが、炭化物サイズが2.0μmと耐摩耗性に懸念があり十分ではない。特許文献2はNbを2.0〜7.0%添加により耐摩耗性、靱性を持たせているが、しかし、V:≦5.0%、Nb/V≧0.5とV添加量が少ないために耐摩耗性に劣るという問題がある。さらに、特許文献3はNbを0.5〜2.0%添加かつNi、Coを含む粉末高速度鋼と耐摩耗性、靱性を高めているが、しかしながら、Nbを含む必要があり、そのため成分系に制約があるという問題がある。それらの問題に対し、本発明は、C濃度が異なる金属粉末を母材にして粉末高速度工具鋼を製造し、熱処理を加えて炭化物を制御することで耐摩耗性と靭性を兼ね備えた粉末高速度工具鋼が得られることを見出し、その粉末高速度工具鋼を提供することにある。   The above-mentioned Patent Document 1 aims to improve wear resistance and toughness by controlling the components, but the carbide size is 2.0 μm and there is concern about wear resistance, which is not sufficient. In Patent Document 2, Nb is added to 2.0 to 7.0% to provide wear resistance and toughness. However, V: ≦ 5.0%, Nb / V ≧ 0.5 and V addition amount is There is a problem that the wear resistance is inferior due to the small amount. Furthermore, Patent Document 3 adds 0.5 to 2.0% of Nb and improves high wear resistance and toughness with powdered high-speed steel containing Ni and Co. However, it is necessary to contain Nb, so that There is a problem that the system is limited. In response to these problems, the present invention produces powder high-speed tool steel using metal powders having different C concentrations as a base material, and controls the carbide by applying heat treatment to increase the powder height that combines wear resistance and toughness. The object is to find a high speed tool steel and to provide a powder high speed tool steel.

上述のような問題を解消するために、発明者らは鋭意開発を進めた結果、粉末高速度工具鋼は、通常は単一粉末を母材に作製するのが一般的であるが、C濃度が0.5%以上異なる2種類以上の金属粉末を母材に用いて焼結し、さらに熱処理により粗大なMC炭化物と微細なM6C炭化物が混在する組織とすることで、耐摩耗性と靭性を両立できることを見出し、その粉末高速度工具鋼を得ることを見出した。 In order to solve the above-described problems, the inventors have made extensive developments. As a result, it is common for powder high-speed tool steels to be produced by using a single powder as a base material. Sintering using two or more types of metal powders differing by 0.5% or more as a base material, and further forming a structure in which coarse MC carbide and fine M 6 C carbide are mixed by heat treatment, It was found that the toughness can be compatible, and the powder high-speed tool steel was obtained.

上記の課題を解決する手段としては、第1の手段は、質量%で、C:1.30〜2.30%、Si:0.1〜1.0%、Mn:0.1〜1.0%、Cr:3.0〜5.0%、Mo:0.5〜5.0%、W:5.0〜20.0%、V:3.0〜7.5%を含有し、残部Feおよび不可避的不純物よりなる鋼であり、該鋼中にある炭化物のうち、MC炭化物の最大径は3.5〜10μmを、M6C炭化物の最大径は2.5μm以下を満たすことを特徴とする粉末高速度工具鋼である。 As means for solving the above problems, the first means is mass%, C: 1.30 to 2.30%, Si: 0.1 to 1.0%, Mn: 0.1 to 1 .. 0%, Cr: 3.0-5.0%, Mo: 0.5-5.0%, W: 5.0-20.0%, V: 3.0-7.5%, It is a steel composed of the balance Fe and inevitable impurities. Among the carbides in the steel, MC carbide has a maximum diameter of 3.5 to 10 μm, and M 6 C carbide has a maximum diameter of 2.5 μm or less. It is a featured powder high speed tool steel.

第2の手段は、上記の第1手段の成分組成に加えて、さらにCo:10.0%以下(ただし0%は含まない。)を含有し、残部Feおよび不可避的不純物よりなる鋼であり、該鋼中にある炭化物のうち、MC炭化物の最大径は3.5〜10μmを、M6C炭化物の最大径は2.5μm以下を満たすことを特徴とする粉末高速度工具鋼である。 The second means is a steel containing Co: 10.0% or less (excluding 0%) in addition to the component composition of the first means, and the balance Fe and unavoidable impurities. Of the carbides in the steel, the maximum diameter of MC carbide is 3.5 to 10 μm, and the maximum diameter of M 6 C carbide is 2.5 μm or less.

第3の手段は、上記の第1手段または第2手段の粉末高速度鋼の成分組成を含有し、残部Feおよび不可避的不純物よりなる金属粉末のうち、C濃度が0.5%以上異なる2種類以上の金属粉末を混合し固化成形した鋼であり、該鋼中にある炭化物のうち、MC炭化物の最大径は3.5〜10μm、M6C炭化物の最大径は2.5μm以下を満たすことを特徴とする粉末高速度工具鋼である。 3rd means contains the component composition of the powder high-speed steel of said 1st means or 2nd means, and C density | concentration differs 0.5% or more among the metal powder which consists of remainder Fe and an unavoidable impurity 2 It is a steel obtained by mixing and solidifying more than one kind of metal powder. Among carbides in the steel, MC carbide has a maximum diameter of 3.5 to 10 μm and M 6 C carbide has a maximum diameter of 2.5 μm or less. This is a powder high-speed tool steel.

以上述べたように、本発明により耐摩耗性および靱性を兼ね備えた粉末高速度工具鋼を得ることができる。   As described above, powder high-speed tool steel having both wear resistance and toughness can be obtained by the present invention.

本発明例No.1に示す2種類の混合粉末を固化成型後、熱処理によって炭化物径を調整(以下、「熱処理粒度調整」という。)して作製した鋼の光学顕微鏡による組織を示す写真である。Invention Example No. 1 is a photograph showing the structure of a steel produced by solidifying and molding the two types of mixed powder shown in No. 1 and adjusting the carbide diameter by heat treatment (hereinafter referred to as “heat treatment particle size adjustment”) using an optical microscope. 比較例No.4に示す単一粉末を固化成型後、熱処理粒度調整なしで作製した鋼の光学顕微鏡による組織を示す写真である。Comparative Example No. It is a photograph which shows the structure | tissue by the optical microscope of the steel produced without solidification shaping | molding of the single powder shown in 4, and without heat processing particle size adjustment. 比較例No.5に示す2種類の混合粉末を固化成型後、熱処理粒度調整なしで作製した鋼の光学顕微鏡による組織を示す写真である。Comparative Example No. 5 is a photograph showing the structure of steel produced by solidification molding of the two types of mixed powder shown in FIG. 比較例No.7に示す単一粉末を固化成型後、熱処理粒度調整して作製した鋼の光学顕微鏡による組織を示す写真である。Comparative Example No. It is a photograph which shows the structure | tissue by the optical microscope of the steel produced by solidifying shaping | molding the single powder shown in 7, and heat-processing the particle size adjustment.

以下、本発明について詳細に説明する。
本発明成分範囲内の粉末高速度工具鋼において、組織内に析出している炭化物は、VCから成るMC炭化物と(Fe、W、Mo)6Cを主体とするM6C炭化物の2種類に分類される。これら炭化物のうち、MC炭化物は高硬度であるため、材料の耐摩耗性を向上させる働きをする。そのため、MC炭化物を粗大化させることで、耐摩耗性を改善させることが可能であるが、一方で粗大な炭化物は靭性を阻害してしまうため、一部の炭化物は微細な炭化物のままで保持しておくことが必要とされる。また、M6C炭化物はMC炭化物ほど耐摩耗性に寄与しないため、M6C炭化物は微細なままに保ちつつ、MC炭化物を粗大化させた組織に制御することで耐摩耗性と靭性を両立させた粉末高速度工具鋼が得られると考えた。
Hereinafter, the present invention will be described in detail.
In the powder high-speed tool steel within the range of the present invention, carbides precipitated in the structure are classified into two types: MC carbide composed of VC and M 6 C carbide mainly composed of (Fe, W, Mo) 6 C. being classified. Of these carbides, MC carbide has a high hardness, and thus functions to improve the wear resistance of the material. Therefore, it is possible to improve wear resistance by making MC carbide coarse, but on the other hand, coarse carbides inhibit toughness, so some carbides remain fine carbides. It is necessary to keep it. In addition, M 6 C carbide does not contribute to wear resistance as much as MC carbide. Therefore, M 6 C carbide is kept fine, and the MC carbide is controlled to a coarser structure to achieve both wear resistance and toughness. It was thought that a powdered high speed tool steel was obtained.

このような組織を達成するために鋭意開発を進めた結果、粉末高速度工具鋼をC(炭素)濃度が0.5%以上異なる2種類以上の金属粉末を母材に用いてHIPまたは押出しにより固化成型後、熱処理を行い、MC炭化物の最大径が3.5〜10μm、M6C炭化物の最大径は2.5μm以下を満たすように炭化物径を制御することで靱性と耐摩耗性を兼ね備えた粉末高速度工具鋼が得られることを発見した。 As a result of diligent development to achieve such a structure, powder high-speed tool steel is obtained by HIP or extrusion using two or more kinds of metal powders with C (carbon) concentration different by 0.5% or more as a base material. After solidification molding, heat treatment is performed, and MC carbide has a toughness and wear resistance by controlling the carbide diameter so that the maximum diameter is 3.5-10 μm and the maximum diameter of M 6 C carbide is 2.5 μm or less. It was found that a high-speed powdered tool steel can be obtained.

粉末高速度工具鋼を作製する際に、C濃度差が0.5%以上ある高C粉末と低C粉末を混合、固化成型して粉末高速度工具鋼を作製すると、マトリックス中のC濃度に大きな濃淡が生じる。この状態で、高温保持熱処理を行い、C拡散を促進させた場合、C濃度が高い領域の炭化物は優先して粗大化するが、C濃度が低い領域は、マトリックス中にCが溶け込んでいないために、炭化物の粗大化が殆ど起こらない。この際に、炭化物の融点の差から優先して粗大化が起こるのはMC炭化物であり、M6C炭化物は微細なままで保たれる。結果として、粗大なMC炭化物と微細なM6C炭化物が共に存在する組織となる。 When producing powdered high-speed tool steel, mixing high-C powder and low-C powder with a C concentration difference of 0.5% or more and solidifying and forming the powdered high-speed tool steel results in a C concentration in the matrix. A large shade appears. In this state, when a high temperature holding heat treatment is performed to promote C diffusion, carbides in a region having a high C concentration preferentially coarsen, but in a region having a low C concentration, C is not dissolved in the matrix. In addition, the coarsening of the carbide hardly occurs. At this time, it is MC carbide that preferentially coarsens due to the difference in melting point of the carbide, and the M 6 C carbide is kept fine. As a result, a structure in which coarse MC carbide and fine M 6 C carbide exist together is obtained.

図1は本発明例No.1に示す2種類の混合粉末を母材として固化成型した後に、熱処理によって炭化物径を調整して作製し、この母材である本発明鋼の光学顕微鏡による組織を示す写真である。これに対し、図2は比較例であるNo.4に示す単一粉末を熱処理粒度調整なしで作製した鋼の光学顕微鏡による組織であり、図3は比較例であるNo.5に示す2種類の混合粉末を母材に作製し、熱処理粒度調整なしで作製した鋼の光学顕微鏡による組織であり、図4は比較例であるNo.7に示す単一粉末を熱処理粒度調整して作製した鋼の光学顕微鏡による組織を示す写真である。これから分かるように、図1の本発明は、図2〜4に比較して粗大なMC炭化物と微細なM6C炭化物が混在した組織となり、図2〜4に見られる組織とは異なることが分かる。粉末の製法はガスアトマイズ法が低酸素粉末が得られ好ましいが、水アトマイズ粉末、粉砕粉末等の製法も可である。 FIG. 1 is a photograph showing the structure of the steel of the present invention, which is a base material, prepared by solidifying and molding the two types of mixed powders shown in No. 1 as a base material and then adjusting the carbide diameter by heat treatment. On the other hand, FIG. 4 is a structure of a steel produced by adjusting the single powder shown in FIG. 4 without adjusting the particle size of the heat treatment, and FIG. 5 is a microstructure of steel produced by preparing two kinds of mixed powders shown in No. 5 as a base material and adjusting the particle size of the heat treatment, and FIG. It is a photograph which shows the structure | tissue by the optical microscope of the steel produced by adjusting the heat processing particle size of the single powder shown in FIG. As can be seen, the present invention of FIG. 1 has a structure in which coarse MC carbides and fine M 6 C carbides are mixed as compared to FIGS. 2 to 4, and is different from the structure seen in FIGS. I understand. As a method for producing the powder, a gas atomizing method is preferable because a low-oxygen powder can be obtained.

以下、本発明の粉末高速工具鋼に係る金属粉末の化学成分の限定理由について説明する。   Hereinafter, the reasons for limiting the chemical components of the metal powder according to the powder high-speed tool steel of the present invention will be described.

C:1.30〜2.30%
Cは、硬さ、焼入性に必要な元素である。しかし、Cは1.30%未満ではその効果が十分でない。また、Cが2.30%を超えると粗大すぎる炭化物を形成し靱性を悪化させることから、Cは1.30〜2.30%とする。
C: 1.30 to 2.30%
C is an element necessary for hardness and hardenability. However, if C is less than 1.30%, the effect is not sufficient. Further, if C exceeds 2.30%, carbides that are too coarse are formed and the toughness is deteriorated, so C is set to 1.30 to 2.30%.

Si:0.1〜1.0%
Siは、脱酸剤であり、基地の硬さを得るために必要な元素である。しかし、Siは0.1%未満ではその効果が十分に得られず、1.0%を超えると靱性と加工性が悪化する。そこでSiは0.1〜1.0%とする。
Si: 0.1 to 1.0%
Si is a deoxidizer and is an element necessary for obtaining the hardness of the matrix. However, if Si is less than 0.1%, the effect cannot be sufficiently obtained, and if it exceeds 1.0%, toughness and workability deteriorate. Therefore, Si is 0.1 to 1.0%.

Mn:0.1〜1.0%
Mnは、脱酸剤であり、焼入性を得るために必要な元素である。しかし、Mnは0.1%未満では、その効果が十分に得られず、1.0%を超えるとマトリックスを脆化させ靱性、熱間加工性が悪化する。そこでMnは0.1〜1.0%とする。
Mn: 0.1 to 1.0%
Mn is a deoxidizer and is an element necessary for obtaining hardenability. However, if Mn is less than 0.1%, the effect cannot be sufficiently obtained, and if it exceeds 1.0%, the matrix becomes brittle and toughness and hot workability deteriorate. Therefore, Mn is set to 0.1 to 1.0%.

Cr:3.0〜5.0%
Crは、焼入性を得るために必要な元素である。しかし、Crは3.0%未満ではその効果が十分でない。また、5.0%を超えると靱性、熱間加工性が悪化する。そこでCrは3.0〜5.0%とする。
Cr: 3.0-5.0%
Cr is an element necessary for obtaining hardenability. However, if Cr is less than 3.0%, the effect is not sufficient. On the other hand, if it exceeds 5.0%, the toughness and hot workability deteriorate. Therefore, Cr is set to 3.0 to 5.0%.

Mo:0.5〜5.0%
Moは、焼入性、硬さ、耐摩耗性、焼戻し軟化抵抗性を得るために必要な元素である。しかし、Moは0.5%未満ではその効果が十分でなく、また、5.0%を超えると靱性、熱間加工性が悪化する。そこでMoは0.5〜5.0%とする。好ましくはMoは0.5〜4.0%とする。
Mo: 0.5-5.0%
Mo is an element necessary for obtaining hardenability, hardness, wear resistance, and temper softening resistance. However, if Mo is less than 0.5%, the effect is not sufficient, and if it exceeds 5.0%, toughness and hot workability deteriorate. Therefore, Mo is set to 0.5 to 5.0%. Preferably, Mo is 0.5 to 4.0%.

W:5.0〜20.0%
Wは、焼入性、硬さ、耐摩耗性、焼戻し軟化抵抗性を得るために必要な元素である。しかし、Wは5.0%未満ではその効果が十分でなく、20.0%を超えると靱性、熱間加工性が悪化する。そこでWは5.0〜20.0%とする。好ましくはWは8.0〜12.0%とする。
W: 5.0-20.0%
W is an element necessary for obtaining hardenability, hardness, wear resistance, and temper softening resistance. However, if W is less than 5.0%, the effect is not sufficient, and if it exceeds 20.0%, toughness and hot workability deteriorate. Therefore, W is set to 5.0 to 20.0%. Preferably, W is 8.0 to 12.0%.

V:3.0〜7.5%
Vは、硬さ、耐焼付き性、靱性を得るために必要な元素である。しかし、Vは3.0%未満ではその効果が十分でなく、7.5%を超えると靱性、被削性が悪化する。そこでVは3.0〜7.5%とする。好ましくはVは4.6〜7.0%とする。
V: 3.0-7.5%
V is an element necessary for obtaining hardness, seizure resistance, and toughness. However, if V is less than 3.0%, the effect is not sufficient, and if it exceeds 7.5%, toughness and machinability deteriorate. Therefore, V is set to 3.0 to 7.5%. Preferably, V is 4.6 to 7.0%.

Co:10.0%以下(ただし、0%は含まない。)
Coは、耐熱性、耐摩耗性、耐焼戻し軟化抵抗性に必要な元素である。本元素を含まなくても本発明の耐摩耗性および靱性の効果は得られるが、上記の耐熱性、耐摩耗性、耐焼戻し軟化抵抗性の点から含有することが好ましい。しかし、Coが10.0%を超える添加は炭化物の偏析や脱炭を促進することから、その上限を10.0%とした。
Co: 10.0% or less (excluding 0%)
Co is an element necessary for heat resistance, wear resistance, and resistance to temper softening. Even if this element is not contained, the effects of wear resistance and toughness of the present invention can be obtained, but it is preferably contained in terms of the above heat resistance, wear resistance, and tempering softening resistance. However, the addition of Co over 10.0% promotes segregation and decarburization of carbides, so the upper limit was made 10.0%.

本願でいう炭化物の最大径は以下の通りに定義する。
炭化物の形状は真円ではないのでその断面には径の長いところと短いところがある。その径も最も長い径(以下、最長径という。)を取上げて、ある観察面積中に存在する炭化物を観察し、これらの各炭化物の最長径を計測し、その中で最も大きな値を示す炭化物の最長径のことを本願では炭化物の最大径というものとする。
The maximum diameter of the carbide referred to in the present application is defined as follows.
Since the shape of the carbide is not a perfect circle, the cross section has a long portion and a short portion. Take the longest diameter (hereinafter referred to as the longest diameter), observe the carbides present in a certain observation area, measure the longest diameter of each of these carbides, and show the largest value among them In the present application, the longest diameter is the maximum diameter of carbide.

上記の炭化物の最大径の定義の下で、焼入、焼戻したミクロ組織の、MC炭化物の最大径が3.5〜10μmと限定した理由は以下の通りである。
MC炭化物はM6C炭化物よりも硬く、その径が大きいほど耐摩耗性を向上させる。ただし、MC炭化物の最大径が3.5μm未満だと耐摩耗性向上の効果が十分に得られず、10μmより大きいと破壊の起点となり靭性を阻害するため、MC炭化物の最大径の範囲を3.5〜10μmとした。
The reason why the maximum diameter of MC carbide in the quenched and tempered microstructure is limited to 3.5 to 10 μm under the above definition of the maximum diameter of carbide is as follows.
MC carbide is harder than M 6 C carbide, and the larger its diameter, the better the wear resistance. However, if the maximum diameter of MC carbide is less than 3.5 μm, the effect of improving the wear resistance is not sufficiently obtained, and if it is more than 10 μm, fracture starts and inhibits toughness. 5 to 10 μm.

同じく上記の炭化物の最大径の定義の下で、M6C炭化物の最大径は2.5μm以下と限定した理由は以下の通りである。
6C炭化物はMC炭化物よりも耐摩耗性に寄与しないため、2.5μm以下に制御することによって耐摩耗性を確保した上で靭性を向上させた。マトリックス中の微細な炭化物は結晶粒を微細に保持し靭性を向上させる効果があるためである。ここで、M6C炭化物を2.5μm以下としたのは、2.5μmよりも大きいと靭性確保の効果が十分に得られないためである。
Similarly, the reason why the maximum diameter of M 6 C carbide is limited to 2.5 μm or less under the above definition of the maximum diameter of carbide is as follows.
Since M 6 C carbide does not contribute to wear resistance more than MC carbide, the toughness is improved while ensuring the wear resistance by controlling to 2.5 μm or less. This is because fine carbides in the matrix have an effect of maintaining crystal grains finely and improving toughness. Here, the reason why the M 6 C carbide is 2.5 μm or less is that if it is larger than 2.5 μm, the effect of securing toughness cannot be sufficiently obtained.

その上で、本発明では上記の最大径を有する炭化物について、1000平方μm中に1個以上あればよいものとする。つまり本願発明において、MC炭化物の最大径が3.5〜10μmであるということは、最大径が3.5〜10μmの範囲内にあるMC炭化物が1000平方μmの鋼中に少なくとも1個は存在することを意味する。従って残りのMC炭化物の最長径は最大径よりも小さければ3.5〜10μmの範囲にあっても3.5μm未満でも構わないということである。なおM6C炭化物については下限がないので、係る個数比率を論じる必要はない。 In addition, in the present invention, the carbide having the maximum diameter may be at least one in 1000 square μm. In other words, in the present invention, the maximum diameter of MC carbide is 3.5 to 10 μm, which means that at least one MC carbide having a maximum diameter in the range of 3.5 to 10 μm exists in the steel of 1000 square μm. It means to do. Therefore, the longest diameter of the remaining MC carbides may be in the range of 3.5 to 10 μm or less than 3.5 μm as long as it is smaller than the maximum diameter. Since there is no lower limit for M 6 C carbide, there is no need to discuss the number ratio.

請求項3の手段でC濃度差を0.5%以上と限定した理由は以下の通りである。
混合する粉末のCの質量%の差、つまりCの濃度差は0.5%以上とする。このように、0.5%以上とするのは、母相内のC濃度分布をばらつかせ、熱処理時に一部の炭化物のみの成長を促すには、0.5%以上のC濃度差が必要であるためである。なお、3種類以上の粉末を混合する場合は、最もC濃度が近い粉末同士の差が0.5%以上かどうかを判断する。
The reason why the C concentration difference is limited to 0.5% or more by the means of claim 3 is as follows.
The difference in mass% of C in the powder to be mixed, that is, the difference in C concentration is 0.5% or more. Thus, 0.5% or more makes the C concentration distribution in the matrix vary, and in order to promote the growth of only some carbides during heat treatment, a C concentration difference of 0.5% or more is required. This is because it is necessary. In addition, when mixing 3 or more types of powder, it is judged whether the difference between the powders with the closest C density | concentration is 0.5% or more.

さらに、上記のC濃度が0.5%以上異なる2種類の金属粉末について、その混合比は以下の通りである。
混合量は高C濃度金属粉末の質量%を1.0とすると、低C濃度金属粉末の質量%は0.25〜4.0が好ましい。すなわち、高C濃度金属粉末と低C濃度金属粉末の混合比は、「1.0:0.25〜4.0」の範囲が好ましい。そして、高C濃度金属粉末と低C濃度金属粉末の混合比が、この範囲を超えて離れると、固化成形後のマトリックスのC濃度差が確保できず、一部の炭化物のみの成長を促すことができない。
Furthermore, the mixing ratio of the above two types of metal powders with different C concentrations of 0.5% or more is as follows.
As for the mixing amount, when the mass% of the high C concentration metal powder is 1.0, the mass% of the low C concentration metal powder is preferably 0.25 to 4.0. That is, the mixing ratio of the high C concentration metal powder and the low C concentration metal powder is preferably in the range of “1.0: 0.25 to 4.0”. And if the mixing ratio of the high C concentration metal powder and the low C concentration metal powder exceeds this range, the difference in C concentration in the matrix after solidification molding cannot be secured, and the growth of only some carbides is promoted. I can't.

固化成型中や成形後の熱処理の適正条件は、鋼種によって異なるが、例えばHIP処理後や押出し工程中や固化成形後の成形体に1100〜1240℃で2〜12時間の熱処理が適正である。しかし、1100℃未満では炭化物が殆ど大きくならない。また、1240℃を超えると、炭化物が急激に大きくなりすぎてしまい、微細な析出物が消失しやすく制御が難しい。   The appropriate conditions for heat treatment during solidification molding and after molding vary depending on the steel type. For example, heat treatment at 1100 to 1240 ° C. for 2 to 12 hours is appropriate for the molded body after HIP treatment, during the extrusion process, or after solidification molding. However, when the temperature is less than 1100 ° C., the carbide hardly increases. Moreover, when it exceeds 1240 degreeC, a carbide | carbonized_material will become large too rapidly, and a fine precipitate will lose | disappear easily and control is difficult.

以下、本発明について実施例および比較例によって具体的に説明する。
合金添加元素は同じで、C(炭素)濃度を振って作製した2種類あるいは3種類の金属粉末{例えば、2種類では、0.3Si−0.3Mn−4.2Cr−1.0Mo−12.0W−4.6V−5.0Co(数値は質量%)に1.3Cと2.5C(数値は質量%)のふたつに振って添加したものおよびそれらの残部にFeを加えて100質量%としてなる2種類の金属粉末}をガスアトマイズ法で作製し、粉末高速度工具鋼の2種類あるいは3種類の母材金属粉末とした。その後、それらを上記の1.0:0.25〜4.0あるいは1.0:1.0:1.0〜2.0の混合比で混合した後、1170℃でHIP処理して固化成形し、表1に示す鋼のA、B、C、D、E、F、Gの成分組成からなる固化成形体を作製した。なお、母材金属粉末のC濃度差および粉末混合比は表2に示すとおりである。これらの固化成形体に対して、表2に示す各No.ごとに定めた調整温度および調整時間で熱処理粒度調整を行った。その後、30mm径に鍛造加工し、1190℃で油冷焼入れ、560℃で3回焼戻し処理を行った。比較例としては、上記の粉末高速度工具鋼の母材金属粉末を表2の粉末混合比において、無しとあるものは混合を行わずに単一粉末のままとし、その他のものは、表2に示す各No.ごとに定めた粉末混合比で高C濃度の粉末と低C濃度の粉末の混合比を1:0.2〜5とし、1170℃でHIP処理して固化成形して固化成形体を作成した。なお、母材金属粉末のC濃度差および粉末混合比は表2に示すとおりである。これらの固化成形体に対し、成形後は熱処理粒度調整において無しとあるものは粒度調整を行わずそのまま、それ以外のものは表2に示す各No.ごとに定めた調整温度および調整時間で熱処理粒度調整を行い、その後、これらを30mm径に鍛造加工し、1190℃で油冷焼入れ、560℃で3回焼戻し処理を行った。
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.
The alloy added elements are the same, and two or three types of metal powders produced by varying the C (carbon) concentration {for example, in the case of two types, 0.3Si-0.3Mn-4.2Cr-1.0Mo-12. Add 0W-4.6V-5.0Co (numerical value is mass%) by shaking to 1.3C and 2.5C (numerical value is mass%) and add Fe to the rest to make 100 mass% These two types of metal powders} were prepared by a gas atomizing method, and used as two or three types of base metal powders of powder high-speed tool steel. Then, after mixing them at the above-mentioned mixing ratio of 1.0: 0.25 to 4.0 or 1.0: 1.0: 1.0 to 2.0, HIP treatment at 1170 ° C. and solidification molding And the solidification molded object which consists of the component composition of A, B, C, D, E, F, G of steel shown in Table 1 was produced. The C concentration difference and the powder mixing ratio of the base metal powder are as shown in Table 2. For these solidified compacts, each No. shown in Table 2 was obtained. The heat treatment particle size was adjusted at the adjustment temperature and adjustment time determined for each. Thereafter, forging into a diameter of 30 mm, oil-cooled quenching at 1190 ° C. and tempering treatment at 560 ° C. three times were performed. As a comparative example, the base metal powder of the above-mentioned powder high speed tool steel is left as a single powder without mixing in the powder mixing ratio of Table 2, and the others are shown in Table 2. No. shown in FIG. The mixture ratio of the powder having a high C concentration and the powder having a low C concentration was 1: 0.2 to 5 at a powder mixture ratio determined for each, and was subjected to HIP treatment at 1170 ° C. and solidified to form a solidified molded body. The C concentration difference and the powder mixing ratio of the base metal powder are as shown in Table 2. With respect to these solidified molded bodies, after molding, those having nothing in the heat treatment particle size adjustment are not subjected to the particle size adjustment, and the others are each No. 1 shown in Table 2. The particle size of the heat treatment was adjusted at the adjustment temperature and the adjustment time determined for each, and then forged into a diameter of 30 mm, oil-cooled at 1190 ° C. and tempered at 560 ° C. three times.

靱性の評価方法として、上記の焼入れ焼戻し後の試料において、JIS3号シャルピー衝撃性試験(2mmUノッチ)を行い、シャルピー衝撃性値を測定し、表2における母材金属粉末種類が1種類の単一粉末でかつ熱処理粒度調整が無しの比較例をベンチマーク材とし、これらのベンチマーク材と比較して、靱性が同等以上(下がり幅10%未満)であれば、表2の靱性の欄に○を、悪化(10%以上減)であれれば×を付して評価した。また、耐摩耗性の評価方法として、上記の焼入れ焼戻し後の試料において、大越式摩耗試験を実施し、表2において、ベンチマーク材の耐摩耗性を1.0とし、これらのベンチマーク材と比較して、その倍数で耐摩耗性を評価した。なお、大越式摩耗試験の条件は、相手材リングSCM420、荷重61.8N、摩耗距離200m、摩耗速度3.62mm/secおよび乾式とした。   As a method for evaluating toughness, a JIS No. 3 Charpy impact test (2 mm U notch) was performed on the sample after quenching and tempering, and the Charpy impact value was measured. A comparative example with powder and no heat treatment particle size adjustment is used as a benchmark material, and in comparison with these benchmark materials, if the toughness is equal to or greater than (less than 10% of decrease width), ○ in the toughness column of Table 2, If it was worse (decrease of 10% or more), it was evaluated with x. In addition, as a method for evaluating wear resistance, the Ogoshi-type wear test was performed on the samples after quenching and tempering. In Table 2, the wear resistance of the benchmark materials was set to 1.0, and compared with these benchmark materials. Thus, the wear resistance was evaluated by a multiple thereof. The conditions of the Ogoshi-type wear test were a counterpart material ring SCM420, a load of 61.8 N, a wear distance of 200 m, a wear speed of 3.62 mm / sec, and a dry type.

また、炭化物は、熱処理した鋼材から縦20mm、横20mm、長さ10mmの角棒を切出し、湿式研磨および腐食液はピクラル液でMC炭化物とM6C炭化物の両方を腐食させた場合と村上試薬でM6C炭化物のみを腐食させた場合について、光学顕微鏡にてミクロ組織を確認し、画像解析ソフトにより、MC炭化物およびM6C炭化物の最大径をそれぞれ算出した。その結果を表2に示す。 Carbide is cut out of 20 mm long, 20 mm wide and 10 mm long square bars from heat-treated steel, and wet polishing and corrosive liquids are obtained when both MC carbide and M 6 C carbides are corroded with Picral liquid and Murakami reagent. In the case where only the M 6 C carbide was corroded, the microstructure was confirmed with an optical microscope, and the maximum diameters of MC carbide and M 6 C carbide were calculated by image analysis software. The results are shown in Table 2.

なお、表2における下線部は請求項の範囲から外れることを示す。 In addition, the underline part in Table 2 shows that it remove | deviates from the range of a claim.

表2において、比較例のNo.4、No.14、No.23、No.27、No.30、No.32、No.35の各母材金属粉末種類1種類からなる単一組成の粉末を作製してベンチマーク材とした。これらの比較例のベンチマーク材については、各単一組成であるので母材金属粉末のC濃度差は無いので0%であり、粉末混合比は無し、かつ熱処理粒度調整も無しであることから、MC炭化物は3.5μmよりも小さく、一方、M6C炭化物径も2.5μm以下で小さく、粗大な3.5μm以上の炭化物は存在しない。しかし、これらのベンチマーク材はMC炭化物が3.5μmより小さく、したがって、請求項で規定する3.5〜10μmの範囲外であるので切削工具や金型等に使用する際に要求される耐摩耗性が劣る。すなわち、これらは、母材金属粉末の種類が1種類であり、熱処理粒度調整も無しのためMC炭化物が粗大化しないので、耐摩耗性が最も低く、ベンチマークの1である。 In Table 2, No. of the comparative example. 4, no. 14, no. 23, no. 27, no. 30, no. 32, no. A single-composition powder consisting of one of the 35 base metal powder types was produced as a benchmark material. About the benchmark materials of these comparative examples, since they are each single composition, there is no difference in C concentration of the base metal powder, so 0%, no powder mixing ratio, and no heat treatment particle size adjustment, MC carbide is smaller than 3.5 μm, while M 6 C carbide diameter is as small as 2.5 μm or less, and there is no coarse carbide of 3.5 μm or more. However, these benchmark materials have MC carbides smaller than 3.5 μm, and are therefore outside the range of 3.5 to 10 μm specified in the claims, so wear resistance required when used for cutting tools, dies, etc. Inferior. That is, these are one kind of base metal powder, and MC carbides do not become coarse because there is no heat treatment particle size adjustment, so the wear resistance is the lowest and is one of the benchmarks.

比較例のNo.5、15、24は、2種類の粉末を母材金属粉末に作製するので母材金属粉末にC濃度差はあるが、熱処理粒度調整は無しであるので、MC炭化物は3.5μmよりも微細なままであるために、耐摩耗性は1.1で低い。比較例のNo.6、No.17は、熱処理粒度調整の温度が1080℃と低く、MC炭化物は3.5μmよりも微細であるため、耐摩耗性が1.2、1.1といずれも低い。比較例のNo.7は、母材金属粉末種類1種類からなる単一組成の粉末であるため、母材金属粉末のC濃度差がなく0であり、熱処理粒度調整を行った時に、MC炭化物は粗大化せず、M6C炭化物は2.5μmより大きく、炭化物が粗大化し、靱性が×である。比較例のNo.8、9、16は、2種類の母材金属粉末の熱処理粒度調整を行っているが、母材金属粉末のC濃度差が、No.8、16では0.25%、No.9では0.45%と少なく、熱処理粒度調整を行った時に、M6C炭化物が粗大化したので、靱性は×である。比較例のNo.10は、2種類の母材金属粉末の熱処理粒度調整の温度が1250℃と高いため、MC炭化物およびM6C炭化物が粗大化し、靱性が×である。比較例のNo.18は、2種類の母材金属粉末の混合比が大きく、熱処理粒度調整の温度が1250℃と高いため、MC炭化物およびM6C炭化物が粗大化し、靱性が×である。比較例のNo.11、No.19は、2種類の母材金属粉末の混合比が大きいので、母材のC濃度差が確保できず、M6C炭化物が粗大化し、靱性が×である。比較例のNo.25は、熱処理粒度調整が無しであるので、MC炭化物は3.5μmよりも微細であるために、耐摩耗性は1.2で低い。比較例のNo.29は、熱処理粒度調整の温度が1250℃と高いため、MC炭化物およびM6C炭化物が粗大化し、靱性が×である。 Comparative Example No. 5, 15 and 24, since two kinds of powders are produced as a base metal powder, there is a difference in C concentration in the base metal powder, but there is no heat treatment particle size adjustment, so MC carbide is finer than 3.5 μm. Therefore, the wear resistance is as low as 1.1. Comparative Example No. 6, no. In No. 17, the temperature of heat treatment particle size adjustment is as low as 1080 ° C., and MC carbide is finer than 3.5 μm, so the wear resistance is low at 1.2 and 1.1. Comparative Example No. 7 is a single-composition powder consisting of one type of base metal powder, so there is no difference in C concentration in the base metal powder and it is 0. When the heat treatment particle size adjustment is performed, MC carbide does not become coarse. , M 6 C carbide is larger than 2.5 μm, the carbide becomes coarse, and the toughness is x. Comparative Example No. Nos. 8, 9, and 16 perform the heat treatment particle size adjustment of the two types of base metal powders. 8 and 16, 0.25%, No. No. 9 is as low as 0.45%, and the toughness is x because the M 6 C carbide coarsened when the heat treatment particle size adjustment was performed. Comparative Example No. In No. 10, since the temperature of heat treatment particle size adjustment of the two types of base metal powders is as high as 1250 ° C., MC carbide and M 6 C carbide are coarsened and toughness is x. Comparative Example No. No. 18 has a large mixing ratio of the two types of base metal powders, and the heat treatment particle size adjustment temperature is as high as 1250 ° C., so that MC carbide and M 6 C carbide are coarsened and toughness is x. Comparative Example No. 11, no. No. 19 has a large mixing ratio of the two types of base metal powders, so that a difference in C concentration between the base materials cannot be secured, the M 6 C carbide is coarsened, and the toughness is x. Comparative Example No. In No. 25, since there is no heat treatment particle size adjustment, the MC carbide is finer than 3.5 μm, so the wear resistance is low at 1.2. Comparative Example No. No. 29 has a heat treatment particle size adjustment temperature as high as 1250 ° C., so MC carbide and M 6 C carbide are coarsened and toughness is x.

上記の比較例に対し、本発明例であるNo.1〜3、No.12〜13、No.20〜22、No.26、No.28、No.31、およびNo.33〜34は、いずれも本発明の請求項の条件を満足していることから、靱性は○でかつ耐摩耗性に優れていることが分かる。   In contrast to the above comparative example, No. 1-3, no. 12-13, no. 20-22, no. 26, no. 28, no. 31, and no. Since 33 to 34 all satisfy the conditions of the claims of the present invention, it can be seen that toughness is good and wear resistance is excellent.

以上述べたように、本発明における粉末高速工具鋼を、母材金属粉末のC濃度が0.50%以上異なる2種類以上の金属粉末を母材に用いて焼結し、さらに熱処理により適性大きさの3.5〜10μmのMC炭化物と微細なM6C炭化物が混在する組織とすることで、靱性と耐摩耗性を兼ね備えた粉末高速度工具鋼が得られた。 As described above, the powder high-speed tool steel according to the present invention is sintered using two or more kinds of metal powders having different C concentrations of the base metal powder of 0.50% or more as the base material, and further suitable for heat treatment. By using a structure in which 3.5 to 10 μm MC carbides and fine M 6 C carbides are mixed, powder high-speed tool steel having both toughness and wear resistance was obtained.

Claims (3)

質量%で、C:1.30〜2.30%、Si:0.1〜1.0%、Mn:0.1〜1.0%、Cr:3.0〜5.0%、Mo:0.5〜5.0%、W:5.0〜20.0%、V:3.0〜7.5%を含有し、残部Feおよび不可避的不純物よりなる鋼であり、該鋼中にある炭化物のうち、MC炭化物の最大径は3.5〜10μmを、M6C炭化物の最大径は2.5μm以下を満たすことを特徴とする粉末高速度工具鋼。 In mass%, C: 1.30 to 2.30%, Si: 0.1 to 1.0%, Mn: 0.1 to 1.0%, Cr: 3.0 to 5.0%, Mo: A steel containing 0.5 to 5.0%, W: 5.0 to 20.0%, V: 3.0 to 7.5%, the balance being Fe and inevitable impurities, Among the certain carbides, powder carbide high-speed tool steel characterized in that the maximum diameter of MC carbide satisfies 3.5 to 10 μm and the maximum diameter of M 6 C carbide satisfies 2.5 μm or less. 請求項1に記載の成分組成に加えて、さらにCo:10.0%以下(ただし0%は含まない。)を含有し、残部Feおよび不可避的不純物よりなる鋼であり、該鋼中にある炭化物のうち、MC炭化物の最大径は3.5〜10μmを、M6C炭化物の最大径は2.5μm以下を満たすことを特徴とする粉末高速度工具鋼。 In addition to the component composition according to claim 1, the steel further contains Co: 10.0% or less (excluding 0%), and is composed of the remaining Fe and inevitable impurities, and is in the steel. Among carbides, the maximum diameter of MC carbide satisfies 3.5 to 10 μm, and the maximum diameter of M 6 C carbide satisfies 2.5 μm or less. 請求項1または2に記載の粉末高速度鋼の成分組成を含有し、残部Feおよび不可避的不純物よりなる金属粉末のうち、C濃度が0.5%以上異なる2種類以上の金属粉末を混合して固化成形した鋼であり、該鋼中にある炭化物のうち、MC炭化物の最大径は3.5〜10μm、M6C炭化物の最大径は2.5μm以下を満たすことを特徴とする粉末高速度工具鋼。 2 or more types of metal powders containing the composition of the powder high-speed steel according to claim 1 or 2 and having a balance of Fe and unavoidable impurities and having a C concentration of 0.5% or more are mixed. The powder height is characterized in that the maximum diameter of MC carbide is 3.5 to 10 μm and the maximum diameter of M 6 C carbide is 2.5 μm or less among the carbides in the steel. Speed tool steel.
JP2014222003A 2013-11-27 2014-10-30 Powdered high speed tool steel Active JP6516440B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014222003A JP6516440B2 (en) 2013-11-27 2014-10-30 Powdered high speed tool steel

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013244495 2013-11-27
JP2013244495 2013-11-27
JP2014222003A JP6516440B2 (en) 2013-11-27 2014-10-30 Powdered high speed tool steel

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019050078A Division JP6710484B2 (en) 2013-11-27 2019-03-18 Powder high speed tool steel

Publications (2)

Publication Number Publication Date
JP2015127455A true JP2015127455A (en) 2015-07-09
JP6516440B2 JP6516440B2 (en) 2019-05-22

Family

ID=53837576

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2014222003A Active JP6516440B2 (en) 2013-11-27 2014-10-30 Powdered high speed tool steel
JP2019050078A Active JP6710484B2 (en) 2013-11-27 2019-03-18 Powder high speed tool steel

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2019050078A Active JP6710484B2 (en) 2013-11-27 2019-03-18 Powder high speed tool steel

Country Status (1)

Country Link
JP (2) JP6516440B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022109658A1 (en) * 2020-11-27 2022-06-02 Tang, Yuankui A new wear resistant steel with high hardness and good toughness which keeps hardened after hard facing and tungsten carbide tile brazing

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019122638A1 (en) * 2019-08-22 2021-02-25 Voestalpine Böhler Edelstahl Gmbh & Co Kg Tool steel for cold work and high speed applications

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07188859A (en) * 1993-12-28 1995-07-25 Daido Steel Co Ltd Powder high speed steel
JPH10175004A (en) * 1996-12-13 1998-06-30 Hitachi Metals Ltd Powder metallurgy high speed tool steel rolling roll
US20030095886A1 (en) * 2001-04-11 2003-05-22 Bohler Edelstahl Gmbh PM high-speed steel having high elevated-temperature strength
JP2008214722A (en) * 2007-03-07 2008-09-18 Sanyo Special Steel Co Ltd Steel having high wear-resistance and high toughness for high-speed tool and manufacturing method therefor
JP2008248307A (en) * 2007-03-30 2008-10-16 Kubota Corp High toughness and high speed steel-base sintered alloy

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07188859A (en) * 1993-12-28 1995-07-25 Daido Steel Co Ltd Powder high speed steel
JPH10175004A (en) * 1996-12-13 1998-06-30 Hitachi Metals Ltd Powder metallurgy high speed tool steel rolling roll
US20030095886A1 (en) * 2001-04-11 2003-05-22 Bohler Edelstahl Gmbh PM high-speed steel having high elevated-temperature strength
JP2008214722A (en) * 2007-03-07 2008-09-18 Sanyo Special Steel Co Ltd Steel having high wear-resistance and high toughness for high-speed tool and manufacturing method therefor
JP2008248307A (en) * 2007-03-30 2008-10-16 Kubota Corp High toughness and high speed steel-base sintered alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022109658A1 (en) * 2020-11-27 2022-06-02 Tang, Yuankui A new wear resistant steel with high hardness and good toughness which keeps hardened after hard facing and tungsten carbide tile brazing

Also Published As

Publication number Publication date
JP6710484B2 (en) 2020-06-17
JP2019116688A (en) 2019-07-18
JP6516440B2 (en) 2019-05-22

Similar Documents

Publication Publication Date Title
KR101842825B1 (en) Austenitic stainless steel and method for producing same
KR100373169B1 (en) Powder metallurgy cold oral with high impact toughness and abrasion resistance and manufacturing method
JP5328331B2 (en) Steel materials for wear-resistant quenched and tempered parts and manufacturing method
JP6410515B2 (en) Nitride powder high-speed tool steel excellent in wear resistance and method for producing the same
TW201107495A (en) High strength low alloyed sintered steel
JP6366326B2 (en) High toughness hot work tool steel and manufacturing method thereof
JP2020501027A (en) Powder metallurgically produced steel material comprising hard material particles, a method for producing parts from such steel material, and parts produced from steel material
KR100909922B1 (en) Cold work steel
JP5323679B2 (en) Cold work steel
CN105980590A (en) A steel alloy and a component comprising such a steel alloy
WO2021124511A1 (en) High-hardness and high–corrosion resistance martensitic steel having excellent cold workability and production method for same
JP6710484B2 (en) Powder high speed tool steel
JP6301145B2 (en) Sleeve dog gear
JP2007224418A (en) Hot tool steel having excellent toughness
JP6537342B2 (en) High-speed nitrided powder tool steel with excellent hardness, toughness and wear resistance
JP7186144B2 (en) Iron-based alloy member
KR20190071746A (en) Powder metallurgy produced steels, methods of making parts of this type of steel, and parts made of such steels
JP2684736B2 (en) Powder cold work tool steel
JP2008095181A (en) Hot-working tool steel having superior toughness and high-temperature strength
JP6345945B2 (en) Powdered high-speed tool steel with excellent wear resistance and method for producing the same
JP6312120B2 (en) Powdered high speed tool steel and manufacturing method thereof
JPH0143017B2 (en)
KR102356521B1 (en) Uniform steel alloys and tools
JP2019131889A (en) Mold for super hard alloy-made plastic processing, and manufacturing method thereof
KR100299463B1 (en) A method of manufacturing cold work tool steel with superior toughness and wear resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170923

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181023

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190318

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190416

R150 Certificate of patent or registration of utility model

Ref document number: 6516440

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250