JPH01152242A - High-toughness and high-speed steel by powder metallurgy - Google Patents
High-toughness and high-speed steel by powder metallurgyInfo
- Publication number
- JPH01152242A JPH01152242A JP31349487A JP31349487A JPH01152242A JP H01152242 A JPH01152242 A JP H01152242A JP 31349487 A JP31349487 A JP 31349487A JP 31349487 A JP31349487 A JP 31349487A JP H01152242 A JPH01152242 A JP H01152242A
- Authority
- JP
- Japan
- Prior art keywords
- toughness
- steel
- powder metallurgy
- less
- speed steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004663 powder metallurgy Methods 0.000 title claims abstract description 19
- 229910000997 High-speed steel Inorganic materials 0.000 title claims abstract description 18
- 239000012535 impurity Substances 0.000 claims abstract description 4
- 229910052799 carbon Inorganic materials 0.000 claims abstract 4
- 239000000463 material Substances 0.000 abstract description 15
- 229910000831 Steel Inorganic materials 0.000 abstract description 13
- 239000010959 steel Substances 0.000 abstract description 13
- 239000000843 powder Substances 0.000 abstract description 5
- 229910052750 molybdenum Inorganic materials 0.000 abstract description 4
- 229910052721 tungsten Inorganic materials 0.000 abstract description 4
- 229910052804 chromium Inorganic materials 0.000 abstract description 3
- 229910052748 manganese Inorganic materials 0.000 abstract description 3
- 229910052710 silicon Inorganic materials 0.000 abstract description 3
- 229910052720 vanadium Inorganic materials 0.000 abstract description 3
- 238000000034 method Methods 0.000 abstract 1
- 238000010438 heat treatment Methods 0.000 description 14
- 238000005496 tempering Methods 0.000 description 12
- 150000001247 metal acetylides Chemical class 0.000 description 11
- 238000010791 quenching Methods 0.000 description 11
- 230000000171 quenching effect Effects 0.000 description 11
- 230000000694 effects Effects 0.000 description 9
- 239000002245 particle Substances 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 6
- 238000001816 cooling Methods 0.000 description 5
- 230000006698 induction Effects 0.000 description 5
- 239000006104 solid solution Substances 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 229910001315 Tool steel Inorganic materials 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000001192 hot extrusion Methods 0.000 description 3
- 238000001000 micrograph Methods 0.000 description 3
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009863 impact test Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
【発明の詳細な説明】
〈産業上の利用分野〉
この発明は、粉末冶金法による高速度工具鋼にかかり、
特にその靭性の改良に関するものである。[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to high-speed tool steel produced by powder metallurgy.
In particular, it relates to improving its toughness.
〈従来の技術〉
従来、例えば第1表に示すような成分(重量%)を鉄に
加えた高速度鋼が知られていた。<Prior Art> Hitherto, high-speed steels have been known in which, for example, the components (wt%) shown in Table 1 are added to iron.
第 1 表 (従来の高速度鋼)
上述の高速度鋼は、一般には溶製材として多く利用され
ているが、近年、工具の使用条件の苛酷化に伴い、靭性
を高めるために、粉末冶金材が使用されている。粉末冶
金材の多くは、粉末を熱間ブレスにより固結させた後に
鍛造、圧延して製造をされているが、2〜4ミクロン程
度の微細な−軟度化物がマトリクス中に均一に分散し、
結晶粒も微細であるために多くの面で特性が優れ、特に
靭性な比較すると、上記鋼材Aの場合、硬さHRC66
レベルでの抗折力が、溶製材では約300Kgf/mm
2であるのに対し、粉末冶金材では約480Kgf/a
m2と、1.5倍以上の値を示す。Table 1 (Conventional high-speed steels) The high-speed steels mentioned above are generally used as ingot materials, but in recent years, as tool usage conditions have become more severe, powder metallurgy materials have been developed to improve toughness. is used. Most powder metallurgy materials are manufactured by solidifying the powder using hot pressing, then forging and rolling. ,
Because the crystal grains are fine, it has excellent properties in many aspects, especially toughness.In the case of the above steel A, the hardness is HRC66.
Transverse rupture strength at level is approximately 300Kgf/mm for melted lumber
2, whereas for powder metallurgy materials it is about 480Kgf/a.
m2, indicating a value of 1.5 times or more.
〈発明が解決しようとする問題点〉
しかしながら、工具の使用条件が更に苛酷になると、上
述の粉末冶金材でさえも靭性が十分てはなく、更に一層
の特性の向上が望まれていた。<Problems to be Solved by the Invention> However, as the conditions for use of tools become more severe, even the powder metallurgy materials described above do not have sufficient toughness, and further improvements in properties have been desired.
この発明は、従来の高速度鋼の粉末冶金材と同等或いは
それ以上の硬さと耐摩耗性を具え、かつ靭性か一層高い
工具鋼を実現しようとするものである。This invention aims to realize a tool steel that has hardness and wear resistance equal to or greater than conventional powder metallurgy materials of high-speed steel, and has higher toughness.
〈問題点を解決するための手段〉
発明者は、上述の目的を達成するために、特に炭化物の
粒径や分布状態に着目し、これについて研究した結果、
高速度鋼の粉末冶金材の靭性な高めるためには、従来2
〜4ミクロンであった炭化物粒径な、1.0ミクロン以
下に抑えるのが極めて有効であることを見出した。<Means for Solving the Problems> In order to achieve the above-mentioned object, the inventor focused particularly on the particle size and distribution state of carbides, and as a result of research on this, found that:
In order to increase the toughness of powder metallurgy materials for high-speed steel, conventional
It has been found that it is extremely effective to suppress the carbide particle size to 1.0 micron or less, which was previously 4 microns.
即ち、この出願の第1の発明の鋼材は、原料として重量
%で、Cが0.7〜2.5 、 Siが2.0以下、M
nか1.5以下、Crが3.0〜5.0 、 Vか0.
8〜25.0の必須成分と、Moか3.0〜10.0及
びWか1.0〜20.0のいずれか一方または双方の選
択成分と、残りのFe及び不可避不純物とからなる鋼の
粉末を用い、粉末冶金法により鋼材としだものて、これ
に含まれている炭化物は粒径か円相当径で1.0ミクロ
ン以下であることを特徴とする。That is, the steel material of the first invention of this application has C as a raw material in weight% of 0.7 to 2.5, Si of 2.0 or less, and M as a raw material.
n is 1.5 or less, Cr is 3.0 to 5.0, V is 0.
Steel consisting of an essential component of 8 to 25.0, a selected component of Mo or 3.0 to 10.0 and one or both of W or 1.0 to 20.0, and the remaining Fe and unavoidable impurities. The steel material is made by powder metallurgy using the powder, and the carbide contained therein is characterized in that the grain size or equivalent circle diameter is 1.0 microns or less.
また、この出願の第2の発明の鋼材は、第1の発明にお
ける必須成分及び選択成分に加えて、G。Further, the steel material of the second invention of this application contains G in addition to the essential components and optional components in the first invention.
が4.0〜12.0、及びNbか0.1〜5.0 ノイ
ずれか一方または双方の第2選択成分を含有することを
特徴とする。is 4.0 to 12.0, and contains a second selected component of Nb, 0.1 to 5.0 Noy, or both.
次に、この発明において成分を限定する理由を述べる。Next, the reason for limiting the components in this invention will be described.
Cは、Cr、 V、 Mo、 W及びNbの炭化物形成
に不可欠であると共に、焼入れ時にマトリクスに固溶し
高い焼戻し硬さを与えるために必要な成分である。焼入
れ及び焼戻しによってHRC62以上の硬さを得るため
には、少くとも0.7重量%の添加か必要であるが、2
.5重量%を越えると、この発明で要求される1、0ミ
クロン以下の炭化物粒径な得ることができなくなる。C is essential for the formation of carbides of Cr, V, Mo, W, and Nb, and is also a necessary component to form a solid solution in the matrix during quenching and provide high tempering hardness. In order to obtain a hardness of HRC62 or higher by quenching and tempering, it is necessary to add at least 0.7% by weight, but 2.
.. If it exceeds 5% by weight, it will not be possible to obtain the carbide particle size of 1.0 microns or less required in the present invention.
Siは、主に脱酸剤として添加され、焼入れ性を向上さ
せるが、2.0重量%を越えると靭性の劣化を起こす。Si is mainly added as a deoxidizing agent and improves hardenability, but if it exceeds 2.0% by weight, it causes deterioration of toughness.
Mnは、Siと同様に脱酸剤として添加され、焼入れ性
を向上させるが、1.5重量%を越えると靭性や焼戻し
の際の軟化抵抗が低下する。Like Si, Mn is added as a deoxidizing agent and improves hardenability, but if it exceeds 1.5% by weight, toughness and softening resistance during tempering decrease.
Crは、焼入れ性の確保のために最低限3.0重量%が
必要であるが、Cr炭化物は、凝集粗大化し易いために
、6重量%を越えるのは好ましくない。A minimum amount of 3.0% by weight of Cr is required to ensure hardenability, but it is not preferable to exceed 6% by weight since Cr carbides tend to aggregate and coarsen.
■は、固溶しにくい安定なMd型の炭化物を形成し、結
晶粒を微細化させ、靭性の向上に役立つと共に、対摩耗
性を著るしく向上させる。0.8重量%未満では耐摩耗
性の向上効果が小さく、25重量%を越えると巨大共晶
炭化物を生成する。(2) forms stable Md-type carbides that are difficult to form solid solutions, makes crystal grains finer, helps improve toughness, and significantly improves wear resistance. If it is less than 0.8% by weight, the effect of improving wear resistance is small, and if it exceeds 25% by weight, giant eutectic carbides are produced.
MoとWは、共にM6C型炭化物を形成し、#摩耗性を
向上させるが、この効果はMOの方か大きく、Wの約2
倍の影響力を持つ。Moは耐摩耗性と共に焼入れ性も高
め、これらの効果を得るためには少くとも3.0重量%
は必要であるが、10.0重量%を越えると炭化物が粗
大化する。また、Wは対摩耗性を向上させるために少な
くとも1.0重量%が必要であるが、MOより炭化物か
粗大化しにくいため、上限値をMoの2倍に設定した。Both Mo and W form M6C type carbides and improve #wear properties, but this effect is greater for MO, about 2
have twice as much influence. Mo increases hardenability as well as wear resistance, and in order to obtain these effects, the content is at least 3.0% by weight.
is necessary, but if it exceeds 10.0% by weight, the carbide will become coarse. In addition, at least 1.0% by weight of W is required to improve wear resistance, but since it is less likely to form coarse carbides than MO, the upper limit was set to twice that of Mo.
CoとNbは、それぞれ耐熱性と靭性な向上させるため
、目的に応じて添加される。Goはマトリクス中に固溶
し、炭化物の凝集粗大化を抑えて焼戻しのときの軟化抵
抗を大きくする。この効果を得るためには少なくとも4
.0重量%が必要であるが。Co and Nb are added depending on the purpose to improve heat resistance and toughness, respectively. Go forms a solid solution in the matrix, suppresses the agglomeration and coarsening of carbides, and increases the softening resistance during tempering. To get this effect, at least 4
.. Although 0% by weight is required.
12.0を越えて添加してもその効果は高まらない。Even if it is added in excess of 12.0, the effect will not increase.
Nbは安定な炭化物を形成し、結晶粒の粗大化を阻止す
る。0.1重量%未満てはその効果が現われず、5.0
重量%を越えると焼戻しのときの軟化抵抗の低下や靭性
の低下をもたらす。・
〈作用〉
第1表に示した代表的な高速度鋼A、B、Cを、粉末冶
金法により鋼材となし、炭化物の粒径と靭性との関係を
求めた。Nb forms stable carbides and prevents coarsening of crystal grains. If it is less than 0.1% by weight, the effect will not appear;
Exceeding this percentage by weight results in a decrease in softening resistance during tempering and a decrease in toughness. - <Effect> Typical high-speed steels A, B, and C shown in Table 1 were made into steel materials by powder metallurgy, and the relationship between carbide grain size and toughness was determined.
各試料は、各供試鋼A、B、Cの35メツシユ以下のガ
スアトマイズ粉末を、それぞれ径160a+mの軟鋼製
カプセルに充填し、脱気、封止して、熱間押出法により
径50II11の棒鋼を得て、これから切出した。Each sample was made by filling gas atomized powder of 35 meshes or less of each test steel A, B, and C into a mild steel capsule with a diameter of 160 a + m, degassing and sealing, and hot extruding it into a bar with a diameter of 50 II and 11. I got it and started cutting it out.
各試料の炭化物の粒径の調節は、熱間押出しのための誘
導加熱を行う際に、加熱温度及び同温度における保持時
間の調節によって行い。The particle size of the carbide in each sample was adjusted by adjusting the heating temperature and holding time at the same temperature during induction heating for hot extrusion.
(イ) 1ooo℃× 5分 (ロ) 105
0℃XIO分(ハ) 1100°C× 10分
(ニ) 1100℃×20分の4通りを実施した。(B) 1ooo℃ x 5 minutes (B) 105
0℃XIO minutes (c) 1100℃× 10 minutes
(d) Four tests were conducted at 1100°C for 20 minutes.
切出した試料には、次の熱処理を行った。The cut samples were subjected to the following heat treatment.
焼入れ 1190°C×3分 →油冷焼戻し 57
06CX1時間→空冷(3回)炭化物粒径は、熱処理後
の試料について測定し、円相当径を採用したが、上記誘
導加熱条件(イ)及び(ロ)の試料が、炭化物粒径1.
0ミクロン以下となった。Quenching 1190°C x 3 minutes → Oil cooling tempering 57
06CX 1 hour → air cooling (3 times) The carbide particle size was measured on the sample after heat treatment and the equivalent circle diameter was adopted, but the sample under the above induction heating conditions (a) and (b) had a carbide particle size of 1.
It became less than 0 micron.
上述の各試料について、抗折力の測定及びシャルピー衝
撃値の測定を行った結果は、それぞれ第1図及び第2図
に示す通りであり、炭化物粒径が約1.0ミクロンを境
として、高速度工具鋼の靭性を改善することができた。The results of measuring the transverse rupture strength and Charpy impact value of each of the above samples are shown in Figures 1 and 2, respectively. The toughness of high-speed tool steel could be improved.
なお、抗折力試験は、直径が81で長さが80mmの試
験片について50+smのスパンで実施し、シャルピー
衝撃試験は、10mm角で長さが55mmの角材の一側
面の中央に、曲率半径10mmのノツチを211I11
の深さに設けた試験片を用いて実施した。The transverse rupture strength test was conducted on a test piece with a diameter of 81 mm and a length of 80 mm with a span of 50 + sm, and the Charpy impact test was conducted with a radius of curvature at the center of one side of a 10 mm square and 55 mm long square piece. 10mm notch 211I11
The test was carried out using a test piece placed at a depth of .
〈実施例〉
第2表に示す12種類の高速度鋼試料\1〜12を粉末
冶金法と熱間押出し法の併用によって製造した。各鋼は
、35メツシユ以下のガスアトマイズ粉末を径16hm
の軟鋼製カプセルに充填し、脱気及び封止の後に誘導加
熱を行い、熱間押出し法により径50a+mの棒鋼を製
造し、これから試料な切出し、次の条件て熱処理を行っ
た。<Example> Twelve types of high-speed steel samples \1 to 12 shown in Table 2 were manufactured by a combination of powder metallurgy and hot extrusion. Each steel is made of gas atomized powder of 35 mesh or less with a diameter of 16 hm.
The mixture was filled into a mild steel capsule, degassed and sealed, and then subjected to induction heating to produce a steel bar with a diameter of 50 a+m by hot extrusion, from which a sample was cut and heat treated under the following conditions.
焼入れ 1190℃×3分 →油冷
焼戻し 570℃×1時間→空冷(3回)ここで、試
料番号にaが付せられているのはこの発明の実施例であ
り、上記誘導加熱を1030°CXT分の条件て実施し
たものである。また、試験番号にbか付せられているの
は比較例で、上記誘導加熱を1100℃×14分の条件
で実施したものである。Quenching 1190°C x 3 minutes → Oil cooling Tempering 570°C x 1 hour → Air cooling (3 times) Here, the sample number with a is attached to the example of this invention, and the above induction heating was performed at 1030°. This test was carried out under the same conditions as CXT. Moreover, the test number with b appended to it is a comparative example, in which the above-mentioned induction heating was carried out at 1100° C. for 14 minutes.
これらの試料について、靭性を知るために抗折力試験及
びシャルピー衝撃試験を行ったが、これらの試験の条件
は、第1図及び第2図の場合とそれぞれ同一である。These samples were subjected to a transverse rupture strength test and a Charpy impact test to determine their toughness, and the conditions for these tests were the same as in the cases of FIGS. 1 and 2, respectively.
第2表によって明らかなように、炭化物の粒径は、この
発明の実施例ではすべて1ミクロン以下であるのに対し
て、比較例では格段と大きい。第3図及び第4図は、そ
れぞれ上記実施例10a及び比較例10bの顕微鏡写真
(1000倍)を示す。そして、各実施例では、対応す
る比較例に較べて、明らかにシャルピー衝撃値及び抗折
力が改善された。As is clear from Table 2, the grain sizes of the carbides are all 1 micron or less in the Examples of the present invention, whereas they are much larger in the Comparative Examples. FIGS. 3 and 4 show micrographs (1000 times magnification) of Example 10a and Comparative Example 10b, respectively. In each example, the Charpy impact value and transverse rupture strength were clearly improved compared to the corresponding comparative example.
〈発明の効果〉
上記実施例によって明らかなように、この発明によれば
、析出する炭化物の粒径か1ミクロン以下になるように
制御することによって、粉末冶金法による高速度鋼の靭
性を更に改善することがてきた。<Effects of the Invention> As is clear from the above examples, according to the present invention, the toughness of high-speed steel produced by powder metallurgy can be further improved by controlling the grain size of precipitated carbides to be 1 micron or less. I've been able to improve it.
第1図は炭化物粒径と抗折力との関係を示す線図、第2
図は炭化物粒径とシャルピー衝撃値との関係を示す線図
、第3図はこの発明の1実施例のl1li微鏡写真、第
4図は上記実施例に対応する比較例の顕微鏡写真である
。
′:Xl 図
六41勿崖立イ苓・Cミクロン)
疫化物’ri多ト(ミクロン)
才4図
手続一?f口正書(自発)
平成1年2月7日
1 21G件の表示
特願昭62−313494号
2 発明の名称
粉末冶金法による高靭性高速度鋼
3 補正をする者
郵便番号651
住所 神戸市中央区雲井通7丁目1番1号5 補正の対
象
明細書の「発明の詳細な説明」の欄。
6 補正の内容
(1)明細書第3頁第6行の次に下記を挿入する。
記
なお、これらの高速度鋼材に必要な硬さと靭性を与える
ために、通常は1200°Cに近い高温からの焼入れと
、600°C近い温度からの焼戻しとが行われている。
(2)同書回頁第14行の次に下記を挿入する。
記
また、従来の高速度鋼の粉末冶金材か高温からの焼入れ
を要し、焼入れに必要な経費が嵩んでいたことに鑑みて
、焼入れや焼戻しの温度を引下げることにより、熱処理
に要する経費を低減しようとするものである。
(3)同書第6頁第18行の次に下記を挿入する。
記
熱処理条件としては、従来の高速度鋼の粉末冶金材と同
様な、1200°C附近からの焼入れと、600℃附近
からの焼戻しとを実施することもできるか、これよりも
低い1000〜1050℃附近からの焼入れと500〜
550℃附近からの焼戻しを行った場合ても、IIRc
約65以上という高度の硬さを得ることかできる。
(4)同書第8頁第1O行の次に下記を挿入する。
記
上述の熱処理条件のもとでは、全試料がHRC65以上
の硬さを示したが、熱処理条件をダイス鋼並みの
焼入れ 1050℃×30分 →油冷焼戻し 530
°CX1時間 →空冷(3回)としたときは、試料(ハ
)及び(ニ)はHRC62〜64レベルの硬さにしかな
らなかった。しかし、試料(イ)及び(ロ)は、この熱
処理条件でも1lRc65以上の硬さを示すことかでき
た。これは、試料(イ)及び(ロ)の場合には、炭化物
か極めて微細なだめに、比較的低い焼入\温度でも容易
に固溶状態になるためである。
(5)同書第11頁第8行の次に下記を挿入する。
記
また、上述の実施例18〜12a及び比較例1b〜12
bについて、異なる条件で熱処理を実施した後の硬さは
、第3表の通りであった。
第3表(熱処理効果の比較)
(6)同書第11頁第13〜14行の「ことかできた。
」を「ことがてき、或いは比較的低い焼入温度でも十分
実用的な硬さを発現させることができた。」と訂正する
。
以 上Figure 1 is a diagram showing the relationship between carbide particle size and transverse rupture strength;
The figure is a diagram showing the relationship between carbide particle size and Charpy impact value, Figure 3 is an 11li microphotograph of an example of the present invention, and Figure 4 is a micrograph of a comparative example corresponding to the above example. . ' : f Oral letter (spontaneous) February 7, 1999 1 Display of 21G Patent Application No. 1983-313494 2 Name of the invention High toughness high speed steel made by powder metallurgy 3 Person making the amendment Postal code 651 Address Kobe City 7-1-1-5 Kumoidori, Chuo-ku "Detailed Description of the Invention" column of the specification to be amended. 6. Contents of the amendment (1) The following shall be inserted after the 6th line of the 3rd page of the specification. Note that in order to give these high-speed steel materials the necessary hardness and toughness, quenching at a high temperature close to 1200°C and tempering at a temperature close to 600°C are usually performed. (2) Insert the following after line 14 of the circular page of the same book. In addition, in view of the fact that conventional high-speed steel powder metallurgy materials require quenching from high temperatures, which increases the cost required for quenching, we have reduced the cost required for heat treatment by lowering the quenching and tempering temperatures. The aim is to reduce the (3) Insert the following after page 6, line 18 of the same book. As heat recording treatment conditions, quenching from around 1200°C and tempering from around 600°C, similar to those for conventional powder metallurgy materials of high-speed steel, can be carried out, or lower temperatures of 1000 to 1050°C can be carried out. Quenching from around ℃ and 500~
Even when tempering is performed from around 550℃, IIRc
It is possible to obtain a high degree of hardness of approximately 65 or higher. (4) Insert the following after page 8, line 1, O of the same book. Under the above heat treatment conditions, all samples showed hardness of HRC65 or higher, but the heat treatment conditions were quenched at the same level as die steel, 1050°C x 30 minutes → oil-cooled tempering 530
When CX was used for 1 hour → air cooling (3 times), the hardness of samples (c) and (d) was only at the HRC62-64 level. However, samples (a) and (b) were able to exhibit hardness of 11Rc65 or more even under these heat treatment conditions. This is because in the case of samples (a) and (b), the carbide is extremely fine and easily becomes a solid solution even at a relatively low quenching temperature. (5) Insert the following after line 8 on page 11 of the same book. In addition, the above-mentioned Examples 18 to 12a and Comparative Examples 1b to 12
Regarding b, the hardness after heat treatment under different conditions was as shown in Table 3. Table 3 (Comparison of heat treatment effects) I was able to make it manifest,” he corrected. that's all
Claims (2)
下、Mnが1.5以下、Crが3.0〜6.0、Vが0
.8〜25.0の必須成分と、Moが3.0〜10.0
、及びWが1.0〜20.0のいずれか一方または双方
の選択成分と、残りのFe及び不可避不純物とからなり
、炭化物粒径が円相当径で1.0ミクロン以下であるこ
とを特徴とする粉末冶金法による高靭性高速度鋼。(1) In weight%, C is 0.7 to 2.5, Si is 2.0 or less, Mn is 1.5 or less, Cr is 3.0 to 6.0, V is 0
.. Essential components of 8 to 25.0 and Mo of 3.0 to 10.0
, and W is 1.0 to 20.0, or both selected components, and the remaining Fe and unavoidable impurities, and the carbide grain size is 1.0 micron or less in equivalent circle diameter. High-toughness high-speed steel manufactured by powder metallurgy.
下、Mnが1.5以下、Crが3.0〜6.0、Vが0
.8〜25.0の必須成分と、Moが3.0〜10.0
、及びWが1.0〜20.0のいずれか一方または双方
の第1選択成分と、Coが4.0〜12.0、及びNb
が0.1〜5.0のいずれか一方または双方の第2選択
成分と、残りのFe及び不可避不純物とからなり、炭化
物粒径が円相当径で1.0ミクロン以下であることを特
徴とする粉末冶金法による高靭性高速度鋼。(2) In weight%, C is 0.7 to 2.5, Si is 2.0 or less, Mn is 1.5 or less, Cr is 3.0 to 6.0, V is 0
.. Essential components of 8 to 25.0 and Mo of 3.0 to 10.0
, and one or both of the first selected components having W of 1.0 to 20.0, Co of 4.0 to 12.0, and Nb
0.1 to 5.0, and the remaining Fe and unavoidable impurities, and the carbide grain size is 1.0 micron or less in equivalent circle diameter. High-toughness high-speed steel made by powder metallurgy.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31349487A JPH01152242A (en) | 1987-12-10 | 1987-12-10 | High-toughness and high-speed steel by powder metallurgy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31349487A JPH01152242A (en) | 1987-12-10 | 1987-12-10 | High-toughness and high-speed steel by powder metallurgy |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01152242A true JPH01152242A (en) | 1989-06-14 |
Family
ID=18041986
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31349487A Pending JPH01152242A (en) | 1987-12-10 | 1987-12-10 | High-toughness and high-speed steel by powder metallurgy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01152242A (en) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02175846A (en) * | 1988-12-27 | 1990-07-09 | Daido Steel Co Ltd | Powder high-speed tool steel |
JPH04221046A (en) * | 1990-12-19 | 1992-08-11 | Kubota Corp | High speed steel type sintered alloy |
JPH04221042A (en) * | 1990-12-19 | 1992-08-11 | Kubota Corp | High speed steel type sintered alloy |
JPH04221047A (en) * | 1990-12-19 | 1992-08-11 | Kubota Corp | High speed steel type sintered alloy |
JPH04221045A (en) * | 1990-12-19 | 1992-08-11 | Kubota Corp | High speed steel type sintered alloy |
JPH04221043A (en) * | 1990-12-19 | 1992-08-11 | Kubota Corp | High speed steel type sintered alloy |
JPH05125479A (en) * | 1991-11-01 | 1993-05-21 | Sanyo Special Steel Co Ltd | Production of high-carbon steel products |
US5578773A (en) * | 1991-08-07 | 1996-11-26 | Erasteel Kloster Aktiebolag | High-speed steel manufactured by powder metallurgy |
US7229507B2 (en) * | 2003-04-09 | 2007-06-12 | Hitachi Metals, Ltd. | High speed tool steel |
JP2008248307A (en) * | 2007-03-30 | 2008-10-16 | Kubota Corp | High toughness and high speed steel-base sintered alloy |
JP2009533554A (en) * | 2006-04-13 | 2009-09-17 | ウッデホルム トウリング アクテイエボラーグ | Cold work steel |
US7909906B2 (en) * | 2001-06-21 | 2011-03-22 | Uddeholms Ab | Cold work steel and manufacturing method thereof |
CN103572167A (en) * | 2013-10-21 | 2014-02-12 | 虞伟财 | Preparation method of tool steel material for saw blades |
CN103572170A (en) * | 2013-10-28 | 2014-02-12 | 任静儿 | Chisel tool steel for powder metallurgy lawn mower |
CN103572169A (en) * | 2013-10-21 | 2014-02-12 | 虞伟财 | Tool steel material for saw blades |
CN103572168A (en) * | 2013-10-21 | 2014-02-12 | 虞伟财 | Tool steel material for saw blades and preparation method thereof |
CN104805366A (en) * | 2015-05-20 | 2015-07-29 | 中南大学 | Powder-metallurgy low-alloy steel and preparation method thereof |
WO2016184009A1 (en) * | 2015-05-15 | 2016-11-24 | 安泰科技股份有限公司 | Powder metallurgy wear-resistant tool steel |
EP3050986B1 (en) | 2013-09-27 | 2019-07-31 | Hitachi Metals, Ltd. | High-speed-tool steel and method for producing same |
US20220105568A1 (en) * | 2019-01-18 | 2022-04-07 | Vbn Components Ab | 3d printed high carbon content steel and method of preparing the same |
-
1987
- 1987-12-10 JP JP31349487A patent/JPH01152242A/en active Pending
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02175846A (en) * | 1988-12-27 | 1990-07-09 | Daido Steel Co Ltd | Powder high-speed tool steel |
JPH04221046A (en) * | 1990-12-19 | 1992-08-11 | Kubota Corp | High speed steel type sintered alloy |
JPH04221042A (en) * | 1990-12-19 | 1992-08-11 | Kubota Corp | High speed steel type sintered alloy |
JPH04221047A (en) * | 1990-12-19 | 1992-08-11 | Kubota Corp | High speed steel type sintered alloy |
JPH04221045A (en) * | 1990-12-19 | 1992-08-11 | Kubota Corp | High speed steel type sintered alloy |
JPH04221043A (en) * | 1990-12-19 | 1992-08-11 | Kubota Corp | High speed steel type sintered alloy |
US5578773A (en) * | 1991-08-07 | 1996-11-26 | Erasteel Kloster Aktiebolag | High-speed steel manufactured by powder metallurgy |
JPH05125479A (en) * | 1991-11-01 | 1993-05-21 | Sanyo Special Steel Co Ltd | Production of high-carbon steel products |
US7909906B2 (en) * | 2001-06-21 | 2011-03-22 | Uddeholms Ab | Cold work steel and manufacturing method thereof |
US7754032B2 (en) | 2003-04-09 | 2010-07-13 | Hitachi Metals, Ltd. | Method for manufacturing a high speed tool steel |
US7229507B2 (en) * | 2003-04-09 | 2007-06-12 | Hitachi Metals, Ltd. | High speed tool steel |
JP2009533554A (en) * | 2006-04-13 | 2009-09-17 | ウッデホルム トウリング アクテイエボラーグ | Cold work steel |
JP2008248307A (en) * | 2007-03-30 | 2008-10-16 | Kubota Corp | High toughness and high speed steel-base sintered alloy |
EP3050986B1 (en) | 2013-09-27 | 2019-07-31 | Hitachi Metals, Ltd. | High-speed-tool steel and method for producing same |
CN103572167A (en) * | 2013-10-21 | 2014-02-12 | 虞伟财 | Preparation method of tool steel material for saw blades |
CN103572169A (en) * | 2013-10-21 | 2014-02-12 | 虞伟财 | Tool steel material for saw blades |
CN103572168A (en) * | 2013-10-21 | 2014-02-12 | 虞伟财 | Tool steel material for saw blades and preparation method thereof |
CN103572170A (en) * | 2013-10-28 | 2014-02-12 | 任静儿 | Chisel tool steel for powder metallurgy lawn mower |
WO2016184009A1 (en) * | 2015-05-15 | 2016-11-24 | 安泰科技股份有限公司 | Powder metallurgy wear-resistant tool steel |
US10385428B2 (en) | 2015-05-15 | 2019-08-20 | Heye Special Steel Co., Ltd | Powder metallurgy wear-resistant tool steel |
CN104805366A (en) * | 2015-05-20 | 2015-07-29 | 中南大学 | Powder-metallurgy low-alloy steel and preparation method thereof |
US20220105568A1 (en) * | 2019-01-18 | 2022-04-07 | Vbn Components Ab | 3d printed high carbon content steel and method of preparing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH01152242A (en) | High-toughness and high-speed steel by powder metallurgy | |
EP3333275B1 (en) | Stainless steel powder for producing sintered duplex stainless steel | |
JP4439591B2 (en) | Stainless steel powder and products made by powder metallurgy from the powder | |
EP1024917B1 (en) | A steel and a heat treated tool thereof manufactured by an integrated powder metallurgical process and use of the steel for tools | |
US3053706A (en) | Heat treatable tool steel of high carbide content | |
ES2296931T3 (en) | COLD STEEL FOR WORK. | |
JP4361686B2 (en) | Steel material and manufacturing method thereof | |
US4780139A (en) | Tool steel | |
US20090010795A1 (en) | Cold-Working Steel | |
EP1129229A1 (en) | Steel, use of the steel, product made of the steel and method of producing the steel | |
JPS59200743A (en) | Sintered alloy steel | |
JPH02175846A (en) | Powder high-speed tool steel | |
JP6710484B2 (en) | Powder high speed tool steel | |
KR20020012556A (en) | Steel cold work tool, its use and manufacturing | |
KR20000058123A (en) | Heavy wall steel material having superior weldability and method for producing the same | |
JP2999655B2 (en) | High toughness powder HSS | |
US3834948A (en) | Ductile,weldable high-strength-steel wire and method for producing same | |
JPH0143017B2 (en) | ||
JP6345945B2 (en) | Powdered high-speed tool steel with excellent wear resistance and method for producing the same | |
JPH0452218A (en) | Manufacture of high toughness cast steel | |
JPH07179908A (en) | Sulfur-containing powder metallurgy tool steel object | |
US7909906B2 (en) | Cold work steel and manufacturing method thereof | |
JPH06256915A (en) | Powder high speed steel tool | |
AT407646B (en) | COMPONENT MADE FROM A WEAR-RESISTANT, MELT METALLICALLY PRODUCED MATERIAL | |
JP2962969B2 (en) | Powdered high speed steel with excellent rusting properties |