JPH0452218A - Manufacture of high toughness cast steel - Google Patents

Manufacture of high toughness cast steel

Info

Publication number
JPH0452218A
JPH0452218A JP2163387A JP16338790A JPH0452218A JP H0452218 A JPH0452218 A JP H0452218A JP 2163387 A JP2163387 A JP 2163387A JP 16338790 A JP16338790 A JP 16338790A JP H0452218 A JPH0452218 A JP H0452218A
Authority
JP
Japan
Prior art keywords
cast steel
toughness
molten metal
amount
austenite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2163387A
Other languages
Japanese (ja)
Other versions
JP2803331B2 (en
Inventor
Shinya Mizuno
慎也 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP16338790A priority Critical patent/JP2803331B2/en
Publication of JPH0452218A publication Critical patent/JPH0452218A/en
Application granted granted Critical
Publication of JP2803331B2 publication Critical patent/JP2803331B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To manufacture high toughness cast steel by casting molten cast steel having a relatively low Si content with a metal mold and forming a uniform fine bainite-retained austenite mixed structure by austempering. CONSTITUTION:Molten cast steel consisting of 0.3-0.7wt.% C, 1.8-3.0wt.% Si and the balance essentially Fe is cast with a water-cooled copper mold at >=24 deg.C/sec cooling rate and a uniform fine bainitic ferrite-retained austenite mixed structure nearly free from graphite, untransformed massive austenite and free cementite is formed by austempering (heating for austenitizing at 900 deg.C for 1hr and heating for bainite formation at 400 deg.C for 1hr) to obtain cast steel having superior strength and toughness.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は高靭性鋳鋼の製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing high toughness cast steel.

[従来の技術] 鋳゛鋼には、フェライト系、パーライト系、ベイナイト
系、マルテンサイト系がある。しかしながら、−船釣に
鋳鋼では高靭性を得ることが困難である。そこで、鋳鋼
を鋳造した後に、オーステンパー処理して、基地組織を
ベイナイト組織として高靭性を得ている。
[Prior Art] Cast steels include ferritic, pearlite, bainite, and martensitic steels. However, it is difficult to obtain high toughness with cast steel for boat fishing. Therefore, after casting the cast steel, it is subjected to austempering treatment to change the base structure to a bainite structure to obtain high toughness.

例えば、カナダ特許第1130617号では、重量比で
C;O、s〜1.2%、S i;2.0〜2.6%、M
n;0.3〜1.0%、CrおよびNi;1%以下、そ
の他にNb、AI、Mo等を少量含有する鋼をオーステ
ンパー処理することにより、ベイナイト−オーステナイ
ト組織とし、高強度で高靭性の鋼を得ている。この発明
においては、高Si含有量とすることにより、オーステ
ンパー処理におけるセメンタイトの析出を防止し、生成
するベイナイトのC含有量を低めるとともに、結果とし
て残留オーステナイトのC含有量を増加し、残留オース
テナイトが安定化して、高強度および高靭性が得られて
いる。
For example, in Canadian Patent No. 1130617, C; O, s~1.2%, Si; 2.0~2.6%, M
By austempering steel containing n: 0.3 to 1.0%, Cr and Ni: 1% or less, and small amounts of Nb, AI, Mo, etc., it becomes a bainite-austenite structure with high strength and high strength. You are getting toughness steel. In this invention, by setting a high Si content, precipitation of cementite during austempering treatment is prevented, the C content of the generated bainite is lowered, and as a result, the C content of retained austenite is increased, and the retained austenite is is stabilized, resulting in high strength and toughness.

また、特開昭62−112735号公報においては、重
量比でC;0.3〜1.0%、S i;2.0〜4.5
%、Mn;0.8%以下、Mo;0.05〜1.0%、
N i;2.0%以下を含有する鋳鋼を、オーステンパ
ー処理し、基地組織中のベイナイト量を40%以上とし
、鋳放し状態ではパーライト基地組織中にフェライトお
よび黒鉛を多量に析出させて優れた被剛性を確保し、機
械加工後の所定のオーステンパー処理により、基地組織
を均一なベイナイト組織とすることによって、優れた強
度特性と高い縦弾性係数を得ている。
Furthermore, in JP-A-62-112735, the weight ratio of C: 0.3 to 1.0%, Si: 2.0 to 4.5
%, Mn; 0.8% or less, Mo; 0.05 to 1.0%,
Cast steel containing Ni: 2.0% or less is austempered to make the amount of bainite in the matrix structure 40% or more, and in the as-cast state, a large amount of ferrite and graphite are precipitated in the pearlite matrix structure, making it excellent. Excellent strength characteristics and a high modulus of longitudinal elasticity are obtained by ensuring high rigidity and by making the base structure a uniform bainite structure through a predetermined austempering treatment after machining.

[発明が解決しようとする課題] しかしながら、前記発明のおいては、CおよびSi含有
量が高いため、鋳造時またはオーステンパー処理時に含
有されているCが黒鉛化し易く、靭性の低下をきたす。
[Problems to be Solved by the Invention] However, in the above invention, since the C and Si contents are high, the C contained during casting or austempering tends to graphitize, resulting in a decrease in toughness.

さらに、−船釣な鋳造法では、均一微細な組織かえられ
に<<、かつMO等を含有させると、遊離セメンタイト
が晶出し、さらに靭性を低下する。
Furthermore, in the conventional casting method, if the uniform fine structure is changed and MO is added, free cementite will crystallize, further reducing the toughness.

tた、鋳鋼は一般に砂型に鋳造されるが、砂型で鋳造す
る場合は、溶湯の凝固速度が遅いため、Mo、Mn等が
偏析し、未変態オーステナイトが多量に残留する。この
未変態オーステナイトは非常に不安定であるため、マル
テンサイト変態しやすく、靭性が大きく低下する。この
ことは、未変態オーステナイト量と衝撃値の関係を示す
第2図から、未変態オーステナイトの増加により、衝撃
値が急激に低下することから明らかである。
In addition, cast steel is generally cast in a sand mold, but when cast in a sand mold, the solidification rate of the molten metal is slow, so Mo, Mn, etc. segregate, and a large amount of untransformed austenite remains. Since this untransformed austenite is very unstable, it is easily transformed to martensitic material, resulting in a significant decrease in toughness. This is clear from FIG. 2, which shows the relationship between the amount of untransformed austenite and the impact value, because the impact value rapidly decreases as the amount of untransformed austenite increases.

また、遊離セメンタイトが多量に残留するので、脆化す
るとともに、黒鉛が析出し易くなり、伸びが低下し脆く
なる。その上、凝固組織が粗大化しているため、オース
テンパー処理により得られるベイナイト組織は不均一て
、粗いものとなり靭性が低下する等の問題点がある。
Furthermore, since a large amount of free cementite remains, it becomes brittle and graphite tends to precipitate, resulting in decreased elongation and brittleness. Moreover, since the solidified structure is coarsened, the bainite structure obtained by the austempering process is uneven and coarse, resulting in problems such as reduced toughness.

本発明は鋳造後オーステンパー処理してベイナイト組織
を得て鋳鋼を強靭化する高靭性鋳鋼の製造方法における
前記のごとき問題点に鑑みてなされたものであって、未
変態オーステナイトが少なく、均一微細なベイナイト組
織が得られる高靭性鋳鋼の製造方法を提供することを目
的とする。
The present invention has been made in view of the above-mentioned problems in the manufacturing method of high-toughness cast steel, in which austempering treatment is performed after casting to obtain a bainite structure to strengthen the cast steel. The purpose of the present invention is to provide a method for manufacturing high-toughness cast steel that provides a bainite structure.

[課題を解決するための手段] 本発明の高靭性鋳鋼の製造方法は、重量比で、C;0.
3〜0.7%、Si;1.8〜3.0%を含有し、残部
がFeおよび不純物元素からなる溶湯を、4℃/sec
以上の冷却速度で鋳造した後、オーステンパー処理し均
一微細なベイナイトと安定な残留オーステナイトの混合
組織とすることを要旨とする。
[Means for Solving the Problems] The method for producing high toughness cast steel of the present invention has a weight ratio of C: 0.
A molten metal containing 3 to 0.7% Si, 1.8 to 3.0% Si, and the balance consisting of Fe and impurity elements was heated at 4°C/sec.
After casting at the above cooling rate, the material is austempered to form a mixed structure of uniformly fine bainite and stable retained austenite.

発明者は、第2図の未変態オーステナイト量と衝撃値の
関係に示すように、未変態オーステナイト量が5%を越
えると急激に衝撃値が低下することから、少なくとも未
変態オーステナイト量を5%以下にすべきであることを
認識した。そこで、溶湯の冷却速度と未変態オーステナ
イト量との関係を研究したところ、第1図に示すような
結果を得た。そして、発明者は第1図の結果より、未変
態オーステナイト量を5%未満に抑えるには、溶湯の冷
却速度を4℃/see以上にすると良いということを新
たに知見した。
As shown in the relationship between the amount of untransformed austenite and the impact value in Figure 2, the impact value decreases rapidly when the amount of untransformed austenite exceeds 5%, so the inventor determined that the amount of untransformed austenite should be at least 5%. I realized that I should do the following. Therefore, when we studied the relationship between the cooling rate of the molten metal and the amount of untransformed austenite, we obtained the results shown in Figure 1. From the results shown in FIG. 1, the inventors have newly found that in order to suppress the amount of untransformed austenite to less than 5%, it is better to set the cooling rate of the molten metal to 4° C./see or higher.

また、オーステンパー処理によって、黒鉛が析出せず、
遊離セメンタイトの生成の少ない均一微細なベイナイト
組織を得るために、合金成分について鋭意検討を重ねた
。その結果、低C化により黒鉛の析出を抑制し、遊離セ
メンタイトの生成を防止する範囲にSi量を規制して、
本発明を完成した。
In addition, due to austempering treatment, graphite does not precipitate,
In order to obtain a uniform, fine bainite structure with little free cementite formation, we conducted extensive research on alloy components. As a result, the amount of Si was regulated within a range that suppressed graphite precipitation by lowering C and prevented the formation of free cementite.
The invention has been completed.

なお、Mnは脱酸脱硫のために加えられ、オーステナイ
トを安定化して鋼に靭性をf1与するが、本発明におい
ては08%を越えて含有されると、偏析により靭性が劣
化するので、Mn含有量は0゜8%以下とすることが望
ましい、また、PおよびSは有害元素であり、出来るだ
け少ない方が望ましいが、本発明においては脆化を防止
するためには、Pは0.1%以下の含有量に、Sは0.
07%以下の含有量にすることが望ましい。
Note that Mn is added for deoxidation and desulfurization, stabilizes austenite, and imparts toughness f1 to steel. It is desirable that the content be 0.8% or less, and P and S are harmful elements, so it is desirable that they be as low as possible; however, in the present invention, in order to prevent embrittlement, P should be 0.8% or less. When the content is 1% or less, S is 0.
It is desirable that the content be 0.7% or less.

さらに、本発明においては、オーステナイトを安定化し
結晶粒度を微細化するため、MO5Cu、V、Ni、A
I等の合金元素のうちの1種または2種以上を少量含有
せしめることは差し支えない。
Furthermore, in the present invention, in order to stabilize austenite and refine grain size, MO5Cu, V, Ni, A
There is no problem in containing a small amount of one or more of alloying elements such as I.

しかし、MOは0.7%を越えて含有されると、遊離セ
メンタイトが晶出し脆化するので、上限を07%とする
ことが望ましい、また、その他の合金元素も多量に含有
されると脆化するので、Cu、■、Niにあっては1%
を、A1にあっては0.1%を上限とすることが望まし
い。
However, if MO is contained in an amount exceeding 0.7%, free cementite will crystallize and become brittle, so it is desirable to set the upper limit to 0.7%.Additionally, if large amounts of other alloying elements are also contained, it will become brittle. 1% for Cu, ■, and Ni.
For A1, it is desirable to set the upper limit to 0.1%.

[作用] 本発明方法においては、溶湯の冷却速度を4℃/sec
以上として鋳造するので、未変態オーステナイト量を5
%未満にすることができ、衝撃値が著しく改善される。
[Function] In the method of the present invention, the cooling rate of the molten metal is set at 4°C/sec.
Since casting is performed as above, the amount of untransformed austenite is 5
%, the impact value is significantly improved.

また、オーステンパー処理をしても、低Cにより黒鉛の
析出しないベイナイト組織が得られるため、黒鉛による
局部応力集中、脆化が低減し、強度、靭性が向上する。
Furthermore, even when austempering is performed, a bainite structure in which graphite does not precipitate is obtained due to the low C, so local stress concentration and embrittlement due to graphite are reduced, and strength and toughness are improved.

さらに、低Cと急速凝固を組み合わせることにより、黒
鉛、未変態の塊状オーステナイト、遊離セメンタイト等
の少ない、均一微細なベイニティックフェライトと残留
オーステナイトの混合組織が得られる。また、低Cのた
め延性に富んだ組織となる。これにより、優れた強度と
靭性が得られる。
Furthermore, by combining low C and rapid solidification, a uniform and fine mixed structure of bainitic ferrite and retained austenite with little graphite, untransformed massive austenite, free cementite, etc. can be obtained. In addition, due to the low carbon content, the structure is highly ductile. This provides excellent strength and toughness.

次に、本発明において合金元素の組成範囲を限定した理
由について説明する。
Next, the reason why the composition range of alloying elements is limited in the present invention will be explained.

C;0.3〜07% Cは鋳鋼の強度を確保し安定なオーステナイトを残留さ
せるために必要な元素である。0.3%未満であると、
安定なオーステナイトが残留せず、靭性が低下するので
、下限を0.3%とした。しかし、0 、7 %を越え
て含有されると、黒鉛が生成し靭性が低下するので、上
限を0 、7 %とした。
C: 0.3-07% C is an element necessary to ensure the strength of cast steel and to maintain stable austenite. If it is less than 0.3%,
Since no stable austenite remains and the toughness decreases, the lower limit was set at 0.3%. However, if the content exceeds 0.7%, graphite will be generated and the toughness will decrease, so the upper limit was set at 0.7%.

Si;1.8〜3.0% Siは炭化物特に遊離セメンタイトの生成を抑制する元
素である。1.8%未満の含有量であると、炭化物の形
成が起こり易くなり、安定なオーステナイトが多量に残
留しなくなるので、1.8%以上含有させる必要がある
。しかし、3 、0 %を越えて含有させると、フェラ
イトを脆くして靭性を劣化するので、上限を3.0%と
した。
Si: 1.8 to 3.0% Si is an element that suppresses the formation of carbides, especially free cementite. If the content is less than 1.8%, carbide formation tends to occur and a large amount of stable austenite will not remain, so the content should be 1.8% or more. However, if the content exceeds 3.0%, the ferrite becomes brittle and its toughness deteriorates, so the upper limit was set at 3.0%.

また、本発明において、溶湯の冷却速度を4℃/sec
以上としたのは、4℃/see未満であると、未変態オ
ーステナイト量が5%以上となり、衝撃値が急激に劣化
するからである。
In addition, in the present invention, the cooling rate of the molten metal is set at 4°C/sec.
The reason for this is that if the temperature is less than 4° C./see, the amount of untransformed austenite will be 5% or more, and the impact value will deteriorate rapidly.

[実施例] 本発明の実施例について比較例とともに説明し、本発明
の効果を明らかにする。
[Example] Examples of the present invention will be explained together with comparative examples to clarify the effects of the present invention.

(実施例1) 0.5%C22,5%Si、0.3%Mn、0.015
%P、o、oos%S、0.3%Mo、0.3%Ni、
0.05%AIを含有し、残部が実質的にFeである溶
湯を、調水冷型を有する金型を用いて鋳造を行った9な
お、溶湯の冷却速度は15℃/secであった。未変態
オーステナイト量を測定した後、オーステンパー処理(
オーステナイト化:900℃X1hr、ベイナイト化:
400℃X l hr)を施した。
(Example 1) 0.5%C22, 5%Si, 0.3%Mn, 0.015
%P, o, oos%S, 0.3%Mo, 0.3%Ni,
A molten metal containing 0.05% AI and the balance being substantially Fe was cast using a mold having a water-controlled cooling mold.9 The cooling rate of the molten metal was 15° C./sec. After measuring the amount of untransformed austenite, austempering treatment (
Austenitization: 900°C x 1 hr, Bainitization:
400°C x 1 hr).

次いで、所定の試験片を調製して、引張強さおよび衝撃
値を測定した。
Then, predetermined test pieces were prepared and the tensile strength and impact value were measured.

(実施例2) 実施例1で用いたと同じ成分組成の溶湯を、調水冷型を
有する金型を用いて鋳造を行った。なお、溶湯の冷却速
度は15℃/ !II e eであった。未変態オース
テナイト量を測定した後、オーステンパー処理(オース
テナイト化:900℃×1h「、ベイナイト化:370
℃X1hr)を施した0次いで、所定の試験片を調製し
て、引張強さおよび衝撃値を測定した。
(Example 2) A molten metal having the same composition as that used in Example 1 was cast using a mold having a controlled water cooling mold. The cooling rate of the molten metal is 15℃/! It was II ee. After measuring the amount of untransformed austenite, austemper treatment (Austenitization: 900°C x 1h, Bainitization: 370℃
Then, prescribed test pieces were prepared and the tensile strength and impact value were measured.

(実施例3) 実施例1と同じ成分組成の溶湯を、調水冷型を有する金
型を用いて鋳造を行った。なお、溶湯の冷却速度は15
℃/seeであった。未変態オーステナイト量を測定し
fS後、オーステンパー処理(オーステナイト化:90
0℃X1hr、ベイナイト化=330℃X2hr)を施
した。次いで、所定の試験片を調製して、引張強さおよ
び衝撃値を測定した。
(Example 3) A molten metal having the same composition as in Example 1 was cast using a mold having a controlled water cooling mold. The cooling rate of the molten metal is 15
℃/see. After measuring the amount of untransformed austenite and performing fS, austempering treatment (austenitization: 90
0° C. for 1 hr, bainitization = 330° C. for 2 hr). Then, predetermined test pieces were prepared and the tensile strength and impact value were measured.

(実施例4) 実施例1と同じ成分組成の溶湯を、調水冷型を有する金
型を用いて鋳造を行った。なお、溶湯の冷却速度は15
℃/seeであった。未変態オーステナイト量を測定し
た後、オーステンパー処理(オーステナイト化:900
℃X1hr、ベイナイト化:285℃X2hr)を施し
た。次いで、所定の試験片を調製して、引張強さおよび
衝撃値を測定した。
(Example 4) A molten metal having the same composition as in Example 1 was cast using a mold having a controlled water cooling mold. The cooling rate of the molten metal is 15
℃/see. After measuring the amount of untransformed austenite, austemper treatment (austenitization: 900
℃×1hr, bainitization: 285℃×2hr). Then, predetermined test pieces were prepared and the tensile strength and impact value were measured.

(実施例5) 0.3%C,3%Si、0.5%Mn、0.015%P
、0.01%S、0.5%Cu、0.5%V、O。
(Example 5) 0.3%C, 3%Si, 0.5%Mn, 0.015%P
, 0.01% S, 0.5% Cu, 0.5% V, O.

08%A1を含有し、残部が実質的にFeである溶湯を
、調水冷型を有する金型を用いて鋳造を行った。なお、
溶湯の冷却速度は15℃/seeであった。未変態オー
ステナイト量を測定した後、オ−ステンパー処理(オー
ステナイト化=900℃×1hr、ベイナイト化:37
0℃X 1 hr)を施した。次いで、所定の試験片を
調製して、引張強さおよび衝撃値を測定しな。
A molten metal containing 0.08% A1 and the remainder being substantially Fe was cast using a mold having a water-controlled cooling mold. In addition,
The cooling rate of the molten metal was 15°C/see. After measuring the amount of untransformed austenite, austempering treatment (austenitization = 900°C x 1 hr, bainitization: 37
0° C. x 1 hr). Then, prepare a given test specimen and measure the tensile strength and impact value.

(実施例6) 0.7%C22,2%Si、0.2%Mn、0.02%
P、0.004%S、0.2%Moを含有し、残部が実
質的にFeである溶湯を、調水冷型を有する金型を用い
て鋳造を行った。なお、溶湯の冷却速度は15℃/se
eであった。未変態オーステナイト量を測定した後、オ
ーステンパー処理(オーステナイト化=930℃X1h
r、ベイナイト化:350℃X2hr)を施した0次い
で、所定の試験片を調製して、引張強さおよび衝撃値を
測定した。
(Example 6) 0.7%C22, 2%Si, 0.2%Mn, 0.02%
A molten metal containing P, 0.004% S, and 0.2% Mo, with the remainder being substantially Fe, was cast using a mold having a controlled water cooling mold. Note that the cooling rate of the molten metal is 15°C/sec.
It was e. After measuring the amount of untransformed austenite, austempering treatment (austenitization = 930°C x 1 hour)
bainitization: 350° C. for 2 hours) Then, prescribed test pieces were prepared, and the tensile strength and impact value were measured.

(比較例1) 1.0%C22,4%Si、0.5%Mn、0.3%N
i、0.1%Mo、0,05%AIを含有し、残部が実
質的にFeである溶湯を、生砂型へ重力鋳造法にて鋳造
した。なお、溶湯の冷却速度は2.5”C/seeであ
った。未変態オーステナイト量を測定した後、オーステ
ンパー処理(オーステナイト化=900℃×1h「、ベ
イナイト化=370℃×1hr)を施した。次いで、所
定の試験片を調製して、引張強さおよび衝撃値を測定し
た。
(Comparative Example 1) 1.0%C22, 4%Si, 0.5%Mn, 0.3%N
A molten metal containing I, 0.1% Mo, and 0.05% AI, with the remainder being substantially Fe, was cast into a green sand mold by gravity casting. The cooling rate of the molten metal was 2.5"C/see. After measuring the amount of untransformed austenite, it was subjected to austempering treatment (austenitization = 900°C x 1h, bainitization = 370°C x 1hr). Then, prescribed test pieces were prepared and the tensile strength and impact value were measured.

(比較例2) 0.5%C52,5%Si、0.3%Mn、0.015
%P、o 、o o s%S、0.3%Mo、0.3%
Ni、0.05%A1を含有し、残部が実質的にFeで
ある溶湯を、生砂型へ重力鋳造法にて鋳造した。
(Comparative Example 2) 0.5%C52, 5%Si, 0.3%Mn, 0.015
%P,o,o s%S, 0.3%Mo, 0.3%
A molten metal containing Ni and 0.05% A1, with the remainder being substantially Fe, was cast into a green sand mold by gravity casting.

なお、溶湯の冷却速度は2,5℃/secであった。Note that the cooling rate of the molten metal was 2.5° C./sec.

未変態オーステナイト量を測定した後、オーステンパー
処理(オーステナイト化:900℃X1hr、ベイナイ
ト化二370℃X 1 hr)を施した。次いで、所定
の試験片を調製して、引張強さおよび衝撃値を測定した
After measuring the amount of untransformed austenite, austemper treatment (austenitization: 900°C x 1 hr, bainitization: 370°C x 1 hr) was performed. Then, predetermined test pieces were prepared and the tensile strength and impact value were measured.

(比較例3) 0.5%C10,5%Si、0.3%Mn、0.015
%P、0.009%Sを含有し、残部が実質的にFeで
ある溶湯を、生砂型へ重力鋳造法にて鋳造した。なお、
溶湯の冷却速度は2.5℃/seeであった。焼ならし
を施した後、所定の試験片を調製して、引張強さおよび
衝撃値を測定した。
(Comparative Example 3) 0.5%C10, 5%Si, 0.3%Mn, 0.015
A molten metal containing % P and 0.009% S, with the remainder being substantially Fe, was cast into a green sand mold by gravity casting. In addition,
The cooling rate of the molten metal was 2.5°C/see. After normalizing, specified test pieces were prepared and their tensile strength and impact value were measured.

得られた結果を第1表に示す。また、第3図に実施例2
で得られた本発明材2の金属組織を表す顕微鏡写真を、
第4図に比較例1で得られ比較材1の金属組織を表す顕
微鏡写真を、第5図に比較例2で得られた比較材2につ
いての金属組織を表す顕微鏡写真をそれぞれ示す。
The results obtained are shown in Table 1. In addition, Fig. 3 shows Example 2.
The micrograph showing the metal structure of the present invention material 2 obtained in
FIG. 4 shows a micrograph showing the metal structure of Comparative Material 1 obtained in Comparative Example 1, and FIG. 5 shows a microphotograph showing the metal structure of Comparative Material 2 obtained in Comparative Example 2.

(以下余白) 第1表に示したように、比較例1〜3は溶湯の冷却速度
が2.5℃/’Secと遅いため、未変態オーステナイ
ト量が12〜17%と多い。これに対して、本発明例で
ある実施例1〜6は溶湯の冷却速度が15℃/secと
速いため、未変態のオーステナイト量が0.2〜0.6
%と極めて少ない。
(The following is a blank space) As shown in Table 1, in Comparative Examples 1 to 3, the cooling rate of the molten metal was as slow as 2.5° C./'Sec, so the amount of untransformed austenite was as large as 12 to 17%. On the other hand, in Examples 1 to 6, which are examples of the present invention, the cooling rate of the molten metal is as fast as 15°C/sec, so the amount of untransformed austenite is 0.2 to 0.6
%, which is extremely small.

また、オーステンパー処理後の引張強さについては、比
較材1〜3が68〜89kgf/′lllm2であるの
に対し、本発明例の実施例1〜6は87〜134kHf
/mm’であって、優れた強度を有することが確認され
た。
In addition, regarding the tensile strength after austempering treatment, comparative materials 1 to 3 have a tensile strength of 68 to 89 kgf/'llm2, whereas Examples 1 to 6 of the present invention have a tensile strength of 87 to 134 kHz.
/mm', and was confirmed to have excellent strength.

オーステンパー処理後の室温における衝撃値については
、比較材1〜3が3.2〜3.8 kgf/ am2で
あるのに対し、実施例1〜6の本発明材1〜6は、5.
2〜9 、8 kgf / am2であって、靭性にお
いても優れた特性を有することが判明した。
Regarding the impact value at room temperature after austempering treatment, Comparative Materials 1 to 3 are 3.2 to 3.8 kgf/am2, while Inventive Materials 1 to 6 of Examples 1 to 6 have an impact value of 5.5 kgf/am2.
2 to 9,8 kgf/am2, and was found to have excellent properties in terms of toughness as well.

さらに、第3図〜第5図の金属組織を表す顕微鏡写真か
ら明らかなように、第4図の比較材1および第5図の比
較材2の金属組織は、黒鉛または遊離セメンタイトが認
められ、粗くて不均一なベイナイト組織となっている。
Furthermore, as is clear from the micrographs showing the metallographic structures in FIGS. 3 to 5, graphite or free cementite is observed in the metallographic structures of Comparative Material 1 in FIG. 4 and Comparative Material 2 in FIG. It has a coarse and uneven bainite structure.

これに対して第3図の本発明材の金属組織は、黒鉛およ
び遊離セメンタイトが全く認められず、均一微細なベイ
ナイト組織になっていることが確認された。
On the other hand, the metal structure of the material of the present invention shown in FIG. 3 was confirmed to have a uniform and fine bainite structure without any graphite or free cementite.

[発明の効果] 本発明の高靭性鋳鋼の製造方法は以上説明したように、
溶湯の冷却速度を4℃/ S e e以上として鋳造す
るので、未変態オーステナイト量を5%未満にすること
ができ、衝撃値が著しく改善される。
[Effects of the Invention] As explained above, the method for producing high toughness cast steel of the present invention includes the following steps:
Since the molten metal is cast at a cooling rate of 4° C./Se or more, the amount of untransformed austenite can be reduced to less than 5%, and the impact value is significantly improved.

また、低C化とSi含有量の規制により、オーステンパ
ー処理しても、黒鉛の析出しないベイナイト組織が得ら
れるため、黒鉛による局部応力集中、脆化が低減し、強
度、靭性が向上する。さらに、低Cと急速凝固を組み合
わせることにより、黒鉛、未変態の塊状オーステナイト
、遊離セメンタイト等の少ない、均一微細なベイニティ
ックフェライトと残留オーステナイトの混合組織が得ら
れるので、強度と靭性ともに優れた鋳鋼が得られる。
In addition, by lowering the carbon content and regulating the Si content, a bainite structure in which graphite does not precipitate can be obtained even during austempering treatment, thereby reducing local stress concentration and embrittlement due to graphite, and improving strength and toughness. Furthermore, by combining low C and rapid solidification, a uniformly fine mixed structure of bainitic ferrite and retained austenite with little graphite, untransformed massive austenite, or free cementite can be obtained, resulting in excellent strength and toughness. Cast steel is obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は溶湯の冷却速度と未変態オーステナイト量の関
係を示すIa12I、第2図は未変態オーステナイト量
と衝撃値との関係を示す線図、第3図は本発明例の金属
組織を表す顕微鏡写真、第4図および第5図は比較例の
金属組織を表す顕微鏡写真である。 第1図 冷却速度と未変態オーステナイト量の関係特許出願人 
トヨタ自動車株式会社 代 理 人 弁理士 大 川  宏 第2図 未変態オーステナイト量と衝撃値の関係未変態オーステ
ナイト量(%)
Figure 1 is Ia12I showing the relationship between the cooling rate of the molten metal and the amount of untransformed austenite, Figure 2 is a diagram showing the relationship between the amount of untransformed austenite and impact value, and Figure 3 is the metal structure of the example of the present invention. The micrographs, FIGS. 4 and 5, are micrographs showing the metal structure of the comparative example. Figure 1 Relationship between cooling rate and amount of untransformed austenite Patent applicant
Toyota Motor Corporation Representative Patent Attorney Hiroshi Okawa Figure 2 Relationship between amount of untransformed austenite and impact value Amount of untransformed austenite (%)

Claims (1)

【特許請求の範囲】[Claims] (1)重量比で、C:0.3〜0.7%、Si;1.8
〜3.0%を含有し、残部がFeおよび不純物元素から
なる溶湯を、4℃/sec以上の冷却速度で鋳造した後
、オーステンパー処理し均一微細なベイナイトと安定な
残留オーステナイトの混合組織とすることを特徴とする
高靭性鋳鋼の製造方法。
(1) Weight ratio: C: 0.3-0.7%, Si: 1.8
After casting the molten metal containing ~3.0% and the balance consisting of Fe and impurity elements at a cooling rate of 4°C/sec or more, it is austempered to form a mixed structure of uniformly fine bainite and stable retained austenite. A method for producing high-toughness cast steel.
JP16338790A 1990-06-21 1990-06-21 Manufacturing method of high toughness cast steel Expired - Fee Related JP2803331B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16338790A JP2803331B2 (en) 1990-06-21 1990-06-21 Manufacturing method of high toughness cast steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16338790A JP2803331B2 (en) 1990-06-21 1990-06-21 Manufacturing method of high toughness cast steel

Publications (2)

Publication Number Publication Date
JPH0452218A true JPH0452218A (en) 1992-02-20
JP2803331B2 JP2803331B2 (en) 1998-09-24

Family

ID=15772925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16338790A Expired - Fee Related JP2803331B2 (en) 1990-06-21 1990-06-21 Manufacturing method of high toughness cast steel

Country Status (1)

Country Link
JP (1) JP2803331B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003306741A (en) * 2002-04-16 2003-10-31 Japan Science & Technology Corp High-tensile cast steel and production method thereof
WO2009086461A3 (en) * 2007-12-26 2009-09-24 Wayne State University Development of a high strength high toughness bainitic steel
CN102747199A (en) * 2012-07-16 2012-10-24 鑫光热处理工业(昆山)有限公司 Continuous isothermal quenching method for C50E4 steel workpieces
JP2016130352A (en) * 2015-01-15 2016-07-21 トヨタ自動車株式会社 Method for heat-treating steel material
JP2020509195A (en) * 2016-12-21 2020-03-26 ポスコPosco Hot rolled steel sheet excellent in formability and fatigue properties and method for producing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01108342A (en) * 1987-10-21 1989-04-25 Mazda Motor Corp Ferrous casting having high strength, high hardness, and high toughness and its manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01108342A (en) * 1987-10-21 1989-04-25 Mazda Motor Corp Ferrous casting having high strength, high hardness, and high toughness and its manufacture

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003306741A (en) * 2002-04-16 2003-10-31 Japan Science & Technology Corp High-tensile cast steel and production method thereof
WO2009086461A3 (en) * 2007-12-26 2009-09-24 Wayne State University Development of a high strength high toughness bainitic steel
US20110114233A1 (en) * 2007-12-26 2011-05-19 Wayne State University Development of a high strength high toughness bainitic steel
US8657972B2 (en) 2007-12-26 2014-02-25 Wayne State University Development of a high strength high toughness steel
CN102747199A (en) * 2012-07-16 2012-10-24 鑫光热处理工业(昆山)有限公司 Continuous isothermal quenching method for C50E4 steel workpieces
JP2016130352A (en) * 2015-01-15 2016-07-21 トヨタ自動車株式会社 Method for heat-treating steel material
CN105803161A (en) * 2015-01-15 2016-07-27 丰田自动车株式会社 Heat treatment method for steel material
US10301694B2 (en) 2015-01-15 2019-05-28 Toyota Jidosha Kabushiki Kaisha Heat treatment method for steel material
JP2020509195A (en) * 2016-12-21 2020-03-26 ポスコPosco Hot rolled steel sheet excellent in formability and fatigue properties and method for producing the same
US11591664B2 (en) 2016-12-21 2023-02-28 Posco Co., Ltd Hot rolled steel sheet having excellent formability and fatigue properties and manufacturing method therefor
US11970749B2 (en) 2016-12-21 2024-04-30 Posco Co., Ltd Hot rolled steel sheet having excellent formability and fatigue properties and manufacturing method therefor

Also Published As

Publication number Publication date
JP2803331B2 (en) 1998-09-24

Similar Documents

Publication Publication Date Title
CN101263239B (en) Method of producing high-strength steel plates with excellent ductility and plates thus produced
KR0175075B1 (en) Potor for steam turbine and manufacturing method thereof
US7534314B2 (en) High carbon steel with superplasticity
KR100353300B1 (en) Manufacturing method of high and low pressure integrated turbine rotor
CN105821301A (en) 800MPa-level hot-rolled high strength chambering steel and production method thereof
KR100740414B1 (en) Non-refined steel being reduced in anisotropy of material and excellent in strength, toughness and machinability
CN112877591B (en) High-strength and high-toughness hardware tool and steel for chain and manufacturing method thereof
JP3485805B2 (en) Hot forged non-heat treated steel having high fatigue limit ratio and method for producing the same
JP3738004B2 (en) Case-hardening steel with excellent cold workability and prevention of coarse grains during carburizing, and its manufacturing method
US5393358A (en) Method for producing abrasion-resistant steel having excellent surface property
JP3544131B2 (en) Manufacturing method of medium carbon steel
JPH083629A (en) Carburizing and quenching method
JPWO2002077309A1 (en) Cast steel and casting mold
JPH0138847B2 (en)
JPH0452218A (en) Manufacture of high toughness cast steel
JPH07145444A (en) High strength spheroidal graphite case iron
JP2003306741A (en) High-tensile cast steel and production method thereof
CN114080466A (en) Reinforcing bar and method for manufacturing same
JPH05239590A (en) Steel excellent in wear resistance
JP2636008B2 (en) High strength and high wear resistant ductile cast iron material and method of manufacturing the same
JPS61133361A (en) Spheroidal graphite cast iron and its manufacture
JPS6070125A (en) Manufacture of turbine rotor
JPH03260010A (en) Production of non-heattreated steel bar for hot forging and production of hot forged non-heattreated parts
JP2001192762A (en) High toughness non-heat treated steel for hot forging
WO1996038596A1 (en) High-strength spherical graphitic cast iron

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees