JP2008245495A - スイッチドリラクタンスモータの制御装置 - Google Patents

スイッチドリラクタンスモータの制御装置 Download PDF

Info

Publication number
JP2008245495A
JP2008245495A JP2007086897A JP2007086897A JP2008245495A JP 2008245495 A JP2008245495 A JP 2008245495A JP 2007086897 A JP2007086897 A JP 2007086897A JP 2007086897 A JP2007086897 A JP 2007086897A JP 2008245495 A JP2008245495 A JP 2008245495A
Authority
JP
Japan
Prior art keywords
signal
braking
value
current
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007086897A
Other languages
English (en)
Inventor
Hiroaki Okada
宏昭 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsuba Corp
Original Assignee
Mitsuba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuba Corp filed Critical Mitsuba Corp
Priority to JP2007086897A priority Critical patent/JP2008245495A/ja
Publication of JP2008245495A publication Critical patent/JP2008245495A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】スイッチドリラクタンスモータを用いた駆動制御においてモータにより制動トルクを生じさせる場合に急激な制動トルクの上昇を抑制する。
【解決手段】スイッチドリラクタンスモータをアクセル操作量と回転速度とに応じて電流制御し、アクセル操作量が制動モードに対応する値θ1以下になったら、そのθ1とそれより小さな最大制動切り換え点θbとの間にあっては、アクセル操作量θの減少に伴って供給電流が漸増するように設定されているマップによる制御を行う。制動モードにおいて一気に制動時の最大電流に達することがないため、電動カートに用いた場合にエンジンブレーキ使用時の制動トルクの発生が緩やかに上昇し得ることから運転操作性が向上する。また、パワー回路のパワー素子の負担も軽減されるため、不必要に大容量の素子を用いることなく、回路を低コスト化し得る。
【選択図】図5

Description

本発明は、スイッチドリラクタンスモータの制御装置に関するものである。
従来、ロータに複数の磁性体からなる半径方向外向き突極部を設け、ロータを外囲するように同軸的に配設されたステータに複数の内向突極部を設けかつ各内向突極部にそれぞれ巻線して励磁コイルを形成し、各励磁コイルに選択的に通電することにより、ステータの内向突極部にロータの突極部を磁気吸引してロータに回転トルクを発生させるようにしたスイッチドリラクタンスモータが知られている。このスイッチドリラクタンスモータにあっては、マグネットを必要としないため構造が簡単であることから、悪環境に対処し易くかつ安価に小型高出力化が可能であるなどの利点があり、種々のモータ装置への適用が考えられ、例えば電動カートなどの電動車両としての駆動モータに利用することも考えられている。
なお、上記スイッチドリラクタンスモータの制御として高回転速度時の対策が考えられており、例えば回転子(ロータ)の実際の回転速度及び設定された目標回転速度の少なくとも一方に基づき回転子の回転状態を判断してその判断結果に応じて回転子の低回転速度領域ではPWM制御し、高回転速度領域では進み角制御するようにしたものがある(例えば特許文献1参照)。
特開平3−143285号公報
上記したようなスイッチドリラクタンスモータを電動カートに使用した場合に、内燃機関の自動車と同様にアクセルを戻した時にエンジンブレーキ程度の弱い制動力をかけるようにすることにより電動カートにおける操作性を向上し得る。上記電動カートの場合、エンジンブレーキに相当する制動力は励磁電流の大きさで調整することができるため、回転数(回転速度)に応じて励磁電流の大きさを決めておくことで所望の回生制動特性得ることができる。その場合には回転数に対する励磁電流の大きさをマップ化することが考えられる。
例えば図6(a)に示されるように、エンジンブレーキ時の目標制動トルクを例えば4段階に設定して選択可能(例えばスイッチによる切り換え)にし、目標制動トルク毎に回転速度に応じた電流値をマップ化して、ドライバーが任意の制動トルクを選ぶことにより、図6(b)に示されるように回転速度の所定の範囲では高低にかかわらず略一定の制動トルクが発生するように制御することができる。
一方、上記したような励磁電流制御による制動力特性において、アクセル量と励磁電流指令値との関係にあっては図7に示されるマップのようにすることが考えられる。なお、図は目標制動トルクが4Nmの場合を示している。図に示されるように、モード切り替え点θbを境としてアクセル操作量が100%に至る間を駆動モード(駆動指令を出す領域)による制御域とし、アクセル操作量が0に至る間を制動モード(制動指令を出す領域)による制御域としている。なお、アクセル操作量として、モード切り替え点θbとそれより大きい最小駆動指令値θ2との間にあっては励磁電流指令値が0であり、フリーラン状態にして、制動モードと駆動モードとの切り換えを安定化するようにしている。
しかしながら、アクセル操作量を0に戻した時には、上記したようにモード切り替え点θbを越えた所で目標制動トルクに応じた所定の励磁電流指令値を出力するため、図のように制動トルクの設定が大きい時などには大きな制動トルクが急激に生じて運転感覚が悪化するという問題があった。また、電動カートのようなバッテリを電源とする場合には、回生制動によりモータが発電し、上記大きな制動トルクを発生させる場合には発電電力も大きくなり、バッテリに対する充電電圧の急上昇を引き起こすため、それに対応するために大容量のパワー素子を使うことにより、装置が大型化かつ高コスト化するという問題もあった。
このような課題を解決して、スイッチドリラクタンスモータを用いた回生制動制御においてモータにより制動トルクを生じさせる場合に急激な制動トルクの上昇を抑制し得ることを実現するために本発明に於いては、ロータとステータとを有するスイッチドリラクタンスモータと、前記スイッチドリラクタンスモータのステータに駆動電流を供給するモータ駆動回路とを備えた装置を制御するスイッチドリラクタンスモータの制御装置であって、前記モータ駆動回路から前記ステータに流れる電流の電流値を検出し、電流値信号を発生する電流検出手段と、前記スイッチドリラクタンスモータの目標出力となる前記電流の目標値信号を発生する目標出力値設定手段と、パルス幅変調されたPWM信号を前記モータ駆動回路へ供給する前記PWM出力信号発生手段と、前記目標出力値設定手段から目標値信号が供給され、目標値信号が予め定められた第1の基準信号を越えていない場合には制動モード信号を発生し、目標値信号が前記第1の基準信号と予め定められかつ前記第1の基準信号より大きい第2の基準信号との間の場合にはフリーランモード信号を発生し、目標値信号が前記第2の基準信号を越えている場合には駆動モード信号を発生する動作モード判別手段と、前記動作モード判別手段から前記駆動モード信号が供給されることにより、前記目標出力値設定手段が発生する目標値信号に基づいて駆動信号を発生する駆動信号発生手段と、前記駆動信号発生手段から駆動信号が供給されると共に、前記電流検出手段から電流値信号が供給され、両者を比較して、第1の比較信号を発生する第1の電流比較手段と、前記動作モード判別手段から前記フリーランモード信号が供給されることにより、前記PWM出力信号発生手段が発生するPWM信号の発生を停止させる停止信号を発生するフリーラン信号発生手段と、前記動作モード判別手段から前記制動モード信号が供給されることにより、前記目標出力値設定手段が発生する目標値信号に基づいて制動信号を発生する制動信号発生手段と、前記制動信号発生手段から制動信号が供給されると共に、前記電流検出手段から電流値信号が供給され、両者を比較して、第2の比較信号を発生する第2の電流比較手段と、前記PWM出力信号発生手段から前記モータ駆動回路に供給される前記パルス幅変調されたPWM信号の基準値を、前記第1の比較信号及び前記第2の比較信号に基づいて演算するPWM信号演算手段とを備えているものとした。
特に、前記スイッチドリラクタンスモータのロータの回転位置を検出し、回転位置信号を発生する回転位置検出手段と、前記回転位置検出手段からの回転位置信号が供給されると共に、前記回転位置信号から回転角度信号を発生する回転角度出力手段と、前記回転角度出力手段からの回転角度信号が供給されると共に、前記回転角度信号から回転速度信号を出力する回転速度出力手段と、前記制動信号発生手段が発生する制動信号の最大値を、前記回転速度出力手段から供給される回転速度信号に基づいて決定し、前記制動信号の最大値を出力する最大電流値決定手段とを有し、前記制動信号発生手段が、前記動作モード判別手段から前記制動モード信号が供給され、並びに前記最大電流値決定手段からの前記制動信号の最大値が供給されることにより、前記目標出力値設定手段が発生する目標値信号に応じて前記制動信号の最大値まで前記制動信号を漸増させて出力すると良い(請求項2)。また、前記回転角度信号と前記回転速度信号と前記駆動信号とが供給されることにより、前記回転速度信号に基づき、かつ前記第1の比較信号に基づいて前記PWM出力信号発生手段から前記モータ駆動回路へ供給される前記パルス幅変調されたPWM信号のタイミングを決定する第1のタイミング信号を前記PWM出力信号発生手段へ供給する第1の通電タイミング手段を備え(請求項3)、あるいは、前記回転角度信号と前記回転速度信号と前記制動信号とが供給されることにより、前記回転速度信号に基づき、かつ前記第2の比較信号に基づいて前記PWM出力信号発生手段から前記モータ駆動回路へ供給される前記パルス幅変調されたPWM信号のタイミングを決定する第2のタイミング信号を前記PWM出力信号発生手段へ供給する第2の通電タイミング手段を備えていると良い(請求項4)。また、前記回転速度信号に対応した通電角及び進角の少なくとも一方のデータを予め記憶する複数のマップと、前記複数のマップのうちの前記第1の通電タイミング手段にデータを供給するための1つマップを選択する駆動マップ選択手段とを有していると良い(請求項5)。また、前記回転速度信号に対応した通電角及び進角の少なくとも一方のデータを予め記憶する複数のマップと、前記複数のマップのうちの1つのマップのデータを前記第2の通電タイミング手段に供給するべく当該1つマップを選択する制動マップ選択手段とを有していると良い(請求項6)。また、前記回転速度信号に対応した最大電流値のデータを予め記憶する複数の最大電流値マップと、前記複数の最大電流値マップのうちの1つのマップのデータを前記最大電流値決定手段に供給するべく当該1つのマップを選択する電流値マップ選択手段とを有していると良い(請求項7)。
このように本発明の請求項1によれば、スイッチドリラクタンスモータの目標出力となる目標値信号が、予め定められた第1の基準信号及びそれより大きい第2の基準信号に対して、第1の基準信号に達していない場合には制動モードとし、第1及び第2の基準信号間の場合にはフリーランモードとし、第2の基準信号を越えている場合には駆動モードすることから、目標出力値設定手段としての例えばアクセルを戻した場合(全閉に相当)に、駆動モードからいきなり制動モードに変わることがなく、制動時の動作の急激な変化を抑制することができる。特に、請求項2によれば、制動モードにおいて制動トルクを発生させるための所定の制御指令値を出力する場合に漸増させて出力することから、急激な制動トルクの上昇を抑制することができる。これにより、例えばスイッチドリラクタンスモータを電動カートに用いた場合に、エンジンブレーキ使用時の制動トルクの発生が緩やかに上昇し得ることから運転操作性が向上する。また、制動トルク発生時に発電電力が急激に増大することもなくなり、例えば駆動回路に用いるパワー素子も不必要に大型化しなくても良く、制御装置の低コスト化を促進し得る。
また、請求項3・4によれば、PWM信号のタイミングを、駆動信号と電流値信号とを比較した第1の比較信号、または制動信号と電流値信号とを比較した第2の比較信号に基づいて決定することから、PWM制御を駆動と制動とのそれぞれの場合に好適に行うことができる。また、請求項5・6によれば、通電角や進角マップを用いて回転速度に応じて適切なマップを選択することにより、通電角や進角制御において回転速度に応じた制御を高精度に行うことができる。また、請求項7によれば、最大電流値マップを用いて回転速度に対応した最大電流値による制御を行うことにより、操作性の良い制御を行うことができる。
以下、本発明の実施の形態を、図面を参照しながら説明する。図1は、本発明が適用された電動カートに搭載されるスイッチドリラクタンスモータの制御装置の概略ブロック図である。この実施の形態に係るスイッチドリラクタンスモータの制御装置10は、例えばスイッチドリラクタンスモータ(Switched Reluctance Motor:SRモータ)11を駆動源とする電動カートに搭載され、図1に示すように、駆動装置12と、バッテリ13と、制御装置14とを備えて構成されている。
SRモータ11は、例えば3相・4極・6スロットのインナロータ型のSRモータであって、略円筒状のステータ21と、このステータ21の内部に回転可能に配置されたロータ22とを備えて構成されている。ステータ21は、例えば珪素鋼板等の磁性鋼板が複数枚積層されて形成されたステータコア31と、3相(U相、V相、W相)の各励磁コイルLu,Lv,Lwを形成する複数の巻線とを備えている。ステータコア31は、円筒状のヨーク部31aと、ヨーク部31aの内周面上において周方向に所定間隔を置いた位置から径方向内方に突出する6個のステータ側突極31bとを備え、径方向で対向する各1対のステータ側突極31b,31bに巻装された巻線32,32同士は直列に接続され、3対の巻線32,32の各対(つまり、1対のU相励磁コイルLu,Luと、1対のV相励磁コイルLv,Lvと、1対のW相励磁コイルLw,Lw)が、3相(U相、V相、W相)の各相に対応付けられている。
ロータ22は、例えば珪素鋼板等の磁性鋼板が複数枚積層されて形成されたロータコア33と、ロータコア33に固定され、SRモータ11の回転軸をなす出力軸34とを備えている。ロータコア33は、円筒状のヨーク部33aと、ヨーク部33aの外周面上において周方向に所定間隔を置いた位置から径方向外方に突出する4個のロータ側突極33bとを備え、出力軸34には、回転軸周りのロータコア33の回転角度を検出するレゾルバ等の回転位置検出手段としての回転角センサ35が設けられている。
このSRモータ11では、径方向で対向する2対のロータ側突極33b,33bのうち何れか1対のロータ側突極33b,33bのみが、3対のステータ側突極31b,31bのうち何れか1対のステータ側突極31b,31bに対して、径方向で対向可能となることから、3相(U相、V相、W相)の各励磁コイルLu,Lv,Lwに対する通電が順次切り換えられることによって発生する回転磁界と、ロータ側突極33bとの間の磁気吸引力に起因する回転トルク、つまりリラクタンストルクによってロータ22が回転駆動される。
駆動装置12は、例えばパルス幅変調(PWM)によるPWMインバータであって、MOSFET等のトランジスタのスイッチング素子およびダイオードからなるスイッチング回路41と、平滑コンデンサ42とを備えて構成されている。
スイッチング回路41は、各相毎にハイ側トランジスタUH,VH,WHとロー側ダイオードDL,DL,DLとがバッテリ13に対して直列に接続されたハイ側アーム、および、各相毎にロー側トランジスタUL,VL,WLとハイ側ダイオードDH,DH,DHとがバッテリ13に対して直列に接続されたロー側アームを備えて構成されている。ハイ側アームにおいて、各ハイ側トランジスタUH,VH,WHのドレインはバッテリ13の正極側端子に接続され、各ロー側ダイオードDL,DL,DLはバッテリ13の負極側端子から各ハイ側トランジスタUH,VH,WHのソースに向けて順方向とされている。ロー側アームにおいて、各ロー側トランジスタUL,VL,WLのソースはバッテリ13の負極側端子に接続され、各ハイ側ダイオードDH,DH,DHは各ロー側トランジスタUL,VL,WLのドレインからバッテリ13の正極側端子に向けて順方向とされている。また、各トランジスタUH,UL,VH,VL,WH,WLのドレイン−ソース間には、ソースからドレインに向けて順方向となる各寄生ダイオードDが設けられている。
そして、SRモータ11の3相の各相毎に直列に接続された各1対の励磁コイルLu,LuおよびLv,LvおよびLw,Lwの各一端は、各ハイ側トランジスタUH,VH,WHのソースに接続され、各他端は各ロー側トランジスタUL,VL,WLのドレインに接続されている。そして、各トランジスタUH,UL,VH,VL,WH,WLのゲートには、各トランジスタUH,UL,VH,VL,WH,WLのオン/オフ状態を制御するパルスからなるゲート信号が制御装置14から入力されている。また、各ロー側トランジスタUL,VL,WLと、各励磁コイルLu,Lv,Lwとの間には、SRモータ11の各相に通電される各相電流(巻線電流)を検出する電流センサ43,43,43が設けられている。
そして、駆動装置12は、例えばSRモータ11の駆動時等において、制御装置14から入力されるゲート信号に応じて、スイッチング回路41において各相毎に各トランジスタUH,UL,VH,VL,WH,WLのオン(導通)/オフ(遮断)状態を切り換えることによって、バッテリ13から供給される直流電力を3相交流電力に変換し、各相の各励磁コイルLu,Lv,Lwに交流のU相電流Iu,V相電流Iv,W相電流Iwを通電する。
制御装置14は、例えば、目標出力値設定手段としての電流指令値検出部51と、回転角度出力手段としての回転角度検出部52と、回転速度出力手段としての回転速度検出部53と、駆動マップ選択手段としての駆動マップ選択部54と、駆動マップ記憶部55と、制動マップ選択手段としての制動マップ選択部56と、制動マップ記憶部57と、電流値マップ選択手段としての電流値マップ選択部58と、供給電流指令マップ59と、通電タイミング出力部61と、電流検出部62と、電流制御部63と、PWM信号出力部64と、動作モード判別手段としての動作モード判別部65と、駆動信号発生手段としての駆動信号発生部66と、フリーラン信号発生手段を構成するフリーラン信号発生部67aおよびPWMDuty0%発生部67bと、制動信号発生手段としての制動信号発生部68と、最大電流値決定手段としての最大電流値決定部69と、駆動時の通電タイミングを決定する駆動通電タイミング決定部71と、制動時の通電タイミングを決定する制動通電タイミング決定部72とを備えて構成されている。また、電流制御部63にあっては、第1の電流比較手段としての駆動電流比較部63aと、第2の電流比較手段としての制動電流比較部63bと、PWM信号のデューティ比を演算するPWMDuty演算部63cとが設けられている。また、外部の制御装置等には駆動マップ切替スイッチSW1と電流値マップ切替スイッチSW2と制動マップ切替スイッチSW3とが設けられている。
電流指令値検出部51は、例えば運転者のアクセル操作に係るアクセル開度を検出するアクセルペダル開度センサ等の検出結果に応じたアクセル操作信号からSRモータ11の目標出力を設定し、この目標出力に応じた電流指令値、つまり目標出力をSRモータ11から出力させるために必要とされる通電に対する目標値信号を演算し、この電流指令値(目標値信号)を動作モード判別部65と駆動信号発生部66および制動信号発生部68に出力する。
回転角度検出部52は、回転角センサ35から出力される検出信号に基づき、ロータ22の回転位置、つまり所定の基準回転位置からのロータ22の回転角度を検出し、この回転位置を回転速度検出部53および通電タイミング出力部61に出力する。回転速度検出部53は、回転角度検出部52により検出されるロータ22の回転位置に基づき算出したロータ22の回転数(回転速度)を、駆動通電タイミング決定部71と制動通電タイミング決定部72と最大電流値決定部69とにそれぞれ出力する。
駆動マップ選択部54は、駆動マップ切替スイッチSW1からのマップ切替信号に応じて、駆動マップ記憶部55に記憶されているそれぞれ複数の進角マップ55aおよび通電角マップ55bの中から適宜の1つの進角マップ55aおよび通電角マップ55bを選択し、選択されたマップを駆動通電タイミング決定部71により読み取り可能にする。制動マップ記憶部57もそれぞれ複数の進角マップ57aおよび通電角マップ57bが設けられており、制動マップ選択部56にあっても同様であり、説明を省略する。また、電流値マップ選択部58は、電流値マップ切替スイッチSW2からのマップ切替信号に応じて、供給電流指令マップ59に記憶されている複数の電流指令マップ59aの中から適宜の1つの電流指令マップ59aを選択し、選択されたマップを最大電流値決定部69により読み取り可能にする。
駆動および制動通電タイミング決定部71・72は、回転速度検出部53からの回転速度信号と駆動信号発生部66および制動信号発生部68からの対応する信号とに基づき、進角および通電角をマップ検索して、マップにより決定された進角および通電角を通電タイミング出力部61に出力する。
なお、進角マップ55a・57aは、SRモータ11の各相の各励磁コイルLu,Lv,Lwに対する通電開始位相および通電終了位相を、各相のインダクタンス変化に応じた所定位相(例えば、インダクタンスの増大開始位相および減少開始位相等)から進角側に変更するための進角と、目標出力に応じた電流指令値と回転速度との所定の対応関係を示すマップであって、例えば図2に示すように、目標出力に応じた電流指令値と回転数との増大に伴い、進角は増大傾向に変化し、例えば進角は電流指令値(つまり目標出力)に比例している。なお、駆動と制動とで図の各軸に対する傾きなどを変えて良い。
また、通電角マップ55b・57bは、各相の各励磁コイルLu,Lv,Lwに対する通電角(例えば、電気角120°以上の値等)と、目標出力に応じた電流指令値と回転数との所定の対応関係を示すマップであって、例えば図3に示すように、目標出力に応じた電流指令値と回転数との増大に伴い、通電角は増大傾向に変化し、例えば通電角は電流指令値(つまり目標出力)に比例している。この場合も、駆動と制動とで図の各軸に対する傾きなどを変えて良い。
通電タイミング出力部61は、回転角度検出部52から入力されるロータ22の回転位置と、駆動または制動マップ記憶部55・57から入力される進角および通電角に基づき、スイッチング回路41の各ロー側トランジスタUL,VL,WLのオン/オフ状態を制御するパルスからなる各ゲート信号を生成し、各ロー側トランジスタUL,VL,WLのゲートに出力すると共に、進角および通電角をPWM信号出力部64に出力する。なお、各ロー側トランジスタUL,VL,WLに出力されるゲート信号は、例えば進角および通電角に応じた通電区間において、オンデューティが所定値(例えば、100%)とされている。電流検出部62は、例えば各電流センサ43から出力される各相電流(巻線電流)の検出信号に基づき、SRモータ11に通電されている巻線電流を検出し、この巻線電流の検出値を電流制御部63に出力する。
電流制御部63は、SRモータ11に通電されている巻線電流のPWM制御を行うものであり、図示例では駆動電流比較部63aで駆動信号発生部66からの電流指令値と電流検出部62からの電流検出値とを比較し、その比較結果(例えば偏差)に基づいてPWMDuty演算部63cでスイッチング回路41の各ハイ側トランジスタUH,VH,WHのオン/オフ状態を制御するパルスからなる各ゲート信号のデューティ比を演算し、その演算結果をPWM信号出力部64に出力する。例えば、PWMDuty演算部63cは、電圧指令値と、三角波等のキャリア信号とに基づくパルス幅変調により、各ゲート信号(つまり、PWM信号)を生成し、各ゲート信号のデューティつまりオン/オフ状態の比率を算出する。そして、各ゲート信号およびデューティをPWM信号出力部64に出力する。
PWM信号出力部64は、通電タイミング出力部61から入力される進角および通電角に基づき、電流制御部63から入力される各ハイ側トランジスタUH,VH,WHのオン/オフ状態を制御するパルスからなる各ゲート信号を、各ハイ側トランジスタUH,VH,WHのゲートに出力する。各ハイ側トランジスタUH,VH,WHに出力されるゲート信号は、例えば進角および通電角に応じた通電区間において、オンデューティがPWMDuty演算部63bにより算出された値(つまり、電圧指令値に応じた値)とされている。
このようにして構成されたSRモータ11の制御要領について図4のフロー図を参照して以下に示す。先ずステップST1でアクセル操作量θの検出を行う。アクセル操作量θは内燃機関自動車のアクセル操作量に対応するものであって良く、全閉に相当する0%〜全開に相当する100%の範囲であって良い。なお、アクセル操作量θの0%相当値側から全開相当値に向けて上記各モードを分ける第1の基準信号に対応する第1の基準値θ1と第2の基準信号に対応する第2の基準値θ2とが設けられている。図示例において、0%から第1の基準値θ1に至る範囲が制動モードであり、第1の基準値θ1から第2の基準値θ2に至る範囲がフリーランモードであり、第2の基準値θ2を越えた範囲(〜100%)が駆動モードである。モードの判別は、動作モード判別部65にて、上記したようにアクセル操作量θに応じて行う。
次のステップST2では、アクセル操作量θが第1の基準値θ1以下か否かを判別する。アクセル操作量θが第1の基準値θ1を越えている場合にはステップST3に進み、そこでさらにアクセル操作量θが第2の基準値θ2以下か否かを判別する。アクセル操作量θが第2の基準値θ2を越えていると判定された場合にはステップST4に進み、駆動モードを実行する。駆動モードにあっては、図5に示されるマップにおける駆動モードとして示された範囲に対応する制御を行う。
図示例では、アクセル操作量θと回転速度とに基づいて駆動マップ記憶部55のうちの選択された1つの進角マップ55aおよび通電角マップ55bのデータから進角および通電角を決定する。マップの選択にあっては、駆動マップ切替スイッチSW1により予め設定しておくことができ、その設定に応じてマップ選択部56により制御に適用するマップを選択する。その選択されたマップによる進角および通電角に基づく通電タイミングで上記したPWM制御を実行する。図5に示されるようにアクセル操作量θの増大に伴って励磁電流指令値が増大し、SRモータ11の駆動トルクが増大する。
ステップST3でアクセル操作量θが第2の基準値θ2以下であると判定された場合にはステップST5に進み、フリーランモードを実行する。フリーランモードにあっては、図5に示されるマップにおけるフリーランモードとして示された範囲に対応する制御を行う。すなわち、フリーラン信号部発生部67aからのフリーラン信号がPWMDuty0%発生部67bからデューティ比0%の信号がPWMDuty演算部63cに出力されて、PWMDuty演算部63cからは0%信号がPWM信号出力部64に出力されるため、フリーラン状態となる。
上記ステップST2でアクセル操作量θが第1の基準値θ1以下であると判定された場合にはステップST6に進む。この場合のステップST6〜ST11は制動モードとなり、図5に示されるマップにおける制動モードとして示された範囲に対応する制御を行う。まずステップST6では、回転角センサ35により検出された回転角信号に基づいてSRモータ11の回転速度を回転速度検出部53で算出する。次のステップST7では、アクセル操作量θと回転速度とに基づいて制動マップ記憶部57のうちの選択された1つの進角マップ57aおよび通電角マップ57bのデータから進角および通電角を決定する。
この制動モードにあっては、図5に示されるように、第1の基準値θ1と、それより小さなアクセル操作量となる最大制動切り換え点θbとの間にあっては、図に示されるようにアクセル操作量θの減少に伴って電流が漸増するように設定されている。この設定は供給電流指令マップ59aにより行うことができる。
次のステップST8ではアクセル操作量θによる供給電流値の補正を制動信号発生部68で行う。アクセルを戻す操作はプログラムのステップで処理する時間に対しては遅いため、例えば一気にアクセルを最小値(全閉相当)に戻したとしてもステップST8を通過する処理が行われる。すなわち、このステップST8による処理にあっては、上記θ1からθbに至る区間に対応する処理となる。
この供給電流値の補正にあっては、図示例では、最大電流値決定部69で決定された最大電流値を供給電流値とする。最大電流値決定部69では供給電流指令マップ59のうちの選択された1つのマップに基づいて電流値を決定する。その選択マップは、電流値マップ切替スイッチSW2により予め設定しておくことができる。最大電流値は、モータに流せる最大電流値ではなく、回転速度に応じて例えば制動トルクが一定となる電流の上限値であって良い。
次のステップST9では上記供給電流指令マップにより決定された供給電流値を用いて電流を流す供給モードを実行する。ここでは、PWM制御によりスイッチング回路41をデューティ制御してSRモータ11に電流を供給する電流制御を行う。
次のステップST10では、制動電流比較部63bにより、電流センサ43により検出された電流が上記供給モードにおける供給電流値に達したか否かを判別し、供給電流値に達していない場合にはステップST9に戻り、供給電流値に達していると判定された場合にはステップST11に進む。ステップST11では還流・回生モードを実行する。この還流・回生モードではSRモータ11に生じる発電電力をバッテリBTに戻す制御が行われるが、ステップST8の処理により、制動モードにおいて一気に制動時のモータの最大電流に達することがないため、図示例のように電動カートに用いた場合にエンジンブレーキ使用時の制動トルクの発生が緩やかに上昇し得ることから運転操作性が向上する。また、パワー回路4のパワー素子の負担も軽減されるため、不必要に大容量の素子を用いることなく、回路を低コスト化し得る。
なお、図示例では動作モード判別部65にあっては、電流指令値検出部51からの信号すなわちアクセル操作信号のみに基づいて各モードを判別するようにしたが、回転速度検出部53による回転速度信号を図1の二点鎖線で示されるように動作モード判別部65に供給して、動作モード判別部65ではアクセル操作信号と回転速度信号とに基づいて各モードを判別するようにしても良い。これにより、より一層きめ細かなモード判別を行うことができ、走行性能が向上し得る。
本発明にかかるスイッチドリラクタンスモータの制御装置は、一気に制動力を発生させる場合の急激な発電電力の上昇を抑制する効果を有し、スイッチドリラクタンスモータを用いた電動装置等として有用である。
本発明が適用された電動カートに搭載される駆動モータ制御装置の概略ブロック図である。 進角マップを示す図である。 通電角マップを示す図である。 本発明に基づく制御を示すフロー図である。 本発明に基づく電流値を設定するマップを示す図である。 (a)は従来の回転速度に対する電流指令値のマップデータを示す図であり、(b)は(a)による制動トルクを示す図である。 従来の電流値を設定するマップを示す図である。
符号の説明
14 制御装置
11 スイッチドリラクタンスモータ(SRモータ)
12 駆動装置
14 電流出力検出部
53 回転速度検出部
57 制動マップ記憶部
62 電流検出部
63 電流制御部、63a 駆動電流比較部、63b 制動電流比較部
64 PWM信号出力部
65 動作モード判別部
66 駆動信号発生部
67a フリーラン信号発生部
68 制動信号発生部

Claims (7)

  1. ロータとステータとを有するスイッチドリラクタンスモータと、
    前記スイッチドリラクタンスモータのステータに駆動電流を供給するモータ駆動回路とを備えた装置を制御するスイッチドリラクタンスモータの制御装置であって、
    前記モータ駆動回路から前記ステータに流れる電流の電流値を検出し、電流値信号を発生する電流検出手段と、
    前記スイッチドリラクタンスモータの目標出力となる前記電流の目標値信号を発生する目標出力値設定手段と、
    パルス幅変調されたPWM信号を前記モータ駆動回路へ供給する前記PWM出力信号発生手段と、
    前記目標出力値設定手段から目標値信号が供給され、目標値信号が予め定められた第1の基準信号を越えていない場合には制動モード信号を発生し、目標値信号が前記第1の基準信号と予め定められかつ前記第1の基準信号より大きい第2の基準信号との間の場合にはフリーランモード信号を発生し、目標値信号が前記第2の基準信号を越えている場合には駆動モード信号を発生する動作モード判別手段と、
    前記動作モード判別手段から前記駆動モード信号が供給されることにより、前記目標出力値設定手段が発生する目標値信号に基づいて駆動信号を発生する駆動信号発生手段と、
    前記駆動信号発生手段から駆動信号が供給されると共に、前記電流検出手段から電流値信号が供給され、両者を比較して、第1の比較信号を発生する第1の電流比較手段と、
    前記動作モード判別手段から前記フリーランモード信号が供給されることにより、前記PWM出力信号発生手段が発生するPWM信号の発生を停止させる停止信号を発生するフリーラン信号発生手段と、
    前記動作モード判別手段から前記制動モード信号が供給されることにより、前記目標出力値設定手段が発生する目標値信号に基づいて制動信号を発生する制動信号発生手段と、
    前記制動信号発生手段から制動信号が供給されると共に、前記電流検出手段から電流値信号が供給され、両者を比較して、第2の比較信号を発生する第2の電流比較手段と、
    前記PWM出力信号発生手段から前記モータ駆動回路に供給される前記パルス幅変調されたPWM信号の基準値を、前記第1の比較信号及び前記第2の比較信号に基づいて演算するPWM信号演算手段とを備えていることを特徴とするスイッチドリラクタンスモータの制御装置。
  2. 前記スイッチドリラクタンスモータのロータの回転位置を検出し、回転位置信号を発生する回転位置検出手段と、
    前記回転位置検出手段からの回転位置信号が供給されると共に、前記回転位置信号から回転角度信号を発生する回転角度出力手段と、
    前記回転角度出力手段からの回転角度信号が供給されると共に、前記回転角度信号から回転速度信号を出力する回転速度出力手段とを有し、
    前記制動信号発生手段が発生する制動信号の最大値を、前記回転速度出力手段から供給される回転速度信号に基づいて決定し、前記制動信号の最大値を出力する最大電流値決定手段とを有し、
    前記制動信号発生手段が、前記動作モード判別手段から前記制動モード信号が供給され、並びに前記最大電流値決定手段からの前記制動信号の最大値が供給されることにより、前記目標出力値設定手段が発生する目標値信号に応じて前記制動信号の最大値まで前記制動信号を漸増させて出力することを特徴とする請求項1に記載のスイッチドリラクタンスモータの制御装置。
  3. 前記回転角度信号と前記回転速度信号と前記駆動信号とが供給されることにより、前記回転速度信号に基づき、かつ前記第1の比較信号に基づいて前記PWM出力信号発生手段から前記モータ駆動回路へ供給される前記パルス幅変調されたPWM信号のタイミングを決定する第1のタイミング信号を前記PWM出力信号発生手段へ供給する第1の通電タイミング手段を備えていることを特徴とする請求項2に記載のスイッチドリラクタンスモータの制御装置。
  4. 前記回転角度信号と前記回転速度信号と前記制動信号とが供給されることにより、前記回転速度信号に基づき、かつ前記第2の比較信号に基づいて前記PWM出力信号発生手段から前記モータ駆動回路へ供給される前記パルス幅変調されたPWM信号のタイミングを決定する第2のタイミング信号を前記PWM出力信号発生手段へ供給する第2の通電タイミング手段を備えていることを特徴とする請求項2に記載のスイッチドリラクタンスモータの制御装置。
  5. 前記回転速度信号に対応した通電角及び進角の少なくとも一方のデータを予め記憶する複数のマップと、前記複数のマップのうちの1つのマップのデータを前記第1の通電タイミング手段に供給するべく当該1つマップを選択する駆動マップ選択手段とを有していることを特徴とする請求項3に記載のスイッチドリラクタンスモータの制御装置。
  6. 前記回転速度信号に対応した通電角及び進角の少なくとも一方のデータを予め記憶する複数のマップと、前記複数のマップのうちの1つのマップのデータを前記第2の通電タイミング手段に供給するべく当該1つマップを選択する制動マップ選択手段とを有していることを特徴とする請求項4に記載のスイッチドリラクタンスモータの制御装置。
  7. 前記回転速度信号に対応した最大電流値のデータを予め記憶する複数の最大電流値マップと、前記複数の最大電流値マップのうちの1つのマップのデータを前記最大電流値決定手段に供給するべく当該1つのマップを選択する電流値マップ選択手段とを有していることを特徴とする請求項2乃至請求項6のいずれかに記載のスイッチドリラクタンスモータの制御装置。
JP2007086897A 2007-03-29 2007-03-29 スイッチドリラクタンスモータの制御装置 Pending JP2008245495A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007086897A JP2008245495A (ja) 2007-03-29 2007-03-29 スイッチドリラクタンスモータの制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007086897A JP2008245495A (ja) 2007-03-29 2007-03-29 スイッチドリラクタンスモータの制御装置

Publications (1)

Publication Number Publication Date
JP2008245495A true JP2008245495A (ja) 2008-10-09

Family

ID=39916150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007086897A Pending JP2008245495A (ja) 2007-03-29 2007-03-29 スイッチドリラクタンスモータの制御装置

Country Status (1)

Country Link
JP (1) JP2008245495A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111095776A (zh) * 2017-12-07 2020-05-01 株式会社美姿把 马达控制装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111095776A (zh) * 2017-12-07 2020-05-01 株式会社美姿把 马达控制装置
EP3723275A4 (en) * 2017-12-07 2021-08-18 Mitsuba Corporation ENGINE CONTROL DEVICE
CN111095776B (zh) * 2017-12-07 2023-08-29 株式会社美姿把 马达控制装置

Similar Documents

Publication Publication Date Title
US9065366B2 (en) Method for operating an at least three-phase electric machine, used as a drive assembly in a motor vehicle, and control unit for an inverter
KR101940411B1 (ko) 회로 및 회로를 위한 제어 방법
JP6404864B2 (ja) スイッチトリラクタンスモータの制御装置
JP5188723B2 (ja) スイッチトリラクタンスモータの制御装置
JP4974988B2 (ja) 界磁巻線式同期発電電動機
EP3188358A1 (en) Control device for switched reluctance motor
JP6998717B2 (ja) 可変磁力モータの制御方法および制御装置
JP2018085904A (ja) スイッチトリラクタンスモータの制御装置
JP2010110098A (ja) 回転電機装置及びその制御装置
JP5225709B2 (ja) スイッチトリラクタンスモータの制御装置
JP4938517B2 (ja) ブラシレスモータの制御装置
JP6870577B2 (ja) 回転電機の制御装置
CN109831140B (zh) 开关磁阻马达的控制装置
JP4943719B2 (ja) スイッチトリラクタンスモータの回生制御装置
JP2008245495A (ja) スイッチドリラクタンスモータの制御装置
JP5164415B2 (ja) モータ駆動装置
JP2008259362A (ja) 電動車両用駆動装置
WO2016163458A1 (ja) 電動発電機装置
JP6883524B2 (ja) 回転電機の制御装置、作業機械及び回転電機の制御方法
JP6481587B2 (ja) スイッチトリラクタンスモータの制御装置
JP2022112443A (ja) 駆動装置
JP2023183492A (ja) 交流回転機の制御装置、及び車両用発電電動機装置
JP2022081302A (ja) モータ制御装置および車両
JP2019097301A (ja) スイッチトリラクタンスモータの制御装置
JP2019047573A (ja) スイッチトリラクタンスモータの制御装置