JP2008235922A - Semiconductor device and method for manufacturing the same - Google Patents

Semiconductor device and method for manufacturing the same Download PDF

Info

Publication number
JP2008235922A
JP2008235922A JP2008109052A JP2008109052A JP2008235922A JP 2008235922 A JP2008235922 A JP 2008235922A JP 2008109052 A JP2008109052 A JP 2008109052A JP 2008109052 A JP2008109052 A JP 2008109052A JP 2008235922 A JP2008235922 A JP 2008235922A
Authority
JP
Japan
Prior art keywords
layer
semiconductor device
film
insulating film
bonding pad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008109052A
Other languages
Japanese (ja)
Other versions
JP4701264B2 (en
Inventor
Noriaki Oda
典明 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Electronics Corp
Original Assignee
NEC Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Electronics Corp filed Critical NEC Electronics Corp
Priority to JP2008109052A priority Critical patent/JP4701264B2/en
Publication of JP2008235922A publication Critical patent/JP2008235922A/en
Application granted granted Critical
Publication of JP4701264B2 publication Critical patent/JP4701264B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/03Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/0212Auxiliary members for bonding areas, e.g. spacers
    • H01L2224/02122Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body
    • H01L2224/02163Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body on the bonding area
    • H01L2224/02165Reinforcing structures
    • H01L2224/02166Collar structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05075Plural internal layers
    • H01L2224/0508Plural internal layers being stacked
    • H01L2224/05082Two-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05075Plural internal layers
    • H01L2224/0508Plural internal layers being stacked
    • H01L2224/05085Plural internal layers being stacked with additional elements, e.g. vias arrays, interposed between the stacked layers
    • H01L2224/05089Disposition of the additional element
    • H01L2224/05093Disposition of the additional element of a plurality of vias
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05541Structure
    • H01L2224/05548Bonding area integrally formed with a redistribution layer on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05553Shape in top view being rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05554Shape in top view being square
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05567Disposition the external layer being at least partially embedded in the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05571Disposition the external layer being disposed in a recess of the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/061Disposition
    • H01L2224/0612Layout
    • H01L2224/0613Square or rectangular array
    • H01L2224/06133Square or rectangular array with a staggered arrangement, e.g. depopulated array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/049Nitrides composed of metals from groups of the periodic table
    • H01L2924/04955th Group
    • H01L2924/04953TaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19041Component type being a capacitor

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Wire Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device improved in robustness against impacts to a bonding pad when probing and bonding. <P>SOLUTION: The semiconductor device with a bonding pad 130 on a semiconductor substrate 10 includes an upper Cu layer 100 formed on a lower surface of the bonding pad 130 via a barrier metal and having a larger Cu area ratio than a layer on which circuit wiring is formed, and a lower Cu layer 200 electrically insulated from the upper Cu layer 100 and formed on the side of the semiconductor substrate 10 from the upper Cu layer 100. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ワイヤーボンディングのためのボンディングパッドを有する半導体装置およびその製造方法に関する。   The present invention relates to a semiconductor device having a bonding pad for wire bonding and a manufacturing method thereof.

従来、銅(Cu)配線を用いた半導体装置において、Cu配線上にボンディングパッドを形成する際、ボンディング部分をCu配線上からずれた位置に設けるようにしているものがある(例えば、特許文献1参照)。   2. Description of the Related Art Conventionally, in a semiconductor device using copper (Cu) wiring, when a bonding pad is formed on a Cu wiring, a bonding portion is provided at a position shifted from the Cu wiring (for example, Patent Document 1). reference).

図5は従来技術による半導体装置の一構成例を示す断面構造図である。   FIG. 5 is a cross-sectional structure diagram showing a configuration example of a semiconductor device according to the prior art.

図5では、半導体基板10上に形成されたCu配線700上に複数のCuパッドが設けられ、Cu最上層パッド710上にバリアメタル720を介して最上層Al配線730が形成されている。そして、上述のように、最上層Al配線730のボンディング部分735がCu配線700上からずれた位置にある。そのため、ボンディング時のストレスがボンディング部分735の下層のパッシベーション絶縁膜740および層間絶縁膜750にかかり、Cu配線700へのストレスの影響が低減され、Cu配線700が表面に露出することを防げる。
特開2001−15516号公報(第4頁〜第5頁、第2図)
In FIG. 5, a plurality of Cu pads are provided on the Cu wiring 700 formed on the semiconductor substrate 10, and the uppermost Al wiring 730 is formed on the Cu uppermost layer pad 710 via the barrier metal 720. As described above, the bonding portion 735 of the uppermost Al wiring 730 is at a position shifted from the Cu wiring 700. Therefore, the stress at the time of bonding is applied to the passivation insulating film 740 and the interlayer insulating film 750 below the bonding portion 735, the influence of the stress on the Cu wiring 700 is reduced, and the Cu wiring 700 can be prevented from being exposed to the surface.
JP 2001-15516 A (pages 4 to 5 and FIG. 2)

上述した公報に示される半導体装置は、次のような問題があった。   The semiconductor device disclosed in the above publication has the following problems.

Cu配線上からずれた位置にボンディング部分を設けると、その分ボンディングパッドの面積が大きくなり、チップサイズの拡大化を招くことになる。   If the bonding portion is provided at a position shifted from the Cu wiring, the area of the bonding pad is increased correspondingly and the chip size is increased.

また、酸化膜よりも比誘電率が小さい低比誘電率膜がボンディング部分の下に存在する場合、プロービングやボンディング時の針の荷重によりボンディングパッドが沈み込み、ボンディングパッド下の層間絶縁膜にクラックが発生したり、ボンディングパッドの膜剥れが生じたりする。   In addition, when a low relative dielectric constant film having a relative dielectric constant smaller than that of the oxide film exists under the bonding part, the bonding pad sinks due to the load of the probe during probing or bonding, and cracks occur in the interlayer insulating film under the bonding pad. May occur or the film of the bonding pad may peel off.

本発明は上記したような従来の技術が有する問題点を解決するためになされたものであり、ブロービングおよびボンディング時のボンディングパッドへの衝撃に対する耐性(以下、「衝撃耐性」と称する)を向上させた半導体装置およびその製造方法を提供することを目的とする。   The present invention has been made to solve the above-described problems of the prior art, and improves resistance to impact on the bonding pad during blowing and bonding (hereinafter referred to as “impact resistance”). An object of the present invention is to provide a semiconductor device and a manufacturing method thereof.

上記目的を達成するための本発明の半導体装置は、半導体基板上にボンディングパッドを有する半導体装置であって、
前記ボンディングパッドの下面にバリアメタルを介して形成された上部Cu層と、
前記上部Cu層と比べて前記ボンディングパッド下におけるCu層の面積が小さく、前記上部Cu層より前記半導体基板側に形成された下部Cu層と、を有し、
前記上部Cu層と前記下部Cu層とが、前記ボンディングパッドの下において、電気的に絶縁されていることを特徴とする。
In order to achieve the above object, a semiconductor device of the present invention is a semiconductor device having a bonding pad on a semiconductor substrate,
An upper Cu layer formed on the lower surface of the bonding pad via a barrier metal;
An area of the Cu layer under the bonding pad is smaller than that of the upper Cu layer, and a lower Cu layer formed on the semiconductor substrate side of the upper Cu layer;
The upper Cu layer and the lower Cu layer are electrically insulated under the bonding pad.

また、本発明の半導体装置は、半導体基板上にボンディングパッドを有する半導体装置であって、
前記ボンディングパッドの下面にバリアメタルを介して形成され、回路配線が形成される層よりもCu面積率が大きな上部Cu層と、
前記上部Cu層と電気的に絶縁され、前記上部Cu層よりも前記半導体基板側に形成された下部Cu層と、
を有する構成である。
The semiconductor device of the present invention is a semiconductor device having a bonding pad on a semiconductor substrate,
An upper Cu layer formed on the lower surface of the bonding pad via a barrier metal and having a larger Cu area ratio than a layer on which circuit wiring is formed;
A lower Cu layer that is electrically insulated from the upper Cu layer and formed closer to the semiconductor substrate than the upper Cu layer;
It is the structure which has.

また、上記本発明の半導体装置において、上部Cu層はCu面積率が70%以上95%以下であることとしてもよく、ボンディングパッドおよび上部Cu層は平面寸法が略同一であることとしてもよい。   In the semiconductor device of the present invention, the upper Cu layer may have a Cu area ratio of 70% or more and 95% or less, and the bonding pad and the upper Cu layer may have substantially the same planar dimensions.

また、上記本発明の半導体装置において、上部Cu層が複数からなることとしてもよく、複数の上部Cu層における各Cu層のCu面積率が同一であることとしてもよい。   In the semiconductor device of the present invention, the upper Cu layer may be composed of a plurality of Cu layers, and the Cu area ratio of each Cu layer in the plurality of upper Cu layers may be the same.

また、上記本発明の半導体装置において、複数の上部Cu層の層間には層間絶縁膜が設けられ、
前記各Cu層は、前記層間絶縁膜中にCuが埋設されたビアプラグを介して接続されていることとしてもよい。
In the semiconductor device of the present invention, an interlayer insulating film is provided between the plurality of upper Cu layers,
The Cu layers may be connected via via plugs in which Cu is embedded in the interlayer insulating film.

また、上記本発明の半導体装置において、複数の上部Cu層として、半導体基板側からボンディングパッド側に第1Cu層、第2Cu層、…、および第nCu層(nは2以上の自然数)が順に設けられている場合、
ビアプラグ、および前記第nCu層のCu層パターンが第1の材料よりなる絶縁膜に埋設されていることとしてもよい。
In the semiconductor device of the present invention, a first Cu layer, a second Cu layer,..., And an nCu layer (n is a natural number of 2 or more) are sequentially provided from the semiconductor substrate side to the bonding pad side as a plurality of upper Cu layers. If
The via plug and the Cu layer pattern of the n-th Cu layer may be embedded in an insulating film made of the first material.

また、上記本発明の半導体装置において、下部Cu層はCu面積率が15%以上95%以下であることとしてもよく、下部Cu層が複数からなることとしてもよい。   In the semiconductor device of the present invention, the lower Cu layer may have a Cu area ratio of 15% or more and 95% or less, and the lower Cu layer may be composed of a plurality.

また、上記本発明の半導体装置において、複数の下部Cu層における各Cu層のCu面積率が同一であることとしてもよく、複数の下部Cu層の各Cu層間に第1の材料よりなる絶縁膜が介在することとしてもよい。   In the semiconductor device of the present invention, the Cu area ratio of each Cu layer in the plurality of lower Cu layers may be the same, and the insulating film made of the first material between the Cu layers of the plurality of lower Cu layers It is good also as interposing.

また、上記本発明の半導体装置において、複数の下部Cu層の各Cu層において同一層に形成されたCu層パターン間に、第1の材料に比べて比誘電率が低い材料を有する第2の材料よりなる絶縁膜が介在することとしてもよく、第2の材料が第1の材料よりも軟質であることとしてもよい。   Further, in the semiconductor device of the present invention, a second material having a lower relative dielectric constant than the first material is formed between the Cu layer patterns formed in the same layer in each of the plurality of lower Cu layers. An insulating film made of a material may be interposed, and the second material may be softer than the first material.

また、上記本発明の半導体装置において、第2の材料よりなる絶縁膜は、SiOC膜、SiC膜、SiOF膜、ポーラスSiO2膜、ポーラスSiOC膜、および梯子型水素化シロキサン構造を有するラダーオキサイド膜のうちいずれか一つを含むこととしてもよい。 In the semiconductor device of the present invention, the insulating film made of the second material includes a SiOC film, a SiC film, a SiOF film, a porous SiO 2 film, a porous SiOC film, and a ladder oxide film having a ladder-type hydrogenated siloxane structure. It is good also as including any one of these.

また、上記本発明の半導体装置において、複数の下部Cu層の各Cu層間に、第1の材料に比べて比誘電率が低い材料を有する第3の材料よりなる絶縁膜が介在することとしてもよく、第3の材料が第1の材料よりも軟質であることとしてもよい。   In the semiconductor device of the present invention, an insulating film made of a third material having a material having a lower relative dielectric constant than the first material may be interposed between the Cu layers of the plurality of lower Cu layers. Alternatively, the third material may be softer than the first material.

また、上記本発明の半導体装置において、第3の材料よりなる絶縁膜は、SiOC膜、SiC膜、SiOF膜、ポーラスSiO2膜、ポーラスSiOC膜、および梯子型水素化シロキサン構造を有するラダーオキサイド膜のうちいずれか一つを含むこととしてもよい。 In the semiconductor device of the present invention, the insulating film made of the third material is a SiOC film, a SiC film, a SiOF film, a porous SiO 2 film, a porous SiOC film, and a ladder oxide film having a ladder-type hydrogenated siloxane structure. It is good also as including any one of these.

また、上記本発明の半導体装置において、バリアメタルがTiNおよびTaNのうちいずれか一方を含むこととしてもよい。   In the semiconductor device of the present invention, the barrier metal may include any one of TiN and TaN.

さらに、上記本発明の半導体装置において、前記半導体装置に内部回路を備え、
前記内部回路およびボンディングパッドと電気的に接続された補助Cu配線を有することとしてもよい。
Furthermore, in the semiconductor device of the present invention, the semiconductor device includes an internal circuit,
It is good also as having the auxiliary | assistant Cu wiring electrically connected with the said internal circuit and the bonding pad.

一方、上記目的を達成するための本発明の半導体装置の製造方法は、上部Cu層および下部Cu層をダマシン法により形成するものである。   On the other hand, in the method of manufacturing a semiconductor device of the present invention for achieving the above object, an upper Cu layer and a lower Cu layer are formed by a damascene method.

また、本発明の半導体装置の製造方法は、第nCu層および該第nCu層に接触するビアプラグをデュアルダマシン法により形成するものである。   In the method for manufacturing a semiconductor device according to the present invention, the nCu layer and the via plug contacting the nCu layer are formed by a dual damascene method.

(作用)
上記のように構成される本発明では、Cuは外部から加えられた力を跳ね返そうとする性質である弾性が酸化膜より大きいため、ボンディングパッド下に、耐衝撃層として、上部Cu層、および上部Cu層と同等以下のCu面積率を有する下部Cu層を設けることで、プロービングおよびボンディング時の衝撃に対する耐性が向上する。
(Function)
In the present invention configured as described above, since Cu is more elastic than an oxide film, which has the property of repelling an externally applied force, an upper Cu layer as an impact resistant layer under the bonding pad, In addition, by providing a lower Cu layer having a Cu area ratio equal to or less than that of the upper Cu layer, resistance to impact during probing and bonding is improved.

また、本発明では、Cuは弾性が酸化膜より大きいため、ボンディングパッド下に、回路配線が形成される層よりもCu面積率が大きい上部Cu層、および下部Cu層を設けることで、プロービングおよびボンディング時の衝撃に対する耐性が向上する。   In the present invention, since Cu is more elastic than an oxide film, the upper Cu layer and the lower Cu layer having a Cu area ratio larger than that of the layer on which the circuit wiring is formed are provided below the bonding pad. Resistance to impact during bonding is improved.

また、本発明では、上部Cu層のCu面積率を70%以上95%以下にすることで、プロービングおよびボンディング時の衝撃耐性がより向上する。   Moreover, in this invention, the impact resistance at the time of probing and bonding improves more by making Cu area rate of an upper Cu layer 70% or more and 95% or less.

また、本発明では、ボンディングパッドと上部Cu層との平面パターンの寸法が同一なので、ボンディングパッドと上部Cu層との接触面積が十分得られる。   In the present invention, since the dimensions of the planar pattern of the bonding pad and the upper Cu layer are the same, a sufficient contact area between the bonding pad and the upper Cu layer can be obtained.

また、本発明では、上部Cu層を複数にすることで、衝撃が各Cu層に分散する。また、本発明では、上部各Cu層のCu面積率が同一であるため、衝撃がより均等に分散する。   Moreover, in this invention, an impact is disperse | distributed to each Cu layer by making multiple upper Cu layers. Moreover, in this invention, since the Cu area ratio of each upper Cu layer is the same, an impact is disperse | distributed more uniformly.

また、本発明では、上部各Cu層がビアプラグを介して接続されているため、最上層の衝撃が他の層に、より分散しやすくなる。   In the present invention, since the upper Cu layers are connected via via plugs, the impact of the uppermost layer is more easily distributed to other layers.

また、本発明では、上部第nCu層およびビアプラグが埋設された、第1の材料よりなる絶縁膜が硬質であるため、ボンディング時に最も大きな衝撃力を受ける上部第nCu層およびビアプラグを絶縁膜が均一に支持する。   Further, in the present invention, since the insulating film made of the first material in which the upper nCu layer and the via plug are embedded is hard, the insulating film is uniform in the upper nCu layer and the via plug that receive the greatest impact force during bonding. To support.

また、本発明では、下部Cu層のCu面積率を15%以上95%以下にすることで、衝撃耐性をさらに向上することができる。そのため、下部Cu層をCu面積率15%以上95%以下の回路配線層として利用し、ボンディングパッドの下の領域を有効に活用できる。   In the present invention, impact resistance can be further improved by setting the Cu area ratio of the lower Cu layer to 15% or more and 95% or less. Therefore, the lower Cu layer can be used as a circuit wiring layer having a Cu area ratio of 15% or more and 95% or less, and the region under the bonding pad can be effectively used.

また、本発明では、下部Cu層を複数にすることで、下部Cu層に伝わる衝撃が各層に分散する。   Moreover, in this invention, the impact transmitted to a lower Cu layer is disperse | distributed to each layer by using multiple lower Cu layers.

また、本発明では、下部各Cu層のCu面積率が同一であるため、下部Cu層に伝わる衝撃がより均等に分散する。   Moreover, in this invention, since the Cu area ratio of each lower Cu layer is the same, the impact transmitted to a lower Cu layer is disperse | distributed more uniformly.

また、本発明では、下部Cu層の各Cu層間に、第1の材料よりなる絶縁膜を用いることで、絶縁膜が下部Cu層をより均一に支持する。   Moreover, in this invention, an insulating film supports a lower Cu layer more uniformly by using the insulating film which consists of 1st materials between each Cu layer of a lower Cu layer.

また、本発明では、上部Cu層および下部Cu層を設け、ボンディングパッドへの衝撃耐性が向上することにより、第1の材料よりも比誘電率の低い材料を有する第2の材料よりなる絶縁膜を下部Cu層の層間絶縁膜に用いることができ、異なる配線層の間の配線間容量を低減できる。   In the present invention, the upper Cu layer and the lower Cu layer are provided and the impact resistance to the bonding pad is improved, so that the insulating film made of the second material having a material having a lower relative dielectric constant than the first material. Can be used for the interlayer insulating film of the lower Cu layer, and the wiring capacity between different wiring layers can be reduced.

また、本発明では、上部Cu層および下部Cu層を設け、ボンディングパッドへの衝撃耐性が向上することにより、第1の材料よりも軟質な第2の材料よりなる絶縁膜を下部Cu層の層間絶縁膜に用いることができる。   In the present invention, the upper Cu layer and the lower Cu layer are provided, and the impact resistance to the bonding pad is improved, so that the insulating film made of the second material softer than the first material is formed between the lower Cu layers. It can be used for an insulating film.

また、本発明では、上部Cu層および下部Cu層を設け、ボンディングパッドへの衝撃耐性が向上することにより、第1の材料よりも比誘電率の低い材料を有する第3の材料よりなる絶縁膜を下部Cu層に介在する絶縁膜に用いることができ、同一層に形成される配線同士の間の容量を低減できる。   In the present invention, the upper Cu layer and the lower Cu layer are provided, and the impact resistance to the bonding pad is improved, whereby the insulating film made of the third material having a material having a relative dielectric constant lower than that of the first material. Can be used for the insulating film interposed in the lower Cu layer, and the capacitance between wirings formed in the same layer can be reduced.

また、本発明では、上部Cu層および下部Cu層を設け、ボンディングパッドへの衝撃耐性が向上することにより、第1の材料よりも軟質な第3の材料よりなる絶縁膜を下部Cu層に介在する絶縁膜に用いることができる。   In the present invention, the upper Cu layer and the lower Cu layer are provided, and the resistance to impact to the bonding pad is improved, so that an insulating film made of a third material softer than the first material is interposed in the lower Cu layer. It can be used for an insulating film.

また、本発明では、バリアメタルとして、TiNおよびTaNのうちいずれか一つを用いることで、AlとCuとが相互に拡散することを防げる。   In the present invention, Al and Cu can be prevented from diffusing each other by using any one of TiN and TaN as the barrier metal.

さらに、本発明では、ボンディングパッドと補助Cu配線とが接続されているため、ボンディング時の衝撃で上部Cu層にクラックが入って接続不良になっても、ボンディングパッドと内部回路との電気的接続を確保できる。   Furthermore, in the present invention, since the bonding pad and the auxiliary Cu wiring are connected, even if the upper Cu layer cracks due to an impact during bonding and the connection becomes defective, the electrical connection between the bonding pad and the internal circuit is achieved. Can be secured.

本発明は以上説明したように構成されているので、以下に記載する効果を奏する。   Since the present invention is configured as described above, the following effects can be obtained.

本発明では、外部から加えられた力を跳ね返そうとする性質である弾性が酸化膜より大きいCu層を、ボンディングパッド下にバリアメタルを介して形成することにより、プロービングやボンディング時に針が跳ね返りやすく、下方に衝撃が伝わりにくくなる。そのため、衝撃耐性が向上し、ボンディングパッドにプロービングの針を立ててもパッドが破壊されることを防げる。   In the present invention, by forming a Cu layer having elasticity larger than that of the oxide film, which is a property to repel externally applied force, via a barrier metal under the bonding pad, the needle rebounds during probing and bonding. It is easy and the impact is difficult to be transmitted downward. Therefore, impact resistance is improved, and even if a probing needle is raised on the bonding pad, the pad can be prevented from being destroyed.

また、ボンディングパッド下にCu層が形成されているので、ボンディングの際、金ワイヤーとボンディングパッドとを共晶するための超音波がL−Ox膜等の低比誘電率膜に吸収されることなく金ワイヤーとボンディングパッドに十分に伝わり、金ワイヤーとボンディングパッドとの密着性が強化され、ワイヤプル強度が大きくなる。   In addition, since a Cu layer is formed under the bonding pad, ultrasonic waves for eutecticizing the gold wire and the bonding pad are absorbed by the low dielectric constant film such as the L-Ox film during bonding. The wire is sufficiently transmitted to the gold wire and the bonding pad, the adhesion between the gold wire and the bonding pad is enhanced, and the wire pull strength is increased.

さらに、ボンディングパッド部の実質的なメタル膜厚がアルミとボンディングパッド下のCu層との和となるので、プロービングおよびボンディングに対する硬度が十分になり、下層のL−Ox膜等の低比誘電率膜付近にかかる荷重が軽減される。そのため、クラックが層間絶縁膜に発生することを防げる。   Furthermore, since the substantial metal film thickness of the bonding pad portion is the sum of aluminum and the Cu layer under the bonding pad, the hardness for probing and bonding is sufficient, and the low relative dielectric constant of the lower L-Ox film, etc. The load applied near the membrane is reduced. Therefore, it is possible to prevent cracks from occurring in the interlayer insulating film.

本発明の半導体装置は、耐衝撃層として、ボンディングパッドの下層にバリアメタルを介して形成された上部Cu層と、この上部Cu層と電気的に絶縁された下部Cu層とを設けたことを特徴とする。   The semiconductor device of the present invention is provided with an upper Cu layer formed through a barrier metal under a bonding pad and a lower Cu layer electrically insulated from the upper Cu layer as an impact resistant layer. Features.

(第1実施例)
本発明の半導体装置の構成について説明する。
(First embodiment)
The structure of the semiconductor device of the present invention will be described.

図1は本発明の半導体装置の一構成例を示す平面図および断面構造図である。   1A and 1B are a plan view and a cross-sectional structure diagram illustrating a configuration example of a semiconductor device of the present invention.

図1(b)の断面構造図に示すように、本発明の半導体装置は、アルミニウム(Al)を主成分とする金属膜を含むボンディングパッド130の下層に、アルミニウムが下層に含まれる元素と反応するのを防ぐためのバリアメタルを介して形成された、衝撃耐性向上のための上部Cu層100を有する構成である。   As shown in the cross-sectional structure diagram of FIG. 1B, the semiconductor device of the present invention reacts with an element in which aluminum is contained in a lower layer of a bonding pad 130 including a metal film containing aluminum (Al) as a main component. This is a structure having an upper Cu layer 100 for improving impact resistance, which is formed through a barrier metal for preventing the above.

上部Cu層100およびボンディングパッド130は平面寸法が略同一(誤差の範囲内で同一であることを意味する)であり、上部Cu層100がボンディングパッド130を下方から均一に支持する。   The upper Cu layer 100 and the bonding pad 130 have substantially the same planar dimensions (meaning that they are the same within an error range), and the upper Cu layer 100 supports the bonding pad 130 uniformly from below.

また、図1(b)に示すように、衝撃耐性をより向上させるために、上部Cu層100の下層に酸化膜(SiO2膜)32を介して、上部Cu層100と電気的に絶縁された下部Cu層200を設けている。上部Cu層100および下部Cu層200の間に低比誘電率膜よりも硬質な絶縁膜のSiO2膜32を設けることで、ボンディング時に加わる力による沈み込みを防止している。 Further, as shown in FIG. 1B, in order to further improve the impact resistance, the upper Cu layer 100 is electrically insulated from the upper Cu layer 100 via an oxide film (SiO 2 film) 32 below the upper Cu layer 100. A lower Cu layer 200 is provided. By providing the SiO 2 film 32, which is harder than the low relative dielectric constant film, between the upper Cu layer 100 and the lower Cu layer 200, sinking due to the force applied during bonding is prevented.

本実施例では、上部Cu層100は上部第1Cu層110および上部第2Cu層120の2層を有し、この2層は、Cuを主成分とするビアプラグ140で電気的に接続されている。このように、上部Cu層100を複数の層にすることで、ボンディングパッド130に加わる衝撃が各層に分散されるため、より衝撃耐性が向上する。   In the present embodiment, the upper Cu layer 100 has two layers of an upper first Cu layer 110 and an upper second Cu layer 120, and these two layers are electrically connected by a via plug 140 containing Cu as a main component. Thus, by making the upper Cu layer 100 into a plurality of layers, the impact applied to the bonding pad 130 is dispersed in each layer, so that the impact resistance is further improved.

上部第2Cu層120およびビアプラグ140のそれぞれは、第1の材料よりなる絶縁膜であるSiO2膜42、44にそれぞれ埋設されている。上部第2Cu層120およびビアプラグ140が埋設された絶縁膜が硬質であるため、絶縁膜が上部第2Cu層120およびビアプラグ140を均一に支持する。上部第2Cu層120およびビアプラグ140はボンディング時に加わる力を最も大きく受ける部分であるため、上部第2Cu層120およびビアプラグ140を、低比誘電率膜よりも硬質な絶縁膜のSiO2膜に埋設することが望ましい。 The upper second Cu layer 120 and the via plug 140 are respectively embedded in SiO 2 films 42 and 44 which are insulating films made of the first material. Since the insulating film in which the upper second Cu layer 120 and the via plug 140 are embedded is hard, the insulating film uniformly supports the upper second Cu layer 120 and the via plug 140. Since the upper second Cu layer 120 and the via plug 140 are the portions that receive the greatest force during bonding, the upper second Cu layer 120 and the via plug 140 are embedded in an SiO 2 film that is harder than the low relative dielectric constant film. It is desirable.

また、下部Cu層200は下部第1Cu層210および下部第2Cu層220の2層を有する。この2層は、SiO2膜22で絶縁されている。下部Cu層200を複数のCu層にすることで、上述の上部Cu層100と同様な効果がある。下部第1Cu層210のCu層パターン間には、梯子型水素化シロキサン構造を持つ低比誘電率膜であるラダーオキサイド(L−Ox(NECエレクトロニクス株式会社の商標(出願中)))膜、およびSiO2膜からなる積層絶縁膜14が介在している。下部第2Cu層220についても、同様に、L−Ox膜およびSiO2膜からなる積層絶縁膜24がCu層パターン間に介在している。第1の材料に比べて比誘電率が低い第2の材料を有する絶縁膜としてL−Ox膜を用いることにより、下部Cu層200と同一層に形成されるCu配線の配線間容量が低減される。 The lower Cu layer 200 has two layers, a lower first Cu layer 210 and a lower second Cu layer 220. The two layers are insulated by the SiO 2 film 22. By making the lower Cu layer 200 into a plurality of Cu layers, the same effect as the upper Cu layer 100 described above can be obtained. Between the Cu layer patterns of the lower first Cu layer 210, a ladder oxide (L-Ox (trademark of NEC Electronics Corporation) (pending))) film which is a low dielectric constant film having a ladder-type hydrogenated siloxane structure, and A laminated insulating film 14 made of a SiO 2 film is interposed. Similarly, in the lower second Cu layer 220, the laminated insulating film 24 composed of the L-Ox film and the SiO 2 film is interposed between the Cu layer patterns. By using the L-Ox film as the insulating film having the second material having a relative dielectric constant lower than that of the first material, the interwiring capacitance of the Cu wiring formed in the same layer as the lower Cu layer 200 is reduced. The

さらに、本発明の半導体装置は、半導体基板10上に形成された、トランジスタ、抵抗およびキャパシタ等の半導体素子と、これらの半導体素子を接続するための回路配線とを有する内部回路を備えている。回路配線は、例えば、上部Cu層100および下部Cu層200のうちいずれかと同一層に形成されたCu層、半導体基板10に形成された拡散層、ならびに不純物拡散されたポリシリコン等の導電層により形成される。ボンディングパッド130は、上部Cu層100を介して内部回路と接続されている。なお、半導体素子、回路配線および内部回路については、図に示すことを省略している。   Furthermore, the semiconductor device of the present invention includes an internal circuit formed on a semiconductor substrate 10 and having semiconductor elements such as transistors, resistors, and capacitors, and circuit wiring for connecting these semiconductor elements. The circuit wiring is formed by, for example, a Cu layer formed in the same layer as any one of the upper Cu layer 100 and the lower Cu layer 200, a diffusion layer formed in the semiconductor substrate 10, and a conductive layer such as polysilicon diffused with impurities. It is formed. The bonding pad 130 is connected to the internal circuit through the upper Cu layer 100. In addition, about a semiconductor element, circuit wiring, and an internal circuit, it abbreviate | omits to showing in a figure.

次に、上部Cu層100および下部Cu層200の平面パターンについて説明する。   Next, planar patterns of the upper Cu layer 100 and the lower Cu layer 200 will be described.

図1(a)は上部第1Cu層110の平面パターンとして設けられたダミーパターンの一例を示す模式図であり、鎖線部分の断面構造が図1(b)に示されている。なお、上部第2Cu層120の平面パターンについては上部第1Cu層110と同様なため、以下では、説明を省略する。   FIG. 1A is a schematic diagram showing an example of a dummy pattern provided as a planar pattern of the upper first Cu layer 110, and a cross-sectional structure of a chain line portion is shown in FIG. The planar pattern of the upper second Cu layer 120 is the same as that of the upper first Cu layer 110, and thus the description thereof is omitted below.

図に示すように、上部第1Cu層110の平面パターンは、Cuの面積密度が均一になるように、L−Ox膜およびSiO2膜からなる積層絶縁膜34の方形状パターンがCu層に複数配置された構成である。上部第1Cu層110について、平面パターンのCu面積占有率であるCu面積率は、衝撃耐性を向上させるために、回路配線が形成される層よりも大きい。実験結果から、Cu面積率は70%以上であることが望ましい。また、Cu層のCMP(Chemical Mechanical Polishing)処理の際のディッシングを防止するために、Cu面積率は95%以下であることが望ましい。 As shown in the figure, the planar pattern of the upper first Cu layer 110 includes a plurality of square patterns of the laminated insulating film 34 composed of the L-Ox film and the SiO 2 film in the Cu layer so that the Cu area density is uniform. It is an arranged configuration. Regarding the upper first Cu layer 110, the Cu area ratio, which is the Cu area occupation ratio of the planar pattern, is larger than the layer in which the circuit wiring is formed in order to improve impact resistance. From the experimental results, the Cu area ratio is desirably 70% or more. In order to prevent dishing during the CMP (Chemical Mechanical Polishing) process of the Cu layer, the Cu area ratio is desirably 95% or less.

図1(c)は下部第1Cu層210の平面パターンとして設けられたダミーパターンの一例を示す模式図であり、鎖線部分の断面構造が図1(b)に示されている。なお、下部第2Cu層220の平面パターンについては下部第1Cu層210と同様なため、以下では、説明を省略する。   FIG. 1C is a schematic diagram showing an example of a dummy pattern provided as a planar pattern of the lower first Cu layer 210, and the cross-sectional structure of the chain line portion is shown in FIG. In addition, since the planar pattern of the lower second Cu layer 220 is the same as that of the lower first Cu layer 210, description thereof will be omitted below.

図に示すように、下部第1Cu層210の平面パターンは、Cuの面積密度が均一になるように、十字状パターンの積層絶縁膜14がCu層に複数配置された構成である。下部第1Cu層210のCu面積率は、衝撃耐性をより向上させるために15%以上であることが望ましく、上部Cu層100と同様の理由で95%以下であることが望ましい。また、下部Cu層200は上部Cu層100に比べてボンディング時に受ける衝撃力が小さいため、下部Cu層200のCu面積率は上部Cu層100と比べて同等以下であってもよい。   As shown in the drawing, the planar pattern of the lower first Cu layer 210 has a configuration in which a plurality of cross-shaped stacked insulating films 14 are arranged on the Cu layer so that the Cu area density is uniform. The Cu area ratio of the lower first Cu layer 210 is desirably 15% or more in order to further improve the impact resistance, and desirably 95% or less for the same reason as the upper Cu layer 100. Further, since the lower Cu layer 200 has a smaller impact force during bonding than the upper Cu layer 100, the Cu area ratio of the lower Cu layer 200 may be equal to or less than that of the upper Cu layer 100.

なお、下部Cu層200の平面パターンは、上部Cu層100と電気的に絶縁されているため、ダミーパターンの代わりに、回路配線のためのパターンであってもよい。下部Cu層200を回路配線層として利用することで、ボンディングパッド130の下の領域を有効に活用できる。このとき、下部Cu層200のCu面積率は上部Cu層100のCu面積率より小さくなる。また、下部第1Cu層210および下部第2Cu層220は、層間絶縁膜で電気的に絶縁されているが、ビアプラグを介して電気的に接続するようにしてもよい。   Note that the planar pattern of the lower Cu layer 200 is electrically insulated from the upper Cu layer 100, and may be a pattern for circuit wiring instead of the dummy pattern. By using the lower Cu layer 200 as a circuit wiring layer, the region under the bonding pad 130 can be used effectively. At this time, the Cu area ratio of the lower Cu layer 200 is smaller than the Cu area ratio of the upper Cu layer 100. The lower first Cu layer 210 and the lower second Cu layer 220 are electrically insulated by an interlayer insulating film, but may be electrically connected via via plugs.

次に、図1(b)に示した断面構造図を用いて、本実施例の半導体装置の製造方法について説明する。以下では、ボンディングパッド130の衝撃耐性向上のための部分について説明し、耐衝撃層となる各Cu層と同一層に形成される回路配線についての詳細な説明は省略する。   Next, a method for manufacturing the semiconductor device of this example will be described with reference to the cross-sectional structure diagram shown in FIG. Below, the part for the impact-resistant improvement of the bonding pad 130 is demonstrated, and detailed description about the circuit wiring formed in the same layer as each Cu layer used as an impact-resistant layer is abbreviate | omitted.

半導体基板10の上に図に示さないトランジスタ、抵抗およびキャパシタ等の半導体素子を形成し、その上にCVD法により、層間絶縁膜としてSiO2膜12を300〜500nm形成し、エッチング停止のための膜(以下、「エッチングストッパー膜」と称する)としてStopper−SiCN膜13を30〜50nm形成する。 Semiconductor elements such as transistors, resistors, and capacitors not shown in the figure are formed on the semiconductor substrate 10, and an SiO 2 film 12 having a thickness of 300 to 500 nm is formed thereon as an interlayer insulating film by CVD to stop etching. A Stopper-SiCN film 13 is formed to a thickness of 30 to 50 nm as a film (hereinafter referred to as “etching stopper film”).

続いて、Stopper−SiCN膜13の上に、塗布法および焼成処理によりL−Ox膜を300〜500nm形成し、その上にSiO2膜を100〜200nm成膜して、L−Ox膜およびSiO2膜からなる積層絶縁膜14を形成する。その後、ホトリソグラフィー工程(以下、「ホトリソ工程」と称する)によりレジストパターンを積層絶縁膜14上に形成し、エッチング工程により、所定のダミーパターン、および図に示さない回路配線を形成するための配線用溝部を積層絶縁膜14に形成した後、レジストパターンを除去する。 Subsequently, an L-Ox film having a thickness of 300 to 500 nm is formed on the Stopper-SiCN film 13 by a coating method and a baking process, and an SiO 2 film is formed thereon with a thickness of 100 to 200 nm. A two- layer laminated insulating film 14 is formed. Thereafter, a resist pattern is formed on the laminated insulating film 14 by a photolithography process (hereinafter referred to as “photolitho process”), and a wiring for forming a predetermined dummy pattern and a circuit wiring not shown in the figure by an etching process. After forming the groove portion in the laminated insulating film 14, the resist pattern is removed.

ダミーパターンおよび配線用溝部が形成された積層絶縁膜14上にバリアメタルを30〜50nm、シード層を50〜200nm成膜し、その上に電解メッキ法でCu膜を500〜1000nm成膜する。続いて、CMP処理により積層絶縁膜14の上面が露出するまでCu膜を研磨した後、Cu拡散防止膜としてCap−SiCN膜15を30〜50nm成膜する。このようにして、図1(c)に示した平面パターンを有する下部第1Cu層210を形成する。   A barrier metal 30 to 50 nm and a seed layer 50 to 200 nm are formed on the laminated insulating film 14 on which the dummy pattern and the wiring trench are formed, and a Cu film is formed 500 to 1000 nm thereon by electrolytic plating. Subsequently, after the Cu film is polished by CMP treatment until the upper surface of the laminated insulating film 14 is exposed, a Cap-SiCN film 15 is formed as a Cu diffusion preventing film by 30 to 50 nm. In this way, the lower first Cu layer 210 having the planar pattern shown in FIG. 1C is formed.

その後、下部第1Cu層210の上にSiO2膜22を300〜500nm形成し、上記下部第1Cu層210と同様にして、下部第2Cu層220を形成する。 Thereafter, the SiO 2 film 22 is formed to 300 to 500 nm on the lower first Cu layer 210, and the lower second Cu layer 220 is formed in the same manner as the lower first Cu layer 210.

次に、下部第2Cu層220の上にSiO2膜32を300〜500nmおよびStopper−SiCN膜33を30〜50nm形成する。続いて、膜厚300〜500nmのL−Ox膜、および膜厚100〜200nmのSiO2膜からなる積層絶縁膜34を形成する。その後、ホトリソ工程によりレジストパターンを積層絶縁膜34上に形成し、エッチング工程により、所定のダミーパターン、および図に示さない回路配線を形成するための配線用溝部を積層絶縁膜34に形成した後、レジストパターンを除去する。 Next, the SiO 2 film 32 and the Stopper-SiCN film 33 are formed on the lower second Cu layer 220 to 300 to 500 nm and 30 to 50 nm, respectively. Subsequently, a laminated insulating film 34 including an L—Ox film having a thickness of 300 to 500 nm and an SiO 2 film having a thickness of 100 to 200 nm is formed. Thereafter, a resist pattern is formed on the laminated insulating film 34 by a photolithography process, and a predetermined dummy pattern and a wiring groove for forming a circuit wiring (not shown) are formed in the laminated insulating film 34 by an etching process. Then, the resist pattern is removed.

ダミーパターンおよび配線用溝部が形成された積層絶縁膜34上にバリアメタルを30〜50nm、シード層を50〜100nm、およびCu膜を600〜1000nm成膜する。続いて、CMP処理により積層絶縁膜34の上面が露出するまでCu膜を研磨した後、Cap−SiCN膜35を30〜50nm成膜する。このようにして、図1(a)に示した平面パターンを有する上部第1Cu層110を形成する。   A barrier metal of 30 to 50 nm, a seed layer of 50 to 100 nm, and a Cu film of 600 to 1000 nm are formed on the laminated insulating film 34 on which the dummy pattern and the wiring trench are formed. Subsequently, after the Cu film is polished by CMP treatment until the upper surface of the laminated insulating film 34 is exposed, a Cap-SiCN film 35 is formed to a thickness of 30 to 50 nm. In this way, the upper first Cu layer 110 having the planar pattern shown in FIG. 1A is formed.

次に、上部第1Cu層110の上にSiO2膜42を300〜500nm、Stopper−SiCN膜43を50〜70nm、およびSiO2膜44を300〜500nm形成する。続いて、ホトリソ工程によりビアプラグ140形成のためのレジストパターンをSiO2膜44上に形成し、Cap−SiCN膜35が露出するまでエッチングしてビア部を形成した後、レジストパターンを除去する。その後、ホトリソ工程により上部第2Cu層120形成のためのレジストパターンをSiO2膜44上に形成し、エッチング工程によりSiO2膜44に図1(a)で示したパターンを形成する。そして、レジストパターン除去後に、ビア底部のCap−SiCN膜35をエッチングにより除去する。 Next, the SiO 2 film 42 is formed on the upper first Cu layer 110 to 300 to 500 nm, the Stopper-SiCN film 43 is formed to 50 to 70 nm, and the SiO 2 film 44 is formed to 300 to 500 nm. Subsequently, a resist pattern for forming the via plug 140 is formed on the SiO 2 film 44 by a photolithography process, etching is performed until the Cap-SiCN film 35 is exposed, and then the resist pattern is removed. Thereafter, a resist pattern for the upper first 2Cu layer 120 formed is formed on the SiO 2 film 44 by photolithography process to form a pattern shown in the SiO 2 film 44 in FIGS. 1 (a) by an etching process. Then, after removing the resist pattern, the Cap-SiCN film 35 at the bottom of the via is removed by etching.

続いて、バリアメタルを30〜50nm、シード層を50〜100nm、およびCu膜を600〜1000nm成膜する。そして、CMP処理によりSiO2膜44上面が露出するまでCu膜を研磨した後、Cap−SiCN膜45を30〜50nm成膜する。このようにして、図1(a)に示した平面パターンを有する上部第2Cu層120を形成する。 Subsequently, a barrier metal is formed to 30 to 50 nm, a seed layer is formed to 50 to 100 nm, and a Cu film is formed to 600 to 1000 nm. Then, after polishing the Cu film until the upper surface of the SiO 2 film 44 is exposed by CMP treatment, a Cap-SiCN film 45 is formed to a thickness of 30 to 50 nm. In this way, the upper second Cu layer 120 having the planar pattern shown in FIG.

次に、Cap−SiCN膜45の上にSiO2膜52を300〜500nm形成し、ホトリソ工程により、上部第2Cu層120上に開口部を設けるためのレジストパターンをSiO2膜52上に形成する。続いて、エッチング工程により、露出したSiO2膜52、およびその下層のCap−SiCN膜45をエッチングして、上部第2Cu層120とボンディングパッド130とを接続するための開口部を形成する。レジストパターンを除去した後、スパッタリング法により、バリアメタルとしてTiN膜54を100〜200nm、Al−Cu(0.5%)膜を800〜1000nm、および反射防止膜としてTiN膜64を50〜100nm成膜する。 Next, the SiO 2 film 52 is 300~500nm formed on the Cap-SiCN film 45, a photolithographic process to form a resist pattern for forming an opening on the upper first 2Cu layer 120 on the SiO 2 film 52 . Subsequently, the exposed SiO 2 film 52 and the underlying Cap-SiCN film 45 are etched by an etching process to form an opening for connecting the upper second Cu layer 120 and the bonding pad 130. After removing the resist pattern, the sputtering method is used to form a TiN film 54 as a barrier metal of 100 to 200 nm, an Al—Cu (0.5%) film of 800 to 1000 nm, and a TiN film 64 of 50 to 100 nm as an antireflection film. Film.

続いて、ホトリソ工程によりボンディングパッド130を形成するためのレジストパターンをTiN膜64上に形成し、エッチング工程によりボンディングパッド130を形成した後、レジストパターンを除去する。そして、ボンディングパッド130上のTiN64を覆うようにSiO2膜62を100〜200nm形成し、SiO2膜62の上にポリイミド膜66を800〜1000nm形成する。 Subsequently, a resist pattern for forming the bonding pad 130 is formed on the TiN film 64 by a photolithography process. After the bonding pad 130 is formed by an etching process, the resist pattern is removed. Then, the SiO 2 film 62 is formed to a thickness of 100 to 200 nm so as to cover the TiN 64 on the bonding pad 130, and the polyimide film 66 is formed to a thickness of 800 to 1000 nm on the SiO 2 film 62.

ホトリソ工程によりボンディングパッド130上のポリイミド膜66に開口部を形成し、開口部のSiO2膜62およびTiN膜64をエッチングして、ボンディングパッド130を露出させる。 An opening is formed in the polyimide film 66 on the bonding pad 130 by a photolithography process, and the SiO 2 film 62 and the TiN film 64 in the opening are etched to expose the bonding pad 130.

本実施例では、外部から加えられた力を跳ね返そうとする性質である弾性が酸化膜より大きいCu層を、ボンディングパッド130下にバリアメタルを介して形成することにより、プロービングやボンディング時に針が跳ね返りやすく、下方に衝撃が伝わりにくくなる。そのため、衝撃耐性が向上し、ボンディングパッドにプロービングの針を立ててもパッドが破壊されることを防げる。   In this embodiment, a Cu layer, which has the property of repelling the force applied from the outside and has a larger elasticity than that of the oxide film, is formed under the bonding pad 130 via a barrier metal so that needles can be used during probing and bonding. Is easy to bounce off, making it difficult for impact to be transmitted downward. Therefore, impact resistance is improved, and even if a probing needle is raised on the bonding pad, the pad can be prevented from being destroyed.

また、ボンディングパッド130下にCu層が形成されているので、ボンディングの際、金ワイヤーとボンディングパッド130とを共晶させるための超音波がL−Ox膜等の低比誘電率膜に吸収されることなく金ワイヤーとボンディングパッド130に十分に伝わり、金ワイヤーとボンディングパッドとの密着性が強化され、ワイヤプル強度が大きくなる。   In addition, since a Cu layer is formed under the bonding pad 130, ultrasonic waves for eutecticizing the gold wire and the bonding pad 130 are absorbed by a low dielectric constant film such as an L-Ox film during bonding. Without being sufficiently transmitted to the gold wire and the bonding pad 130, the adhesion between the gold wire and the bonding pad is enhanced, and the wire pull strength is increased.

さらに、ボンディングパッド部の実質的なメタル膜厚がアルミとボンディングパッド下のCu層との和となるので、プロービングおよびボンディングに対する硬度が十分になり、下層のL−Ox膜付近にかかる荷重が軽減される。そのため、クラックが層間絶縁膜に発生することを防げる。   Furthermore, since the substantial metal film thickness of the bonding pad portion is the sum of aluminum and the Cu layer under the bonding pad, the hardness against probing and bonding is sufficient, and the load applied to the vicinity of the lower L-Ox film is reduced. Is done. Therefore, it is possible to prevent cracks from occurring in the interlayer insulating film.

(第2実施例)
本実施例は、内部回路に接続された補助Cu配線を設け、補助Cu配線にボンディングパッドを接続したことを特徴とする。
(Second embodiment)
This embodiment is characterized in that an auxiliary Cu wiring connected to an internal circuit is provided, and a bonding pad is connected to the auxiliary Cu wiring.

図2は本実施例の半導体装置の断面構造図である。   FIG. 2 is a sectional structural view of the semiconductor device of this embodiment.

図2に示すように、本実施例の半導体装置は、内部回路に接続され、上部第2Cu層120と同一層に形成された補助Cu配線125を有し、ボンディングパッド130と補助Cu配線125とがビアホール150を介して電気的に接続された構成である。   As shown in FIG. 2, the semiconductor device of this embodiment has an auxiliary Cu wiring 125 connected to an internal circuit and formed in the same layer as the upper second Cu layer 120. The bonding pad 130, the auxiliary Cu wiring 125, Are electrically connected through the via hole 150.

本実施例の半導体装置の製造方法について説明する。なお、第1実施例と同様の工程については、その詳細な説明を省略する。   A method for manufacturing the semiconductor device of this embodiment will be described. Detailed description of the same steps as those in the first embodiment will be omitted.

上部第1Cu層110を形成するまで、第1実施例と同様に処理する。その後、図1に示したSiO2膜44に補助Cu配線125形成のための溝部を形成し、上部第2Cu層120を形成する際、図2に示す補助Cu配線125を形成する。上部第2Cu層120上に開口部を設けるためのレジストパターンをSiO2膜52上に形成する際、補助Cu配線125とボンディングパッド130を接続するためのビアホールパターンを形成する。 Processing is performed in the same manner as in the first embodiment until the upper first Cu layer 110 is formed. Thereafter, a groove for forming the auxiliary Cu wiring 125 is formed in the SiO 2 film 44 shown in FIG. 1, and when forming the upper second Cu layer 120, the auxiliary Cu wiring 125 shown in FIG. 2 is formed. When a resist pattern for providing an opening on the upper second Cu layer 120 is formed on the SiO 2 film 52, a via hole pattern for connecting the auxiliary Cu wiring 125 and the bonding pad 130 is formed.

本実施例では、上記第1実施例の効果を有するだけでなく、プロービングおよびボンディング時におけるボンディングパッドへの衝撃により、上部第2Cu層120にクラックが発生し、上部第2Cu層120とボンディングパッド130との間で電気的な導通が十分に得られなくなっても、ボンディングパッド130はビアホール150および補助Cu配線125を介して内部回路との電気的な導通を確保できる。   In this embodiment, not only the effects of the first embodiment are obtained, but also cracks are generated in the upper second Cu layer 120 due to an impact on the bonding pad during probing and bonding, and the upper second Cu layer 120 and the bonding pad 130 are generated. Even if sufficient electrical continuity is not obtained, the bonding pad 130 can ensure electrical continuity with the internal circuit via the via hole 150 and the auxiliary Cu wiring 125.

なお、ボンディングパッド130は補助Cu配線125を介して内部回路と接続されるため、上部Cu層100は内部回路と接続していなくてもよい。   Since the bonding pad 130 is connected to the internal circuit via the auxiliary Cu wiring 125, the upper Cu layer 100 may not be connected to the internal circuit.

さらに、補助Cu配線125を上部第2Cu層120と同一層で形成したが、上部第1Cu層110などその他の導電層で形成してもよい。   Further, although the auxiliary Cu wiring 125 is formed of the same layer as the upper second Cu layer 120, it may be formed of other conductive layers such as the upper first Cu layer 110.

(第3実施例)
本実施例は、第2実施例で示したボンディングパッドを複数配置した場合の一例を示すものである。本実施例の構成について、以下に説明する。
(Third embodiment)
This embodiment shows an example when a plurality of bonding pads shown in the second embodiment are arranged. The configuration of this embodiment will be described below.

図3はボンディングパッドを複数配置した場合の一例を示す平面図および断面構造図であり、図3(b)は、図3(a)に示す鎖線AA’部分の断面構造図である。なお、ボンディングパッド130上のTiN膜64からポリイミド膜66までの構成は、第1実施例および第2実施例と同様なため、図に示すことを省略している。   3A and 3B are a plan view and a cross-sectional structure diagram showing an example in which a plurality of bonding pads are arranged, and FIG. 3B is a cross-sectional structure diagram of a chain line AA ′ portion shown in FIG. The configuration from the TiN film 64 to the polyimide film 66 on the bonding pad 130 is the same as that in the first embodiment and the second embodiment, and is not shown in the figure.

本実施例では、図3(a)に示すように、スクライブ線600に近い側のボンディングパッドである外側パッド132と、外側パッド132よりチップ中心に近い側のボンディングパッドである内側パッド134とが互い違いに並んだ構成である。   In the present embodiment, as shown in FIG. 3A, an outer pad 132 that is a bonding pad closer to the scribe line 600 and an inner pad 134 that is a bonding pad closer to the chip center than the outer pad 132 are provided. It is a configuration arranged in a staggered manner.

図3(b)に示すように、下部第1Cu層210と同一層に、回路配線のための下部第1Cu配線212が形成されている。同様に、下部第2Cu層220と同一層に、回路配線のための下部第2Cu配線222が形成されている。また、上部第2Cu層120と同一層に、回路配線のための上部第2Cu配線122が形成されている。   As shown in FIG. 3B, a lower first Cu wiring 212 for circuit wiring is formed in the same layer as the lower first Cu layer 210. Similarly, a lower second Cu wiring 222 for circuit wiring is formed in the same layer as the lower second Cu layer 220. An upper second Cu wiring 122 for circuit wiring is formed in the same layer as the upper second Cu layer 120.

外側パッド132の下には、耐衝撃層として、上部第2Cu層120、上部第1Cu層110、下部第2Cu層220および下部第1Cu層210が形成されている。外側パッド132は、補助Cu配線125およびビアプラグ140を介して、下部第1Cu配線212および下部第2Cu配線222に接続されている。   Under the outer pad 132, an upper second Cu layer 120, an upper first Cu layer 110, a lower second Cu layer 220, and a lower first Cu layer 210 are formed as an impact resistant layer. The outer pad 132 is connected to the lower first Cu wiring 212 and the lower second Cu wiring 222 via the auxiliary Cu wiring 125 and the via plug 140.

内側パッド134の下には、耐衝撃層として、上部第2Cu層120および上部第1Cu層110が形成されている。内側パッド134は、補助Cu配線となる上部第2Cu配線122と接続されている。   Under the inner pad 134, an upper second Cu layer 120 and an upper first Cu layer 110 are formed as an impact resistant layer. The inner pad 134 is connected to the upper second Cu wiring 122 serving as an auxiliary Cu wiring.

なお、内側パッド134の下に、下部第2Cu層220および下部第1Cu層210を設けるようにしてもよい。その際、隣り合う下部第2Cu配線222同士がショートしないように、下部第2Cu層220を設ける。下部第1Cu層210についても同様の構成となる。   Note that the lower second Cu layer 220 and the lower first Cu layer 210 may be provided under the inner pad 134. At this time, the lower second Cu layer 220 is provided so that adjacent lower second Cu wirings 222 do not short-circuit. The lower first Cu layer 210 has the same configuration.

本実施例では、外側パッド132および内側パッド134について、第2実施例と同様に、プロービングおよびボンディング時におけるボンディングパッドへの衝撃により、ボンディングパッドにクラックが発生し、上部第2Cu層120とボンディングパッドとの間で電気的な導通が十分に得られなくなっても、ボンディングパッドは補助Cu配線125を介して内部回路との電気的な導通を確保できる。   In this embodiment, as with the second embodiment, the outer pad 132 and the inner pad 134 are cracked by the impact on the bonding pad during probing and bonding, and the upper second Cu layer 120 and the bonding pad. Even if sufficient electrical continuity is not obtained, the bonding pad can ensure electrical continuity with the internal circuit via the auxiliary Cu wiring 125.

(第4実施例)
本実施例では、下部Cu層の層間絶縁膜として、SiO2膜の代わりに、第1の材料に比べて比誘電率の低い材料を有する第3の絶縁膜としてSiOC膜を用いたことを特徴とする。以下に、本実施例の構成について説明する。
(Fourth embodiment)
In this embodiment, an SiOC film is used as the third insulating film having a material having a lower relative dielectric constant than the first material, instead of the SiO 2 film, as the interlayer insulating film of the lower Cu layer. And The configuration of the present embodiment will be described below.

図4は、本実施例の半導体装置の構成を示す断面構造図である。   FIG. 4 is a cross-sectional structure diagram showing the configuration of the semiconductor device of this example.

図4に示すように、下部Cu層200として、下部第1Cu層410、下部第2Cu層412、下部第3Cu層414、および下部第4Cu層416の4層を設けている。各層は、図1(a)に示した上部第1Cu層110の平面パターンと同様である。上記4層のそれぞれは、Cu層パターン間に、L−Ox膜およびSiO2膜からなる積層絶縁膜310、314、318、322のそれぞれが介在している。また、上記4層の各層間絶縁膜として、SiOC膜312、316、320が形成されている。 As shown in FIG. 4, four layers of a lower first Cu layer 410, a lower second Cu layer 412, a lower third Cu layer 414, and a lower fourth Cu layer 416 are provided as the lower Cu layer 200. Each layer is the same as the planar pattern of the upper first Cu layer 110 shown in FIG. Each of the four layers, between the Cu layer pattern, each of the stacked insulating film 310,314,318,322 is interposed consisting L-Ox film and SiO 2 film. In addition, SiOC films 312, 316, and 320 are formed as the four interlayer insulating films.

また、本実施例では、上部Cu層および下部Cu層のCu面積率を略同一にしているため、各Cu層のCu面積率が略同一となり、衝撃がより均等に分散し、衝撃耐性がさらに向上する。   In this example, the Cu area ratio of the upper Cu layer and the lower Cu layer is substantially the same, so the Cu area ratio of each Cu layer is substantially the same, the impact is more evenly distributed, and the impact resistance is further increased. improves.

また、本実施例における積層絶縁膜310、314、318、322、326は、SiOC膜であってもよい。   Further, the laminated insulating films 310, 314, 318, 322, and 326 in this embodiment may be SiOC films.

本実施例のように、層間絶縁膜に低比誘電率膜を用いることで、異なる配線層の間の配線間容量を低減できる。   By using a low relative dielectric constant film as an interlayer insulating film as in this embodiment, the inter-wiring capacitance between different wiring layers can be reduced.

次に、上記第1実施例〜第4実施例および従来技術の構成について、ボンディング後に、ボンディングワイヤの引っ張り強度を調べるワイヤプル試験を行ったので、その試験方法と結果について説明する。   Next, the wire pull test for examining the tensile strength of the bonding wire after bonding was performed on the configurations of the first to fourth embodiments and the prior art, and the test method and results will be described.

ワイヤプル試験は、ボンディングワイヤを上に引っ張り上げ、その強度が4gf未満で、ワイヤが切断したり、ボールが外れたり、ボンディングパッドが剥れたりした場合を不良と判定した。ワイヤプル試験の不良率は、図5に示した従来技術の構成で、層間絶縁膜750がSiO2膜である場合に約10%あり、層間絶縁膜750が低比誘電率膜のSiOC膜である場合には約20%あった。これに対して、第1実施例〜第4実施例の場合では、不良率はいずれも0%であった。 In the wire pull test, the bonding wire was pulled up, the strength was less than 4 gf, and the case where the wire was cut, the ball was detached, or the bonding pad was peeled was judged as defective. The defect rate of the wire pull test is about 10% when the interlayer insulating film 750 is a SiO 2 film in the configuration of the prior art shown in FIG. 5, and the interlayer insulating film 750 is a SiOC film of a low relative dielectric constant film. In some cases, it was about 20%. On the other hand, in the case of the first to fourth examples, the defect rate was 0%.

なお、上記第1実施例〜第4実施例において、上部Cu層100および下部Cu層200のそれぞれは、上述の2層や4層の場合に限らず、2層および4層以外の複数層であってもよい。ここで、上部Cu層100として、半導体基板10側からボンディングパッド130側に第1Cu層、第2Cu層、…、および第nCu層(nは2以上の自然数)が順に設けられている場合、第nCu層およびビアプラグが第1の材料よりなる絶縁膜に埋設された構成となる。   In the first to fourth embodiments, each of the upper Cu layer 100 and the lower Cu layer 200 is not limited to the above-described two layers or four layers, and may be a plurality of layers other than the two layers and the four layers. There may be. Here, as the upper Cu layer 100, when the first Cu layer, the second Cu layer,..., And the n-th Cu layer (n is a natural number of 2 or more) are sequentially provided from the semiconductor substrate 10 side to the bonding pad 130 side, The nCu layer and the via plug are embedded in the insulating film made of the first material.

また、上部Cu層100および下部Cu層200のそれぞれは、単層であってもよい。単層にすれば、他のCu層を回路配線層として用いることができる。   Each of the upper Cu layer 100 and the lower Cu layer 200 may be a single layer. If a single layer is used, another Cu layer can be used as a circuit wiring layer.

また、上部Cu層100および下部Cu層200の平面パターンがダミーパターンの場合、図1に示した形状に限られず、Cuの面積密度が均一になるようなパターンであればよい。   Further, when the planar pattern of the upper Cu layer 100 and the lower Cu layer 200 is a dummy pattern, the pattern is not limited to the shape shown in FIG.

また、ビアプラグ140および上部第2Cu層120をデュアルダマシン法により形成したが、シングルダマシン法によりビアプラグ140および上部第2Cu層120を別々に形成してもよい。   In addition, although the via plug 140 and the upper second Cu layer 120 are formed by the dual damascene method, the via plug 140 and the upper second Cu layer 120 may be separately formed by a single damascene method.

また、第1の材料を有する絶縁膜としてSiO2膜を用いたが、他の絶縁膜であってもよい。上述のように、第1の材料を有する絶縁膜がSiO2膜である場合、上記第2の材料を有する絶縁膜をL−Ox膜とし、上記第3の材料を有する絶縁膜をSiOC膜としたが、第2の材料を有する絶縁膜および第3の材料を有する絶縁膜のそれぞれが、L−Ox膜、SiOC膜、SiC膜、SiOF膜、ポーラスSiO2膜、ポーラスSiOC膜等の低比誘電率膜のうち少なくともいずれか一つ含む膜であってもよい。 In addition, although the SiO 2 film is used as the insulating film having the first material, other insulating films may be used. As described above, when the insulating film having the first material is an SiO 2 film, the insulating film having the second material is an L-Ox film, and the insulating film having the third material is an SiOC film. However, each of the insulating film having the second material and the insulating film having the third material has a low ratio of the L-Ox film, the SiOC film, the SiC film, the SiOF film, the porous SiO 2 film, the porous SiOC film, or the like. It may be a film including at least one of the dielectric constant films.

また、エッチングストッパー膜およびCu拡散防止膜としてSiCN膜を用いたが、SiCNに限らず、SiC膜およびSiN膜のいずれの膜であってもよい。また、エッチングストッパー膜にSiON膜を用いてもよい。これらの膜同士で、被エッチング膜とのエッチング速度の比である選択比、および誘電率を比較し、パターン加工がしやすく、かつ配線間容量が小さくなるように、エッチングストッパー膜およびCu拡散防止膜を選択すればよい。   Further, although the SiCN film is used as the etching stopper film and the Cu diffusion preventing film, the film is not limited to SiCN, and any film of SiC film and SiN film may be used. Further, a SiON film may be used as the etching stopper film. Compare the etching ratio between these films and the etching rate of the film to be etched, and the dielectric constant. Etching stopper film and Cu diffusion prevention to facilitate pattern processing and reduce inter-wiring capacitance. A membrane may be selected.

また、上部Cu層100および下部Cu層200を設けることにより、ボンディング時の衝撃耐性が向上するため、上部第2Cu層120に介在するSiO2膜44などの第1の材料を有する絶縁膜に代えて、SiO2膜より軟質なL−Ox膜やSiOC膜などの低比誘電率膜を含む膜を設けるようにしてもよい。 In addition, since the upper Cu layer 100 and the lower Cu layer 200 are provided, the impact resistance during bonding is improved, so that the insulating film having the first material such as the SiO 2 film 44 interposed in the upper second Cu layer 120 is replaced. A film including a low relative dielectric constant film such as an L-Ox film or a SiOC film softer than the SiO 2 film may be provided.

また、ボンディングパッド130のバリアメタルは、AlおよびCuが相互に拡散するのを防ぐものとして、TiN膜に限らず、TaN膜であってもよい。   Further, the barrier metal of the bonding pad 130 is not limited to the TiN film but may be a TaN film as a means for preventing Al and Cu from diffusing each other.

さらに、上記Cu層およびビアプラグは、SiやAl等の他の元素を微量含有するものであってもよい。   Further, the Cu layer and the via plug may contain a trace amount of other elements such as Si and Al.

本発明の半導体装置の一構成例を示す平面図および断面構造図である。1A and 1B are a plan view and a cross-sectional structure diagram illustrating a configuration example of a semiconductor device of the present invention. 第2実施例の半導体装置の構成を示す断面構造図である。It is sectional structure drawing which shows the structure of the semiconductor device of 2nd Example. 第3実施例の半導体装置の構成を示す平面図および断面構造図である。It is the top view and sectional structure figure which show the structure of the semiconductor device of 3rd Example. 第4実施例の半導体装置の構成を示す断面構造図である。It is a cross-section figure showing the composition of the semiconductor device of the 4th example. 従来技術による半導体装置の一構成例を示す断面構造図である。It is sectional drawing which shows the example of 1 structure of the semiconductor device by a prior art.

符号の説明Explanation of symbols

10 半導体基板
12、22、32、42、44、52、62、328、330 SiO2
13、23、33、43 Stopper−SiCN膜
14、24、34、310、314、318、322、326 積層絶縁膜
15、25、35、45 Cap−SiCN膜
100 上部Cu層
110 上部第1Cu層
120 上部第2Cu層
122 上部第2Cu配線
125 補助Cu配線
130 ボンディングパッド
132 外側パッド
134 内側パッド
140 ビアプラグ
150 ビアホール
200 下部Cu層
210、410 下部第1Cu層
212 下部第1Cu配線
220、412 下部第2Cu層
222 下部第2Cu配線
312、316、320、324 SiOC膜
414 下部第3Cu層
416 下部第4Cu層
600 スクライブ線
700 Cu配線
710 Cu最上層パッド
720 バリアメタル
730 最上層Al配線
735 ボンディング部分
740 パッシベーション絶縁膜
750 層間絶縁膜
10 Semiconductor substrate 12, 22, 32, 42, 44, 52, 62, 328, 330 SiO 2 film 13, 23, 33, 43 Stopper-SiCN film 14, 24, 34, 310, 314, 318, 322, 326 Lamination Insulating film 15, 25, 35, 45 Cap-SiCN film 100 Upper Cu layer 110 Upper first Cu layer 120 Upper second Cu layer 122 Upper second Cu wiring 125 Auxiliary Cu wiring 130 Bonding pad 132 Outer pad 134 Inner pad 140 Via plug 150 Via hole 200 Lower Cu layer 210, 410 Lower first Cu layer 212 Lower first Cu wiring 220, 412 Lower second Cu layer 222 Lower second Cu wiring 312, 316, 320, 324 SiOC film 414 Lower third Cu layer 416 Lower fourth Cu layer 600 Scribe line 7 0 Cu wiring 710 Cu uppermost pad 720 barrier metal 730 uppermost Al wiring 735 bonding portion 740 passivation layer 750 interlayer insulating film

Claims (19)

半導体基板上にボンディングパッドを有する半導体装置であって、
前記ボンディングパッドの下面にバリアメタルを介して形成された上部Cu層と、
前記上部Cu層と比べて前記ボンディングパッド下におけるCu層の面積が小さく、前記上部Cu層より前記半導体基板側に形成された下部Cu層と、を有し、
前記上部Cu層と前記下部Cu層とが、前記ボンディングパッドの下において、電気的に絶縁されている半導体装置。
A semiconductor device having a bonding pad on a semiconductor substrate,
An upper Cu layer formed on the lower surface of the bonding pad via a barrier metal;
An area of the Cu layer under the bonding pad is smaller than that of the upper Cu layer, and a lower Cu layer formed on the semiconductor substrate side of the upper Cu layer;
A semiconductor device in which the upper Cu layer and the lower Cu layer are electrically insulated under the bonding pad.
請求項1に記載の半導体装置であって、
前記ボンディングパッド下における上部Cu層と下部Cu層との間に、Cuが形成されていない層間絶縁膜が設けられている半導体装置。
The semiconductor device according to claim 1,
A semiconductor device in which an interlayer insulating film in which Cu is not formed is provided between an upper Cu layer and a lower Cu layer under the bonding pad.
請求項2に記載の半導体装置であって、
前記層間絶縁膜が、下部Cu層に用いられる層間絶縁膜よりも硬質である半導体装置。
The semiconductor device according to claim 2,
A semiconductor device in which the interlayer insulating film is harder than an interlayer insulating film used for a lower Cu layer.
請求項2に記載の半導体装置であって、
前記層間絶縁膜が、下部Cu層に用いられる層間絶縁膜よりも比誘電率が高い半導体装置。
The semiconductor device according to claim 2,
A semiconductor device in which the interlayer insulating film has a higher relative dielectric constant than an interlayer insulating film used for a lower Cu layer.
請求項1乃至4のいずれかに記載の半導体装置であって、
前記上部Cu層が複数層からなる半導体装置。
The semiconductor device according to claim 1,
A semiconductor device in which the upper Cu layer comprises a plurality of layers.
請求項5に記載の半導体装置であって、
各Cu層の層間には層間絶縁膜が設けられ、
前記各Cu層は、前記層間絶縁膜中にCuが埋設されたビアプラグを介して接続されている半導体装置。
The semiconductor device according to claim 5,
An interlayer insulating film is provided between each Cu layer,
The Cu layers are connected to each other through via plugs in which Cu is embedded in the interlayer insulating film.
請求項5または6に記載の半導体装置であって、
前記複数層の上部Cu層として、半導体基板側からボンディングパッド側に第1Cu層、第2Cu層、…、および第nCu層(nは2以上の自然数)が順に設けられている場合、
ビアプラグ、および前記第nCu層のCu層パターンが第1の材料よりなる絶縁膜に埋設されている半導体装置。
The semiconductor device according to claim 5, wherein:
When the first Cu layer, the second Cu layer,..., And the n-th Cu layer (n is a natural number of 2 or more) are sequentially provided from the semiconductor substrate side to the bonding pad side as the plurality of upper Cu layers,
A semiconductor device in which a via plug and a Cu layer pattern of the n-th Cu layer are embedded in an insulating film made of a first material.
請求項1乃至7のいずれかに記載の半導体装置であって、
前記下部Cu層が複数層からなる半導体装置。
A semiconductor device according to claim 1,
A semiconductor device in which the lower Cu layer comprises a plurality of layers.
請求項8に記載の半導体装置であって、
前記複数層の下部Cu層の各Cu層間に第1の材料よりなる絶縁膜が介在する半導体装置。
The semiconductor device according to claim 8,
A semiconductor device in which an insulating film made of a first material is interposed between each Cu layer of the plurality of lower Cu layers.
請求項8または9に記載の半導体装置であって、
前記複数層の下部Cu層の各Cu層において同一層に形成されたCu層パターン間に、第1の材料に比べて比誘電率が低い材料を有する第2の材料よりなる絶縁膜が介在する半導体装置。
A semiconductor device according to claim 8 or 9, wherein
An insulating film made of a second material having a material having a lower relative dielectric constant than the first material is interposed between Cu layer patterns formed in the same layer in each Cu layer of the plurality of lower Cu layers. Semiconductor device.
請求項10に記載の半導体装置であって、
第2の材料が第1の材料よりも軟質である半導体装置。
The semiconductor device according to claim 10,
A semiconductor device in which the second material is softer than the first material.
請求項10または11に記載の半導体装置であって、
第2の材料よりなる絶縁膜は、SiOC膜、SiC膜、SiOF膜、ポーラスSiO2膜、ポーラスSiOC膜、および梯子型水素化シロキサン構造を有するラダーオキサイド膜のうちいずれか一つを含む半導体装置。
The semiconductor device according to claim 10 or 11,
The insulating film made of the second material includes a semiconductor device including any one of a SiOC film, a SiC film, a SiOF film, a porous SiO 2 film, a porous SiOC film, and a ladder oxide siloxane hydride structure .
請求項8乃至12のいずれかに記載の半導体装置であって、
複数層の前記下部Cu層の各Cu層間に、第1の材料に比べて比誘電率が低い材料を有する第3の材料よりなる絶縁膜が介在する半導体装置。
A semiconductor device according to any one of claims 8 to 12,
A semiconductor device in which an insulating film made of a third material having a material having a relative dielectric constant lower than that of the first material is interposed between the Cu layers of the plurality of lower Cu layers.
請求項13に記載の半導体装置であって、
第3の材料が第1の材料よりも軟質である半導体装置。
The semiconductor device according to claim 13,
A semiconductor device in which the third material is softer than the first material.
請求項13または14に記載の半導体装置であって、
第3の材料よりなる絶縁膜は、SiOC膜、SiC膜、SiOF膜、ポーラスSiO2膜、ポーラスSiOC膜、および梯子型水素化シロキサン構造を有するラダーオキサイド膜のうちいずれか一つを含む半導体装置。
The semiconductor device according to claim 13 or 14,
The insulating film made of the third material includes one of a SiOC film, a SiC film, a SiOF film, a porous SiO 2 film, a porous SiOC film, and a ladder oxide film having a ladder-type hydrogenated siloxane structure. .
請求項1乃至15のいずれかに記載の半導体装置であって、
バリアメタルがTiNおよびTaNのうちいずれか一方を含む半導体装置。
A semiconductor device according to claim 1,
A semiconductor device in which the barrier metal includes one of TiN and TaN.
請求項1乃至16のいずれかに記載の半導体装置であって、
前記半導体装置に内部回路を備え、
前記内部回路およびボンディングパッドと電気的に接続された補助Cu配線を有する半導体装置。
A semiconductor device according to claim 1,
The semiconductor device includes an internal circuit,
A semiconductor device having auxiliary Cu wiring electrically connected to the internal circuit and the bonding pad.
請求項1乃至17のいずれかに記載の半導体装置の製造方法であって、
前記上部Cu層および前記下部Cu層をダマシン法により形成する半導体装置の製造方法。
A method of manufacturing a semiconductor device according to claim 1,
A method of manufacturing a semiconductor device, wherein the upper Cu layer and the lower Cu layer are formed by a damascene method.
請求項5に記載の半導体装置の製造方法であって、
第nCu層および該第nCu層に接触するビアプラグをデュアルダマシン法により形成することを特徴とする半導体装置の製造方法。
A method of manufacturing a semiconductor device according to claim 5,
A method of manufacturing a semiconductor device, comprising: forming an nCu layer and a via plug contacting the nCu layer by a dual damascene method.
JP2008109052A 2008-04-18 2008-04-18 Semiconductor device and manufacturing method of semiconductor device Expired - Fee Related JP4701264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008109052A JP4701264B2 (en) 2008-04-18 2008-04-18 Semiconductor device and manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008109052A JP4701264B2 (en) 2008-04-18 2008-04-18 Semiconductor device and manufacturing method of semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003021959A Division JP4170103B2 (en) 2003-01-30 2003-01-30 Semiconductor device and manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2008235922A true JP2008235922A (en) 2008-10-02
JP4701264B2 JP4701264B2 (en) 2011-06-15

Family

ID=39908263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008109052A Expired - Fee Related JP4701264B2 (en) 2008-04-18 2008-04-18 Semiconductor device and manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP4701264B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013229455A (en) * 2012-04-26 2013-11-07 Renesas Electronics Corp Semiconductor device and method for manufacturing the same
US10529766B2 (en) 2017-04-24 2020-01-07 Canon Kabushiki Kaisha Camera and solid-state image sensor that includes a wiring structure with an electrically conductive pattern having plural primary and auxiliary lines arranged on a semiconductor substrate

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10340920A (en) * 1997-06-10 1998-12-22 Sony Corp Method for manufacturing semiconductor device
JPH1154544A (en) * 1997-05-01 1999-02-26 Texas Instr Inc <Ti> System and method for reinforcing bond pad
JPH1167763A (en) * 1997-08-21 1999-03-09 Sony Corp Semiconductor device and manufacturing method therefor
JPH11186320A (en) * 1997-12-09 1999-07-09 Samsung Electron Co Ltd Semiconductor element with multilayered pad, and manufacture thereof
JPH11307724A (en) * 1998-04-21 1999-11-05 Rohm Co Ltd Semiconductor integrated circuit
JP2001015516A (en) * 1999-06-30 2001-01-19 Toshiba Corp Semiconductor device and manufacture thereof
JP2001267323A (en) * 2000-03-21 2001-09-28 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacturing method
JP2002353221A (en) * 2001-05-29 2002-12-06 Sony Corp Semiconductor device and its manufacturing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1154544A (en) * 1997-05-01 1999-02-26 Texas Instr Inc <Ti> System and method for reinforcing bond pad
JPH10340920A (en) * 1997-06-10 1998-12-22 Sony Corp Method for manufacturing semiconductor device
JPH1167763A (en) * 1997-08-21 1999-03-09 Sony Corp Semiconductor device and manufacturing method therefor
JPH11186320A (en) * 1997-12-09 1999-07-09 Samsung Electron Co Ltd Semiconductor element with multilayered pad, and manufacture thereof
JPH11307724A (en) * 1998-04-21 1999-11-05 Rohm Co Ltd Semiconductor integrated circuit
JP2001015516A (en) * 1999-06-30 2001-01-19 Toshiba Corp Semiconductor device and manufacture thereof
JP2001267323A (en) * 2000-03-21 2001-09-28 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacturing method
JP2002353221A (en) * 2001-05-29 2002-12-06 Sony Corp Semiconductor device and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013229455A (en) * 2012-04-26 2013-11-07 Renesas Electronics Corp Semiconductor device and method for manufacturing the same
US10529766B2 (en) 2017-04-24 2020-01-07 Canon Kabushiki Kaisha Camera and solid-state image sensor that includes a wiring structure with an electrically conductive pattern having plural primary and auxiliary lines arranged on a semiconductor substrate

Also Published As

Publication number Publication date
JP4701264B2 (en) 2011-06-15

Similar Documents

Publication Publication Date Title
JP4170103B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP5205066B2 (en) Semiconductor device and manufacturing method thereof
US8310056B2 (en) Semiconductor device
US7459792B2 (en) Via layout with via groups placed in interlocked arrangement
US20120248605A1 (en) Semiconductor device and manufacturing method thereof
US7420278B2 (en) Semiconductor device
US20040164418A1 (en) Semiconductor device having a pillar structure
JP2006261631A (en) Top via pattern of bond pad structure
TW201115697A (en) Semiconductor device
US20100090344A1 (en) Semiconductor device
JP2005085939A (en) Semiconductor device and its manufacturing method
KR101096101B1 (en) Semiconductor device and method of manufacturing semiconductor device
JP4701264B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP2005142351A (en) Semiconductor device and its manufacturing method
JP4663510B2 (en) Semiconductor device
KR20100070633A (en) Structure for bonding pad and manufacturing method used the same
JP4422004B2 (en) Semiconductor device
JP5564557B2 (en) Semiconductor device
JP2006318989A (en) Semiconductor device
JP2005327763A (en) Semiconductor device
JP2007242644A (en) Semiconductor device and manufacturing method therefor
JP5168265B2 (en) Semiconductor device and manufacturing method thereof
JP2006324388A (en) Semiconductor device and its manufacturing method
JP2014179657A (en) Semiconductor device

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110307

R150 Certificate of patent or registration of utility model

Ref document number: 4701264

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees