JP2008222867A - Method for cleaning gasified gas and device for the same - Google Patents

Method for cleaning gasified gas and device for the same Download PDF

Info

Publication number
JP2008222867A
JP2008222867A JP2007063433A JP2007063433A JP2008222867A JP 2008222867 A JP2008222867 A JP 2008222867A JP 2007063433 A JP2007063433 A JP 2007063433A JP 2007063433 A JP2007063433 A JP 2007063433A JP 2008222867 A JP2008222867 A JP 2008222867A
Authority
JP
Japan
Prior art keywords
activated carbon
gasification gas
tower
adsorption tower
regeneration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007063433A
Other languages
Japanese (ja)
Inventor
Masaya Kurita
雅也 栗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Engineering Co Ltd
Priority to JP2007063433A priority Critical patent/JP2008222867A/en
Publication of JP2008222867A publication Critical patent/JP2008222867A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Industrial Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for cleaning gasified gas, capable of efficiently recovering its adsorption capacity and maintaining the gas-purification capacity of the device even in the case of decreasing the adsorption capacity of activated carbon by the adsorption of high boiling point hydrocarbon compounds in the gasified gas, and a device for the same. <P>SOLUTION: In the method for cleaning the gasified gas is provided by passing the gasified gas obtained by cracking solid organic materials such as organic waste materials, coal or the like through an activated carbon type adsorbing column 1, and adsorbing dioxin and high boiling point hydrocarbons which are liquid or solid in normal temperature and normal pressure in the gasified gas by the activated carbon, the activated carbon type adsorbing column 1 is made of a moving layer or fluidized layer, the activated carbon is continuously cut out from the activated carbon type adsorbing column 1, and the cut out activated carbon is regenerated at a separately installed regeneration column 5 and then returned to the activated carbon type adsorbing column 1. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、廃プラスチックやバイオマス等の有機性廃棄物又は石炭等の固体有機物を熱分解して得られたガス化ガスの浄化方法及び浄化装置に関し、とくに活性炭充填塔を用いたガス化ガスの浄化方法及び浄化装置に関する。   The present invention relates to a purification method and purification device for gasification gas obtained by pyrolyzing organic waste such as waste plastic and biomass or solid organic matter such as coal, and in particular, the purification of gasification gas using an activated carbon packed tower. The present invention relates to a purification method and a purification device.

近年、地球環境保全とくに地球温暖化防止の一環として、エネルギーの有効利用が改めて注目されるなかで、廃プラスチックやバイオマス等の有機性廃棄物の持つエネルギーを有効利用する方法として、有機性廃棄物を熱分解し可燃性ガスを得る、いわゆるガス化が注目を集めている。   In recent years, effective use of energy has been attracting attention as part of global environmental protection, especially prevention of global warming. Organic waste is a method for effectively using energy of organic waste such as waste plastic and biomass. So-called gasification, which obtains a combustible gas by pyrolyzing the gas, is attracting attention.

ところが、ガス化によって得られた可燃性ガス、すなわちガス化ガスには有機性廃棄物に含まれる塩素分に起因するダイオキシンが含まれているので、ガス化ガスの利用にあたってはダイオキシンの除去が必要である。また、有機性廃棄物のガス化ガスにはダイオキシンのほか、タール分や軽質油分等の常温常圧で液体若しくは固体である高沸点炭化水素化合物(本願明細書では単に「高沸点炭化水素化合物」という。ここで、「高沸点炭化水素化合物」の沸点は概ね60℃以上である。)が含まれている。   However, combustible gas obtained by gasification, that is, gasification gas contains dioxin due to chlorine contained in organic waste, so it is necessary to remove dioxin when using gasification gas It is. In addition to dioxins, organic waste gasification gases include high-boiling hydrocarbon compounds that are liquid or solid at normal temperature and pressure, such as tar and light oil (in the present specification, simply “high-boiling hydrocarbon compounds”). Here, the boiling point of the “high-boiling hydrocarbon compound” is approximately 60 ° C. or higher).

これらの高沸点炭化水素化合物は、沸点以下の温度でも高い蒸気圧を持ち、冷却等によって除去することが難しく、ガス中に残存する高沸点炭水素化合物は、ガス化ガスの温度が低下すると凝縮し、ガス配管やその付帯設備に付着して設備トラブルを引き起こす原因となる。したがって、ダイオキシンと共にガス化ガス中から除去する必要がある。   These high boiling hydrocarbon compounds have a high vapor pressure even at temperatures below the boiling point and are difficult to remove by cooling, etc., and the high boiling hydrocarbon compounds remaining in the gas condense when the temperature of the gasification gas decreases. In addition, it may cause equipment trouble by adhering to the gas piping and its ancillary equipment. Therefore, it is necessary to remove from gasification gas with dioxin.

従来、ガス中のダイオキシンを除去する技術として、特許文献1には、ダイオキシンを触媒層により分解し、残分のダイオキシンを活性炭層により吸着するという技術が開示されている。しかし、この特許文献1の技術は、おもに可燃性物質を燃焼させた後の燃焼排ガスを処理対象とするものであり、特許文献1の技術を有機性廃棄物のガス化ガスの処理に適用すると、触媒層ではダイオキシン以外の炭化水素ガスも分解され煤が発生するので、すぐに閉塞し失活する。また、活性炭層ではダイオキシン以外に上述の高沸点炭化水素化合物が吸着され、活性炭の活性を持続させることができない。持続させるためには、常に新しい活性炭を使用する必要があり、運転費が高くなる。   Conventionally, as a technique for removing dioxins in a gas, Patent Document 1 discloses a technique in which dioxins are decomposed by a catalyst layer and the remaining dioxins are adsorbed by an activated carbon layer. However, the technique of this patent document 1 is mainly intended for treating the combustion exhaust gas after burning a combustible substance, and when the technique of patent document 1 is applied to the treatment of gasification gas of organic waste. In the catalyst layer, hydrocarbon gases other than dioxins are also decomposed and soot is generated. Moreover, in the activated carbon layer, the above-described high boiling point hydrocarbon compound is adsorbed in addition to dioxin, and the activity of the activated carbon cannot be maintained. In order to sustain it, it is necessary to always use new activated carbon, which increases operating costs.

また、特許文献2には、バグフィルター等の集塵装置を設け、その上流側で粉末状の活性炭を吹き込み、バグフィルターのろ布表面上に活性炭層を形成し、その活性炭にダイオキシンを吸着させるという技術が開示されている。しかし、この特許文献2の技術においても、これを有機性廃棄物のガス化ガスの処理に適用すると、ガス化ガスに含まれる上述の高沸点炭化水素化合物によって目詰まり等のトラブルが発生し、安定的な運転を継続することができない。   In Patent Document 2, a dust collector such as a bag filter is provided, and powdered activated carbon is blown upstream thereof to form an activated carbon layer on the filter cloth surface of the bag filter, and dioxins are adsorbed on the activated carbon. This technique is disclosed. However, even in the technique of this Patent Document 2, when this is applied to the treatment of gasification gas of organic waste, troubles such as clogging occur due to the above-mentioned high boiling point hydrocarbon compound contained in the gasification gas, Stable operation cannot be continued.

一方、特許文献3及び特許文献4には、排気ガス中の溶剤等の炭化水素、軽質油分を除去するために活性炭を用いた浄化技術が開示されている。しかし、活性炭により有機性廃棄物のガス化ガスに含まれる軽質油分を除去する場合には、ガスの原料が廃棄物であることから原料の性状が安定しないのでガス浄化の制御が難しく、また、ガス化ガス中には軽質油分だけでなくタール分が含まれるので、タール分を含むガスを活性炭で浄化すると、タール分が活性炭から離脱しにくいため、活性炭の寿命が短くなる。   On the other hand, Patent Document 3 and Patent Document 4 disclose a purification technique using activated carbon to remove hydrocarbons such as solvents and light oil in exhaust gas. However, when the light oil contained in the gasification gas of organic waste is removed by activated carbon, it is difficult to control gas purification because the raw material of the gas is waste and the properties of the raw material are not stable. Since the gasified gas contains not only light oil but also tar, if the gas containing tar is purified by activated carbon, the tar is not easily separated from the activated carbon, and the life of the activated carbon is shortened.

また、特許文献5及び特許文献6には、バイオマスを熱分解して得られたバイオマスガス(ガス化ガス)を活性炭を用いて浄化する技術が開示されている。しかし、この技術ではガス処理温度が高く、分子量が大きくて沸点の高いタール分を吸着除去することは可能であるが、分子量が小さくて沸点が比較的低く、高揮発性であって、常温常圧で液状の炭化水素化合物、いわゆる軽質油分を吸着除去することはできない。   Patent Documents 5 and 6 disclose a technique for purifying biomass gas (gasification gas) obtained by pyrolyzing biomass using activated carbon. However, with this technology, it is possible to adsorb and remove tar components having a high gas treatment temperature and a high molecular weight and a high boiling point, but they have a low molecular weight, a relatively low boiling point, a high volatility, and a normal temperature. It is impossible to adsorb and remove liquid hydrocarbon compounds, so-called light oil components, under pressure.

軽質油分はガス利用の際に、配管中で冷却され、ドレン化する。このドレンは揮発性のきわめて高い引火性油であるため取り扱いが難しい。また、性状の均一なバイオマス以外を原料としたガス化ガスの場合、タール分の発生量及び性状が変化し、活性炭吸着層が閉塞したり、軽質油分がガス利用設備に流れ、トラブルとなる可能性がある。とくに廃プラスチック、石炭等の化石燃料、あるいは化石燃料を原材料とする固体有機物をガス化する場合には、タール分及び軽質油分の量が多く、上記技術による手法では十分な浄化を行うことができない。   Light oil is cooled in the piping and drained when using gas. Since this drain is a highly volatile flammable oil, it is difficult to handle. In addition, in the case of gasification gas using raw materials other than biomass with uniform properties, the generation amount and properties of tar may change, the activated carbon adsorption layer may be clogged, and light oil may flow to the gas utilization facility, causing problems. There is sex. In particular, when fossil fuels such as waste plastics and coal, or solid organic substances made from fossil fuels are gasified, the amount of tar and light oil is large, and the above-mentioned technique cannot perform sufficient purification. .

このように、従来、活性炭を用いてガスを浄化する技術は種々提案されているが、高沸点炭化水素化合物とくにタール分及び軽質油分を多く含むガス化ガスを浄化する場合、上述のような問題があり、活性炭を用いたガス化ガスの浄化技術は確立されていない。   As described above, various techniques for purifying gas using activated carbon have been proposed in the past. However, when purifying gasification gas containing a high boiling point hydrocarbon compound, particularly tar and light oil, the above-mentioned problems are required. However, gasification gas purification technology using activated carbon has not been established.

これに対して、活性炭を用いないガス化ガスの浄化技術も提案されている。例えば特許文献7には、有機性廃棄物をガス化後、酸素及び水蒸気と反応させ、1100℃程度の高温での改質反応により、ガス化ガス中のタール分や軽質油分を低減させる技術が提案されている。しかし、このような改質反応を用いたガスの浄化技術では、改質反応に必要な熱源を得るためにガス化ガスの部分燃焼が必要となり、ガス化ガスの持つエネルギーを消費されガスカロリーが低下するという問題がある。また、改質反応に用いる酸素の製造にエネルギーを多く必要とし、廃棄物処理に必要な総エネルギーが大きくなりすぎる。   On the other hand, a gasification gas purification technique that does not use activated carbon has also been proposed. For example, Patent Document 7 discloses a technology for reducing tar content and light oil content in gasified gas by gasification of organic waste, reaction with oxygen and water vapor, and reforming reaction at a high temperature of about 1100 ° C. Proposed. However, gas purification technology using such a reforming reaction requires partial combustion of the gasified gas in order to obtain a heat source required for the reforming reaction. There is a problem of lowering. In addition, the production of oxygen used for the reforming reaction requires a lot of energy, and the total energy required for waste treatment becomes too large.

他のガス洗浄技術としては、コークス炉ガスの浄化技術に見られるように、低温下でガスを油で洗浄し、ガス中のタール分及び軽質油分等を除去する技術がある。しかし、この技術では、低温下で洗浄を行うにあたり冷熱源を得るためにエネルギーが必要である。また、洗浄後の排水に高度な処理が必要となり、さらに油を再生する工程等が必要となり、再生時に発生するガスの処理等、設備が複雑になる傾向にある。また、ガスの洗浄によってはダイオキシンを除去することはできない。   As another gas cleaning technology, as seen in coke oven gas purification technology, there is a technology in which gas is cleaned with oil at a low temperature to remove tar content and light oil content in the gas. However, with this technique, energy is required to obtain a cold heat source for cleaning at low temperatures. Moreover, advanced treatment is required for the waste water after washing, and further, a step of regenerating oil and the like is required, and facilities such as treatment of gas generated at the time of regeneration tend to be complicated. Further, dioxins cannot be removed by gas cleaning.

このように、ガス中のダイオキシン及びタール分、軽質油分等の高沸点炭化水素化合物を同時に除去してガスを浄化するには、やはり活性炭を用いて乾式処理することが有用かつ簡便であり、活性炭を用いたガス化ガスの浄化技術の確立が望まれている。   Thus, in order to purify the gas by simultaneously removing high-boiling hydrocarbon compounds such as dioxin, tar, and light oil in the gas, it is useful and simple to dry-process using activated carbon. Establishing gasification gas purification technology using methane is desired.

一方で、有機物を熱分解し可燃性のガス化ガスを得る場合、ガス化ガスの利用にあたってはメタン等の炭化水素ガスを残し、ガスのカロリーを高く保つことが望ましい。但し、その場合、タール分及び軽質油分が副生しガス利用の妨げとなる。したがって、この点からもガス化ガス中のタール分及び軽質油分を除去する浄化技術の確立が望まれている。
特開2003−112012号公報 特開平11−230529号公報 特開平9−215908号公報 特開2005−66503号公報 特開2006−16469号公報 特開2006−16470号公報 特開2004−238535号公報
On the other hand, when an organic substance is thermally decomposed to obtain a combustible gasification gas, it is desirable to keep hydrocarbon gas such as methane and keep gas calorie high when using the gasification gas. In this case, however, tar and light oil are by-produced and hinder gas utilization. Therefore, also from this point of view, establishment of a purification technique for removing tar and light oil in gasified gas is desired.
JP 2003-111201 A JP-A-11-230529 JP-A-9-215908 JP 2005-66503 A JP 2006-16469 A JP 2006-16470 A JP 2004-238535 A

本発明が解決しようとする課題は、総括的には、活性炭を用いたガス化ガスの浄化技術を確立し、利用可能な高カロリーガスを得ることにある。   The problem to be solved by the present invention is to establish a purification technology for gasification gas using activated carbon and obtain a usable high calorie gas.

具体的には、ガス化ガス中の高沸点炭化水素化合物の吸着によって活性炭の吸着能力が低下したとしても、その吸着能力を効率的に回復させて、装置のガス浄化能力を持続させることのできるガス化ガスの浄化方法及び浄化装置を提供することにある。   Specifically, even if the adsorption capacity of the activated carbon is reduced due to the adsorption of the high-boiling hydrocarbon compound in the gasification gas, the adsorption capacity can be efficiently recovered and the gas purification capacity of the apparatus can be maintained. An object of the present invention is to provide a purification method and a purification device for gasification gas.

本発明は、有機性廃棄物又は石炭等の固体有機物を熱分解して得られたガス化ガスを活性炭式吸着塔に通し、活性炭にガス化ガス中のダイオキシン及び常温常圧で液体若しくは固体である高沸点炭化水素化合物を吸着させるガス化ガスの浄化方法において、活性炭式吸着塔を移動層又は流動層とし、この活性炭式吸着塔から活性炭を連続的に切り出し、切り出した活性炭を別途設置した再生塔で再生した後に、活性炭式吸着塔に戻すことを特徴とする。   In the present invention, gasification gas obtained by pyrolyzing organic waste or solid organic matter such as coal is passed through an activated carbon type adsorption tower, and the activated carbon is dioxin in the gasification gas and liquid or solid at normal temperature and normal pressure. In the purification method of gasification gas that adsorbs a certain high-boiling hydrocarbon compound, the activated carbon adsorption tower is used as a moving bed or fluidized bed, activated carbon is continuously cut out from this activated carbon adsorption tower, and the cut activated carbon is installed separately. It is characterized by returning to the activated carbon adsorption tower after regenerating in the tower.

本発明では、代表的には有機性廃棄物として廃プラスチック、又は固体有機物として石炭をガス化する。   In the present invention, waste plastic is typically gasified as organic waste, or coal is gasified as solid organic matter.

有機性廃棄物又は固体有機物のガス化ガス中には、ダイオキシン及び高沸点炭化水素化合物が含まれる。また、高沸点炭化水素化合物としては、ナフタレン、アントラセン等のタール分(炭素原子数が10以上の高分子炭化水素化合物)とベンゼン、トルエン、キシレン等の軽質油分(炭素原子数が10未満の低分子炭化水素化合物)が含まれる。これらのダイオキシン及び高沸点炭化水素化合物は、ガス化ガスの有効利用にあたり除去する必要があるが、本発明では、上述のように、ガス化ガスを活性炭式吸着塔に通すことによって、ガス化ガス中に可燃性ガスと共に含まれるダイオキシン及び高沸点炭化水素化合物を除去する。   The organic waste or solid organic gasification gas contains dioxin and a high-boiling hydrocarbon compound. High boiling point hydrocarbon compounds include tar components such as naphthalene and anthracene (polymer hydrocarbon compounds having 10 or more carbon atoms) and light oil components such as benzene, toluene and xylene (low carbon number of less than 10). Molecular hydrocarbon compounds). These dioxins and high boiling point hydrocarbon compounds need to be removed for effective utilization of the gasification gas. In the present invention, as described above, the gasification gas is passed by passing the gasification gas through an activated carbon adsorption tower. Dioxins and high-boiling hydrocarbon compounds contained in the combustible gas are removed.

すなわち、活性炭式吸着塔に充填されている活性炭には表面に無数の細孔が開いており、この細孔にダイオキシン及び高分子炭化水素化合物の分子が入り込むことで吸着されガス化ガスから除去される。   In other words, the activated carbon packed in the activated carbon adsorption tower has numerous pores on the surface, and the pores are adsorbed and removed from the gasification gas when dioxin and polymer hydrocarbon compound molecules enter. The

ここで、活性炭式吸着塔に充填されている活性炭の吸着能力は、ダイオキシン及び高分子炭化水素化合物の吸着に伴い徐々に低下する。このため、従来一般的には、活性炭式吸着塔を並列に複数設置し、吸着に使用する活性炭式吸着塔と再生する活性炭式吸着塔を順次切り替えて使用するようにしていた。これに対して、本発明では、活性炭式吸着塔を移動層又は流動層とし、この活性炭式吸着塔から活性炭を連続的に切り出し、切り出した活性炭を別途設置した再生塔で再生した後に、活性炭式吸着塔に戻すようにしたので、活性炭式吸着塔を吸着に使用しながら同時に活性炭の再生も行うことができる。したがって、従来のように、複数の活性炭式吸着塔を設置することなく連続運転が可能であり、設備のレイアウトをコンパクトにすることができる。   Here, the adsorption capacity of the activated carbon packed in the activated carbon adsorption tower gradually decreases with the adsorption of dioxin and the polymer hydrocarbon compound. For this reason, generally, a plurality of activated carbon adsorption towers are installed in parallel, and the activated carbon adsorption tower used for adsorption and the activated carbon adsorption tower to be regenerated are sequentially switched and used. On the other hand, in the present invention, the activated carbon adsorption tower is a moving bed or a fluidized bed, and activated carbon is continuously cut out from the activated carbon adsorption tower, and the cut activated carbon is regenerated in a regeneration tower separately installed, and then activated carbon type. Since it was returned to the adsorption tower, the activated carbon can be regenerated at the same time while using the activated carbon adsorption tower for adsorption. Therefore, as in the prior art, continuous operation is possible without installing a plurality of activated carbon adsorption towers, and the facility layout can be made compact.

このガス化ガスの浄化方法を実施するため、本発明の浄化装置では、有機性廃棄物又は石炭等の固体有機物を熱分解して得られたガス化ガスを活性炭式吸着塔に通し、活性炭にガス化ガス中のダイオキシン及び常温常圧で液体若しくは固体である高沸点炭化水素化合物を吸着させるガス化ガスの浄化装置において、活性炭式吸着塔を移動層又は流動層とし、この活性炭式吸着塔から活性炭を連続的に切り出す切り出し装置と、この切り出し装置によって切り出した活性炭を再生する再生塔と、この再生塔で再生した活性炭を活性炭式吸着塔に戻す活性炭搬送装置とを設ける。   In order to carry out this gasification gas purification method, the purification apparatus of the present invention passes the gasification gas obtained by pyrolyzing organic waste or solid organic matter such as coal through an activated carbon adsorption tower, In a purification apparatus for gasification gas that adsorbs dioxins in gasification gas and high-boiling hydrocarbon compounds that are liquid or solid at normal temperature and pressure, the activated carbon adsorption tower is a moving bed or fluidized bed. A cutting device that continuously cuts the activated carbon, a regeneration tower that regenerates the activated carbon cut by the cutting device, and an activated carbon transfer device that returns the activated carbon regenerated by the regeneration tower to the activated carbon adsorption tower are provided.

本発明では、活性炭式吸着塔に複数の活性炭吸着層をガス化ガスの流れ方向に直列に設けることが好ましい。有機性廃棄物又は固体有機物のガス化ガスには種々の大きさの分子量を持つ高沸点炭化水素化合物が多量に含有されている。そのため、活性炭式吸着塔に複数の活性炭吸着層をガス化ガスの流れ方向に直列に設け、そこにガス化ガスを通すと、上流側の活性炭吸着層でより多くの高沸点炭化水素化合物が吸着され、かつ分子量の大きな高沸点炭化水素化合物が選択的に吸着される。   In the present invention, it is preferable to provide a plurality of activated carbon adsorption layers in series in the gas flow direction in the activated carbon adsorption tower. The organic waste or solid organic gasification gas contains a large amount of high-boiling hydrocarbon compounds having various molecular weights. Therefore, when multiple activated carbon adsorption layers are provided in series in the gasification gas flow direction in the activated carbon adsorption tower and gasification gas is passed therethrough, more high boiling hydrocarbon compounds are adsorbed in the activated carbon adsorption layer on the upstream side. And a high-boiling hydrocarbon compound having a large molecular weight is selectively adsorbed.

したがって、上流側の活性炭吸着層では再生のための活性炭の切り出し速度(単位時間あたりの切り出し量)を大きくして短時間で再生できるようにし、一方、下流側の活性炭吸着層では活性炭の切り出し速度は遅くするなどの対応が可能となる。また、必要に応じて再生塔を上流側の活性炭吸着層用とそれ以外に分け、上流側の活性炭吸着層の活性炭の再生温度のみを高くするといった対応も可能となる。また、上流側の活性炭吸着層をプレフィルターとして使用することもできる。   Therefore, the activated carbon adsorption layer on the upstream side increases the cut-out rate of activated carbon for regeneration (the cut-out amount per unit time) so that it can be regenerated in a short time, while the activated carbon adsorption layer on the downstream side allows the activated carbon cut-off rate. Can be delayed. In addition, if necessary, the regeneration tower can be divided into an upstream activated carbon adsorption layer and the other, and only the regeneration temperature of the activated carbon in the upstream activated carbon adsorption layer can be increased. Further, the upstream activated carbon adsorption layer can be used as a prefilter.

このように、活性炭式吸着塔に複数の活性炭吸着層をガス化ガスの流れ方向に直列に設けると、活性炭の使用状況に応じて、それぞれに適切な再生条件の設定が可能となり、ランニングコストを低減することができる。これに対して、活性炭吸着層が1つのみである場合、分子量の小さい軽質油分と分子量の大きいタール分の両方が1つの活性炭吸着層に吸着される。そうすると、活性炭の再生条件としては、活性炭から離脱しにくいタール分を離脱させるために、活性炭の切り出し速度や再生温度を一律に高くする必要があり、ランニングコストが高くなる。   In this way, when multiple activated carbon adsorption layers are provided in series in the gasification gas flow direction in the activated carbon adsorption tower, it is possible to set appropriate regeneration conditions for each of the activated carbon usage conditions, reducing running costs. Can be reduced. On the other hand, when there is only one activated carbon adsorption layer, both the light oil component with a small molecular weight and the tar component with a large molecular weight are adsorbed on one activated carbon adsorption layer. If it does so, in order to make the tar content which is hard to detach | leave from activated carbon as the reproduction | regeneration conditions of activated carbon, it is necessary to raise the cutting speed and regeneration temperature of activated carbon uniformly, and a running cost becomes high.

また、本発明において活性炭を再生する再生塔は、移動層又は流動層とすることが好ましい。再生塔が固定層の場合、再生塔による活性炭の再生はバッチ式となるが、再生塔を移動層又は流動層とすることで、活性炭の再生を連続式とすることができる。また、ガス化ガスには、上述のとおり高沸点炭化水素化合物が多く含まれており、活性炭にはこの高沸点炭化水素が多く吸着されている。   In the present invention, the regeneration tower for regenerating activated carbon is preferably a moving bed or a fluidized bed. When the regeneration tower is a fixed bed, the regeneration of the activated carbon by the regeneration tower is a batch type, but the regeneration of the activated carbon can be a continuous type by using the regeneration tower as a moving bed or a fluidized bed. Further, as described above, the gasification gas contains a large amount of high-boiling hydrocarbon compounds, and activated carbon has a large amount of adsorption of this high-boiling hydrocarbon.

したがって、この活性炭を再生塔にて例えば蒸気を通ガスすることで再生する場合、多量の蒸気が必要であり、再生塔が固定層、すなわちバッチ処理式であると、再生の切り替え時に蒸気消費量が大きく変動し、他に蒸気を使用する機器、例えば蒸気タービン等の負荷変動につながり、効率が低下する。これに対して、再生塔を移動層又は流動層とすれば、再生を連続式で行うことができるため、負荷変動も抑制される。   Therefore, when this activated carbon is regenerated, for example, by passing steam through a regeneration tower, a large amount of steam is required, and if the regeneration tower is a fixed bed, that is, a batch processing type, the steam consumption when switching regeneration. Greatly fluctuates, leading to load fluctuations in other equipment that uses steam, such as steam turbines, and the efficiency decreases. On the other hand, if the regeneration tower is a moving bed or a fluidized bed, regeneration can be performed continuously, so that load fluctuations are also suppressed.

また、本発明においては、切り出し装置としてスクリューコンベア又はロータリーバルブを使用することが好ましい。このように切り出し装置としてスクリューコンベア又はロータリーバルブを使用することで、活性炭で活性炭式吸着塔内のガス化ガスをシールし、活性炭式吸着塔内のガス化ガスが系外へ流出することを防止できると共に、外気側の酸素が活性炭式吸着塔内に侵入し、爆発性の予混合ガスを生成することを防止できる。   Moreover, in this invention, it is preferable to use a screw conveyor or a rotary valve as a cutting device. Thus, by using a screw conveyor or a rotary valve as a cutting device, the gasification gas in the activated carbon adsorption tower is sealed with activated carbon, and the gasification gas in the activated carbon adsorption tower is prevented from flowing out of the system. In addition, oxygen on the outside air side can be prevented from entering the activated carbon adsorption tower and generating an explosive premixed gas.

さらに、スクリューコンベア又はロータリーバルブを2段直列に設置し、その間に窒素等の不活性ガスを注入して内圧を外気圧よりも高めることで、活性炭式吸着塔内のガス化ガスの漏洩及び活性炭式吸着塔内への外気の侵入をより確実に防止できる。   Furthermore, a screw conveyor or a rotary valve is installed in two stages in series, and an inert gas such as nitrogen is injected between them to increase the internal pressure above the external pressure, thereby leaking gasified gas in the activated carbon adsorption tower and activated carbon. Intrusion of outside air into the adsorption tower can be prevented more reliably.

さらに、本発明においては、活性炭式吸着塔と再生塔との間に、活性炭式吸着塔から切り出された活性炭を一時的に貯留するバッファタンクを設けることができる。活性炭式吸着塔内における活性炭の吸着能力(活性)の低下の度合いは、活性炭式吸着塔におけるガス化ガスの処理量、すなわちガス化炉の負荷に応じて変化する。このため、ガス化炉の負荷に応じて活性炭式吸着塔からの活性炭の切り出し量を調整することが好ましいが、一方で、再生塔における活性炭の再生処理は極力一定条件で実施することが好ましい。そこで、活性炭式吸着塔と再生塔との間にバッファタンクを設けることで、負荷変動を吸収し、活性炭の再生条件を一定に保つことが可能となる。   Furthermore, in this invention, the buffer tank which stores temporarily the activated carbon cut out from the activated carbon type adsorption tower can be provided between the activated carbon type adsorption tower and the regeneration tower. The degree of decrease in the adsorption capacity (activity) of the activated carbon in the activated carbon adsorption tower varies depending on the gasification gas throughput in the activated carbon adsorption tower, that is, the load of the gasification furnace. For this reason, although it is preferable to adjust the cut-out amount of the activated carbon from the activated carbon adsorption tower according to the load of the gasification furnace, on the other hand, it is preferable to carry out the regeneration treatment of the activated carbon in the regeneration tower as much as possible. Therefore, by providing a buffer tank between the activated carbon adsorption tower and the regeneration tower, it is possible to absorb load fluctuations and keep the activated carbon regeneration conditions constant.

本発明によれば、ガス化ガス中の高沸点炭化水素化合物の吸着によって吸着能力の低下した活性炭式吸着塔内の活性炭を連続的に切り出し、再生後に再度活性炭式吸着塔に戻すようにしているので、活性炭式吸着塔を吸着に使用しながら同時に活性炭の再生も行うことができ、1つの活性炭式吸着塔を備えるだけで、吸着能力を維持しつつ連続運転を行うことができる。   According to the present invention, the activated carbon in the activated carbon type adsorption tower whose adsorption capacity is reduced by adsorption of the high boiling point hydrocarbon compound in the gasification gas is continuously cut out, and is returned to the activated carbon type adsorption tower again after regeneration. Therefore, the activated carbon can be regenerated at the same time while using the activated carbon adsorption tower for adsorption, and the continuous operation can be performed while maintaining the adsorption capacity only by providing one activated carbon adsorption tower.

また、ガス化ガス中のタール分及び軽質油分を安定的に除去できるので、ガス化温度、改質温度を下げた運転が可能となり、高カロリーのガス化ガスを安定的に得ることができる。そして、ガス温度を上昇させるために必要なエネルギー、酸素量等を減らすことが可能で、より安価に高カロリーのガス化ガスを得ることが可能となる。   Moreover, since the tar content and light oil content in the gasification gas can be stably removed, an operation with the gasification temperature and the reforming temperature lowered can be performed, and a high calorie gasification gas can be stably obtained. In addition, it is possible to reduce the energy, oxygen amount, and the like necessary for increasing the gas temperature, and it is possible to obtain a high calorie gasified gas at a lower cost.

以下、図面に示す実施例に基づき本発明の実施の形態を説明する。   Embodiments of the present invention will be described below based on examples shown in the drawings.

図1は本発明の第1実施例を示す装置構成図である。   FIG. 1 is an apparatus configuration diagram showing a first embodiment of the present invention.

図1において、活性炭式吸着塔1は流動層式の活性炭吸着層1aを1つ備えており、有機性廃棄物をガス化するガス化炉2で得られたガス化ガスは、活性炭式吸着塔1にその下部から導入され、活性炭吸着層1aを通過後、上部から排出される。その過程で、ガス化ガス中のダイオキシン及び高沸点炭化水素化合物は活性炭吸着層1aの活性炭に吸着される。   In FIG. 1, the activated carbon type adsorption tower 1 is provided with one fluidized bed type activated carbon adsorption layer 1a, and the gasification gas obtained by the gasification furnace 2 which gasifies organic waste is the activated carbon type adsorption tower. 1 is introduced from its lower part, and after passing through the activated carbon adsorption layer 1a, it is discharged from the upper part. In the process, dioxins and high boiling point hydrocarbon compounds in the gasification gas are adsorbed on the activated carbon of the activated carbon adsorption layer 1a.

活性炭式吸着塔1の底部には、活性炭の切り出し装置としてロータリーバルブ3が設けられており、このロータリーバルブ3によって活性炭式吸着塔1の底部から活性炭が連続的に切り出される。切り出された活性炭は活性炭搬送装置4によって搬送され、再生塔5の頂部から連続的に再生塔5内に投入される。   A rotary valve 3 is provided at the bottom of the activated carbon adsorption tower 1 as an activated carbon cutting device, and activated carbon is continuously cut out from the bottom of the activated carbon adsorption tower 1 by the rotary valve 3. The cut activated carbon is transported by the activated carbon transport device 4 and continuously charged into the regeneration tower 5 from the top of the regeneration tower 5.

再生塔5には、その頂部から活性炭再生用の蒸気が導入されるようになっており、この蒸気によって活性炭に吸着していた高沸点炭化水素化合物が気化離脱し廃蒸気として蒸気側に吐き出されることで活性炭が再生される。一方、高沸点炭化水素化合物を含む廃蒸気あるいは廃蒸気が凝縮した廃ドレンは、再生塔5の下部から排出される。   Activated carbon regeneration steam is introduced into the regeneration tower 5 from the top, and the high boiling point hydrocarbon compound adsorbed on the activated carbon by this steam is vaporized and discharged to the steam side as waste steam. The activated carbon is regenerated. On the other hand, the waste steam containing the high boiling point hydrocarbon compound or the waste drain condensed with the waste steam is discharged from the lower part of the regeneration tower 5.

再生された活性炭は、再生塔5の底部から連続的に排出され、活性炭搬送装置6によって搬送され、活性炭式吸着塔1の頂部から活性炭式吸着塔1内に戻される。実施例では、活性炭搬送装置6の先端に活性炭投入装置としてロータリーバルブ7を設け、このロータリーバルブ7によって活性炭を活性炭式吸着塔1内に戻すようにしている。   The regenerated activated carbon is continuously discharged from the bottom of the regeneration tower 5, transported by the activated carbon transport device 6, and returned to the activated carbon adsorption tower 1 from the top of the activated carbon adsorption tower 1. In the embodiment, a rotary valve 7 is provided as an activated carbon charging device at the tip of the activated carbon conveyance device 6, and the activated carbon is returned to the activated carbon adsorption tower 1 by the rotary valve 7.

このように、本実施例では、活性炭式吸着塔1内の活性炭を連続的に切り出し、再生後に再度活性炭式吸着塔1に戻すようにしているので、活性炭式吸着塔1を吸着に使用しながら同時に活性炭の再生も行うことができ、1つの活性炭式吸着塔1を備えるだけで、吸着能力を維持しつつ連続運転を行うことができる。   As described above, in this embodiment, the activated carbon in the activated carbon adsorption tower 1 is continuously cut out and returned to the activated carbon adsorption tower 1 again after regeneration, so that the activated carbon adsorption tower 1 is used for adsorption. At the same time, the activated carbon can be regenerated, and only by providing one activated carbon adsorption tower 1, continuous operation can be performed while maintaining the adsorption capacity.

また、本実施例では、活性炭式吸着塔1の活性炭吸着層1aを流動層としているので、活性炭吸着層1a全体が均一となり、活性炭吸着層1a内のガス化ガスの流れも均一になるので、性状の安定したガス化ガスが得られやすい。   In this embodiment, since the activated carbon adsorption layer 1a of the activated carbon adsorption tower 1 is a fluidized bed, the entire activated carbon adsorption layer 1a is uniform, and the flow of gasification gas in the activated carbon adsorption layer 1a is also uniform. It is easy to obtain gasified gas with stable properties.

また、再生塔5は、活性炭を連続的に再生する移動層となっているので、活性炭の再生を効率的に行うことができると共に、バッチ式のように再生の切り替え時に蒸気消費量が大きく変動することもないので、他に蒸気を使用する機器、例えば蒸気タービン等の負荷に影響を及ぼすこともない。   In addition, since the regeneration tower 5 is a moving bed that continuously regenerates the activated carbon, the activated carbon can be efficiently regenerated and the steam consumption greatly fluctuates at the time of regeneration switching as in the batch type. Therefore, it does not affect the load of other equipment that uses steam, such as a steam turbine.

図2は本発明の第2実施例を示す装置構成図である。この実施例では、活性炭式吸着塔1は、流動層式の3つの活性炭吸着層1a〜1cを備えており、これらの活性炭吸着層1a〜1cはガス化ガスの流れ方向に直列に設けられている。   FIG. 2 is an apparatus configuration diagram showing a second embodiment of the present invention. In this embodiment, the activated carbon adsorption tower 1 is provided with three fluidized bed type activated carbon adsorption layers 1a to 1c, and these activated carbon adsorption layers 1a to 1c are provided in series in the flow direction of the gasification gas. Yes.

本実施例では、活性炭吸着層1a〜1cを移動層としているので、活性炭吸着層1a〜1cにおいて活性炭は高沸点炭化水素化合物等を吸着しながら下方に移動する。したがって、活性炭式吸着塔1の底部からは高沸点炭化水素化合物等を十分に吸着した活性炭が排出され、再生塔5に送られるため、活性炭の能力を十分に引き出すことができ、その結果、活性炭の使用量を低く抑えることができる。   In the present embodiment, since the activated carbon adsorption layers 1a to 1c are used as moving layers, the activated carbon moves downward while adsorbing high-boiling hydrocarbon compounds and the like in the activated carbon adsorption layers 1a to 1c. Therefore, activated carbon that has sufficiently adsorbed high-boiling hydrocarbon compounds and the like is discharged from the bottom of the activated carbon-type adsorption tower 1 and sent to the regeneration tower 5, so that the capacity of the activated carbon can be fully exploited. Can be kept low.

図3は本発明の第3実施例を示す装置構成図である。この実施例は、先の第2実施例の変形例で、上流側の活性炭吸着層1aから切り出された活性炭を第1の活性炭搬送装置4aで搬送して第1の再生塔5aで再生し、下流側の活性炭吸着層1b、1cから切り出された活性炭を第2の活性炭搬送装置4bで搬送して第2の再生塔5bで再生し、第1の再生塔5aで再生した活性炭は第1の活性炭搬送装置6aによって再度上流側の活性炭吸着層1aに戻し、第2の再生塔5bで再生した活性炭は第2の活性炭搬送装置6bによって再度下流側の活性炭吸着層1b、1cに戻すようにしたものである。   FIG. 3 is an apparatus configuration diagram showing a third embodiment of the present invention. This example is a modification of the previous second example, and the activated carbon cut out from the activated carbon adsorption layer 1a on the upstream side is conveyed by the first activated carbon conveying device 4a and regenerated by the first regeneration tower 5a, Activated carbon cut from the activated carbon adsorption layers 1b and 1c on the downstream side is conveyed by the second activated carbon conveying device 4b and regenerated by the second regeneration tower 5b, and the activated carbon regenerated by the first regeneration tower 5a is the first activated carbon. The activated carbon transfer device 6a returns the activated carbon adsorption layer 1a to the upstream side again, and the activated carbon regenerated by the second regeneration tower 5b is returned to the downstream activated carbon adsorption layers 1b and 1c by the second activated carbon transfer device 6b. Is.

上述のとおり、ガス化ガスには種々の大きさの分子量を持つ高沸点炭化水素化合物が多量に含有されているため、活性炭吸着層1a〜1cをガス化ガスの流れ方向に直列に設け、そこにガス化ガスを通すと、上流側の活性炭吸着層1aでより多くの高沸点炭化水素化合物が吸着され、かつ分子量の大きな高沸点炭化水素化合物(タール分)が選択的に吸着される。一方、下流側の活性炭吸着層1b、1cには残った分子量の小さな高沸点炭化水素化合物(軽質油分)が吸着される。したがって、上流側の活性炭吸着層1aの活性炭と下流側の活性炭吸着層1b、1cの活性炭を区別して切り出し、別々の再生塔5a、5bで再生処理を行うようにすることで、活性炭の使用状況に応じて、それぞれ適正な再生処理を行うことができる。   As described above, since the gasification gas contains a large amount of high-boiling hydrocarbon compounds having various molecular weights, the activated carbon adsorption layers 1a to 1c are provided in series in the flow direction of the gasification gas. When gasified gas is passed through, the activated carbon adsorption layer 1a on the upstream side adsorbs more high-boiling hydrocarbon compounds and selectively adsorbs high-boiling hydrocarbon compounds (tar content) having a large molecular weight. On the other hand, the remaining high-boiling hydrocarbon compounds (light oil components) having a small molecular weight are adsorbed on the activated carbon adsorption layers 1b and 1c on the downstream side. Therefore, the activated carbon of the activated carbon adsorption layer 1a on the upstream side and the activated carbon of the activated carbon adsorption layers 1b and 1c on the downstream side are cut out separately, and the regeneration process is performed in the separate regeneration towers 5a and 5b. In accordance with each, appropriate reproduction processing can be performed.

例えば、上流側の活性炭吸着層1aの活性炭には、高沸点炭化水素化合物が多く、かつ活性炭から離脱しにくいタール分が多く吸着されているので、活性炭吸着層1aの活性炭を再生する第1の再生塔5aに使用する蒸気の温度を第2の再生塔5bに使用する蒸気の温度よりも高くするといった対応を行うことができる。同様に、活性炭吸着層1aからの活性炭の切り出し速度と活性炭吸着層1aよりも大きくすることもできる。また、上流側の活性炭吸着層1aではタール分の吸着に適した細孔の大きい活性炭を使用し、下流側の活性炭吸着層1b、1cでは軽質油分の吸着に適した細孔の小さい活性炭を使用することもできる。   For example, since the activated carbon of the activated carbon adsorption layer 1a on the upstream side has a large amount of high-boiling hydrocarbon compounds and a large amount of tar that is difficult to desorb from the activated carbon, the activated carbon of the activated carbon adsorption layer 1a is regenerated. It is possible to take measures such that the temperature of the steam used in the regeneration tower 5a is higher than the temperature of the steam used in the second regeneration tower 5b. Similarly, the cutting speed of activated carbon from the activated carbon adsorption layer 1a and the activated carbon adsorption layer 1a can be increased. The activated carbon adsorption layer 1a on the upstream side uses activated carbon with large pores suitable for adsorption of tar, and the activated carbon adsorption layers 1b and 1c on the downstream side use activated carbon with small pores suitable for adsorption of light oil. You can also

図4は本発明の第4実施例を示す装置構成図である。この実施例は、図2に示した第2実施例の装置構成において、活性炭の切り出し装置としてロータリーバルブの代わりにスクリューコンベア8を使用したものである。   FIG. 4 is an apparatus configuration diagram showing a fourth embodiment of the present invention. In this embodiment, the screw conveyor 8 is used instead of the rotary valve as the activated carbon cutting device in the apparatus configuration of the second embodiment shown in FIG.

このように、活性炭式吸着塔1からの活性炭の切り出し装置としてスクリューコンベア又はロータリーバルブを使用することで、活性炭で活性炭式吸着塔1内のガス化ガスをシールし、活性炭式吸着塔1内のガス化ガスが系外へ流出することを防止できると共に、外気側の酸素が活性炭式吸着塔内に侵入し、爆発性の予混合ガスを生成することを防止できる。   Thus, by using a screw conveyor or a rotary valve as a cutting device for activated carbon from the activated carbon adsorption tower 1, the gasification gas in the activated carbon adsorption tower 1 is sealed with activated carbon, and the activated carbon adsorption tower 1 The gasification gas can be prevented from flowing out of the system, and the oxygen on the outside air can be prevented from entering the activated carbon adsorption tower and generating an explosive premixed gas.

さらに、図5に示すように、活性炭式吸着塔1からの活性炭の切り出し装置としてロータリーバルブ3を2段直列に設置し、その間に窒素等の不活性ガスを注入して内圧を外気圧よりも高めることで、活性炭式吸着塔1内のガス化ガスの漏洩及び活性炭式吸着塔1内への外気の侵入をより確実に防止できる。   Furthermore, as shown in FIG. 5, a rotary valve 3 is installed in two stages in series as an apparatus for cutting activated carbon from the activated carbon adsorption tower 1, and an inert gas such as nitrogen is injected between them to make the internal pressure higher than the external pressure. By raising, it is possible to prevent the leakage of gasified gas in the activated carbon type adsorption tower 1 and the intrusion of outside air into the activated carbon type adsorption tower 1 more reliably.

図6は本発明の第5実施例を示す装置構成図である。この実施例は、図4に示した第4実施例の装置構成において、活性炭式吸着塔1と再生塔5との間に、活性炭式吸着塔1から切り出された活性炭を一時的に貯留するバッファタンク9を設けたものである。   FIG. 6 is an apparatus configuration diagram showing a fifth embodiment of the present invention. This embodiment is a buffer for temporarily storing activated carbon cut out from the activated carbon adsorption tower 1 between the activated carbon adsorption tower 1 and the regeneration tower 5 in the apparatus configuration of the fourth embodiment shown in FIG. A tank 9 is provided.

このように、バッファタンク9を設けることで、ガス化炉2の負荷変動に伴い、活性炭式吸着塔1を通過するガス化ガスの量や性状が変化し、それに対応するため、活性炭式吸着塔1からの活性炭の切り出し量を変化させたとしても、その負荷変動を吸収し、再生塔5における活性炭の再生条件を一定に保つことが可能となる。なお、この実施例では、バッファタンク9から活性炭を切り出し、再生塔5に投入するためにロータリーバルブ10を使用している。   Thus, by providing the buffer tank 9, the amount and properties of the gasification gas passing through the activated carbon type adsorption tower 1 change with the load fluctuation of the gasification furnace 2. Even if the cut-out amount of the activated carbon from 1 is changed, the load fluctuation is absorbed, and the regeneration condition of the activated carbon in the regeneration tower 5 can be kept constant. In this embodiment, the rotary valve 10 is used to cut the activated carbon from the buffer tank 9 and put it into the regeneration tower 5.

本発明の第1実施例を示す装置構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is an apparatus block diagram which shows 1st Example of this invention. 本発明の第2実施例を示す装置構成図である。It is an apparatus block diagram which shows 2nd Example of this invention. 本発明の第3実施例を示す装置構成図である。It is an apparatus block diagram which shows 3rd Example of this invention. 本発明の第4実施例を示す装置構成図である。It is an apparatus block diagram which shows 4th Example of this invention. 活性炭式吸着塔から活性炭を切り出す切り出し装置の好ましい構成例を示す。The preferable structural example of the cutting-out apparatus which cuts out activated carbon from an activated carbon type adsorption tower is shown. 本発明の第5実施例を示す装置構成図である。It is an apparatus block diagram which shows 5th Example of this invention.

符号の説明Explanation of symbols

1 活性炭式吸着塔
1a〜1c 活性炭吸着層
2 ガス化炉
3 ロータリーバルブ
4 活性炭搬送装置
4a 第1の活性炭搬送装置
4b 第2の活性炭搬送装置
5 再生塔
5a 第1の再生塔
5b 第2の再生塔
6 活性炭搬送装置
6a 第1の活性炭搬送装置
6b 第2の活性炭搬送装置
7 ロータリーバルブ
8 スクリューコンベア
9 バッファタンク
10 ロータリーバルブ
DESCRIPTION OF SYMBOLS 1 Activated carbon type adsorption tower 1a-1c Activated carbon adsorption layer 2 Gasification furnace 3 Rotary valve 4 Activated carbon conveying apparatus 4a 1st activated carbon conveying apparatus 4b 2nd activated carbon conveying apparatus 5 Regeneration tower 5a 1st regeneration tower 5b 2nd reproduction | regeneration Tower 6 Activated carbon conveying device 6a First activated carbon conveying device 6b Second activated carbon conveying device 7 Rotary valve 8 Screw conveyor 9 Buffer tank 10 Rotary valve

Claims (9)

有機性廃棄物又は石炭等の固体有機物を熱分解して得られたガス化ガスを活性炭式吸着塔に通し、活性炭にガス化ガス中のダイオキシン及び常温常圧で液体若しくは固体である高沸点炭化水素化合物を吸着させるガス化ガスの浄化方法において、活性炭式吸着塔を移動層又は流動層とし、この活性炭式吸着塔から活性炭を連続的に切り出し、切り出した活性炭を別途設置した再生塔で再生した後に、活性炭式吸着塔に戻すことを特徴とするガス化ガスの浄化方法。   Gasification gas obtained by pyrolyzing organic waste or solid organic matter such as coal is passed through an activated carbon adsorption tower, and dioxin in the gasification gas and high-boiling carbonization that is liquid or solid at normal temperature and pressure. In the gasification gas purification method for adsorbing hydrogen compounds, the activated carbon adsorption tower is used as a moving bed or fluidized bed, activated carbon is continuously cut out from the activated carbon adsorption tower, and the cut activated carbon is regenerated in a regeneration tower separately installed. A method for purifying gasification gas, which is then returned to the activated carbon adsorption tower. 再生塔を移動層又は流動層とする請求項1に記載のガス化ガスの浄化方法。   The method for purifying a gasification gas according to claim 1, wherein the regeneration tower is a moving bed or a fluidized bed. 再生塔における活性炭の再生に蒸気を使用する請求項1又は2に記載のガス化ガスの浄化方法。   The method for purifying a gasification gas according to claim 1 or 2, wherein steam is used for regeneration of the activated carbon in the regeneration tower. 有機性廃棄物又は石炭等の固体有機物を熱分解して得られたガス化ガスを活性炭式吸着塔に通し、活性炭にガス化ガス中のダイオキシン及び常温常圧で液体若しくは固体である高沸点炭化水素化合物を吸着させるガス化ガスの浄化装置において、活性炭式吸着塔を移動層又は流動層とし、この活性炭式吸着塔から活性炭を連続的に切り出す切り出し装置と、この切り出し装置によって切り出した活性炭を再生する再生塔と、この再生塔で再生した活性炭を活性炭式吸着塔に戻す活性炭搬送装置とを設けたことを特徴とするガス化ガスの浄化装置。   Gasification gas obtained by pyrolyzing organic waste or solid organic matter such as coal is passed through an activated carbon adsorption tower, and dioxin in the gasification gas and high-boiling carbonization that is liquid or solid at normal temperature and pressure. In a purification apparatus for gasified gas that adsorbs hydrogen compounds, the activated carbon adsorption tower is used as a moving bed or fluidized bed, and a cutting device that continuously cuts activated carbon from the activated carbon adsorption tower and the activated carbon cut by this cutting device are regenerated. An apparatus for purifying a gasification gas, comprising: a regeneration tower for regenerating the activated carbon; and an activated carbon transport device for returning the activated carbon regenerated in the regeneration tower to the activated carbon adsorption tower. 活性炭式吸着塔に、複数の活性炭吸着層をガス化ガスの流れ方向に直列に設けた請求項4に記載のガス化ガスの浄化装置。   The purification apparatus of the gasification gas of Claim 4 which provided the some activated carbon adsorption layer in series in the flow direction of gasification gas in the activated carbon type adsorption tower. 再生塔が移動層又は流動層である請求項4又は5に記載のガス化ガスの浄化装置。   The purification apparatus for gasification gas according to claim 4 or 5, wherein the regeneration tower is a moving bed or a fluidized bed. 再生塔が活性炭の再生に蒸気を使用するものである請求項4〜6のいずれかに記載のガス化ガスの浄化装置。   The purification apparatus for gasification gas according to any one of claims 4 to 6, wherein the regeneration tower uses steam for regeneration of activated carbon. 切り出し装置がスクリューコンベア又はロータリーバルブである請求項4〜7のいずれかに記載のガス化ガスの浄化装置。   The gasification gas purification device according to any one of claims 4 to 7, wherein the cutting device is a screw conveyor or a rotary valve. 活性炭式吸着塔と再生塔との間に、活性炭式吸着塔から切り出された活性炭を一時的に貯留するバッファタンクを設けた請求項4〜8のいずれかに記載のガス化ガスの浄化装置。   The purification apparatus of the gasification gas in any one of Claims 4-8 which provided the buffer tank which temporarily stores the activated carbon cut out from the activated carbon type adsorption tower between the activated carbon type adsorption tower and the regeneration tower.
JP2007063433A 2007-03-13 2007-03-13 Method for cleaning gasified gas and device for the same Pending JP2008222867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007063433A JP2008222867A (en) 2007-03-13 2007-03-13 Method for cleaning gasified gas and device for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007063433A JP2008222867A (en) 2007-03-13 2007-03-13 Method for cleaning gasified gas and device for the same

Publications (1)

Publication Number Publication Date
JP2008222867A true JP2008222867A (en) 2008-09-25

Family

ID=39841858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007063433A Pending JP2008222867A (en) 2007-03-13 2007-03-13 Method for cleaning gasified gas and device for the same

Country Status (1)

Country Link
JP (1) JP2008222867A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101121815B1 (en) * 2010-06-28 2012-03-21 현대제철 주식회사 recycle system of Activated Carbon
JP5396464B2 (en) * 2009-03-16 2014-01-22 ジェイパワー・エンテック株式会社 Dry exhaust gas treatment equipment
CN107308780A (en) * 2016-06-12 2017-11-03 中国石油化工股份有限公司 The flow-type adsorbent equipment of toxic gas is handled using solid absorbent
KR101871432B1 (en) * 2016-11-25 2018-06-27 고등기술연구원연구조합 Gasifier for recycling activated carbon
CN114307531A (en) * 2021-12-30 2022-04-12 四川天采科技有限责任公司 Refinery VOCs tail gas fluidized moving bed temperature swing adsorption FMBTSA purification process and system
CN114307530A (en) * 2021-12-30 2022-04-12 四川天采科技有限责任公司 Refinery VOCs tail gas flame-retardant temperature swing adsorption FrTSA purification process and system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005126524A (en) * 2003-10-22 2005-05-19 Nippon Steel Corp Method and apparatus for organic matter gasification
JP2006016470A (en) * 2004-06-30 2006-01-19 Jfe Engineering Kk Gas purifier and method for reclaiming removing agent used in the same
JP2006335822A (en) * 2005-05-31 2006-12-14 Jfe Engineering Kk Gas-purifying installation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005126524A (en) * 2003-10-22 2005-05-19 Nippon Steel Corp Method and apparatus for organic matter gasification
JP2006016470A (en) * 2004-06-30 2006-01-19 Jfe Engineering Kk Gas purifier and method for reclaiming removing agent used in the same
JP2006335822A (en) * 2005-05-31 2006-12-14 Jfe Engineering Kk Gas-purifying installation

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5396464B2 (en) * 2009-03-16 2014-01-22 ジェイパワー・エンテック株式会社 Dry exhaust gas treatment equipment
KR101121815B1 (en) * 2010-06-28 2012-03-21 현대제철 주식회사 recycle system of Activated Carbon
CN107308780A (en) * 2016-06-12 2017-11-03 中国石油化工股份有限公司 The flow-type adsorbent equipment of toxic gas is handled using solid absorbent
KR101871432B1 (en) * 2016-11-25 2018-06-27 고등기술연구원연구조합 Gasifier for recycling activated carbon
CN114307531A (en) * 2021-12-30 2022-04-12 四川天采科技有限责任公司 Refinery VOCs tail gas fluidized moving bed temperature swing adsorption FMBTSA purification process and system
CN114307530A (en) * 2021-12-30 2022-04-12 四川天采科技有限责任公司 Refinery VOCs tail gas flame-retardant temperature swing adsorption FrTSA purification process and system
CN114307530B (en) * 2021-12-30 2022-09-23 四川天采科技有限责任公司 Refinery VOCs tail gas flame-retardant temperature swing adsorption FrTSA purification process and system
CN114307531B (en) * 2021-12-30 2022-11-29 四川天采科技有限责任公司 Refinery VOCs tail gas fluidized moving bed temperature swing adsorption FMBTSA purification process and system

Similar Documents

Publication Publication Date Title
JP4875473B2 (en) Gasification gas purification method
JP4534629B2 (en) Gas purification device and method for regenerating removal agent used in the gas purification device
AU2009308404B2 (en) Process for decontaminating syngas
US7056487B2 (en) Gas cleaning system and method
US7960303B2 (en) Microwave induced destruction of siloxanes and hydrogen sulfide in biogas
JP2008222867A (en) Method for cleaning gasified gas and device for the same
CA2766183C (en) System and method for treating gas from a biomass gasification
JP5320421B2 (en) Gasification gas purification method and purification device
JP6696876B2 (en) Syngas purification method and apparatus
JP4664899B2 (en) Gasification gas purification method
JP3943042B2 (en) Tar-containing gas cleaning method and apparatus, and combustible gas production method and apparatus
JP4728984B2 (en) Gasification gas purification method and purification device
US20230234843A1 (en) Systems and methods for producing carbon-negative green hydrogen and renewable natural gas from biomass waste
JP2007182468A (en) Gas purification system and gas purification method
KR101085434B1 (en) Systme and method for removing impurity in syngas using fluid sand
JP4598803B2 (en) Gasification gas purification method and purification device
JP4612648B2 (en) Gasification gas purification method
JP4625048B2 (en) Gasification gas purification equipment
Asadullah Technical challenges of utilizing biomass gasification gas for power generation: An overview
WO2020067181A1 (en) Gas treatment method and gas treatment device
JP4555319B2 (en) Gasification gas purification method and purification device
JP2008222882A (en) Method for purifying gasified gas and purifying apparatus
JP5332367B2 (en) Tar removal device
JP2016187332A (en) Method and apparatus for creating valuables
EP4036192A1 (en) Method for producing purified gas, method for producing valuable material, gas purification device, and device for producing valuable material

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090115

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20100527

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100604

A521 Written amendment

Effective date: 20100802

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20100827

Free format text: JAPANESE INTERMEDIATE CODE: A02