JP4625048B2 - Gasification gas purification equipment - Google Patents

Gasification gas purification equipment Download PDF

Info

Publication number
JP4625048B2
JP4625048B2 JP2007155992A JP2007155992A JP4625048B2 JP 4625048 B2 JP4625048 B2 JP 4625048B2 JP 2007155992 A JP2007155992 A JP 2007155992A JP 2007155992 A JP2007155992 A JP 2007155992A JP 4625048 B2 JP4625048 B2 JP 4625048B2
Authority
JP
Japan
Prior art keywords
activated carbon
gas
gasification gas
gasification
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007155992A
Other languages
Japanese (ja)
Other versions
JP2008308536A (en
Inventor
雅也 栗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Engineering Co Ltd
Priority to JP2007155992A priority Critical patent/JP4625048B2/en
Publication of JP2008308536A publication Critical patent/JP2008308536A/en
Application granted granted Critical
Publication of JP4625048B2 publication Critical patent/JP4625048B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Industrial Gases (AREA)

Description

本発明は、廃プラスチックやバイオマス等の有機性廃棄物又は石炭等の固体有機物を熱分解して得られたガス化ガスの浄化装置及び浄化方法に関し、とくに活性炭吸着塔を用いたガス化ガスの浄化装置関する。 The present invention relates to a purification apparatus and purification method for gasification gas obtained by thermally decomposing organic waste such as waste plastic and biomass, or solid organic substance such as coal, and in particular, the purification of gasification gas using an activated carbon adsorption tower. about the purifying device.

近年、地球環境保全とくに地球温暖化防止の一環として、エネルギーの有効利用が改めて注目されるなかで、廃プラスチックやバイオマス等の有機性廃棄物の持つエネルギーを有効利用する方法として、有機性廃棄物を熱分解し可燃性ガスを得る、いわゆるガス化が注目を集めている。   In recent years, effective use of energy has been attracting attention as part of global environmental conservation, especially prevention of global warming. Organic waste is a method for effectively using energy of organic waste such as waste plastic and biomass. So-called gasification, which obtains a combustible gas by pyrolyzing the gas, is attracting attention.

ところが、ガス化によって得られた可燃性ガス、すなわちガス化ガスには有機性廃棄物に含まれる塩素分に起因するダイオキシンが含まれているので、ガス化ガスの利用にあたってはダイオキシンの除去が必要である。また、有機性廃棄物のガス化ガスにはダイオキシンのほか、タール分や軽質油分等の常温常圧で液体若しくは固体である高沸点炭化水素化合物(本願明細書では単に「高沸点炭化水素化合物」という。ここで、「高沸点炭化水素化合物」の沸点は概ね60℃以上である。)が含まれている。これらの高沸点炭化水素化合物は、沸点以下の温度でも高い蒸気圧を持ち、冷却等によって除去することが難しく、ガス中に残存する高沸点炭水素化合物は、ガス化ガスの温度が低下すると凝縮し、ガス配管やその付帯設備に付着して設備トラブルを引き起こす原因となる。したがって、ダイオキシンとともにガス化ガス中から除去する必要がある。   However, combustible gas obtained by gasification, that is, gasification gas contains dioxin due to chlorine contained in organic waste, so it is necessary to remove dioxin when using gasification gas It is. In addition to dioxins, organic waste gasification gases include high-boiling hydrocarbon compounds that are liquid or solid at normal temperature and pressure, such as tar and light oil (in the present specification, simply “high-boiling hydrocarbon compounds”). Here, the boiling point of the “high-boiling hydrocarbon compound” is approximately 60 ° C. or higher). These high boiling hydrocarbon compounds have a high vapor pressure even at temperatures below the boiling point and are difficult to remove by cooling, etc., and the high boiling hydrocarbon compounds remaining in the gas condense when the temperature of the gasification gas decreases. In addition, it may cause equipment trouble by adhering to the gas piping and its ancillary equipment. Therefore, it is necessary to remove from gasification gas with dioxin.

従来、ガス中のダイオキシンを除去する技術として、特許文献1には、ダイオキシンを触媒層により分解し、残分のダイオキシンを活性炭層により吸着するという技術が開示されている。しかし、この特許文献1の技術は、おもに可燃性物質を燃焼させた後の燃焼排ガスを処理対象とするものであり、特許文献1の技術を有機性廃棄物のガス化ガスの処理に適用すると、触媒層ではダイオキシン以外の炭化水素ガスも分解され煤が発生するので、すぐに閉塞し失活する。また、活性炭層ではダイオキシン以外に上述の高沸点炭化水素化合物が吸着され、活性炭の活性を持続させることができない。持続させるためには、常に新しい活性炭を使用する必要があり、運転費が高くなる。   Conventionally, as a technique for removing dioxins in a gas, Patent Document 1 discloses a technique in which dioxins are decomposed by a catalyst layer and the remaining dioxins are adsorbed by an activated carbon layer. However, the technique of this patent document 1 is mainly intended for treating the combustion exhaust gas after burning a combustible substance, and when the technique of patent document 1 is applied to the treatment of gasification gas of organic waste. In the catalyst layer, hydrocarbon gases other than dioxins are also decomposed and soot is generated. Moreover, in the activated carbon layer, the above-described high boiling point hydrocarbon compound is adsorbed in addition to dioxin, and the activity of the activated carbon cannot be maintained. In order to sustain it, it is necessary to always use new activated carbon, which increases operating costs.

また、特許文献2には、バグフィルター等の集塵装置を設け、その上流側で粉末状の活性炭を吹き込み、バグフィルターのろ布表面上に活性炭層を形成し、その活性炭にダイオキシンを吸着させるという技術が開示されている。しかし、この特許文献2の技術においても、これを有機性廃棄物のガス化ガスの処理に適用すると、ガス化ガスに含まれる上述の高沸点炭化水素化合物によって目詰まり等のトラブルが発生し、安定的な運転を継続することができない。   In Patent Document 2, a dust collector such as a bag filter is provided, and powdered activated carbon is blown upstream thereof to form an activated carbon layer on the filter cloth surface of the bag filter, and dioxins are adsorbed on the activated carbon. This technique is disclosed. However, even in the technique of this Patent Document 2, when this is applied to the treatment of gasification gas of organic waste, troubles such as clogging occur due to the above-mentioned high boiling point hydrocarbon compound contained in the gasification gas, Stable operation cannot be continued.

一方、特許文献3及び特許文献4には、排気ガス中の溶剤等の炭化水素、軽質油分を除去するために活性炭を用いた浄化技術が開示されている。しかし、活性炭により有機性廃棄物のガス化ガスに含まれる軽質油分を除去する場合には、ガスの原料が廃棄物であることから原料の性状が安定しないのでガス浄化の制御が難しく、また、ガス化ガス中には軽質油分だけでなくタール分が含まれるので、タール分を含むガスを活性炭で浄化すると、タール分が活性炭から離脱しにくいため、活性炭の寿命が短くなる。   On the other hand, Patent Document 3 and Patent Document 4 disclose a purification technique using activated carbon to remove hydrocarbons such as solvents and light oil in exhaust gas. However, when the light oil contained in the gasification gas of organic waste is removed by activated carbon, it is difficult to control gas purification because the raw material of the gas is waste and the properties of the raw material are not stable. Since the gasified gas contains not only light oil but also tar, if the gas containing tar is purified by activated carbon, the tar is not easily separated from the activated carbon, and the life of the activated carbon is shortened.

また、特許文献5及び特許文献6には、バイオマスを熱分解して得られたバイオマスガス(ガス化ガス)を活性炭を用いて浄化する技術が開示されている。しかし、この技術ではガス処理温度が高く、分子量が大きくて沸点の高いタール分を吸着除去することは可能であるが、分子量が小さくて沸点が比較的低く、高揮発性であって、常温常圧で液状の炭化水素化合物、いわゆる軽質油分を吸着除去することはできない。軽質油分はガス利用の際に、配管中で冷却され、ドレン化する。このドレンは揮発性のきわめて高い引火性油であるため取り扱いが難しい。   Patent Documents 5 and 6 disclose a technique for purifying biomass gas (gasification gas) obtained by pyrolyzing biomass using activated carbon. However, with this technology, it is possible to adsorb and remove tar components having a high gas treatment temperature and a high molecular weight and a high boiling point, but they have a low molecular weight, a relatively low boiling point, a high volatility, and a normal temperature. It is impossible to adsorb and remove liquid hydrocarbon compounds, so-called light oil components, under pressure. Light oil is cooled in the piping and drained when using gas. Since this drain is a highly volatile flammable oil, it is difficult to handle.

また、性状の均一なバイオマス以外を原料としたガス化ガスの場合、タール分の発生量及び性状が変化し、活性炭吸着層が閉塞したり、軽質油分がガス利用設備に流れ、トラブルとなる可能性がある。とくに廃プラスチック、石炭等の化石燃料、あるいは化石燃料を原材料とする固体有機物をガス化する場合には、タール分及び軽質油分の量が多く、上記技術による手法では十分な浄化を行うことができない。   In addition, in the case of gasification gas using raw materials other than biomass with uniform properties, the generation amount and properties of tar may change, the activated carbon adsorption layer may be clogged, and light oil may flow to the gas utilization facility, causing problems. There is sex. In particular, when fossil fuels such as waste plastics and coal, or solid organic substances made from fossil fuels are gasified, the amount of tar and light oil is large, and the above-mentioned technique cannot perform sufficient purification. .

さらに、活性炭を用いてガス化ガス中のタール分及び軽質油分を主体とする高沸点炭化水素化合物を安定的に除去するには、高沸点炭化水素化合物を吸着した活性炭から定期的に高沸点炭化水素化合物を離脱させて活性炭の吸着能力を回復・再生させる必要がある。この活性炭の再生は、通常、活性炭吸着塔に蒸気を通ガスすることによって行うが、活性炭吸着塔を通過することによって蒸気の温度が低下し、十分な再生効果が得られないことがある。また、活性炭吸着塔の内壁面に蒸気が結露することがある。結露が発生すると、とくに有機性廃棄物を原料としたガス化ガスにはHClが多く含まれるため、活性炭吸着塔の内壁面が腐食するおそれがある。   Furthermore, in order to stably remove high-boiling hydrocarbon compounds mainly composed of tar and light oil in gasification gas using activated carbon, high-boiling carbonization is periodically performed from activated carbon adsorbed with high-boiling hydrocarbon compounds. It is necessary to recover and regenerate the adsorption capacity of activated carbon by removing hydrogen compounds. This regeneration of the activated carbon is usually performed by passing steam through the activated carbon adsorption tower, but the temperature of the steam is lowered by passing through the activated carbon adsorption tower, and a sufficient regeneration effect may not be obtained. In addition, vapor may condense on the inner wall surface of the activated carbon adsorption tower. When dew condensation occurs, the gasification gas using organic waste as a raw material contains a large amount of HCl, which may corrode the inner wall surface of the activated carbon adsorption tower.

このように、従来、活性炭を用いてガスを浄化する技術は種々提案されているが、高沸点炭化水素化合物とくにタール分及び軽質油分を多く含むガス化ガスを浄化する場合、上述のような問題があり、活性炭を用いたガス化ガスの浄化技術は確立されていない。   As described above, various techniques for purifying gas using activated carbon have been proposed in the past. However, when purifying gasification gas containing a high boiling point hydrocarbon compound, particularly tar and light oil, the above-mentioned problems are required. However, gasification gas purification technology using activated carbon has not been established.

これに対して、活性炭を用いないガス化ガスの浄化技術も提案されている。例えば特許文献7には、有機性廃棄物をガス化後、酸素及び水蒸気と反応させ、1100℃程度の高温での改質反応により、ガス化ガス中のタール分や軽質油分を低減させる技術が提案されている。しかし、このような改質反応を用いたガスの浄化技術では、改質反応に必要な熱源を得るためにガス化ガスの部分燃焼が必要となり、ガス化ガスの持つエネルギーを消費されガスカロリーが低下するという問題がある。また、改質反応に用いる酸素の製造にエネルギーを多く必要とし、廃棄物処理に必要な総エネルギーが大きくなりすぎる。   On the other hand, a gasification gas purification technique that does not use activated carbon has also been proposed. For example, Patent Document 7 discloses a technology for reducing tar content and light oil content in gasified gas by gasification of organic waste, reaction with oxygen and water vapor, and reforming reaction at a high temperature of about 1100 ° C. Proposed. However, gas purification technology using such a reforming reaction requires partial combustion of the gasified gas in order to obtain a heat source required for the reforming reaction. There is a problem of lowering. In addition, the production of oxygen used for the reforming reaction requires a lot of energy, and the total energy required for waste treatment becomes too large.

他のガス洗浄技術としては、コークス炉ガスの浄化技術に見られるように、低温下でガスを油で洗浄し、ガス中のタール分等を除去する技術がある。しかし、この技術では、低温下で洗浄を行うにあたり冷熱源を得るためにエネルギーが必要である。また、洗浄後の排水に高度な処理が必要となり、さらに油を再生する工程等が必要となり、再生時に発生するガスの処理等、設備が複雑になる傾向にある。また、ガスの洗浄によってはダイオキシン及び軽質油分を除去することはできない。   As another gas cleaning technique, as seen in coke oven gas purification techniques, there is a technique of cleaning a gas with oil at a low temperature to remove a tar content in the gas. However, with this technique, energy is required to obtain a cold heat source for cleaning at low temperatures. Moreover, advanced treatment is required for the waste water after washing, and further, a step of regenerating oil and the like is required, and facilities such as treatment of gas generated at the time of regeneration tend to be complicated. Also, dioxins and light oil cannot be removed by gas cleaning.

このように、ガス中のダイオキシン及びタール分、軽質油分等の高沸点炭化水素化合物を同時に除去してガスを浄化するには、やはり活性炭を用いて乾式処理することが有用かつ簡便であり、活性炭を用いたガス化ガスの浄化技術の確立が望まれている。   Thus, in order to purify the gas by simultaneously removing high-boiling hydrocarbon compounds such as dioxin, tar, and light oil in the gas, it is useful and simple to dry-process using activated carbon. Establishing gasification gas purification technology using methane is desired.

一方で、有機物を熱分解し可燃性のガス化ガスを得る場合、ガス化ガスの利用にあたってはメタン等の炭化水素ガスを残し、ガスのカロリーを高く保つことが望ましい。但し、その場合、タール分及び軽質油分が副生しガス利用の妨げとなる。したがって、この点からもガス化ガス中のタール分及び軽質油分を除去する浄化技術の確立が望まれている。
特開2003−112012号公報 特開平11−230529号公報 特開平9−215908号公報 特開2005−66503号公報 特開2006−16469号公報 特開2006−16470号公報 特開2004−238535号公報
On the other hand, when an organic substance is thermally decomposed to obtain a combustible gasification gas, it is desirable to keep hydrocarbon gas such as methane and keep gas calorie high when using the gasification gas. In this case, however, tar and light oil are by-produced and hinder gas utilization. Therefore, also from this point, establishment of a purification technique for removing tar and light oil in gasified gas is desired.
Japanese Patent Laid-Open No. 2003-112012 JP-A-11-230529 JP-A-9-215908 JP 2005-66503 A JP 2006-16469 A JP 2006-16470 A JP 2004-238535 A

本発明が解決しようとする課題は、総括的には、活性炭を用いたガス化ガスの浄化技術を確立することにある。   The problem to be solved by the present invention is generally to establish a purification technology for gasification gas using activated carbon.

具体的には、ガス化ガス中のダイオキシン類及び高沸点炭化水素化合物を活性炭に効率的に吸着させるとともに、活性炭の再生時には吸着した高沸点炭化水素化合物を効率的に離脱させることのできるガス化ガスの浄化装置提供することにある。 Specifically, gasification that allows dioxins and high-boiling point hydrocarbon compounds in gasification gas to be efficiently adsorbed on activated carbon, and that the adsorbed high-boiling point hydrocarbon compounds can be efficiently removed during regeneration of activated carbon. The object is to provide a gas purification device.

本発明は、有機性廃棄物又は石炭等の固体有機物を熱分解して得られたガス化ガス中のダイオキシン類及び常温常圧で液体若しくは固体である高沸点炭化水素化合物を活性炭で吸着除去するガス化ガスの浄化装置において、活性炭は複数の並列に配置された管内に充填され、管の入口及び出口はそれぞれ集合され、並列に配置された管群は鋼製の槽に収納されており、活性炭の再生時に、活性炭の充填された管内に蒸気等の再生用ガスを通し、さらに管の外面を蒸気、熱風、排ガス等の加熱用ガスによって加熱するようにしたことを特徴とする。 The present invention adsorbs and removes dioxins in gasification gas obtained by pyrolyzing organic waste or solid organic matter such as coal and high-boiling hydrocarbon compounds that are liquid or solid at normal temperature and pressure with activated carbon. In the gasification gas purification apparatus, activated carbon is filled in a plurality of parallelly arranged tubes, the inlets and outlets of the tubes are gathered together, and the tubes arranged in parallel are stored in a steel tank, At the time of regeneration of activated carbon, a regeneration gas such as steam is passed through a tube filled with activated carbon, and the outer surface of the tube is further heated by a heating gas such as steam, hot air, or exhaust gas .

本発明では、代表的には有機性廃棄物として廃プラスチック、又は固体有機物として石炭をガス化する。   In the present invention, waste plastic is typically gasified as organic waste, or coal is gasified as solid organic matter.

有機性廃棄物又は固体有機物のガス化ガス中には、ダイオキシン及び高沸点炭化水素化合物が含まれる。また、高沸点炭化水素化合物としては、ナフタレン、アントラセン等のタール分(炭素原子数が10以上の高分子炭化水素化合物)とベンゼン、トルエン、キシレン等の軽質油分(炭素原子数が10未満の低分子炭化水素化合物)が含まれる。これらのダイオキシン及び高沸点炭化水素化合物は、ガス化ガスの有効利用にあたり除去する必要があるが、本発明では、上述活性炭式吸着装置によって、有機性廃棄物又は固体有機物のガス化ガス中に可燃性ガスとともに含まれるダイオキシン及び高沸点炭化水素化合物を除去する。 The organic waste or solid organic gasification gas contains dioxin and a high-boiling hydrocarbon compound. High boiling point hydrocarbon compounds include tar components such as naphthalene and anthracene (polymer hydrocarbon compounds having 10 or more carbon atoms) and light oil components such as benzene, toluene and xylene (low carbon number of less than 10). Molecular hydrocarbon compounds). These dioxins and high-boiling hydrocarbon compounds need to be removed in order to effectively use the gasification gas. In the present invention, the activated carbon-type adsorption device described above is used in the organic waste or solid organic gasification gas. Dioxins and high-boiling hydrocarbon compounds contained with combustible gases are removed.

すなわち、活性炭吸着塔に充填されている活性炭には表面に無数の細孔が開いており、この細孔にダイオキシン及び高分子炭化水素化合物の分子が入り込むことで吸着されガス化ガスから除去される。   That is, the activated carbon packed in the activated carbon adsorption tower has innumerable pores on the surface, and dioxin and polymer hydrocarbon compound molecules enter the pores to be adsorbed and removed from the gasification gas. .

本発明によれば、活性炭吸着塔の活性炭による高沸点炭化水素化合物等の吸着効率、及び活性炭からの高沸点炭化水素化合物の離脱効率を向上させることができるとともに、活性炭吸着塔の内壁面の結露を防止できる。したがって、装置の操業効率の向上と操業の安定化を図ることができる。   ADVANTAGE OF THE INVENTION According to this invention, while being able to improve the adsorption efficiency of the high boiling point hydrocarbon compound etc. by the activated carbon of an activated carbon adsorption tower, and the separation | elimination efficiency of the high boiling point hydrocarbon compound from activated carbon, dew condensation on the inner wall surface of an activated carbon adsorption tower Can be prevented. Therefore, it is possible to improve the operation efficiency of the apparatus and stabilize the operation.

以下、図面に示す実施例及び参考例に基づき本発明の実施の形態を説明する。 Embodiments of the present invention will be described below based on examples and reference examples shown in the drawings.

図1は本発明の参考例を示す装置構成図である。 FIG. 1 is an apparatus configuration diagram showing a reference example of the present invention.

図1において、活性炭式吸着装置1は2塔の活性炭吸着塔1a、1bからなる。有機性廃棄物をガス化するガス化炉2で得られたガス化ガスは、ガス化ガス供給本管3を通り、その後、それぞれ活性炭吸着塔1a、1bに通じるガス化ガス供給支管3a、3bを通り、活性炭吸着塔1a、1bにその下部から導入される。   In FIG. 1, the activated carbon adsorption device 1 is composed of two activated carbon adsorption towers 1a and 1b. The gasification gas obtained in the gasification furnace 2 for gasifying organic waste passes through the gasification gas supply main 3, and then gasification gas supply branches 3a and 3b leading to the activated carbon adsorption towers 1a and 1b, respectively. And is introduced into the activated carbon adsorption towers 1a and 1b from below.

活性炭吸着塔1a、1bにガス化ガスが導入されると、ガス化ガス中のダイオキシン及び高沸点炭化水素化合物が活性炭吸着塔1a、1b内の活性炭に吸着され、その後、ガス化ガスは、活性炭吸着塔1a、1b上部に接続されたガス化ガス排出支管4a、4bから排出され、ガス化ガス排出本管4に合流し、ガス利用設備5まで搬送される。ガス化ガスの具体的な利用先としては、加熱炉、コークス炉等の工業炉用の燃料、ガスエンジンやガスタービン用の燃料、ボイラ燃料、熱風炉用の燃料等が挙げられる。   When the gasification gas is introduced into the activated carbon adsorption towers 1a and 1b, dioxins and high-boiling hydrocarbon compounds in the gasification gas are adsorbed by the activated carbon in the activated carbon adsorption towers 1a and 1b, and then the gasification gas is activated carbon. The gas is discharged from the gasification gas discharge branch pipes 4 a and 4 b connected to the upper portions of the adsorption towers 1 a and 1 b, joins the gasification gas discharge main pipe 4, and is conveyed to the gas utilization facility 5. Specific uses of gasified gas include fuel for industrial furnaces such as heating furnaces and coke ovens, fuel for gas engines and gas turbines, boiler fuel, fuel for hot stove furnaces, and the like.

ガス化ガス供給支管3a、3b及びガス化ガス排出支管4a、4bには、それぞれ開閉弁3c、3d及び開閉弁4c、4dが設けられている。また、それぞれの活性炭吸着塔1a、1bには、上部に蒸気供給本管6から分岐した蒸気供給支管6a、6bが接続され、下部に廃蒸気排出支管7a、7bが接続されている。蒸気供給支管6a、6b及び廃蒸気排出支管7a、7bには、それぞれ開閉弁6c、6d及び開閉弁7c、7dが設けられている。   The gasification gas supply branch pipes 3a and 3b and the gasification gas discharge branch pipes 4a and 4b are provided with on-off valves 3c and 3d and on-off valves 4c and 4d, respectively. Further, each of the activated carbon adsorption towers 1a and 1b is connected to the steam supply branch pipes 6a and 6b branched from the steam supply main pipe 6 at the upper part and to the waste steam discharge branch pipes 7a and 7b at the lower part. The steam supply branch pipes 6a and 6b and the waste steam discharge branch pipes 7a and 7b are provided with on-off valves 6c and 6d and on-off valves 7c and 7d, respectively.

ガス化炉2としては、シャフト炉、ロータリーキルン炉、流動床炉、固定床炉、噴流炉等、各種の炉を使用することができる。また、ガス化炉2の加熱方式としては、生成したガス化ガスを一部燃焼させて熱源とする部分燃焼方式と、外部熱源を使用する外熱方式のいずれでもよいが、実施例では燃焼炉2aによる外熱方式を採用している。   As the gasification furnace 2, various furnaces such as a shaft furnace, a rotary kiln furnace, a fluidized bed furnace, a fixed bed furnace, and a jet flow furnace can be used. Further, as the heating method of the gasification furnace 2, either a partial combustion method in which the generated gasification gas is partially burned to be a heat source or an external heat method using an external heat source may be used. The external heat system by 2a is adopted.

また、活性炭吸着塔1a、1bには、活性炭吸着塔1a、1bの内壁面及び活性炭吸着塔1a、1bの活性炭を加熱又は冷却する伝熱手段として伝熱管12が設置されている。   The activated carbon adsorption towers 1a and 1b are provided with heat transfer tubes 12 as heat transfer means for heating or cooling the inner wall surfaces of the activated carbon adsorption towers 1a and 1b and the activated carbon of the activated carbon adsorption towers 1a and 1b.

図2は、伝熱管12による伝熱手段の構成例を示し、(a)は横断面図、(b)は要部の斜視図である。この例では、伝熱管12を鉄皮13を介して相互に溶接し、つなぎ合わせた、いわゆるメンブレンで活性炭吸着塔1a、1bの壁面を形成することによって、伝熱管12を活性炭吸着塔1a、1bの壁面に伝熱管12を設置している。   2A and 2B show a configuration example of a heat transfer means using the heat transfer tube 12, in which FIG. 2A is a cross-sectional view, and FIG. In this example, the heat transfer tubes 12 are welded to each other through an iron skin 13 and joined together to form the wall surfaces of the activated carbon adsorption towers 1a and 1b with a so-called membrane, thereby connecting the heat transfer tubes 12 to the activated carbon adsorption towers 1a and 1b. The heat transfer tube 12 is installed on the wall surface.

図3は、伝熱管12による伝熱手段の他の構成例を示し、(a)は横断面図、(b)は縦断面図である。この例では、伝熱管12を活性炭吸着塔1a、1bの内部には放射状に設置している。   FIGS. 3A and 3B show another configuration example of the heat transfer means using the heat transfer tube 12, in which FIG. 3A is a transverse sectional view, and FIG. 3B is a longitudinal sectional view. In this example, the heat transfer tubes 12 are installed radially inside the activated carbon adsorption towers 1a and 1b.

このような構成において、伝熱管12に加熱媒体又は冷却媒体を通すことで、活性炭吸着塔1a、1bの内壁面及び活性炭吸着塔1a、1bの活性炭を加熱又は冷却することができる。加熱媒体としては蒸気を使用することができる。この場合、図4(a)に示すように伝熱管12と蒸気供給支管6a、6bとを直列に接続し、蒸気を伝熱管12から蒸気供給支管6a、6bへ流し、活性炭吸着塔1a、1bを通した後に、廃蒸気排出支管7a、7bから排出するようにすることができる。これによって、蒸気の使用量を削減できる。   In such a configuration, by passing the heating medium or the cooling medium through the heat transfer tube 12, the inner wall surfaces of the activated carbon adsorption towers 1a and 1b and the activated carbon of the activated carbon adsorption towers 1a and 1b can be heated or cooled. Steam can be used as the heating medium. In this case, as shown in FIG. 4 (a), the heat transfer pipe 12 and the steam supply branch pipes 6a and 6b are connected in series, and the steam flows from the heat transfer pipe 12 to the steam supply branch pipes 6a and 6b. After passing through, it can be discharged from the waste steam discharge branch pipes 7a, 7b. As a result, the amount of steam used can be reduced.

また、図4(b)に示すように伝熱管12と蒸気供給支管6a、6bとを並列、すなわち別系統とすることもできる。このように伝熱管12を別系統にすると伝熱管12に蒸気以外の加熱媒体を流すことができるとともに、冷却水等の冷却媒体を流すこともできるようになり、伝熱手段としての伝熱管12の機能を十分に発揮させることができる。   Moreover, as shown in FIG.4 (b), the heat exchanger tube 12 and the steam supply branch pipes 6a and 6b can also be made into a parallel, ie, another system. When the heat transfer tube 12 is provided in a separate system in this way, a heating medium other than steam can flow through the heat transfer tube 12 and a cooling medium such as cooling water can also flow, so that the heat transfer tube 12 as a heat transfer means. The function of can be fully exhibited.

図5には、ガス化ガス供給支管3a、3b及びガス化ガス排出支管4a、4bに設置する開閉弁の好ましい構成例を示す。同図に示す開閉弁14は、ハンドル14aを操作し、シャフト14bを介して弁体14cを動かすことにより管路を開閉する。また、駆動部となるシャフト14b部分のガスシールのためにグランドパッキン14dがグランド押さえ14eで押さえられた状態で装着されている。さらに、ガス化ガスがシャフト14b部分から漏洩するのを確実に防止するため、シャフト14b部分に窒素等の不活性ガスを圧入するようにしている。   In FIG. 5, the preferable structural example of the on-off valve installed in the gasification gas supply branch pipes 3a and 3b and the gasification gas discharge branch pipes 4a and 4b is shown. The on-off valve 14 shown in the figure opens and closes the pipe line by operating the handle 14a and moving the valve body 14c via the shaft 14b. In addition, a gland packing 14d is mounted in a state of being pressed by a gland press 14e for gas sealing of the shaft 14b portion serving as a drive unit. Further, in order to reliably prevent the gasification gas from leaking from the shaft 14b portion, an inert gas such as nitrogen is pressed into the shaft 14b portion.

なお、ハンドル14aに代えてギアあるいはシリンダによって、シャフト14bを介して弁体14cを動かすようにしてもよい。また、ガス化ガス供給支管3a、3b及びガス化ガス排出支管4a、4bに設置する開閉弁部分からのガス化ガスの漏洩を防止するために、開閉弁を前後2段に設けることもできる。この場合、活性炭吸着塔に近い側の開閉弁を、メタルシートを使用したゲート弁又はバタフライ弁とし、活性炭吸着塔に遠い側の開閉弁を、フッ素樹脂シートを使用したバタフライ弁とすることが好ましい。このように高温になる活性炭吸着塔に近い側に耐熱性の高いメタルシートを使用し、活性炭吸着塔に遠い側にガス遮断性の高いフッ素樹脂シートを用いることで、耐熱性と遮断性の両方を満足させることが可能となる。さらに、2段の開閉弁の間に窒素等の常温の不活性ガスを注入することで、ガスの遮断性、耐熱性をさらに向上させることができる。   The valve body 14c may be moved via the shaft 14b by a gear or a cylinder instead of the handle 14a. Moreover, in order to prevent the gasification gas from leaking from the opening / closing valve portions installed in the gasification gas supply branch pipes 3a, 3b and the gasification gas discharge branch pipes 4a, 4b, the opening / closing valves can be provided in two stages. In this case, the open / close valve on the side close to the activated carbon adsorption tower is preferably a gate valve or butterfly valve using a metal sheet, and the open / close valve on the side far from the activated carbon adsorption tower is preferably a butterfly valve using a fluororesin sheet. . By using a metal sheet with high heat resistance on the side close to the activated carbon adsorption tower that becomes high temperature in this way, and using a fluororesin sheet with high gas barrier properties on the side far from the activated carbon adsorption tower, both heat resistance and barrier properties are achieved. Can be satisfied. Further, by injecting a normal temperature inert gas such as nitrogen between the two-stage on-off valves, the gas barrier properties and heat resistance can be further improved.

以上の構成において、操業開始時には、両方の活性炭吸着塔1a、1bにガス化ガスを通ガスする。通ガス中には、先に説明した伝熱管12に冷却媒体を通すことで、活性炭吸着塔1a、1bの活性炭を冷却し、その吸着効率を向上させることができる。この場合、活性炭吸着塔1a、1bの使用中に活性炭の温度を計測しておき、その温度が高くなりすぎた場合(例えば80℃以上になった場合)に、伝熱管12に冷却媒体を通し、活性炭吸着塔の活性炭を冷却するようにすることができる。   In the above configuration, at the start of operation, gasification gas is passed through both activated carbon adsorption towers 1a and 1b. By passing the cooling medium through the heat transfer tube 12 described above, the activated carbon of the activated carbon adsorption towers 1a and 1b can be cooled and the adsorption efficiency can be improved. In this case, the temperature of the activated carbon is measured during use of the activated carbon adsorption towers 1a and 1b, and when the temperature becomes too high (for example, 80 ° C. or higher), a cooling medium is passed through the heat transfer tube 12. The activated carbon of the activated carbon adsorption tower can be cooled.

その後、いずれかの活性炭吸着塔の吸着能力が低下したら、あるいはガス化ガスの通ガスから所定の時間が経過したら、吸着能力の低下したいずれか一方の活性炭吸着塔へのガス化ガスの通ガスを遮断する。   After that, when the adsorption capacity of one of the activated carbon adsorption towers decreases, or when a predetermined time elapses after the gasification gas passes, the gasification gas passes through one of the activated carbon adsorption towers where the adsorption capacity decreases. Shut off.

例えば、活性炭吸着塔1aへの通ガスを遮断する場合、ガス化ガス供給支管3aの開閉弁3c及びガス化ガス排出支管4aの開閉弁4cを閉にする。そして、蒸気供給支管6aの開閉弁6c及び廃蒸気排出支管7aの開閉弁7cを開にして、活性炭吸着塔1aに蒸気を通ガスして活性炭を再生させ吸着能力を回復させる。吸着能力が回復したら、蒸気供給支管6aの開閉弁6c及び廃蒸気排出支管7aの開閉弁7cを閉にするとともに、ガス化ガス供給支管3aの開閉弁3c及びガス化ガス排出支管4aの開閉弁4cを開にしてガス化ガスの通ガスを再開する。   For example, when shutting off gas flow to the activated carbon adsorption tower 1a, the on-off valve 3c of the gasification gas supply branch 3a and the on-off valve 4c of the gasification gas discharge branch 4a are closed. Then, the on-off valve 6c of the steam supply branch 6a and the on-off valve 7c of the waste steam discharge branch 7a are opened, and steam is passed through the activated carbon adsorption tower 1a to regenerate the activated carbon to restore the adsorption capacity. When the adsorption capacity is restored, the on-off valve 6c of the steam supply branch 6a and the on-off valve 7c of the waste steam discharge branch 7a are closed, and the on-off valve 3c of the gasification gas supply branch 3a and the on-off valve of the gasification gas discharge branch 4a 4c is opened and gasification gas passage is resumed.

その後、もう一つの活性炭吸着塔1bの吸着能力が低下したら、活性炭吸着塔1aの場合と同様に、ガス化ガスの通ガスを遮断後、蒸気を通して吸着能力を回復させ、その後、ガス化ガスの通ガスを再開する。この実施例では、このような操作を繰り返すことで、吸着能力を維持しつつ連続的にガス化ガスの浄化処理を行うことができる。   After that, when the adsorption capacity of the other activated carbon adsorption tower 1b is reduced, the gasification gas is shut off and then the adsorption capacity is recovered through steam, as in the case of the activated carbon adsorption tower 1a. Restart the gas flow. In this embodiment, by repeating such an operation, it is possible to continuously purify the gasification gas while maintaining the adsorption capacity.

上述した活性炭吸着塔の活性炭の再生に際しては、先に説明した伝熱管12に加熱媒体を通すことで、活性炭吸着塔1a、1bの内壁面及び活性炭を加熱する。これによって、活性炭からの高沸点炭化水素化合物の離脱効率を向上させることができるとともに、活性炭吸着塔1a、1bの内壁面の結露による腐食を防止できる。   When the activated carbon of the activated carbon adsorption tower is regenerated, the heating medium is passed through the heat transfer tube 12 described above to heat the inner wall surfaces of the activated carbon adsorption towers 1a and 1b and the activated carbon. Thereby, the separation efficiency of the high boiling point hydrocarbon compound from the activated carbon can be improved, and corrosion due to condensation on the inner wall surfaces of the activated carbon adsorption towers 1a and 1b can be prevented.

活性炭吸着塔1a、1bの内壁面の耐食性をより向上させるために、活性炭吸着塔1a、1bの内壁面を樹脂でコーティングしてもよい。樹脂コーティングする場合、活性炭の再生に使用する蒸気の温度は150℃以下とする。ただし、再生能力を維持するために60℃以上、好ましくは80℃以上が必要である。使用する蒸気が高温の場合、樹脂が熱で変質する可能性があるが、その場合、活性炭吸着塔1a、1bの壁の温度を温水等で一定に保つことで変質を抑制することができる。   In order to further improve the corrosion resistance of the inner wall surfaces of the activated carbon adsorption towers 1a and 1b, the inner wall surfaces of the activated carbon adsorption towers 1a and 1b may be coated with a resin. In the case of resin coating, the temperature of steam used for regeneration of activated carbon is 150 ° C. or less. However, in order to maintain the regeneration capability, 60 ° C. or higher, preferably 80 ° C. or higher is required. When the steam to be used is high in temperature, the resin may be altered by heat. In that case, the alteration can be suppressed by keeping the wall temperature of the activated carbon adsorption towers 1a and 1b constant with warm water or the like.

また、活性炭吸着塔の活性炭の再生時には、活性炭から離脱した蒸気の通ガスによって活性炭に吸着していた高沸点炭化水素化合物が気化離脱し、廃蒸気として回収される。この高沸点炭化水素化合物を含む廃蒸気あるいは廃蒸気が凝縮した廃ドレンは、廃蒸気排出本管7を介して一旦、分離装置8に入れられ冷却等により廃蒸気は凝縮し、さらに高沸点炭化水素化合物は、水分から分離される。そして、分離装置8にて分離回収された高沸点炭化水素化合物は、液体の状態で貯留タンク9に一旦貯留され、その後、吹き込み用配管10を介して移送され、その先端の吹き込み装置11からガス化炉2又は燃焼炉2aに熱源として吹き込まれる。   In addition, when the activated carbon in the activated carbon adsorption tower is regenerated, the high-boiling hydrocarbon compound adsorbed on the activated carbon is vaporized and removed by the passing gas of the vapor separated from the activated carbon and recovered as waste steam. The waste steam containing the high boiling point hydrocarbon compound or the waste drain condensed with the waste steam is once put into the separation device 8 through the waste steam discharge main pipe 7, and the waste steam is condensed by cooling or the like. Hydrogen compounds are separated from moisture. The high-boiling point hydrocarbon compound separated and recovered by the separation device 8 is temporarily stored in the storage tank 9 in a liquid state, and then transferred through the blowing pipe 10, and gas is discharged from the blowing device 11 at the tip thereof. It is blown into the conversion furnace 2 or the combustion furnace 2a as a heat source.

なお、図1では、ガス化炉2又は燃焼炉2aの両方に吹き込み装置11を記載しているが、実際にはいずれか一方のみとする。   In addition, in FIG. 1, although the blowing apparatus 11 is described in both the gasification furnace 2 or the combustion furnace 2a, it is actually only one of them.

ここで、図1に示すガス化ガスの浄化装置の操業条件として、活性炭吸着塔1a、1bに導入するガス化ガスのガス温度は100℃以下としておくことが好ましい。ガス温度が100℃超ではガス化ガス中の高沸点炭化水素化合物の蒸気圧が高くなり、活性炭による吸着力よりも揮発力が高くなり、吸着能力が十分に確保できない。ガス温度は好ましくは60℃以下とする。ただし、ガス温度を20℃以下にしようとすると、例えば、ガス化ガスの冷却に必要な冷却水の温度を冷却塔等の一般的な設備で得ることができなくなり、冷凍機が必要となる。冷凍機の利用は設備コスト及びランニングコストにおいて大きな負担となるため好ましくない。また、活性炭吸着塔の吸着能力回復のために導入する蒸気の温度は、一般的には80〜300℃とする。   Here, as the operating conditions of the gasification gas purification apparatus shown in FIG. 1, the gas temperature of the gasification gas introduced into the activated carbon adsorption towers 1a and 1b is preferably set to 100 ° C. or less. If the gas temperature exceeds 100 ° C., the vapor pressure of the high-boiling hydrocarbon compound in the gasification gas becomes high, the volatility becomes higher than the adsorption power by the activated carbon, and sufficient adsorption capacity cannot be secured. The gas temperature is preferably 60 ° C. or lower. However, if the gas temperature is set to 20 ° C. or lower, for example, the temperature of the cooling water necessary for cooling the gasification gas cannot be obtained by general equipment such as a cooling tower, and a refrigerator is required. Use of a refrigerator is not preferable because it imposes a heavy burden on equipment costs and running costs. Moreover, generally the temperature of the vapor | steam introduce | transduced for the adsorption capacity recovery | restoration of an activated carbon adsorption tower shall be 80-300 degreeC.

以上の実施例では、伝熱手段を伝熱管によって構成したが、伝熱手段として活性炭充填塔をジャケット構造とし、そこに加熱媒体又は冷却媒体を通すようにしてもよい。   In the above embodiment, the heat transfer means is constituted by a heat transfer tube, but the activated carbon packed tower may have a jacket structure as the heat transfer means, and the heating medium or the cooling medium may be passed therethrough.

図6は本発明の実施例を示す一部破断斜視図である。同図に示す活性炭吸着塔1a、1bにおいて、活性炭aは並列に配置された複数の管15(φ30〜300mm程度)内に充填されており、これらの複数の管15(管群)は鋼製の槽16内に収納されている。そして、各管15の入口は槽16の下部に集合され、出口は槽16の上部に集合されている。また、槽16の下部にはガス化ガス導入口16aが設けられ、槽16の上部にはガス化ガス排出口16bが設けられている。さらに、槽16の上部には蒸気等の再生用ガスを導入する再生用ガス導入口16cが設けられ、槽16の下部には再生用ガス排出口16dが設けられている。またさらに、槽16の側面中央部分の一端には加熱用ガスを導入する加熱用ガス導入口16eが設けられ、他端には加熱用ガス排出口16fが設けられている。 FIG. 6 is a partially broken perspective view showing an embodiment of the present invention. In the activated carbon adsorption towers 1a and 1b shown in the figure, the activated carbon a is filled in a plurality of tubes 15 (about 30 to 300 mm) arranged in parallel, and these tubes 15 (tube group) are made of steel. In the tank 16. The inlets of the tubes 15 are gathered at the lower part of the tank 16, and the outlets are gathered at the upper part of the tank 16. Further, a gasified gas inlet 16 a is provided at the lower part of the tank 16, and a gasified gas outlet 16 b is provided at the upper part of the tank 16. Further, a regeneration gas introduction port 16 c for introducing a regeneration gas such as steam is provided in the upper part of the tank 16, and a regeneration gas discharge port 16 d is provided in the lower part of the tank 16. Furthermore, a heating gas introduction port 16e for introducing a heating gas is provided at one end of the central portion of the side surface of the tank 16, and a heating gas discharge port 16f is provided at the other end.

以上の構成において、活性炭吸着塔1a、1bによってガス化ガス中のダイオキシン類や高沸点炭化水素化合物を吸着除去する際には、ガス化ガスをガス化ガス導入口16aから槽16の下部に導入する。槽16の下部に導入されたガス化ガスは各管15を通って槽16の上部のガス化ガス排出口16bから排出される。これによって、ガス化ガス中のダイオキシン類や高沸点炭化水素化合物は各管15内の活性炭aに吸着し除去される。   In the above configuration, when the dioxins and high-boiling hydrocarbon compounds in the gasification gas are adsorbed and removed by the activated carbon adsorption towers 1a and 1b, the gasification gas is introduced into the lower portion of the tank 16 from the gasification gas inlet 16a. To do. The gasified gas introduced into the lower part of the tank 16 passes through each pipe 15 and is discharged from the gasified gas discharge port 16 b at the upper part of the tank 16. As a result, dioxins and high-boiling hydrocarbon compounds in the gasification gas are adsorbed and removed by the activated carbon a in each pipe 15.

一方、活性炭吸着塔1a、1bの活性炭aを再生するには、ガス化ガスの通ガスを停止した上で、蒸気等の再生用ガスを槽16上部の再生用ガス導入口16cから導入し、この再生用ガスを各管15に通し、槽16下部の再生用ガス排出口16dから排出する。さらに、この活性炭aの再生時には、加熱用ガス導入口16eから加熱用ガスを導入し、各管15の外面を加熱用ガスによって加熱する。その後、加熱用ガスは加熱用ガス排出口16fから排出される。加熱用ガスとしては、蒸気のほか、バーナ等からの熱風や、図1の燃焼炉2aからの高温の排ガス等を利用できる。   On the other hand, in order to regenerate the activated carbon a of the activated carbon adsorption towers 1a and 1b, after stopping the gasification gas flow, a regeneration gas such as steam is introduced from the regeneration gas inlet 16c at the top of the tank 16, The regeneration gas is passed through each pipe 15 and discharged from a regeneration gas discharge port 16d at the bottom of the tank 16. Further, when the activated carbon a is regenerated, a heating gas is introduced from the heating gas inlet 16e, and the outer surface of each pipe 15 is heated by the heating gas. Thereafter, the heating gas is discharged from the heating gas discharge port 16f. As the heating gas, hot air from a burner or the like, hot exhaust gas from the combustion furnace 2a in FIG.

このように図6の例では、活性炭の再生時に、各管15に再生用ガス(蒸気)を通すのに加え、加熱用ガスで各管15を加熱するので、蒸気だけでは達成困難な高温での再生が可能となり、効率的に活性炭を再生できる。また、活性炭の温度が上がりやすく、全体の熱効率が高くなる。さらに、図1の燃焼炉2aからの排ガスを加熱用ガスとして利用することで、熱の有効利用が可能である。   Thus, in the example of FIG. 6, when the activated carbon is regenerated, in addition to passing the regeneration gas (steam) through each tube 15, each tube 15 is heated with the heating gas. The activated carbon can be efficiently regenerated. Moreover, the temperature of activated carbon tends to rise, and the overall thermal efficiency becomes high. Furthermore, effective use of heat is possible by using the exhaust gas from the combustion furnace 2a of FIG. 1 as a heating gas.

なお、図6に示す活性炭吸着塔1a、1bも、図1の例と同様に並列に2つ、あるいは2つ以上配置し、これらの活性炭吸着塔を切り替えながら操業し、吸着除去に使用していない活性炭吸着塔について、上述のとおり活性炭を再生するようにすることができることは言うまでもない。   In addition, the activated carbon adsorption towers 1a and 1b shown in FIG. 6 are also arranged in parallel in the same manner as in the example of FIG. 1, or two or more activated carbon adsorption towers are operated for switching and used for adsorption removal. Needless to say, the activated carbon adsorbing tower can be regenerated as described above.

本発明の参考例を示す装置構成図である。It is an apparatus block diagram which shows the reference example of this invention. 図1において使用する、伝熱管による伝熱手段の構成例を示し、(a)は横断面図、(b)は要部の斜視図である。The structural example of the heat-transfer means by a heat exchanger tube used in FIG. 1 is shown, (a) is a cross-sectional view, (b) is a perspective view of the principal part. 図1において使用する、伝熱管による伝熱手段の他の構成例を示し、(a)は横断面図、(b)は縦断面図である。The other structural example of the heat-transfer means by a heat exchanger tube used in FIG. 1 is shown, (a) is a cross-sectional view, (b) is a longitudinal cross-sectional view. 図1において使用する伝熱手段としての伝熱管に、加熱媒体又は冷却媒体を供給するための構成例を示す。The structural example for supplying a heating medium or a cooling medium to the heat exchanger tube as a heat-transfer means used in FIG. 1 is shown. 図1において使用する開閉弁の好ましい構成例を示す。The preferable structural example of the on-off valve used in FIG. 1 is shown. 本発明の実施例を示す一部破断斜視図である。It is a partially broken perspective view which shows the Example of this invention.

符号の説明Explanation of symbols

1 活性炭式吸着装置
1a、1b 活性炭吸着塔
2 ガス化炉
3 ガス化ガス供給本管
3a、3b ガス化ガス供給支管
3c、3d 開閉弁
4 ガス化ガス排出本管
4a、4b ガス化ガス排出支管
4c、4d 開閉弁
5 ガス利用設備
6 蒸気供給本管
6a、6b 蒸気供給支管
6c、6d 開閉弁
7 廃蒸気排出本管
7a、7b 廃蒸気排出支管
7c、7d 開閉弁
8 分離装置
9 貯留タンク
10 吹き込み用配管
11 吹き込み装置
12 伝熱管
13 鉄皮
14 開閉弁
14a ハンドル
14b シャフト
14c 弁体
14d グランドパッキン
14e グランド押さえ
15 管
16 槽
16a ガス化ガス導入口
16b ガス化ガス排出口
16c 再生用ガス導入口
16d 再生用ガス排出口
16e 加熱用ガス導入口
16f 加熱用ガス排出口
DESCRIPTION OF SYMBOLS 1 Activated carbon type adsorption apparatus 1a, 1b Activated carbon adsorption tower 2 Gasification furnace 3 Gasification gas supply main 3a, 3b Gasification gas supply branch 3c, 3d On-off valve 4 Gasification gas discharge main 4a, 4b Gasification gas discharge branch 4c, 4d Open / close valve 5 Gas utilization facility 6 Steam supply main pipe 6a, 6b Steam supply branch pipe 6c, 6d Open / close valve 7 Waste steam discharge main pipe 7a, 7b Waste steam discharge branch pipe 7c, 7d Open / close valve 8 Separator 9 Storage tank 10 Blowing pipe 11 Blowing device 12 Heat transfer pipe 13 Iron skin 14 On-off valve 14a Handle 14b Shaft 14c Valve body 14d Gland packing 14e Ground press 15 Pipe 16 Tank 16a Gasification gas inlet 16b Gasification gas outlet 16c Regeneration gas inlet 16d Gas outlet for regeneration 16e Gas inlet for heating 16f Gas outlet for heating

Claims (1)

有機性廃棄物又は石炭等の固体有機物を熱分解して得られたガス化ガス中のダイオキシン類及び常温常圧で液体若しくは固体である高沸点炭化水素化合物を活性炭で吸着除去するガス化ガスの浄化装置において、
活性炭は複数の並列に配置された管内に充填され、管の入口及び出口はそれぞれ集合され、並列に配置された管群は鋼製の槽に収納されており、
活性炭の再生時に、活性炭の充填された管内に蒸気等の再生用ガスを通し、さらに管の外面を蒸気、熱風、排ガス等の加熱用ガスによって加熱するようにしたことを特徴とするガス化ガスの浄化装置。
A gasification gas that adsorbs and removes dioxins in gasification gas obtained by pyrolyzing organic waste or solid organic matter such as coal and high-boiling hydrocarbon compounds that are liquid or solid at normal temperature and pressure with activated carbon. In the purification device,
Activated carbon is filled in a plurality of parallel pipes, the inlets and outlets of the pipes are gathered together, and the pipes arranged in parallel are stored in a steel tank.
A gasification gas characterized by passing a regeneration gas such as steam through a tube filled with activated carbon during regeneration of the activated carbon, and further heating the outer surface of the tube with a heating gas such as steam, hot air or exhaust gas. Purification equipment.
JP2007155992A 2007-06-13 2007-06-13 Gasification gas purification equipment Expired - Fee Related JP4625048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007155992A JP4625048B2 (en) 2007-06-13 2007-06-13 Gasification gas purification equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007155992A JP4625048B2 (en) 2007-06-13 2007-06-13 Gasification gas purification equipment

Publications (2)

Publication Number Publication Date
JP2008308536A JP2008308536A (en) 2008-12-25
JP4625048B2 true JP4625048B2 (en) 2011-02-02

Family

ID=40236433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007155992A Expired - Fee Related JP4625048B2 (en) 2007-06-13 2007-06-13 Gasification gas purification equipment

Country Status (1)

Country Link
JP (1) JP4625048B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5431223B2 (en) * 2010-03-29 2014-03-05 東洋炭素株式会社 Gas generator
CN104722174B (en) * 2015-02-10 2016-08-17 石家庄天龙环保科技有限公司 A kind of method that reclaims VOC of nitrogen auxiliary

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005126524A (en) * 2003-10-22 2005-05-19 Nippon Steel Corp Method and apparatus for organic matter gasification
JP2006016470A (en) * 2004-06-30 2006-01-19 Jfe Engineering Kk Gas purifier and method for reclaiming removing agent used in the same
JP2006335822A (en) * 2005-05-31 2006-12-14 Jfe Engineering Kk Gas-purifying installation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005126524A (en) * 2003-10-22 2005-05-19 Nippon Steel Corp Method and apparatus for organic matter gasification
JP2006016470A (en) * 2004-06-30 2006-01-19 Jfe Engineering Kk Gas purifier and method for reclaiming removing agent used in the same
JP2006335822A (en) * 2005-05-31 2006-12-14 Jfe Engineering Kk Gas-purifying installation

Also Published As

Publication number Publication date
JP2008308536A (en) 2008-12-25

Similar Documents

Publication Publication Date Title
JP4875473B2 (en) Gasification gas purification method
US10780391B2 (en) Integrated biogas cleaning system to remove water, siloxanes, sulfur, oxygen, chlorides and volatile organic compounds
JP4534629B2 (en) Gas purification device and method for regenerating removal agent used in the gas purification device
US8110028B2 (en) Regenerable purification system for removal of siloxanes and volatile organic carbons
RU2561793C2 (en) Power plant with gasificator and waste processing
JP5320421B2 (en) Gasification gas purification method and purification device
AU2008237026A1 (en) Emission free integrated gasification combined cycle
US20110120012A1 (en) Minimal sour gas emission for an integrated gasification combined cycle complex
WO2013027084A1 (en) Process for producing direct reduced iron (dri) utilizing gases derived from coal
JP4625048B2 (en) Gasification gas purification equipment
JP2008222867A (en) Method for cleaning gasified gas and device for the same
JP4728984B2 (en) Gasification gas purification method and purification device
JP4664899B2 (en) Gasification gas purification method
WO2011140610A1 (en) Process and apparatus for the treatment of tar in syngas
JP4598803B2 (en) Gasification gas purification method and purification device
JP4555319B2 (en) Gasification gas purification method and purification device
KR101330126B1 (en) High-temperature and high-pressure dry sorbent autothermal desulfurization device
JP2010047719A (en) Apparatus and method for removing tar
JP4612648B2 (en) Gasification gas purification method
KR101085434B1 (en) Systme and method for removing impurity in syngas using fluid sand
CN112368236B (en) Method for producing hydrogen using biomass as raw material
Geng et al. Application Study on Three-Bed Regenerative Thermal Oxidizers to Treat Volatile Organic Compounds
JP2009173717A (en) Fuel gas purification facility and operation method of it
JP2008222882A (en) Method for purifying gasified gas and purifying apparatus
JP5339937B2 (en) Tar decomposition facility and its startup method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101008

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101104

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees