JP4875473B2 - Gasification gas purification method - Google Patents

Gasification gas purification method Download PDF

Info

Publication number
JP4875473B2
JP4875473B2 JP2006319165A JP2006319165A JP4875473B2 JP 4875473 B2 JP4875473 B2 JP 4875473B2 JP 2006319165 A JP2006319165 A JP 2006319165A JP 2006319165 A JP2006319165 A JP 2006319165A JP 4875473 B2 JP4875473 B2 JP 4875473B2
Authority
JP
Japan
Prior art keywords
activated carbon
adsorption
gasification gas
gas
gasification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006319165A
Other languages
Japanese (ja)
Other versions
JP2008133327A (en
Inventor
雅也 栗田
一毅 村橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Engineering Co Ltd
Priority to JP2006319165A priority Critical patent/JP4875473B2/en
Publication of JP2008133327A publication Critical patent/JP2008133327A/en
Application granted granted Critical
Publication of JP4875473B2 publication Critical patent/JP4875473B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Industrial Gases (AREA)

Description

本発明は、廃プラスチックやバイオマス等の有機性廃棄物又は石炭等の固体有機物を熱分解して得られたガス化ガスの浄化方法に関し、とくに活性炭式吸着装置を用いたガス化ガスの浄化方法に関する。 The present invention, such as organic waste or coal, such as waste plastics, biomass solid organics relates purification of how the resultant gasified gas by thermal decomposition, particularly of the gasification gas using an activated carbon adsorption device Kiyoshi of how on.

近年、地球環境保全とくに地球温暖化防止の一環として、エネルギーの有効利用が改めて注目されるなかで、廃プラスチックやバイオマス等の有機性廃棄物の持つエネルギーを有効利用する方法として、有機性廃棄物を熱分解し可燃性ガスを得る、いわゆるガス化が注目を集めている。   In recent years, effective use of energy has been attracting attention as part of global environmental conservation, especially prevention of global warming. Organic waste is a method for effectively using energy of organic waste such as waste plastic and biomass. So-called gasification, which obtains a combustible gas by pyrolyzing the gas, is attracting attention.

ところが、ガス化によって得られた可燃性ガス、すなわちガス化ガスには有機性廃棄物に含まれる塩素分に起因するダイオキシン類が含まれているので、ガス化ガスの利用にあたってはダイオキシン類の除去が必要である。また、有機性廃棄物のガス化ガスにはダイオキシン類のほか、タール分や軽質油分等の常温常圧で液体若しくは固体である高沸点炭化水素化合物(本願明細書では単に「高沸点炭化水素化合物」という。ここで、「高沸点炭化水素化合物」の沸点は概ね60℃以上である。)が含まれている。これらの高沸点炭化水素化合物は、沸点以下の温度でも高い蒸気圧を持ち、冷却等によって除去することが難しく、ガス中に残存する高沸点炭水素化合物は、ガス化ガスの温度が低下すると凝縮し、ガス配管やその付帯設備に付着して設備トラブルを引き起こす原因となる。したがって、ダイオキシン類と共にガス化ガス中から除去する必要がある。   However, combustible gas obtained by gasification, that is, gasification gas contains dioxins caused by chlorine contained in organic waste, so when using gasification gas, dioxins are removed. is required. In addition to dioxins, organic waste gasification gases include high-boiling hydrocarbon compounds that are liquid or solid at room temperature and normal pressure, such as tar and light oil (in the present specification, simply referred to as “high-boiling hydrocarbon compounds”). Here, the boiling point of the “high-boiling hydrocarbon compound” is approximately 60 ° C. or higher.). These high boiling hydrocarbon compounds have a high vapor pressure even at temperatures below the boiling point and are difficult to remove by cooling, etc., and the high boiling hydrocarbon compounds remaining in the gas condense when the temperature of the gasification gas decreases. In addition, it may cause equipment trouble by adhering to the gas piping and its ancillary equipment. Therefore, it is necessary to remove from gasification gas with dioxins.

従来、ガス中のダイオキシン類を除去する技術としては、例えば特許文献1に開示されているように、ダイオキシン類を触媒層により分解し、残分のダイオキシン類を活性炭吸着層により吸着するという技術が確立されている。しかし、この特許文献1の技術は、おもに可燃性物質を燃焼させた後の燃焼排ガスを処理対象とするものであり、特許文献1の技術を有機性廃棄物のガス化ガスの処理に適用すると、触媒層ではダイオキシン類以外の炭化水素ガスも分解され煤が発生するので、すぐに閉塞し失活する。また、活性炭吸着層ではダイオキシン類以外に上述の高沸点炭化水素化合物が吸着され、活性炭の活性を持続させることができない。持続させるためには、常に新しい活性炭を使用する必要があり、運転費が高くなる。   Conventionally, as a technique for removing dioxins in a gas, for example, as disclosed in Patent Document 1, a technique in which dioxins are decomposed by a catalyst layer and the remaining dioxins are adsorbed by an activated carbon adsorption layer. Is established. However, the technique of this patent document 1 is mainly intended for treating the combustion exhaust gas after burning a combustible substance, and when the technique of patent document 1 is applied to the treatment of gasification gas of organic waste. In the catalyst layer, hydrocarbon gases other than dioxins are also decomposed and soot is generated. Moreover, in the activated carbon adsorption layer, the above-mentioned high boiling point hydrocarbon compounds are adsorbed in addition to dioxins, and the activity of the activated carbon cannot be maintained. In order to sustain it, it is necessary to always use new activated carbon, which increases operating costs.

また、特許文献2には、バグフィルター等の集塵装置を設け、その前段で粉末状の活性炭を吹き込み、バグフィルターのろ布表面上に活性炭層を形成し、その活性炭にダイオキシン類を吸着させるという技術が開示されている。しかし、この特許文献2の技術においても、これを有機性廃棄物のガス化ガスの処理に適用すると、ガス化ガスに含まれる上述の高沸点炭化水素化合物によって目詰まり等のトラブルが発生し、安定的な運転を継続することができない。   Further, Patent Document 2 is provided with a dust collector such as a bag filter, in which powdered activated carbon is blown before the activated carbon layer is formed on the filter cloth surface of the bag filter, and the dioxins are adsorbed on the activated carbon. This technique is disclosed. However, even in the technique of this Patent Document 2, when this is applied to the treatment of gasification gas of organic waste, troubles such as clogging occur due to the above-mentioned high boiling point hydrocarbon compound contained in the gasification gas, Stable operation cannot be continued.

一方、特許文献3及び特許文献4には、排気ガス中の溶剤等の炭化水素、軽質油分を除去するために活性炭を用いた浄化技術が開示されている。しかし、活性炭により有機性廃棄物のガス化ガスに含まれる軽質油分を除去する場合には、ガスの原料が廃棄物であることから原料の性状が安定しないのでガス浄化の制御が難しく、また、ガス化ガス中には軽質油分だけでなくタール分が含まれるので、タール分を含むガスを活性炭で浄化すると、タール分が活性炭から離脱しにくいため、活性炭の寿命が短くなる。   On the other hand, Patent Document 3 and Patent Document 4 disclose a purification technique using activated carbon to remove hydrocarbons such as solvents and light oil in exhaust gas. However, when the light oil contained in the gasification gas of organic waste is removed by activated carbon, it is difficult to control gas purification because the raw material of the gas is waste and the properties of the raw material are not stable. Since the gasified gas contains not only light oil but also tar, if the gas containing tar is purified by activated carbon, the tar is not easily separated from the activated carbon, and the life of the activated carbon is shortened.

また、特許文献5及び特許文献6には、バイオマスを熱分解して得られたバイオマスガス(ガス化ガス)を活性炭を用いて浄化する技術が開示されている。しかし、この技術ではガス処理温度が高く、分子量が大きくて沸点の高いタール分を吸着除去することは可能であるが、分子量が小さくて沸点が比較的低く、高揮発性であって、常温常圧で液状の炭化水素化合物、いわゆる軽質油分を吸着除去することはできない。軽質油分はガス利用の際に、配管中で冷却され、ドレン化する。このドレンは揮発性のきわめて高い引火性油であるため取り扱いが難しい。また、性状の均一なバイオマス以外を原料としたガス化ガスの場合、タール分の発生量及び性状が変化し、活性炭吸着層が閉塞したり、軽質油分がガス利用設備に流れ、トラブルとなる可能性がある。とくに廃プラスチック、石炭等の化石燃料、あるいは化石燃料を原材料とする固体有機物をガス化する場合には、タール分及び軽質油分の量が多く、上記技術による手法では十分な浄化を行うことができない。   Patent Documents 5 and 6 disclose a technique for purifying biomass gas (gasification gas) obtained by pyrolyzing biomass using activated carbon. However, with this technology, it is possible to adsorb and remove tar components having a high gas treatment temperature and a high molecular weight and a high boiling point, but they have a low molecular weight, a relatively low boiling point, a high volatility, and a normal temperature. It is impossible to adsorb and remove liquid hydrocarbon compounds, so-called light oil components, under pressure. Light oil is cooled in the piping and drained when using gas. Since this drain is a highly volatile flammable oil, it is difficult to handle. In addition, in the case of gasification gas using raw materials other than biomass with uniform properties, the generation amount and properties of tar may change, the activated carbon adsorption layer may be clogged, and light oil may flow to the gas utilization facility, causing problems. There is sex. In particular, when fossil fuels such as waste plastics and coal, or solid organic substances made from fossil fuels are gasified, the amount of tar and light oil is large, and the above-mentioned technique cannot perform sufficient purification. .

このように、従来、活性炭を用いてガスを浄化する技術は種々提案されているが、高沸点炭化水素化合物とくにタール分及び軽質油分を多く含むガス化ガスを浄化する場合、上述のような問題があり、活性炭を用いたガス化ガスの浄化技術は確立されていない。   As described above, various techniques for purifying gas using activated carbon have been proposed in the past. However, when purifying gasification gas containing a high boiling point hydrocarbon compound, particularly tar and light oil, the above-mentioned problems are required. However, gasification gas purification technology using activated carbon has not been established.

これに対して、活性炭を用いないガス化ガスの浄化技術も提案されている。例えば特許文献7には、有機性廃棄物をガス化後、酸素及び水蒸気と反応させ、1100℃程度の高温での改質反応により、ガス化ガス中のタール分や軽質油分を低減させる技術が提案されている。しかし、このような改質反応を用いたガスの浄化技術では、改質反応に必要な熱源を得るためにガス化ガスの部分燃焼が必要となり、ガス化ガスの持つエネルギーを消費されガスカロリーが低下するという問題がある。また、改質反応に用いる酸素の製造にエネルギーを多く必要とし、廃棄物処理に必要な総エネルギーが大きくなりすぎる。   On the other hand, a gasification gas purification technique that does not use activated carbon has also been proposed. For example, Patent Document 7 discloses a technology for reducing tar content and light oil content in gasified gas by gasification of organic waste, reaction with oxygen and water vapor, and reforming reaction at a high temperature of about 1100 ° C. Proposed. However, gas purification technology using such a reforming reaction requires partial combustion of the gasified gas in order to obtain a heat source required for the reforming reaction. There is a problem of lowering. In addition, the production of oxygen used for the reforming reaction requires a lot of energy, and the total energy required for waste treatment becomes too large.

他のガス洗浄技術としては、コース炉ガスの浄化技術に見られるように、低温下でガスを油で洗浄し、ガス中のタール分及び軽質油分等を除去する技術がある。しかし、この技術では、低温下で洗浄を行うにあたり冷熱源を得るためにエネルギーが必要である。また、洗浄後の排水に高度な処理が必要となり、さらに油を再生する工程等が必要となり、再生時に発生するガスの処理等、設備が複雑になる傾向にある。また、ガスの洗浄によってはダイオキシン類を除去することはできない。   As another gas cleaning technique, there is a technique of cleaning a gas with oil at a low temperature to remove a tar content and a light oil content in the gas, as seen in a course furnace gas purification technique. However, with this technique, energy is required to obtain a cold heat source for cleaning at low temperatures. Moreover, advanced treatment is required for the waste water after washing, and further, a step of regenerating oil and the like is required, and facilities such as treatment of gas generated at the time of regeneration tend to be complicated. Further, dioxins cannot be removed by gas cleaning.

このように、ガス中のダイオキシン類及びタール分、軽質油分等の高沸点炭化水素化合物を同時に除去してガスを浄化するには、やはり活性炭を用いて乾式処理することが有用かつ簡便であり、活性炭を用いたガス化ガスの浄化技術の確立が望まれている。   Thus, in order to purify the gas by simultaneously removing high boiling point hydrocarbon compounds such as dioxins and tar content, light oil content, etc. in the gas, it is also useful and simple to dry-process using activated carbon, Establishment of gasification gas purification technology using activated carbon is desired.

一方で、有機物を熱分解し可燃性のガス化ガスを得る場合、ガス化ガスの利用にあたってはメタン等の炭化水素ガスを残し、ガスのカロリーを高く保つことが望ましい。但し、その場合、タール分及び軽質油分が副生しガス利用の妨げとなる。したがって、この点からもガス化ガス中のタール分及び軽質油分を除去する浄化技術の確立が望まれている。
特開2003−112012号公報 特開平11−230529号公報 特開平9−215908号公報 特開2005−66503号公報 特開2006−16469号公報 特開2006−16470号公報 特開2004−238535号公報
On the other hand, when an organic substance is thermally decomposed to obtain a combustible gasification gas, it is desirable to keep hydrocarbon gas such as methane and keep gas calorie high when using the gasification gas. In this case, however, tar and light oil are by-produced and hinder gas utilization. Therefore, establishment of the purification technology which removes the tar content and light oil content in gasification gas also from this point is desired.
Japanese Patent Laid-Open No. 2003-112012 JP-A-11-230529 JP-A-9-215908 JP 2005-66503 A JP 2006-16469 A JP 2006-16470 A JP 2004-238535 A

本発明が解決しようとする課題は、総括的には、活性炭を用いたガス化ガスの浄化技術を確立し、利用可能な高カロリーガスを得ることにある。   The problem to be solved by the present invention is to establish a purification technology for gasification gas using activated carbon and obtain a usable high calorie gas.

具体的には、ガス化ガス中のダイオキシン類及び高沸点炭化水素化合物を効率的に除去し、かつそのガス浄化能力を長期間持続させることのできるガス化ガスの浄化方法を提供することにある。 Specifically, to provide a purification of how the gasification gas that can dioxins in the gasification gas and high-boiling hydrocarbon compounds efficiently removed, and thereby long-lasting the gas purification capability It is in.

本発明の一態様は、有機性廃棄物又は石炭等の固体有機物を熱分解して得られたガス化ガス中のダイオキシン類及び常温常圧で液体若しくは固体である高沸点炭化水素化合物を吸着除去するために2つ以上の活性炭吸着層を並列に備える活性炭式吸着装置を有し、前記2つ以上の活性炭吸着層を切り替えながら操業し、吸着除去に使用していない活性炭吸着層については、蒸気等の酸素を含まない100℃以上のガスを通すことで吸着した物質を離脱させ吸着性能を維持するガス化ガスの浄化装置であって、ガス化ガスの流れ方向の前段にガス化ガス中のミスト状の水分、前記高沸点炭化水素化合物のうちタール分、ダイオキシン類及び固体の煤塵を吸着可能な吸着装置を設け、この吸着装置の後段に前記活性炭式吸着装置を設けたガス化ガスの浄化装置によるガス化ガスの浄化方法において、前段の吸着装置にて、主にガス化ガス中のミスト状の水分、前記高沸点炭化水素化合物のうちタール分、ダイオキシン類及び固体の煤塵を吸着除去し、後段の活性炭式吸着装置にて、主に前記高沸点炭化水素化合物のうちタール分以外の軽質油分及びダイオキシン類の残留分を吸着除去し、前段の吸着装置の吸着層の再生に、後段の活性炭式吸着装置で吸着した軽質油分を利用することを特徴とする。また、本発明の他の態様は、前段の吸着装置における吸着層の吸着剤としてセラミックボール等の無機材を使用し、この吸着層を再生する際に、吸着層から吸着剤を取り出し、有機性廃棄物又は石炭等の固体有機物を熱分解してガス化するガス化炉、又はガス化炉に熱を供給する燃焼炉にて加熱処理することを特徴とする。 One aspect of the present invention is to adsorb and remove dioxins in gasification gas obtained by pyrolyzing organic waste or solid organic matter such as coal and high-boiling hydrocarbon compounds that are liquid or solid at normal temperature and pressure. For the activated carbon adsorption layer that has two or more activated carbon adsorption layers in parallel to operate and switches between the two or more activated carbon adsorption layers and is not used for adsorption removal, A gasification gas purification device that maintains adsorption performance by removing adsorbed substances by passing a gas of 100 ° C. or higher that does not contain oxygen, such as in the gasification gas flow direction before the gasification gas flow direction. mist moisture, tar of the high-boiling hydrocarbon compounds, dioxins and solid dust provided capable of adsorbing the adsorption device, gasification gas provided the activated carbon adsorption apparatus downstream of the suction device In the purification method of the gasification gas by purifying apparatus, at the front stage of the adsorption device, mainly adsorbed mist moisture in the gasification gas, tar of the high-boiling hydrocarbon compounds, the dust of dioxins and solid In the latter-stage activated carbon-type adsorption device, mainly the light oil components other than tar and dioxin residues in the high-boiling hydrocarbon compounds are adsorbed and removed to regenerate the adsorption layer of the former adsorption device. It is characterized by using a light oil adsorbed by a subsequent activated carbon adsorption device . In another aspect of the present invention, an inorganic material such as a ceramic ball is used as an adsorbent for the adsorbing layer in the adsorbing device in the previous stage. Heat treatment is performed in a gasification furnace that thermally decomposes and gasifies solid organic matter such as waste or coal, or a combustion furnace that supplies heat to the gasification furnace.

本発明では、代表的には有機性廃棄物として廃プラスチック、又は固体有機物として石炭をガス化する。   In the present invention, waste plastic is typically gasified as organic waste, or coal is gasified as solid organic matter.

有機性廃棄物又は固体有機物のガス化ガス中には、ダイオキシン類及び高沸点炭化水素化合物が含まれる。また、高沸点炭化水素化合物としては、ナフタレン、アントラセン等のタール分(炭素原子数が10以上の高分子炭化水素化合物)とベンゼン、トルエン、キシレン等の軽質油分(炭素原子数が10未満の低分子炭化水素化合物)が含まれる。これらのダイオキシン類及び高沸点炭化水素化合物は、ガス化ガスの有効利用にあたり除去する必要がある。ただし、このようなガス化ガスをいきなり活性炭式吸着装置に通すと、ガス化ガス中のタール分及び固体の煤塵が活性炭吸着層に吸着され、そうすると軽質油分の吸着能力が低下するとともに、再生に必要なエネルギーが大きくなる。そこで、本発明では、活性炭式吸着装置の前段に別の吸着装置を設け、前段の吸着装置にて、先にガス化ガス中のミスト状の水分、高沸点炭化水素化合物のうちタール分、ダイオキシン類及び固体の煤塵を吸着除去し、その後、後段の活性炭式吸着装置にて、高沸点炭化水素化合物のうちタール分以外の軽質油分及びダイオキシン類の残留分を吸着除去するようにしている。すなわち、本発明では吸着装置を直列に2段設け、その機能を分けることで、ガス化ガス浄化の高効率化を図るとともに、ガス浄化能力を長期間持続させるようにしている。   The organic waste or solid organic gasification gas contains dioxins and a high-boiling hydrocarbon compound. High boiling point hydrocarbon compounds include tar components such as naphthalene and anthracene (polymer hydrocarbon compounds having 10 or more carbon atoms) and light oil components such as benzene, toluene and xylene (low carbon number of less than 10). Molecular hydrocarbon compounds). These dioxins and high-boiling hydrocarbon compounds need to be removed for effective utilization of the gasification gas. However, if such a gasification gas is suddenly passed through an activated carbon adsorption device, tar and solid dust in the gasification gas are adsorbed on the activated carbon adsorption layer, and this reduces the light oil adsorption capacity and also helps in regeneration. The required energy increases. Therefore, in the present invention, another adsorption device is provided in the previous stage of the activated carbon type adsorption device, and in the previous adsorption device, the mist-like water in the gasification gas, the tar content of the high-boiling hydrocarbon compound, dioxin Then, adsorbing and removing the soot and solid soot are carried out, and thereafter, the activated carbon-type adsorbing device in the subsequent stage is used to adsorb and remove light oil components other than tar and residual dioxins from the high boiling point hydrocarbon compound. In other words, in the present invention, two stages of adsorption devices are provided in series and the functions are divided so that the efficiency of gasification gas purification is improved and the gas purification capacity is maintained for a long period of time.

このような2段の吸着装置によるガス化ガスの浄化をより高効率化するためには、前段の吸着装置の前段にガス化ガスを冷却する冷却装置を設けるとともに、前段の吸着装置と後段の活性炭式吸着装置との間に、ガス化ガスを加熱する加熱装置を設け、前段の吸着装置にて、主にガス化ガス中のミスト状の水分、高沸点炭化水素化合物のうちタール分、ダイオキシン類及び固体の煤塵を吸着除去した後に、そのガス化ガスを加熱し、後段の活性炭式吸着装置に通すようにすることが好ましい。すなわち、前段の吸着装置にガス化ガスを通す際は、その温度は低め(10〜40℃程度)に設定し、ミスト状の水分及びタール分の凝縮を促進することで前段の吸着装置の吸着効率を高くし、その後、30〜70℃程度に加熱しガス化ガスの相対湿度を低下させガス化ガスのドレン化を抑制することで、後段の活性炭式吸着装置の吸着効率を高くするとともに、活性炭の活性を長期間持続させることができる。   In order to make the purification of gasification gas by such a two-stage adsorption device more efficient, a cooling device for cooling the gasification gas is provided in the front stage of the front stage adsorption apparatus, and the front stage adsorption apparatus and the rear stage adsorption device are provided. A heating device that heats the gasification gas is installed between the activated carbon type adsorption device, and in the previous adsorption device, the mist-like water in the gasification gas, the tar content of the high-boiling hydrocarbon compound, dioxin It is preferable that the gasification gas is heated after passing the adsorbed and solid soot and removed, and passed through an activated carbon-type adsorbing device at a later stage. That is, when the gasification gas is passed through the preceding adsorption device, the temperature is set low (about 10 to 40 ° C.), and the condensation of the mist-like moisture and tar is promoted to adsorb the adsorption device in the previous stage. Increasing efficiency, and then heating to about 30 to 70 ° C. to lower the relative humidity of the gasification gas and suppressing draining of the gasification gas, thereby increasing the adsorption efficiency of the latter activated carbon type adsorption device, The activity of activated carbon can be maintained for a long time.

また、本発明においては、前段の吸着装置の前段に、電気集塵機等の集塵機を設け、ガス化ガスを前段の吸着装置に通す前に、電気集塵機等の集塵機に通すようにすることもできる。このような構成とすることで、前段の吸着装置の前段でナフタレン、アントラセン、フェナントレン、ピレン等の分子量の大きな粒子を除去することができ、前段の吸着装置の吸着能力の低下を抑制することができる。   In the present invention, a dust collector such as an electric dust collector may be provided in the front stage of the preceding stage adsorption device, and the gasification gas may be passed through the dust collector such as an electric dust collector before passing through the preceding stage adsorption device. By adopting such a configuration, particles having a large molecular weight such as naphthalene, anthracene, phenanthrene, and pyrene can be removed at the front stage of the front stage adsorption apparatus, and a decrease in the adsorption capacity of the front stage adsorption apparatus can be suppressed. it can.

この前段の吸着装置における吸着層の吸着剤としては、活性炭又はセラミックボール等の無機材を使用することができる。活性炭を使用する場合は、その活性炭の細孔は、後段の活性炭式吸着装置で使用する活性炭の細孔よりも大きいものを選択することが好ましい。これによって、高沸点炭化水素化合物のうちタール分を優先的に除去することができ、軽質油分による性能劣化を抑制することができる。一方、前段の吸着装置における吸着層の吸着剤としてセラミックボール等の無機材を使用する場合は、再生のための洗浄等の処理が容易になり、再生に必要なエネルギーを減らすことができる。   As the adsorbent for the adsorbing layer in the preceding adsorption device, an inorganic material such as activated carbon or ceramic balls can be used. When using activated carbon, it is preferable to select the activated carbon having pores larger than the pores of the activated carbon used in the activated carbon-type adsorption device in the subsequent stage. As a result, the tar content in the high-boiling hydrocarbon compound can be removed preferentially, and the performance deterioration due to the light oil content can be suppressed. On the other hand, when an inorganic material such as a ceramic ball is used as the adsorbent for the adsorption layer in the adsorption apparatus in the previous stage, cleaning for regeneration and the like are facilitated, and energy required for regeneration can be reduced.

また、前段の吸着装置における吸着層の吸着剤には酸化鉄を含ませることができる。有機性廃棄物をガス化したときに発生する塩化水素ガスは水への溶解度が高く、洗浄処理によって容易に除去することができるが、硫化水素等の硫黄分は洗浄による除去が困難である。また、活性炭への吸着は可能であるが、離脱させることが困難で、活性炭の劣化の原因となる。したがって、吸着剤に酸化鉄を含ませることでガス化ガス中に含まれる硫黄分を効率的に吸着し除去することができる。   Moreover, iron oxide can be included in the adsorbent of the adsorption layer in the adsorption apparatus in the previous stage. Hydrogen chloride gas generated when organic waste is gasified has high solubility in water and can be easily removed by washing treatment, but sulfur such as hydrogen sulfide is difficult to remove by washing. Moreover, although adsorption | suction to activated carbon is possible, it is difficult to make it detach | leave and causes deterioration of activated carbon. Therefore, the sulfur content contained in gasification gas can be efficiently adsorbed and removed by including iron oxide in the adsorbent.

本発明において、前段の吸着装置の吸着層及び後段の活性炭式吸着装置の活性炭吸着層は、破過時あるいは定期的に再生する必要があり、通常その再生には蒸気を使用するが、本発明においては前段の吸着装置の吸着層の再生には、後段の活性炭式吸着装置で吸着した軽質油分を利用することができる。前段の吸着装置はタール分等の分子量の比較的大きい有機化合物の吸着を目的としている。タール分等の有機化合物はベンゼンをはじめとする軽質油分(有機溶剤)への溶解度が高いため、後段の活性炭式吸着装置で吸着した軽質油分を回収して前段の吸着装置の吸着層に流すことによって、前段の吸着装置の吸着層に吸着されたタール分が軽質油分中に溶け込み、吸着層から容易に離脱させることができる。また、蒸気の使用量が削減できるため、エネルギーロスの低減が図れる。   In the present invention, the adsorption layer of the preceding adsorption device and the activated carbon adsorption layer of the latter activated carbon type adsorption device need to be regenerated at the time of breakthrough or periodically, and normally steam is used for the regeneration. For the regeneration of the adsorption layer of the preceding adsorption device, light oil adsorbed by the latter activated carbon adsorption device can be used. The adsorption apparatus in the previous stage is intended to adsorb organic compounds having a relatively large molecular weight such as tar. Since organic compounds such as tar are highly soluble in light oils (organic solvents) such as benzene, the light oil adsorbed by the activated carbon adsorber at the latter stage is collected and passed to the adsorption layer of the former adsorber. Thus, the tar content adsorbed on the adsorption layer of the preceding adsorption device can be dissolved in the light oil component and easily separated from the adsorption layer. Further, since the amount of steam used can be reduced, energy loss can be reduced.

また、前段の吸着装置における吸着層の吸着剤としてセラミックボール等の無機材を使用する場合、その再生にあたっては、吸着層から吸着剤を取り出し、有機性廃棄物又は石炭等の固体有機物を熱分解してガス化するガス化炉、又はガス化炉に熱を供給する燃焼炉にて加熱処理することで再生することができる。このように設備に付随するガス化炉又は燃焼炉での加熱処理によって再生処理を行うことで、再生に使用する蒸気の量を削減又はゼロとすることができ、エネルギーロスが少なくなる。また、吸着剤に付着したタール、煤塵等の有機分をガス化炉又は燃焼炉の燃料として有効利用することもできる。なお、吸着剤はガス化炉又は燃焼炉にて加熱処理された後に、通常はガス化炉又は燃焼炉の焼却灰等と併せて排出されるため、その灰排出機構に吸着剤を分離回収する回収機構を設けることが好ましい。この回収機構としては振動篩、風力選別機を用いることができる。   Also, when using inorganic materials such as ceramic balls as the adsorbent for the adsorbing layer in the pre-stage adsorbing device, the adsorbent is taken out from the adsorbing layer and pyrolyzed for organic waste or solid organic matter such as coal. Then, it can be regenerated by heat treatment in a gasification furnace for gasification or a combustion furnace for supplying heat to the gasification furnace. Thus, by performing the regeneration process by the heat treatment in the gasification furnace or the combustion furnace associated with the equipment, the amount of steam used for the regeneration can be reduced or zero, and the energy loss is reduced. Further, organic components such as tar and dust adhering to the adsorbent can be effectively used as fuel for the gasification furnace or combustion furnace. In addition, since the adsorbent is usually heat-treated in the gasification furnace or combustion furnace and then discharged together with the incineration ash etc. of the gasification furnace or combustion furnace, the adsorbent is separated and recovered by the ash discharge mechanism. It is preferable to provide a recovery mechanism. As this recovery mechanism, a vibrating sieve or a wind power sorter can be used.

本発明によれば、前段の吸着装置にて、先にガス化ガス中のミスト状の水分、高沸点炭化水素化合物のうちタール分、ダイオキシン類及び固体の煤塵を吸着除去し、その後、後段の活性炭式吸着装置にて、高沸点炭化水素化合物のうちタール分以外の軽質油分及びダイオキシン類の残留分を吸着除去するので、ガス化ガスを効率的に浄化できるとともに、ガス浄化能力を長期間持続させることができる。   According to the present invention, in the former stage adsorption device, the mist-like moisture in the gasification gas, the high-boiling hydrocarbon compound, the tar content, dioxins and solid soot are adsorbed and removed, and then the latter stage The activated carbon adsorber absorbs and removes light oil components other than tar and dioxin residues from high-boiling hydrocarbon compounds, enabling efficient purification of gasification gas and long-term gas purification capacity. Can be made.

また、ガス化ガス中の高沸点炭化水素化合物(タール分及び軽質油分)を安定的に除去できるので、ガス化温度、改質温度を下げた運転が可能となり、高カロリーのガス化ガスを安定的に得ることができる。そして、ガス温度を上昇させるために必要なエネルギー、酸素量等を減らすことが可能で、より安価に高カロリーのガス化ガスを得ることが可能となる。   In addition, high boiling point hydrocarbon compounds (tar content and light oil content) in gasification gas can be removed stably, enabling operation with lower gasification and reforming temperatures, and stable high calorie gasification gas. Can be obtained. In addition, it is possible to reduce the energy, oxygen amount, and the like necessary for increasing the gas temperature, and it is possible to obtain a high calorie gasified gas at a lower cost.

以下、図面に示す実施例に基づき本発明の実施の形態を説明する。なお、以下では、本発明の一部を実施するものも実施例として説明する。 Embodiments of the present invention will be described below based on examples shown in the drawings. In addition, what implements a part of this invention below is demonstrated as an Example.

図1は本発明の第1実施例を示す装置構成図である。   FIG. 1 is an apparatus configuration diagram showing a first embodiment of the present invention.

図1において、有機性廃棄物をガス化するガス化炉1で得られたガス化ガスの浄化処理ラインには、ガス化ガスの流れ方向の前段に吸着装置2が配置され、その後段に活性炭式吸着装置3が配置されている。前段の吸着装置2は2つの活性炭吸着層2a、2bを並列に有し、後段の活性炭式吸着装置3も2つの活性炭吸着層3a、3bを並列に有する。なお、吸着装置2の活性炭吸着層2a、2bには、硫黄分を効率的に吸着するために酸化鉄を20〜100質量%程度含有させてもよい。   In FIG. 1, in the purification process line of the gasification gas obtained in the gasification furnace 1 for gasifying organic waste, an adsorption device 2 is arranged in the upstream of the gasification gas flow direction, and the activated carbon is in the subsequent stage. A type adsorption device 3 is arranged. The former adsorption device 2 has two activated carbon adsorption layers 2a and 2b in parallel, and the latter activated carbon adsorption device 3 also has two activated carbon adsorption layers 3a and 3b in parallel. The activated carbon adsorption layers 2a and 2b of the adsorption device 2 may contain about 20 to 100% by mass of iron oxide in order to efficiently adsorb sulfur.

ガス化炉1としては、シャフト炉、ロータリーキルン炉、流動床炉、固定床炉、噴流炉等、各種の炉を使用することができる。また、ガス化炉1の加熱方式としては、生成したガス化ガスの一部を燃焼させて熱源とする部分燃焼方式と、外部熱源を使用する外熱方式のいずれでもよい。   As the gasification furnace 1, various furnaces such as a shaft furnace, a rotary kiln furnace, a fluidized bed furnace, a fixed bed furnace, and a jet flow furnace can be used. Further, the heating method of the gasification furnace 1 may be either a partial combustion method in which a part of the generated gasification gas is burned and used as a heat source, or an external heat method using an external heat source.

ガス化炉1で得られたガス化ガスは、ガス化ガス供給本管4を通り、その後、吸着装置2の活性炭吸着層2a、2bに通じるガス化ガス供給支管5a、5bを通り、吸着装置2の活性炭吸着層2a、2bにその下部から導入される。   The gasification gas obtained in the gasification furnace 1 passes through the gasification gas supply main pipe 4, and then passes through the gasification gas supply branch pipes 5a and 5b leading to the activated carbon adsorption layers 2a and 2b of the adsorption apparatus 2, and then the adsorption apparatus It introduce | transduces into the activated carbon adsorption layer 2a, 2b of 2 from the lower part.

吸着装置2の活性炭吸着層2a、2bにガス化ガスが導入されると、主にガス化ガス中のミスト状の水分、高沸点炭化水素化合物のうち特に沸点が150℃以上と高いタール分、ダイオキシン類及び固体の煤塵が活性炭吸着層2a、2b内の活性炭に吸着され除去される。その後、ガス化ガスは、活性炭吸着層2a、2b上部に接続されたガス化ガス排出支管6a、6bから排出され、ガス化ガス搬送本管7に合流し、さらに活性炭式吸着装置3の活性炭吸着層3a、3bに通じるガス化ガス搬送支管8a、8bを通り、活性炭式吸着装置3の活性炭吸着層3a、3bにその下部から導入される。   When the gasification gas is introduced into the activated carbon adsorption layers 2a, 2b of the adsorption device 2, the mist-like moisture in the gasification gas, a high-boiling hydrocarbon compound, particularly a high tar content with a boiling point of 150 ° C. or higher, Dioxins and solid dust are adsorbed and removed by the activated carbon in the activated carbon adsorption layers 2a and 2b. Thereafter, the gasified gas is discharged from the gasified gas discharge branch pipes 6a and 6b connected to the upper portions of the activated carbon adsorption layers 2a and 2b, and merged into the gasified gas transport main pipe 7 and further activated carbon adsorption of the activated carbon type adsorption device 3 The gas passes through the gasified gas transfer branch pipes 8a and 8b leading to the layers 3a and 3b, and is introduced into the activated carbon adsorption layers 3a and 3b of the activated carbon adsorption device 3 from below.

活性炭式吸着装置3の活性炭吸着層3a、3bにガス化ガスが導入されると、主にガス化ガス中の高沸点炭化水素化合物のうち軽質油分及びダイオキシン類の残留分が活性炭吸着層3a、3b内の活性炭に吸着され除去される。その後、ガス化ガスは活性炭吸着層3a、3bの上部に接続されたガス化ガス排出支管9a、9bから排出され、ガス化ガス排出本管10に合流し、ガス利用設備11まで搬送される。   When the gasification gas is introduced into the activated carbon adsorption layers 3a and 3b of the activated carbon adsorption device 3, the light oil component and the residual dioxins mainly from the high boiling point hydrocarbon compound in the gasification gas are the activated carbon adsorption layer 3a, It is adsorbed and removed by the activated carbon in 3b. Thereafter, the gasification gas is discharged from the gasification gas discharge branch pipes 9a and 9b connected to the upper portions of the activated carbon adsorption layers 3a and 3b, merges into the gasification gas discharge main pipe 10, and is conveyed to the gas utilization facility 11.

ガス化ガスの具体的な利用先としては、加熱炉、コークス炉等の工業炉用の燃料、ガスエンジンやガスタービン用の燃料、ボイラ燃料、熱風炉用の燃料等が挙げられる。   Specific uses of gasified gas include fuel for industrial furnaces such as heating furnaces and coke ovens, fuel for gas engines and gas turbines, boiler fuel, fuel for hot stove furnaces, and the like.

このように、本発明では、吸着装置を直列に2段設け、前段の吸着装置2にてガス化ガス中のミスト状の水分、高沸点炭化水素化合物のうちタール分、ダイオキシン類及び固体の煤塵を吸着除去し、後段の活性炭式吸着装置2にて高沸点炭化水素化合物のうちタール分以外の軽質油分及びダイオキシン類の残留分を吸着除去することで、ガス化ガス浄化の高効率化を図るとともに、ガス浄化能力を長期間持続させるようにしている。   As described above, in the present invention, the adsorption device is provided in two stages in series, and the mist-like moisture in the gasification gas, the tar content, the dioxins and the solid dust in the high-boiling hydrocarbon compound in the adsorption device 2 in the previous stage. By adsorbing and removing light oil components other than tar and residual dioxins from the high boiling point hydrocarbon compound by the activated carbon adsorption device 2 in the subsequent stage, the gasification gas purification efficiency is improved. At the same time, the gas purification capacity is maintained for a long time.

なお、本実施例では、前段の活性炭吸着層2a、2bと後段の活性炭吸着層3a、3bで用いる活性炭としては、細孔の大きさを変えることにより、前段はタール分の吸着に適した高分子吸着用、後段は軽質油分の吸着に適した低分子吸着用のものを使用した。   In the present embodiment, the activated carbon used in the preceding-stage activated carbon adsorption layers 2a, 2b and the latter-stage activated carbon adsorption layers 3a, 3b can be changed to a high size suitable for adsorption of tar content by changing the size of the pores. For molecular adsorption, the latter one used for low molecular adsorption suitable for light oil adsorption.

また、本実施例では、前段の吸着装置2に付随するガス化ガス供給支管5a、5b及びガス化ガス排出支管6a、6bには、それぞれ開閉弁12a、12b及び開閉弁13a、13bが設けられている。また、それぞれの活性炭吸着層2a、2bには、上部に蒸気供給本管14から分岐した蒸気供給支管14a、14bが接続され、下部に廃蒸気排出支管15a、15bが接続されている。蒸気供給支管14a、14b及び廃蒸気排出支管15a、15bには、それぞれ開閉弁16a、16b及び開閉弁17a、17bが設けられている。   In this embodiment, the gasification gas supply branch pipes 5a and 5b and the gasification gas discharge branch pipes 6a and 6b associated with the adsorption device 2 in the preceding stage are provided with on-off valves 12a and 12b and on-off valves 13a and 13b, respectively. ing. In addition, each of the activated carbon adsorption layers 2a and 2b is connected to steam supply branch pipes 14a and 14b branched from the steam supply main pipe 14 at the upper part, and connected to waste steam discharge branch pipes 15a and 15b at the lower part. The steam supply branch pipes 14a and 14b and the waste steam discharge branch pipes 15a and 15b are provided with on-off valves 16a and 16b and on-off valves 17a and 17b, respectively.

後段の活性炭式吸着装置3も同様の構成を備えており、活性炭式吸着装置3に付随するガス化ガス搬送支管8a、8b及びガス化ガス排出支管9a、9bには、それぞれ開閉弁18a、18b及び開閉弁19a、19bが設けられている。また、それぞれの活性炭吸着層3a、3bには、上部に蒸気供給本管20から分岐した蒸気供給支管20a、20bが接続され、下部に廃蒸気排出支管21a、21bが接続されている。蒸気供給支管20a、20b及び廃蒸気排出支管21a、21bには、それぞれ開閉弁22a、22b及び開閉弁23a、23bが設けられている。   The latter-stage activated carbon adsorption device 3 has the same configuration, and the gasification gas transport branch pipes 8a and 8b and the gasification gas discharge branch pipes 9a and 9b associated with the activated carbon adsorption device 3 are provided with on-off valves 18a and 18b, respectively. And on-off valves 19a and 19b are provided. In addition, each of the activated carbon adsorption layers 3a and 3b is connected to steam supply branch pipes 20a and 20b branched from the steam supply main pipe 20 at the upper part and connected to waste steam discharge branch pipes 21a and 21b at the lower part. The steam supply branch pipes 20a and 20b and the waste steam discharge branch pipes 21a and 21b are provided with on-off valves 22a and 22b and on-off valves 23a and 23b, respectively.

このような構成とすることで、本実施例では、前段の吸着装置2あるいは後段の活性炭式吸着装置3において、いずれかの活性炭吸着層の吸着能力が低下した場合、その活性炭吸着層についてはガス化ガスの通ガスを遮断し、蒸気を通すことで吸着した物質を離脱させ廃蒸気として蒸気側に吐き出させて吸着能力を回復させることができる。   By adopting such a configuration, in this embodiment, when the adsorption capacity of any activated carbon adsorption layer in the preceding adsorption device 2 or the activated carbon adsorption device 3 in the latter stage is reduced, The adsorbing ability can be recovered by shutting off the gas flow of the chemical gas and removing the adsorbed substance by passing the vapor and discharging it to the vapor side as waste vapor.

例えば、吸着装置2の活性炭吸着層2aの吸着能力が低下した場合は、ガス化ガス供給支管5aの開閉弁12a及びガス化ガス排出支管6aの開閉弁13aを閉にすると共に、蒸気供給支管14aの開閉弁16a及び廃蒸気排出支管15aの開閉弁17aを開にする。これによって、活性炭吸着層2aへのガス化ガスの通ガスが遮断され、代わりに蒸気が通される。この蒸気によって活性炭吸着層2aに吸着していたタール分等が離脱し廃蒸気として蒸気側に排出され、活性炭吸着層2aの吸着能力が回復する。廃蒸気は活性炭吸着層2aの下部より廃蒸気排出支管15aを介して排出され、排蒸気排出本管15に合流後、所定の場所まで搬送される。同時にガス化ガス供給支管5bの開閉弁12b及びガス化ガス排出支管6bの開閉弁13bを開にすることにより、ガス化ガスを連続的に処理することができる。   For example, when the adsorption capacity of the activated carbon adsorption layer 2a of the adsorption device 2 is lowered, the on / off valve 12a of the gasification gas supply branch 5a and the on / off valve 13a of the gasification gas discharge branch 6a are closed and the steam supply branch 14a is closed. The on-off valve 16a and the on-off valve 17a of the waste steam discharge branch 15a are opened. As a result, the gasification gas passing through the activated carbon adsorption layer 2a is blocked, and steam is passed instead. The tar and the like adsorbed on the activated carbon adsorption layer 2a are removed by this vapor and discharged as waste vapor to the vapor side, so that the adsorption capability of the activated carbon adsorption layer 2a is recovered. The waste steam is discharged from the lower part of the activated carbon adsorption layer 2a through the waste steam discharge branch 15a, joined to the exhaust steam discharge main pipe 15, and then transported to a predetermined place. At the same time, the gasification gas can be continuously processed by opening the on-off valve 12b of the gasification gas supply branch 5b and the on-off valve 13b of the gasification gas discharge branch 6b.

また、活性炭式吸着装置3の活性炭吸着層3aの吸着能力が低下した場合は、ガス化ガス搬送支管8aの開閉弁18a及びガス化ガス排出支管9aの開閉弁19aを閉にすると共に、蒸気供給支管20aの開閉弁22a及び廃蒸気排出支管21aの開閉弁23aを開にする。これによって、活性炭吸着層3aへのガス化ガスの通ガスが遮断され、代わりに蒸気が通される。この蒸気によって活性炭吸着層3aに吸着していたタール分等が離脱し廃蒸気として蒸気側に排出され、活性炭吸着層3aの吸着能力が回復する。廃蒸気は活性炭吸着層3aの下部より廃蒸気排出支管21aを介して排出され、排蒸気排出本管21に合流後、所定の場所まで搬送される。同時にガス化ガス搬送支管8bの開閉弁18b及びガス化ガス排出支管9bの開閉弁19bを開にすることにより、ガス化ガスを連続的に処理することができる。   Further, when the adsorption capacity of the activated carbon adsorption layer 3a of the activated carbon adsorption device 3 is lowered, the on / off valve 18a of the gasification gas transfer branch 8a and the on / off valve 19a of the gasification gas discharge branch 9a are closed and steam is supplied. The on-off valve 22a of the branch pipe 20a and the on-off valve 23a of the waste steam discharge branch pipe 21a are opened. As a result, the gasification gas passing through the activated carbon adsorption layer 3a is blocked and steam is passed instead. The tar and the like adsorbed on the activated carbon adsorption layer 3a are removed by this vapor and discharged to the vapor side as waste vapor, so that the adsorption capability of the activated carbon adsorption layer 3a is recovered. The waste steam is discharged from the lower part of the activated carbon adsorption layer 3a through the waste steam discharge branch pipe 21a, joined to the exhaust steam discharge main pipe 21, and then transported to a predetermined place. At the same time, by opening the on-off valve 18b of the gasified gas transfer branch 8b and the on-off valve 19b of the gasified gas discharge branch 9b, the gasification gas can be processed continuously.

このように、本実施例では、装置の運転を停止することなく、吸着能力の低下した活性炭吸着層を再生させることができ、一定の吸着能力を維持しつつ連続的にガス化ガスの浄化処理を行うことができる。   As described above, in this embodiment, the activated carbon adsorption layer having a reduced adsorption capacity can be regenerated without stopping the operation of the apparatus, and the gasification gas purification process is continuously performed while maintaining a certain adsorption capacity. It can be performed.

なお、活性炭吸着層の再生に使用する蒸気の温度は、150〜400℃の範囲とすることが好ましい。蒸気の温度が100℃程度の低温である場合、活性炭吸着層中の活性炭に吸着された高沸点炭化水素化合物のうち、分子量が小さく沸点が比較的低いベンゼン、トルエン、キシレン等の軽質油分については離脱させることは可能であるが、ナフタレン、アントラセンといった、分子量が100以上と大きく沸点が高いタール分については離脱させることは困難である。   In addition, it is preferable to make the temperature of the vapor | steam used for reproduction | regeneration of an activated carbon adsorption layer into the range of 150-400 degreeC. When the temperature of the steam is as low as about 100 ° C., among the high-boiling hydrocarbon compounds adsorbed on the activated carbon in the activated carbon adsorption layer, for light oils such as benzene, toluene, xylene, etc. with a low molecular weight and a relatively low boiling point Although it is possible to desorb, tar components such as naphthalene and anthracene having a molecular weight of 100 or more and a high boiling point are difficult to desorb.

また、本実施例では活性炭吸着層の再生に蒸気を使用したが、蒸気に限らず、酸素を含まない100℃以上のガスであれば使用可能である。この場合も、使用するガスの温度は150〜400℃の範囲とすることが好ましい。   In this embodiment, steam is used to regenerate the activated carbon adsorption layer. However, the present invention is not limited to steam, and any gas can be used as long as it does not contain oxygen and is 100 ° C. or higher. Also in this case, the temperature of the gas used is preferably in the range of 150 to 400 ° C.

図2は本発明の第2実施例を示す装置構成図である。この実施例は、図1に示した第1実施例の装置構成において、前段の吸着装置2の前段にガス化ガスを冷却する冷却装置としてガス冷却器24aを設けるとともに、前段の吸着装置2と後段の活性炭式吸着装置3との間にガス化ガスを加熱する加熱装置としてガス加熱器24bを設けたものである。   FIG. 2 is an apparatus configuration diagram showing a second embodiment of the present invention. In this embodiment, in the apparatus configuration of the first embodiment shown in FIG. 1, a gas cooler 24a is provided as a cooling device for cooling the gasification gas in the preceding stage of the preceding adsorption apparatus 2, and the preceding adsorption apparatus 2 and A gas heater 24b is provided as a heating device for heating the gasified gas between the latter activated carbon type adsorption device 3.

この実施例では、前段の吸着装置2にガス化ガスを通す際は、その前にガス冷却器24aで冷却することによりガス化ガスの温度を低め(10〜40℃程度)に設定し、ミスト状の水分及びタール分の凝縮を促進することで前段の吸着装置3の吸着効率を高くし、その後、ガス化ガスをガス加熱器24bによって30〜70℃程度に加熱しガス化ガスの相対湿度を低下させガス化ガスのドレン化を抑制することで、後段の活性炭式吸着装置3の吸着効率を高くするとともに、活性炭の活性を長期間持続させることができる。   In this embodiment, when the gasification gas is passed through the preceding adsorption device 2, the gasification gas is cooled by the gas cooler 24a before the gasification gas is set to a low temperature (about 10 to 40 ° C.). The adsorption efficiency of the adsorption device 3 in the previous stage is increased by promoting the condensation of the moisture and tar content, and then the gasified gas is heated to about 30 to 70 ° C. by the gas heater 24b and the relative humidity of the gasified gas is increased. By reducing the gasification gas and reducing the draining of the gasification gas, it is possible to increase the adsorption efficiency of the activated carbon type adsorption device 3 at the subsequent stage and to maintain the activity of the activated carbon for a long period of time.

図3は本発明の第3実施例を示す装置構成図である。この実施例は、吸着装置3の前段に集塵機として電気集塵機25を設けたものである。この電気集塵機25によって、吸着装置3の前段でナフタレン等の分子量の大きな粒子を除去することができ、吸着装置3の吸着能力の低下を抑制することができる。   FIG. 3 is an apparatus configuration diagram showing a third embodiment of the present invention. In this embodiment, an electric dust collector 25 is provided as a dust collector in the front stage of the adsorption device 3. With this electrostatic precipitator 25, particles having a large molecular weight such as naphthalene can be removed in the previous stage of the adsorption device 3, and a decrease in adsorption capacity of the adsorption device 3 can be suppressed.

電気集塵機25は乾式、湿式のいずれでもよく、また、集塵装置としては、電気集塵機25のほか、サイクロン、濾過式、スクラバ式のものを使用してもよい。なお、図3に示すように、電気集塵機25の前段で、前処理として水スクラバや油スクラバによるガス洗浄等のガス処理を行ってもよい。   The electric dust collector 25 may be either a dry type or a wet type, and the dust collector may be a cyclone, a filtration type or a scrubber type in addition to the electric dust collector 25. As shown in FIG. 3, gas treatment such as gas scrubbing with a water scrubber or an oil scrubber may be performed as a pretreatment before the electric dust collector 25.

また、この実施例では、活性炭吸着層2a、2b、3a、3bの再生時に排出される廃蒸気あるいは廃蒸気が凝縮した廃ドレンを、廃蒸気排出本管15を介して、ガス化炉1に熱を供給する燃焼炉1aに吹き込むようにしている。これにより、廃蒸気あるいは廃ドレンに含まれる高沸点炭化水素化合物を燃焼炉1aの燃料の一部として有効利用できるとともに、廃蒸気あるいは廃ドレンに含まれる有機性塩素化合物等の有害物を焼却処理し無害化して放散することができる。   In this embodiment, the waste steam discharged during regeneration of the activated carbon adsorption layers 2a, 2b, 3a, 3b or the waste drain condensed with the waste steam is passed to the gasification furnace 1 through the waste steam discharge main 15. The heat is supplied to the combustion furnace 1a for supplying heat. As a result, the high-boiling point hydrocarbon compound contained in the waste steam or waste drain can be effectively used as a part of the fuel in the combustion furnace 1a, and the harmful substances such as the organic chlorine compound contained in the waste steam or waste drain are incinerated. It can be detoxified and released.

図4は本発明の第4実施例を示す装置構成図である。この実施例は、吸着装置2の活性炭吸着層2a、2bの再生に、活性炭式吸着装置3で吸着した軽質油分を利用するようにしたものである。   FIG. 4 is an apparatus configuration diagram showing a fourth embodiment of the present invention. In this embodiment, the light oil adsorbed by the activated carbon adsorption device 3 is used for the regeneration of the activated carbon adsorption layers 2a and 2b of the adsorption device 2.

活性炭式吸着装置3では、上述のとおり高沸点炭化水素化合物のうち主に軽質油分を吸着するので、活性炭式吸着装置3の活性炭吸着層3a、3bの再生時に排出される廃蒸気あるいは廃蒸気が凝縮した廃ドレンには軽質油分が多く含まれる。本実施例では、活性炭吸着層3a、3bの再生時に排出された廃蒸気あるいは廃ドレンを回収タンク26に回収して凝縮させ、これを吸着装置2の活性炭吸着層2a、2bの再生時に上方から流すようにしている。吸着装置2では高沸点炭化水素化合物のうち主にタール分を吸着するが、このタール分は軽質油分への溶解度が高いため、軽質油分を含む廃ドレンを流すことでタール分が軽質油分中に溶け込み、活性炭吸着層2a、2bを容易に再生させることができる。これによって、活性炭吸着層2a、2bの再生に蒸気を使用する必要がなくなり、エネルギーロスの低減が図れる。   Since the activated carbon adsorption device 3 mainly adsorbs light oil in the high boiling point hydrocarbon compound as described above, waste steam or waste steam discharged during regeneration of the activated carbon adsorption layers 3a and 3b of the activated carbon adsorption device 3 is reduced. Condensed waste drain contains a lot of light oil. In the present embodiment, waste steam or waste drain discharged during regeneration of the activated carbon adsorption layers 3a and 3b is collected and condensed in the recovery tank 26, and this is recovered from above when the activated carbon adsorption layers 2a and 2b of the adsorption device 2 are regenerated. I try to make it flow. The adsorber 2 mainly adsorbs the tar content of the high-boiling hydrocarbon compound, but since the tar content is highly soluble in the light oil, the tar is contained in the light oil by flowing waste drain containing the light oil. It is possible to easily regenerate the activated carbon adsorption layers 2a and 2b. As a result, it is not necessary to use steam to regenerate the activated carbon adsorption layers 2a and 2b, and energy loss can be reduced.

また、本実施例では、活性炭吸着層2a、2bの再生時に排出される廃ドレンを回収タンク27に回収し、これを先の第3実施例と同様に、ガス化炉1あるいは燃焼炉1aに燃料として吹き込むようにしている。   In this embodiment, the waste drain discharged during the regeneration of the activated carbon adsorption layers 2a, 2b is recovered in the recovery tank 27, and this is recovered in the gasification furnace 1 or the combustion furnace 1a as in the third embodiment. I try to inject it as fuel.

図5は本発明の第5実施例を示す装置構成図である。この実施例は、吸着装置2の吸着層を、吸着剤としてセラミックボールを充填したセラミックボール吸着層2a’、2b’としたものである。   FIG. 5 is an apparatus configuration diagram showing a fifth embodiment of the present invention. In this embodiment, the adsorption layer of the adsorption device 2 is made of ceramic ball adsorption layers 2a 'and 2b' filled with ceramic balls as adsorbents.

そして本実施例では、セラミックボール吸着層2a’、2b’を再生する際は、セラミックボール吸着層2a’、2b’からセラミックボールを抜き出しコンベア28によって抜き出してガス化炉1あるいは燃焼炉1aに投入し、加熱処理することで再生する。セラミックボールは加熱処理された後にガス化炉1あるいは燃焼炉1aの焼却灰等と併せて排出される。その後、焼却灰等と併せて排出されたセラミックボールは、回収・分離装置29で回収されるとともにセラミックボールのみが分離され、そのセラミックボールは搬送コンベア30によって、セラミックボール吸着層2a’、2b’に戻される。回収・分離装置29としては振動篩、風力選別機を用いることができる。   In this embodiment, when the ceramic ball adsorbing layers 2a ′ and 2b ′ are regenerated, the ceramic balls are extracted from the ceramic ball adsorbing layers 2a ′ and 2b ′ by the conveyer 28 and put into the gasification furnace 1 or the combustion furnace 1a. And regenerated by heat treatment. The ceramic balls are discharged together with the incinerated ash of the gasification furnace 1 or the combustion furnace 1a after being subjected to heat treatment. Thereafter, the ceramic balls discharged together with the incineration ash and the like are collected by the collection / separation device 29 and only the ceramic balls are separated. The ceramic balls are separated by the conveyor 30 by the ceramic ball adsorption layers 2a ′ and 2b ′. Returned to As the recovery / separation device 29, a vibration sieve or a wind power sorter can be used.

このように、本実施例では、セラミックボール吸着層2a’、2b’の再生をガス化炉1あるいは燃焼炉1aでの加熱処理によって行うようにしている。これによって、セラミックボール吸着層2a’、2b’の再生に蒸気を使う必要がなくなり、エネルギーロスが少なくなる。また、セラミックボールに付着したタール、煤塵等の有機分はガス化炉1あるいは燃焼炉1aの燃料として有効利用できる。   Thus, in this embodiment, the regeneration of the ceramic ball adsorption layers 2a 'and 2b' is performed by heat treatment in the gasification furnace 1 or the combustion furnace 1a. Accordingly, it is not necessary to use steam to regenerate the ceramic ball adsorption layers 2a 'and 2b', and energy loss is reduced. Further, organic components such as tar and dust adhering to the ceramic ball can be effectively used as fuel for the gasification furnace 1 or the combustion furnace 1a.

また、本実施例では、活性炭式吸着装置3の活性炭吸着層3a、3bの再生時に排出される廃蒸気あるいは廃ドレンを回収タンク26に回収し、これを先の第3実施例と同様に、ガス化炉1あるいは燃焼炉1aに燃料として吹き込むようにしている。   Further, in this embodiment, waste steam or waste drain discharged at the time of regeneration of the activated carbon adsorption layers 3a and 3b of the activated carbon adsorption device 3 is collected in the collection tank 26, and this is the same as in the previous third embodiment. The gasification furnace 1 or the combustion furnace 1a is blown as fuel.

以上、各実施例では、有機性廃棄物を熱分解して得られるガス化ガスの浄化方法について説明したが、本発明のガス化ガスの浄化方法は、有機性廃棄物を熱分解して得られるガス化ガスだけでなく、石炭等の固体有機物を熱分解して得られるガス化ガス、例えばコークス炉ガスや石炭ガス化燃料ガスにも適用可能である。   As mentioned above, in each Example, the purification method of gasification gas obtained by thermally decomposing organic waste was explained, but the purification method of gasification gas of the present invention is obtained by pyrolyzing organic waste. It can be applied not only to gasified gas produced, but also to gasified gas obtained by thermally decomposing solid organic matter such as coal, such as coke oven gas and coal gasified fuel gas.

本発明の第1実施例を示す装置構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is an apparatus block diagram which shows 1st Example of this invention. 本発明の第2実施例を示す装置構成図である。It is an apparatus block diagram which shows 2nd Example of this invention. 本発明の第3実施例を示す装置構成図である。It is an apparatus block diagram which shows 3rd Example of this invention. 本発明の第4実施例を示す装置構成図である。It is an apparatus block diagram which shows 4th Example of this invention. 本発明の第5実施例を示す装置構成図である。It is an apparatus block diagram which shows 5th Example of this invention.

符号の説明Explanation of symbols

1 ガス化炉
1a 燃焼炉
2 吸着装置
2a、2b 活性炭吸着層
2a’、2b’ セラミックボール吸着層
3 活性炭式吸着装置
3a、3b 活性炭吸着層
4 ガス化ガス供給本管
5a、5b ガス化ガス供給支管
6a、6b ガス化ガス排出支管
7 ガス化ガス搬送本管
8a、8b ガス化ガス搬送支管
9a、9b ガス化ガス排出支管
10 ガス化ガス排出本管
11 ガス利用設備
12a、12b、13a、13b 開閉弁
14 蒸気供給本管
14a、14b 蒸気供給支管
15 廃蒸気排出本管
15a、15b 廃蒸気排出支管
16a、16b、17a、17b、18a、18b、19a、19b 開閉弁
20 蒸気供給本管
20a、20b 蒸気供給支管
21 廃蒸気排出本管
21a、21b 廃蒸気排出支管
22a、22b、23a、23b 開閉弁
24a ガス冷却器
24b ガス加熱器
25 電気集塵機
26、27 回収タンク
28 抜き出しコンベア
29 回収・分離装置
30 搬送コンベア
DESCRIPTION OF SYMBOLS 1 Gasification furnace 1a Combustion furnace 2 Adsorber 2a, 2b Activated carbon adsorption layer 2a ', 2b' Ceramic ball adsorption layer 3 Activated carbon type adsorption device 3a, 3b Activated carbon adsorption layer 4 Gasification gas supply main 5a, 5b Gasification gas supply Branch pipes 6a, 6b Gasified gas discharge branch pipes 7 Gasified gas transfer main pipes 8a, 8b Gasified gas transfer branch pipes 9a, 9b Gasified gas discharge branch pipes 10 Gasified gas discharge main pipes 11 Gas utilization facilities 12a, 12b, 13a, 13b Open / close valve 14 Steam supply main 14a, 14b Steam supply branch 15 Waste steam discharge main 15a, 15b Waste steam discharge branch 16a, 16b, 17a, 17b, 18a, 18b, 19a, 19b Open / close valve 20 Steam supply main 20a, 20b Steam supply branch 21 Waste steam discharge main pipe 21a, 21b Waste steam discharge branch pipe 22a, 22b, 23a, 23b On-off valve 4a gas cooler 24b gas heater 25 extracts the electrostatic precipitator 26, 27 recovery tank 28 conveyor 29 collecting and separating device 30 conveyor

Claims (2)

有機性廃棄物又は石炭等の固体有機物を熱分解して得られたガス化ガス中のダイオキシン類及び常温常圧で液体若しくは固体である高沸点炭化水素化合物を吸着除去するために2つ以上の活性炭吸着層を並列に備える活性炭式吸着装置を有し、前記2つ以上の活性炭吸着層を切り替えながら操業し、吸着除去に使用していない活性炭吸着層については、蒸気等の酸素を含まない100℃以上のガスを通すことで吸着した物質を離脱させ吸着性能を維持するガス化ガスの浄化装置であって、ガス化ガスの流れ方向の前段にガス化ガス中のミスト状の水分、前記高沸点炭化水素化合物のうちタール分、ダイオキシン類及び固体の煤塵を吸着可能な吸着装置を設け、この吸着装置の後段に前記活性炭式吸着装置を設けたガス化ガスの浄化装置によるガス化ガスの浄化方法において、前段の吸着装置にて、主にガス化ガス中のミスト状の水分、前記高沸点炭化水素化合物のうちタール分、ダイオキシン類及び固体の煤塵を吸着除去し、後段の活性炭式吸着装置にて、主に前記高沸点炭化水素化合物のうちタール分以外の軽質油分及びダイオキシン類の残留分を吸着除去し、前段の吸着装置の吸着層の再生に、後段の活性炭式吸着装置で吸着した軽質油分を利用することを特徴とするガス化ガスの浄化方法Two or more dioxins in the gasification gas obtained by pyrolyzing organic waste or solid organic matter such as coal and two or more high-boiling hydrocarbon compounds that are liquid or solid at normal temperature and pressure are adsorbed and removed. An activated carbon adsorption device having an activated carbon adsorption layer provided in parallel, which is operated while switching between the two or more activated carbon adsorption layers, and which is not used for adsorption removal does not contain oxygen such as steam 100 A gasification gas purifying apparatus that removes substances adsorbed by passing a gas at a temperature higher than or equal to ℃ and maintains adsorption performance, wherein mist-like moisture in the gasification gas is disposed upstream of the gasification gas flow direction. tar out of boiling hydrocarbon compounds, capable of adsorbing the adsorption apparatus soot dioxins and solid provided, according to the purifying apparatus of gasification gas provided with the activated carbon adsorption apparatus downstream of the suction device In the purification method of the soot gas, the sorbed moisture in the gasification gas, mainly the mist-like moisture in the gasification gas, the tar content, the dioxins, and the solid soot in the high boiling hydrocarbon compound are adsorbed and removed. In the activated carbon type adsorption device of the above, mainly the light oil components other than tar content and residual dioxins of the high boiling point hydrocarbon compounds are adsorbed and removed, and the activated carbon type of the latter stage is used for the regeneration of the adsorption layer of the former stage adsorption device. A method for purifying gasification gas, comprising using light oil adsorbed by an adsorption device . 有機性廃棄物又は石炭等の固体有機物を熱分解して得られたガス化ガス中のダイオキシン類及び常温常圧で液体若しくは固体である高沸点炭化水素化合物を吸着除去するために2つ以上の活性炭吸着層を並列に備える活性炭式吸着装置を有し、前記2つ以上の活性炭吸着層を切り替えながら操業し、吸着除去に使用していない活性炭吸着層については、蒸気等の酸素を含まない100℃以上のガスを通すことで吸着した物質を離脱させ吸着性能を維持するガス化ガスの浄化装置であって、ガス化ガスの流れ方向の前段にガス化ガス中のミスト状の水分、前記高沸点炭化水素化合物のうちタール分、ダイオキシン類及び固体の煤塵を吸着可能な吸着装置を設け、この吸着装置の後段に前記活性炭式吸着装置を設けたガス化ガスの浄化装置によるガス化ガスの浄化方法において、前段の吸着装置にて、主にガス化ガス中のミスト状の水分、前記高沸点炭化水素化合物のうちタール分、ダイオキシン類及び固体の煤塵を吸着除去し、後段の活性炭式吸着装置にて、主に前記高沸点炭化水素化合物のうちタール分以外の軽質油分及びダイオキシン類の残留分を吸着除去し、前段の吸着装置における吸着層の吸着剤としてセラミックボール等の無機材を使用し、この吸着層を再生する際に、吸着層から吸着剤を取り出し、有機性廃棄物又は石炭等の固体有機物を熱分解してガス化するガス化炉、又はガス化炉に熱を供給する燃焼炉にて加熱処理することを特徴とするガス化ガスの浄化方法 Two or more dioxins in the gasification gas obtained by pyrolyzing organic waste or solid organic matter such as coal and two or more high-boiling hydrocarbon compounds that are liquid or solid at normal temperature and pressure are adsorbed and removed. An activated carbon adsorption device having an activated carbon adsorption layer provided in parallel, which is operated while switching between the two or more activated carbon adsorption layers, and which is not used for adsorption removal does not contain oxygen such as steam 100 A gasification gas purifying apparatus that removes substances adsorbed by passing a gas at a temperature higher than or equal to ℃ and maintains adsorption performance, wherein mist-like moisture in the gasification gas is disposed upstream of the gasification gas flow direction. By means of a gasification gas purifying device in which an adsorption device capable of adsorbing tar content, dioxins and solid soot among the boiling point hydrocarbon compounds is provided, and the activated carbon type adsorption device is provided at the subsequent stage of the adsorption device. In the purification method of the soot gas, the sorbed moisture in the gasification gas, mainly the mist-like moisture in the gasification gas, the tar content, the dioxins, and the solid soot in the high boiling hydrocarbon compound are adsorbed and removed. In the activated carbon type adsorber, the light oil components other than tar and dioxin residues are mainly adsorbed and removed from the high boiling point hydrocarbon compounds, and ceramic balls or the like are used as adsorbents in the adsorbing layer in the preceding adsorber. When regenerating this adsorption layer using an inorganic material, the adsorbent is taken out from the adsorption layer, and the organic waste or solid organic matter such as coal is pyrolyzed and gasified, or into a gasification furnace A method for purifying gasification gas, wherein the heat treatment is performed in a combustion furnace for supplying heat .
JP2006319165A 2006-11-27 2006-11-27 Gasification gas purification method Expired - Fee Related JP4875473B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006319165A JP4875473B2 (en) 2006-11-27 2006-11-27 Gasification gas purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006319165A JP4875473B2 (en) 2006-11-27 2006-11-27 Gasification gas purification method

Publications (2)

Publication Number Publication Date
JP2008133327A JP2008133327A (en) 2008-06-12
JP4875473B2 true JP4875473B2 (en) 2012-02-15

Family

ID=39558391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006319165A Expired - Fee Related JP4875473B2 (en) 2006-11-27 2006-11-27 Gasification gas purification method

Country Status (1)

Country Link
JP (1) JP4875473B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008222882A (en) * 2007-03-13 2008-09-25 Nippon Steel Engineering Co Ltd Method for purifying gasified gas and purifying apparatus
JP5552815B2 (en) * 2010-01-19 2014-07-16 株式会社Ihi Tar recovery device
JP2012020278A (en) * 2010-06-18 2012-02-02 Kinsei Seishi Kk Method for removing polycyclic aromatic hydrocarbon
JP5582985B2 (en) * 2010-11-26 2014-09-03 三菱重工業株式会社 Biomass gasification system and purification method of biomass gasification gas
CN102277204B (en) * 2011-07-20 2013-08-07 浙江大学 Method and device for removing gasification tar by forced discharging of biomass conductive carbon
KR101571771B1 (en) 2013-12-13 2015-11-25 삼성중공업 주식회사 A natural gas regeneration system
JP6414470B2 (en) * 2015-01-13 2018-10-31 東洋紡株式会社 Water treatment equipment
JP6765117B2 (en) * 2015-12-01 2020-10-07 国立研究開発法人海洋研究開発機構 Pretreatment equipment for gas analysis and pretreatment method for gas analysis
JP6840031B2 (en) * 2017-05-19 2021-03-10 日立造船株式会社 Gas reformer and pyrolysis gas reforming method
JP2019189850A (en) * 2018-04-20 2019-10-31 一般財団法人電力中央研究所 Impurity removal device, dry type gas refining facility and coal gasification combined power generating facility
WO2022054733A1 (en) * 2020-09-11 2022-03-17 東洋紡株式会社 Organic solvent recovery system
CN112546805A (en) * 2020-11-18 2021-03-26 湖北新金洋资源股份公司 Oily sewage material tail gas treatment device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58201893A (en) * 1982-05-19 1983-11-24 Nippon Sanso Kk Preliminary purification of coke oven gas
JP3285791B2 (en) * 1997-04-25 2002-05-27 三菱重工業株式会社 Removal of trace substances from high-temperature reducing gasified gas
JP2005126524A (en) * 2003-10-22 2005-05-19 Nippon Steel Corp Method and apparatus for organic matter gasification
JP4728984B2 (en) * 2006-04-07 2011-07-20 新日本製鐵株式会社 Gasification gas purification method and purification device

Also Published As

Publication number Publication date
JP2008133327A (en) 2008-06-12

Similar Documents

Publication Publication Date Title
JP4875473B2 (en) Gasification gas purification method
US7056487B2 (en) Gas cleaning system and method
JP5320421B2 (en) Gasification gas purification method and purification device
KR200474985Y1 (en) System for dry cleaning and dry removal
US20060144224A1 (en) Regenerable purification system for removal of siloxanes and volatile organic carbons
KR101475785B1 (en) The carbon capture and storage apparatus from waste using plasma pyrolysis device
JP4728984B2 (en) Gasification gas purification method and purification device
JP2007528974A (en) Gasification system
JP2008222867A (en) Method for cleaning gasified gas and device for the same
JP4723922B2 (en) Manufacturing method of carbonaceous adsorbent, removal method of environmental pollutant using the same, and removal apparatus
JP4664899B2 (en) Gasification gas purification method
JP4814621B2 (en) Waste disposal method
US7052661B1 (en) Method for abatement of mercury emissions from combustion gases
JP5111955B2 (en) Exhaust gas treatment method and apparatus for waste treatment facility
JP2007182468A (en) Gas purification system and gas purification method
JP4625048B2 (en) Gasification gas purification equipment
KR101085434B1 (en) Systme and method for removing impurity in syngas using fluid sand
JP4612648B2 (en) Gasification gas purification method
JP2010064033A (en) Oil recovery system
JP2008222882A (en) Method for purifying gasified gas and purifying apparatus
JP2007325989A (en) Treatment method and system of exhaust combustion gas
JP4598803B2 (en) Gasification gas purification method and purification device
JP2005154722A (en) Dry purification method of thermally cracked gas
JP4555319B2 (en) Gasification gas purification method and purification device
JP2009173717A (en) Fuel gas purification facility and operation method of it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees