JP6414470B2 - Water treatment equipment - Google Patents

Water treatment equipment Download PDF

Info

Publication number
JP6414470B2
JP6414470B2 JP2015004088A JP2015004088A JP6414470B2 JP 6414470 B2 JP6414470 B2 JP 6414470B2 JP 2015004088 A JP2015004088 A JP 2015004088A JP 2015004088 A JP2015004088 A JP 2015004088A JP 6414470 B2 JP6414470 B2 JP 6414470B2
Authority
JP
Japan
Prior art keywords
water
adsorption
adsorbed
desorption
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015004088A
Other languages
Japanese (ja)
Other versions
JP2016129862A (en
Inventor
大樹 河野
大樹 河野
杉浦 勉
勉 杉浦
繁 板山
繁 板山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2015004088A priority Critical patent/JP6414470B2/en
Publication of JP2016129862A publication Critical patent/JP2016129862A/en
Application granted granted Critical
Publication of JP6414470B2 publication Critical patent/JP6414470B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

本発明は、被吸着物質を含有する水から被吸着物質を除去することで水を清浄化する水処理装置に関し、特に、各種工場や研究施設等から排出される被吸着物質を含有する産業排水、最終処分場から排出される浸出水および地下水等を被処理水として被吸着物質を効率的に除去することで当該被処理水を清浄化する水処理装置に関する。   The present invention relates to a water treatment apparatus that purifies water by removing an adsorbed substance from water containing the adsorbed substance, and in particular, industrial wastewater containing the adsorbed substance discharged from various factories or research facilities. Further, the present invention relates to a water treatment apparatus that purifies the treated water by efficiently removing adsorbed substances using leachate and groundwater discharged from the final disposal site as treated water.

従来より、被処理水を吸着材に接触させて被吸着物質の吸着除去する吸着工程と、加熱ガスを吸着材に接触させて被吸着物質を吸着材から脱着させる脱着工程を交互に行う吸脱着運転を行う水処理装置が検討されている(例えば、特許文献1)。この水処理装置は、基本的には吸着材の交換が必要なく、被吸着物質を高効率で安定的に除去することができる。   Conventionally, adsorption / desorption in which the water to be treated is brought into contact with the adsorbent and the adsorbed material is adsorbed and removed and the desorption process in which the heated gas is brought into contact with the adsorbent and the adsorbed material is desorbed from the adsorbent are alternately performed. A water treatment apparatus that operates is being studied (for example, Patent Document 1). This water treatment apparatus basically does not require replacement of the adsorbent, and can remove the adsorbed substance stably with high efficiency.

使用する吸着材としては、活性炭素繊維が知られている。活性炭素繊維は吸着速度が速く、ミクロポア容積が大きいので、少ない吸着材量で高効率に有機溶剤をはじめとする被吸着物質を除去できる特性が一般的に知られている。また、加熱ガスとしては、経済性や吸着材の耐熱温度の観点から140℃前後の加熱空気や水蒸気が使用される。   Activated carbon fibers are known as adsorbents to be used. Since the activated carbon fiber has a high adsorption rate and a large micropore volume, it is generally known that it can remove an adsorbed substance such as an organic solvent with a small amount of adsorbent material with high efficiency. Moreover, as heating gas, the heating air and water vapor | steam of about 140 degreeC are used from a viewpoint of economical efficiency or the heat-resistant temperature of an adsorbent.

このように、使用する吸着材や加熱ガス温度で上記水処理装置の特性を活かす場合、被処理水中から吸着除去の対象物質は、有機溶剤に代表される低沸点、低分子量の被吸着物質となる。例えば、有機溶剤回収装置から排出される有機溶剤含有排水処理、半導体工場などから排出されるイソプロピルアルコールなどの排水処理、産業排水、浸出水および地下水などに含まれる1,4−ジオキサン除去、地下水、井戸水および上水などに含まれるトリクロロエチレン除去など挙げられる。   As described above, when utilizing the characteristics of the water treatment device by the adsorbent and the heating gas temperature to be used, the target substance for adsorption removal from the treated water is a low boiling point, low molecular weight adsorbed substance typified by an organic solvent. Become. For example, wastewater treatment containing organic solvent discharged from organic solvent recovery equipment, wastewater treatment such as isopropyl alcohol discharged from semiconductor factories, etc., removal of 1,4-dioxane contained in industrial wastewater, leachate and groundwater, groundwater, Examples include removal of trichlorethylene contained in well water and clean water.

しかし、実際の被処理水中には様々な被吸着物質が含まれるケースが殆どである。例えば、被処理水中に難脱着物質も共存し、これらの物質が吸着材に吸着や付着した場合、上記温度の加熱ガスでは吸着材から脱着しにくいため、細孔に残存して吸着能を低下させ(いわゆる劣化)、吸着材の交換頻度が増える課題があった。   However, in most cases, the actual treated water contains various adsorbed substances. For example, difficult-to-desorb substances coexist in the water to be treated, and when these substances are adsorbed or adhered to the adsorbent, the heated gas at the above temperature is difficult to desorb from the adsorbent, so it remains in the pores and reduces the adsorption capacity. (So-called deterioration), and there is a problem that the frequency of replacement of the adsorbent increases.

ここで説明する難脱着物質としては、有機ポリマー、有機オリゴマー、タンパク質、糖類、脂肪酸、脂肪酸エステル、アミン、アミド化合物、油脂、樹脂、界面活性剤、高沸点溶剤などの140℃以上の沸点である有機物質、硫酸塩、硫化物、鉄サビなどの無機物が挙げられる。   The hard-to-desorb substances described here have a boiling point of 140 ° C. or higher, such as organic polymers, organic oligomers, proteins, saccharides, fatty acids, fatty acid esters, amines, amide compounds, fats and oils, resins, surfactants, high-boiling solvents, etc. Examples include inorganic substances such as organic substances, sulfates, sulfides, and iron rust.

このような難脱着物質を含む被処理水を処理する場合、加熱ガスの温度を上げて吸脱着運転を行う方策があるが、加熱ガスを昇温するためのランニングコストの増大の課題があった。難脱着物質の物性や濃度などに応じて効果的に事前除去できる前処理装置を付帯させて、加熱ガスの昇温を回避して、吸着材の寿命を延命する方策もあるが、完全な事前除去は困難であり、運転時間に応じて徐々に前処理で事前除去されなかった微量の難脱着物質が吸着材に蓄積・残存して劣化するので、前処理装置による吸着材の延命効果が経済的に低いケースもあった。同様に被処理水中に難脱着物質が微量に含まれる場合においても、長時間吸脱着運転を実施すれば、吸着材は劣化する課題があった。   In the case of treating the water to be treated containing such a difficult-to-desorb substance, there is a measure to perform the adsorption / desorption operation by raising the temperature of the heated gas, but there is a problem of increasing the running cost for raising the temperature of the heated gas. . There is also a measure to prolong the life of the adsorbent by adding a pretreatment device that can be effectively removed in advance according to the physical properties and concentration of the hard-to-desorb substance, and avoiding the temperature rise of the heated gas. It is difficult to remove, and a small amount of hard-to-desorb substances that have not been removed in advance by pretreatment gradually accumulates and remains in the adsorbent depending on the operating time, and deteriorates. Some cases were low. Similarly, even when a very small amount of hardly desorbed substance is contained in the water to be treated, there is a problem that the adsorbent deteriorates if the adsorption / desorption operation is performed for a long time.

特開2006−55712号公報JP 2006-55712 A

本発明は、上記技術の課題を背景になされたもので、低沸点の被吸着物質を主成分として含有し、さらに高沸点で難脱着な被吸着物質も共存する被処理水に対して、低コストで高効率で安定的に除去できると共に、吸着材の交換頻度を減らして経済性を高めた水処理装置を提供することを課題とするものである。   The present invention has been made against the background of the above-described technology, and it has a low boiling point for water to be treated which contains an adsorbed substance having a low boiling point as a main component and also has an adsorbed substance having a high boiling point and hardly desorbed. It is an object of the present invention to provide a water treatment device that can be stably removed with high efficiency and at a low cost, and has an improved economy by reducing the frequency of replacement of adsorbents.

本発明者らは、上記課題を解決するため、鋭意検討した結果、ついに本発明を完成するに到った。即ち本発明は、以下の通りである。
(1)二種以上の被吸着物質を含有する被処理水を接触させることで被吸着物質を吸着し、水蒸気を接触させることで吸着した被吸着物質を脱着する繊維状の吸着素子を含み、前記吸着素子に被処理水を供給することで被吸着物質を前記吸着素子に吸着させて処理水として排出する吸着工程と、前記吸着素子に低温水蒸気を供給することで被吸着物質を前記吸着素子から脱着させて、液化凝縮させ、被吸着物質を含有する水を濃縮水として排出する脱着工程とを有し、前記吸着工程と前記脱着工程を交互に繰返す吸脱着運転を実施して、被処理水から被吸着物質を除去して、水を清浄化するとともに、前記吸脱着運転を一定時間実施した後、前記吸着素子に高温水蒸気を供給することで前記吸着素子を再生させる再生工程を行い、その後吸脱着運転を再開することを特徴とする水処理装置。
(2)前記吸着工程と脱着工程の間に、ガスを供給して前記吸着素子に付着した余剰の被処理水を除去してこれを除去水として排出する(1)に記載の水処理装置。
(3)前記除去水の除去に使用するガスが水蒸気である(2)に記載の水処理装置。
(4)前記除去水が、被処理水として供給されるように構成された(2)または(3)に記載の水処理装置。
(5)前記低温水蒸気の温度が100℃以上140℃未満であり、前記高温水蒸気の温度が140℃以上450℃以下である(1)から(4)のいずれかに記載の水処理装置。
(6)前記二種以上の被吸着物質を含有する被処理水が、沸点140℃未満と140℃以上の被吸着物質をそれぞれ一種ずつ以上含む(1)から(5)のいずれかに記載の水処理装置。
As a result of intensive studies in order to solve the above problems, the present inventors have finally completed the present invention. That is, the present invention is as follows.
(1) It includes a fibrous adsorbing element that adsorbs an adsorbed substance by contacting water to be treated containing two or more adsorbed substances, and desorbs an adsorbed substance adsorbed by contacting water vapor; An adsorption process for adsorbing a substance to be adsorbed to the adsorbing element by supplying the water to be adsorbed to the adsorbing element and discharging it as treated water; and supplying the substance to be adsorbed by supplying low-temperature water vapor to the adsorbing element A desorption step of desorbing, condensing, and discharging water containing the adsorbed substance as concentrated water, and performing an adsorption / desorption operation in which the adsorption step and the desorption step are alternately repeated, Removing the adsorbed substance from the water, purifying the water, performing the adsorption / desorption operation for a certain period of time, and then performing a regeneration step of regenerating the adsorption element by supplying high temperature steam to the adsorption element; Then absorb and desorb Water treatment apparatus characterized by resuming operation.
(2) The water treatment apparatus according to (1), wherein a gas is supplied between the adsorption step and the desorption step to remove excess water to be treated adhering to the adsorption element and discharge it as removed water.
(3) The water treatment apparatus according to (2), wherein the gas used for removing the removed water is water vapor.
(4) The water treatment apparatus according to (2) or (3), wherein the removed water is supplied as treated water.
(5) The water treatment apparatus according to any one of (1) to (4), wherein the temperature of the low temperature steam is 100 ° C. or higher and lower than 140 ° C., and the temperature of the high temperature steam is 140 ° C. or higher and 450 ° C. or lower.
(6) The water to be treated containing the two or more kinds of adsorbed substances includes at least one kind of adsorbed substance having a boiling point of less than 140 ° C. and 140 ° C. or more, respectively (1) to (5) Water treatment equipment.

本発明による水処理装置は、難脱着な被処理物質(以下、「難脱着物質」ということがある)が共存する水処理においても、被処理水中の被吸着物質を高い効率で連続的に除去するとともに、基本的に吸着材の交換の必要が無く、低コストに水を清浄化できる利点がある。   The water treatment apparatus according to the present invention continuously removes the adsorbed substances in the treated water with high efficiency even in the water treatment in which the difficultly desorbed substances to be treated (hereinafter sometimes referred to as “hardly desorbed substances”) coexist. In addition, there is basically no need to replace the adsorbent, and there is an advantage that water can be purified at a low cost.

本発明の実施に使用できる水処理装置の構成図の一例である。It is an example of the block diagram of the water treatment apparatus which can be used for implementation of this invention.

以下、本発明の実施の形態について、図を参照して詳細に説明する。なお、以下に示す図の実施の形態においては、同一または対応する部分については、適宜省略し、その説明についても繰り返さないことにする。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the embodiments shown in the drawings, the same or corresponding parts are omitted as appropriate, and the description thereof will not be repeated.

図1は、本発明の実施の形態における水処理装置のシステム構成図の1つである。   FIG. 1 is one of system configuration diagrams of a water treatment apparatus according to an embodiment of the present invention.

本発明における被処理水は、二種以上の被吸着物質を含んでおり、低温水蒸気で脱着が容易な低沸点被吸着物質と低温水蒸気では脱着困難な難脱着物質が含まれている。   The water to be treated in the present invention contains two or more kinds of adsorbed substances, and includes a low boiling point adsorbed substance that can be easily desorbed with low temperature steam and a hardly desorbed substance that is difficult to desorb with low temperature steam.

水処理装置100は、吸着素子としての吸着材111、121がそれぞれ収容された第1処理槽110および第2処理槽120を有している。吸着材111、121は、被処理水を接触させることで被処理水に含有される被吸着物質を吸着する。したがって、水処理装置100においては、吸着材111、121に被処理水を供給することで被吸着物質が吸着材111、121によって吸着され、これにより被処理水が清浄化されて処理水として排出されることになる。吸着材111、121は、水蒸気を接触させることで吸着した被吸着物質が脱着される。第1処理層110および第2処理層120から排出される水蒸気と脱着された被吸着物質は、凝縮器130によって冷却凝縮されて、濃縮水として水処理装置100外へ排出される。   The water treatment apparatus 100 includes a first treatment tank 110 and a second treatment tank 120 in which adsorbents 111 and 121 as adsorption elements are accommodated, respectively. The adsorbents 111 and 121 adsorb the substance to be adsorbed contained in the water to be treated by contacting the water to be treated. Therefore, in the water treatment apparatus 100, by supplying the water to be treated to the adsorbents 111 and 121, the substance to be adsorbed is adsorbed by the adsorbents 111 and 121, whereby the water to be treated is cleaned and discharged as treated water. Will be. The adsorbents adsorbed by adsorbing the water vapor to the adsorbents 111 and 121 are desorbed. The water vapor discharged from the first treatment layer 110 and the second treatment layer 120 and the adsorbed substance desorbed are cooled and condensed by the condenser 130, and are discharged out of the water treatment apparatus 100 as concentrated water.

第1処理槽110および第2処理槽120には、被処理水(原水)の供給ライン、処理水の排出ライン、低温水蒸気の供給ライン、高温水蒸気の供給ライン、濃縮水の排出ラインの配管が接続されており、各ラインにはバルブ等を用いて各処理槽に対して接続/非接続状態に切替えられる流路切替手段が接続された構成となっている。   In the first treatment tank 110 and the second treatment tank 120, there are pipes for a treated water (raw water) supply line, a treated water discharge line, a low temperature steam supply line, a high temperature steam supply line, and a concentrated water discharge line. Each line is connected to a flow path switching means that is switched to a connected / disconnected state with respect to each processing tank using a valve or the like.

次に、低温水蒸気を使用した吸脱着運転(吸着工程と脱着工程の繰返し運転)について説明する。第1処理槽110と第2処理槽120とは、上述したバルブの開閉を操作することによって、交互に吸着槽および脱着槽として機能する。第1処理槽110が吸着槽として機能している場合には、第2処理槽120は脱着槽として機能する。具体的には、被処理水(原水)が第1処理槽110へ供給され、処理水が第1処理槽110から排出されるように流路が確保される場合は、第2処理槽120は低温水蒸気が供給され、濃縮水が第2処理槽120から排出される流路構成となる。本実施の形態における水処理装置100においては、吸着槽(吸着工程)と脱着槽(脱着工程)とが経時的に交互に切り替わるように構成されている。   Next, the adsorption / desorption operation using low-temperature steam (repeated operation of the adsorption process and the desorption process) will be described. The 1st processing tank 110 and the 2nd processing tank 120 function as an adsorption tank and a desorption tank alternately by operating opening and closing of the valve mentioned above. When the 1st processing tank 110 is functioning as an adsorption tank, the 2nd processing tank 120 functions as a desorption tank. Specifically, when the water to be treated (raw water) is supplied to the first treatment tank 110 and a flow path is secured so that the treated water is discharged from the first treatment tank 110, the second treatment tank 120 is A low-temperature steam is supplied, and the concentrated water is discharged from the second treatment tank 120. The water treatment apparatus 100 according to the present embodiment is configured such that the adsorption tank (adsorption process) and the desorption tank (desorption process) are alternately switched over time.

以上に説明した低温水蒸気を使用した吸脱着運転によって、低沸点被吸着物質は吸着材111、121に吸着されて被処理水から除去され、低温水蒸気によって吸着材111、121から脱着して濃縮水に含有されて排出する。難脱着物質は、低温水蒸気では脱着困難なため、基本的には濃縮水に含有せず、低温水蒸気による脱着後も吸着材111、112に残存する。   By the adsorption / desorption operation using the low temperature steam described above, the low boiling point adsorbed substances are adsorbed on the adsorbents 111 and 121 and removed from the water to be treated, and desorbed from the adsorbents 111 and 121 by the low temperature steam and concentrated water. It is contained and discharged. Since the hard-to-desorb substance is difficult to desorb with low-temperature steam, it is basically not contained in concentrated water, and remains in the adsorbents 111 and 112 even after desorption with low-temperature steam.

次に、高温水蒸気を使用した再生について説明する。一定時間、低温水蒸気による吸脱着運転が実施されると、吸着材111、121に残存する難脱着物質の影響で、低沸点被吸着物質の吸着に必要な細孔が閉塞し、吸着効率が低下しはじめる。この段階で、第1処理槽110および第2処理槽120に高温水蒸気が供給され、吸着材111、121が再生される。具体的に第1処理槽110を用いて説明すると、高温水蒸気が第一処理槽へ供給されることによって、吸着材111に吸着した難脱着物質が吸着材111から脱着する事で低沸点被吸着物質の吸着に必要な細孔の閉塞がなくなり(再生)、脱着した難脱着物質は再生水に含有されて排出する。再生が完了すると、低温水蒸気を使用した吸脱着運転に移行する。   Next, regeneration using high-temperature steam will be described. When the adsorption / desorption operation with low-temperature steam is performed for a certain period of time, the pores necessary for adsorption of the low-boiling point adsorbed substances are blocked by the influence of the hardly-desorbed substances remaining on the adsorbents 111 and 121, and the adsorption efficiency decreases. Start to do. At this stage, high-temperature steam is supplied to the first treatment tank 110 and the second treatment tank 120, and the adsorbents 111 and 121 are regenerated. Specifically, the first treatment tank 110 will be used to explain that the low-boiling point adsorbed substance is desorbed from the adsorbent 111 by the desorbed substance adsorbed on the adsorbent 111 by supplying high-temperature steam to the first treatment tank. Occlusion of the pores necessary for the adsorption of the substance disappears (regeneration), and the desorbed difficult-to-desorb substance is contained in the reclaimed water and discharged. When the regeneration is completed, the operation shifts to an adsorption / desorption operation using low-temperature steam.

図示しないが、水処理装置100は、吸着槽から脱着槽に切替わった際に、吸着材111、121に付着する水分を除去(脱水)して除去水として排出してから、脱着を開始する方が好ましい。吸着材111、121の付着水を事前に除去してから脱着を行う方が、脱着効率を高めることができるからである。付着水の除去手段は、自重抜き、圧縮空気・窒素・水蒸気などの高圧ガスでの高速パージ、真空ポンプなどを用いた吸引などの手段が使用できるが、水蒸気が好ましい。パージ処理によるパージガスが発生しないので、別途ガス処理装置を必要とせず、処理槽の予熱ができるので、脱着効率が高まるからである。   Although not shown, when the water treatment apparatus 100 is switched from the adsorption tank to the desorption tank, the water adhering to the adsorbents 111 and 121 is removed (dehydrated) and discharged as removed water, and then desorption is started. Is preferred. This is because the desorption efficiency can be improved by performing desorption after removing the adhering water from the adsorbents 111 and 121 in advance. As the means for removing the adhering water, means such as self-weight removal, high-speed purging with a high-pressure gas such as compressed air, nitrogen, and steam, and suction using a vacuum pump can be used, but steam is preferred. This is because no purge gas is generated by the purge process, so that a separate gas processing apparatus is not required and the processing tank can be preheated, so that the desorption efficiency is increased.

また、除去水は被処理水へ返送され、再度処理されるような構成が好ましい。除去水を他の水処理装置で別途処理する必要がなくなるからである。   Further, it is preferable that the removed water is returned to the water to be treated and treated again. This is because it is not necessary to separately process the removed water with another water treatment apparatus.

また、図1では二つの処理槽を用いて説明したが、処理槽数は特に限定しない。例えば、処理槽は単槽でも良く、脱着および再生中は被処理水をタンクなどに貯めて、脱着および再生後に吸着すれば良い。また、処理槽は三つでも良く、二つの処理槽が吸脱着運転をしている間に、残る一つの処理槽は再生を行い、これを順番に実施する方式でも良い。   Moreover, although FIG. 1 demonstrated using two processing tanks, the number of processing tanks is not specifically limited. For example, the treatment tank may be a single tank, and water to be treated may be stored in a tank or the like during desorption and regeneration and adsorbed after desorption and regeneration. Further, the number of processing tanks may be three, and while the two processing tanks are performing the adsorption / desorption operation, the remaining one processing tank may be regenerated and sequentially performed.

本発明の実施形態における低温水蒸気の温度は100℃以上140℃未満が好ましい。100℃未満では水蒸気が凝縮して脱着に必要な熱量が得られず、140℃以上の場合、二次的に水蒸気を加熱しなければならないので経済的に不利だからである。水蒸気の圧力は特に限定しない。   The temperature of the low-temperature steam in the embodiment of the present invention is preferably 100 ° C. or more and less than 140 ° C. If the temperature is lower than 100 ° C., the water vapor is condensed and the amount of heat necessary for desorption cannot be obtained. If the temperature is 140 ° C. or higher, the water vapor must be heated secondarily, which is economically disadvantageous. The pressure of water vapor is not particularly limited.

本発明の実施形態における高温水蒸気の温度は140℃以上450℃以下が好ましい。140℃未満では難脱着物質の脱着が困難であり、450℃を越えると吸着材の脆化などのリスクが高くなるからである。高温水蒸気の供給方法は、高圧水蒸気を供給したり、二次的に低圧水蒸気を加熱して過熱水蒸気をする方法があり、特に限定はしないが、処理槽の耐圧構造を避ける観点から過熱水蒸気を採用する方が良い。   The temperature of the high-temperature steam in the embodiment of the present invention is preferably 140 ° C. or higher and 450 ° C. or lower. If the temperature is lower than 140 ° C., it is difficult to desorb the hard-to-desorb substance. If the temperature exceeds 450 ° C., the risk of embrittlement of the adsorbent increases. There are methods for supplying high-temperature steam, such as supplying high-pressure steam or secondarily heating low-pressure steam to superheated steam. Although there is no particular limitation, superheated steam is used from the viewpoint of avoiding the pressure-resistant structure of the treatment tank. It is better to adopt.

本発明の実施形態における濃縮水は、被吸着物質の物性などに応じて適宜二次処理すれば良い。例えば、濃縮水を曝気処理して被吸着物質を揮発除去したあと、揮発した被吸着物質を含む曝気ガスを燃焼装置(例えば、触媒酸化装置)で燃焼処理する方法や、濃縮水を廃液燃焼装置にて処理する方法や、被吸着物質が有価物である場合は、蒸留設備や蒸発濃縮装置などで濃縮処理して再利用する方法がある。また、再生水についても、難脱着物質の物性などに応じて適宜二次処理すれば良い。上記濃縮水と混合して二次処理しても良いし、別々に二次処理しても良い。   The concentrated water in the embodiment of the present invention may be appropriately subjected to secondary treatment according to the physical properties of the substance to be adsorbed. For example, after the concentrated water is aerated and the adsorbed substances are removed by volatilization, the aeration gas containing the volatilized adsorbed substances is combusted with a combustion apparatus (for example, catalytic oxidation apparatus), or the concentrated water is treated as a waste liquid combustion apparatus. There is a method of processing in the case of the above, and in the case where the substance to be adsorbed is a valuable material, there is a method of concentrating with a distillation facility or an evaporation concentrator and reusing it. Further, the reclaimed water may be appropriately subjected to secondary treatment according to the physical properties of the hardly desorbable substance. A secondary treatment may be performed by mixing with the concentrated water, or a secondary treatment may be performed separately.

本発明の実施形態における低沸点被吸着物質は沸点140℃未満の被吸着物質とする。例えば、酢酸エチル、酢酸プロピル、酢酸ブチル、ジクロロメタン、ジクロロエタン、トリクロロエチレン、イソプロピルアルコール、エタノール、ブタノール、ベンゼン、トルエン、キシレン、エチルベンゼン、1,4−ジオキサン、2−メチル−1,3−ジオキソラン、ジオキソラン、酢酸、メチルエチルケトン、メチルイソブチルケトン、ヘキサン、プロピレングリコールモノメチルエーテルなどである。   The low boiling point adsorbed substance in the embodiment of the present invention is an adsorbed substance having a boiling point of less than 140 ° C. For example, ethyl acetate, propyl acetate, butyl acetate, dichloromethane, dichloroethane, trichloroethylene, isopropyl alcohol, ethanol, butanol, benzene, toluene, xylene, ethylbenzene, 1,4-dioxane, 2-methyl-1,3-dioxolane, dioxolane, Acetic acid, methyl ethyl ketone, methyl isobutyl ketone, hexane, propylene glycol monomethyl ether and the like.

本発明の実施形態における難脱着物質は沸点140℃以上の物質とする。前述の通り、有機ポリマー、有機オリゴマー、タンパク質、糖類、脂肪酸、脂肪酸エステル、アミン、アミド化合物、油脂、樹脂、界面活性剤、ダイオキシン類、高沸点溶剤などの有機物質や、硫酸塩、硫化物、鉄サビ等の無機物である。また、脱着中に重合反応を起こし、吸着材表面で樹脂化する有機物質も、難脱着物質に含む。例えば、シクロヘキサノン、アクリル酸エステル、エピクロロヒドリン、アジピン酸などである。   The hardly desorbable substance in the embodiment of the present invention is a substance having a boiling point of 140 ° C. or higher. As described above, organic substances such as organic polymers, organic oligomers, proteins, sugars, fatty acids, fatty acid esters, amines, amide compounds, oils and fats, resins, surfactants, dioxins, high-boiling solvents, sulfates, sulfides, It is an inorganic substance such as iron rust. In addition, organic substances that undergo a polymerization reaction during desorption and become a resin on the surface of the adsorbent are also included in the difficult desorption substances. For example, cyclohexanone, acrylic acid ester, epichlorohydrin, adipic acid and the like.

以上において説明した水処理装置とすることにより、水処理装置100は、通常運転では、脱着に低温水蒸気を使用し、高温水蒸気は吸着材の再生が必要な時にのみ使用することで、使用ユーティリティー量の増大を防止しつつ、基本的に吸着材の交換が必要なく、被処理水から高効率に被吸着物質を除去することができる。   By using the water treatment apparatus described above, the water treatment apparatus 100 uses low-temperature steam for desorption in normal operation, and the high-temperature steam is used only when regeneration of the adsorbent is necessary. Therefore, it is possible to remove the substance to be adsorbed from the water to be treated with high efficiency.

また、以上において説明した本発明の実施の形態においては、ポンプ等の流体搬送手段やストレージタンク等の流体貯留手段などの構成要素を特に示すことなく説明を行なったが、これら構成要素は必要に応じて適宜の位置に配置すればよい。   Further, in the embodiment of the present invention described above, the description has been made without particularly showing the components such as the fluid conveying means such as the pump and the fluid storing means such as the storage tank, but these components are necessary. Accordingly, it may be arranged at an appropriate position.

このように、今回開示した上記各実施の形態はすべての点で例示であって、制限的なものではない。本発明の技術的範囲は特許請求の範囲によって画定され、また特許請求の範囲の記載と均等の意味および範囲内でのすべての変更を含むものである。   Thus, the above-described embodiments disclosed herein are illustrative in all respects and are not restrictive. The technical scope of the present invention is defined by the terms of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

評価は下記の方法によりおこなった。
(BET比表面積)
BET比表面積は、液体窒素の沸点(−195.8℃)雰囲気下、相対圧力0.0〜0.15の範囲で上昇させたときの試料への窒素吸着量を数点測定し、BETプロットにより試料単位質量あたりの表面積(m/g)を求めた。
(被吸着物質除去効果)
被処理水は1,4−ジオキサン10mg/Lおよびサイクリックトリマー(CT)0.1mg/Lを含む水とした。サイクリックトリマーとは、ポリエチレンテレフタレート製造過程で生成される有機オリゴマーである。水処理装置の入出の1,4−ジオキサン、CT濃度を測定し、各被吸着物質排出量を算出して除去効果を確認した。
(被吸着物質濃度評価)
1,4−ジオキサンはガスクロマトグラフ法、CTは液体クロマトグラフ法により定量した。
Evaluation was performed by the following method.
(BET specific surface area)
The BET specific surface area was measured by measuring the amount of nitrogen adsorbed on the sample when the relative pressure was raised in the range of 0.0 to 0.15 in the atmosphere of the boiling point of liquid nitrogen (-195.8 ° C), and a BET plot. Was used to determine the surface area (m 2 / g) per unit mass of the sample.
(Adsorbed substance removal effect)
The water to be treated was 1,4-dioxane 10 mg / L and cyclic trimer (CT) 0.1 mg / L. Cyclic trimer is an organic oligomer produced in the process of producing polyethylene terephthalate. The 1,4-dioxane and CT concentrations entering and exiting the water treatment apparatus were measured, and the amount of each adsorbed substance discharged was calculated to confirm the removal effect.
(Adsorbed substance concentration evaluation)
1,4-dioxane was quantified by gas chromatography, and CT was quantified by liquid chromatography.

[実施例1]
システムとしては、図1に示す実施の形態を使用した。
水処理装置の吸着材として、BET比表面積2000m/gの活性炭素繊維を使用した重量0.2kgの吸着素子を2個作成し、図1の水処理装置に設置して、被処理水を処理水量50L/hになるように導入し、処理水を得た。
[Example 1]
As the system, the embodiment shown in FIG. 1 was used.
Two adsorbing elements with a weight of 0.2 kg using activated carbon fibers having a BET specific surface area of 2000 m 2 / g as an adsorbent for the water treatment apparatus are prepared and installed in the water treatment apparatus of FIG. It introduced so that the amount of treated water might be 50 L / h, and obtained treated water.

次に、120℃の低温水蒸気を供給して吸着材の付着水を除去(脱水)した後、除去水は原水へ返送した。次に120℃の低温水蒸気を吸着材に供給し脱着を実施した。吸着素子から排出された脱着ガスは冷却凝縮後に濃縮水として回収した。吸着時間は20min、脱水時間は0.5min、脱着時間は2minの切替サイクルとして吸脱着運転を実施した。運転開始から10時間後の処理水中の1,4−ジオキサン濃度は0.05mg/L以下、CT濃度は0.01mg/L以下であった。   Next, 120 ° C. low temperature steam was supplied to remove (dehydrate) adhering water from the adsorbent, and the removed water was returned to the raw water. Next, desorption was carried out by supplying low-temperature steam at 120 ° C. to the adsorbent. The desorption gas discharged from the adsorption element was recovered as concentrated water after cooling and condensation. The adsorption / desorption operation was carried out as a switching cycle with an adsorption time of 20 min, a dehydration time of 0.5 min, and a desorption time of 2 min. The 1,4-dioxane concentration in the treated water 10 hours after the start of operation was 0.05 mg / L or less, and the CT concentration was 0.01 mg / L or less.

運転開始から800時間後に、吸脱着運転を一時停止させ、120℃の低温水蒸気を電気ヒーターで300℃まで加温させた高温水蒸気を19.5min供給して再生を実施した。吸着素子から排出された再生ガスは冷却凝縮後に再生水として回収した。再生完了後、上記と同様の条件で吸脱着運転を再開させた。表1に示す通り、吸脱着運転の再開から200時間後(運転開始から約1000時間後)の処理水中の1,4−ジオキサン濃度は0.05mg/L以下、CT濃度は0.01mg/L以下であり、高効率に安定的に被吸着物質を除去することが可能であった。   800 hours after the start of operation, the adsorption / desorption operation was temporarily stopped, and regeneration was performed by supplying 19.5 min of high-temperature steam obtained by heating 120 ° C. low-temperature steam to 300 ° C. with an electric heater. The regeneration gas discharged from the adsorption element was recovered as regeneration water after cooling and condensation. After completion of regeneration, the adsorption / desorption operation was resumed under the same conditions as described above. As shown in Table 1, the 1,4-dioxane concentration in the treated water 200 hours after the resumption of the adsorption / desorption operation (about 1000 hours after the start of operation) is 0.05 mg / L or less, and the CT concentration is 0.01 mg / L. The adsorbed substances could be removed stably with high efficiency.

また、表2に示す通り、再生前後の吸着材を採取し、BET比表面積を測定したところ、再生前は1500m/g(表2の数値にあわせました)であるのに対し、再生後は2000m/gであり、高温水蒸気によって運転前の比表面積まで吸着材が再生されている。 In addition, as shown in Table 2, the adsorbent before and after regeneration was collected and the BET specific surface area was measured, and it was 1500 m 2 / g (according to the values in Table 2) before regeneration, but after regeneration. Is 2000 m 2 / g, and the adsorbent is regenerated to a specific surface area before operation by high-temperature steam.

また、表3に示す通り、1000時間で脱着および再生に使用した低温水蒸気量は1120kg、高温水蒸気量は10kg、電気ヒーターの使用電力は0.2kwであった。   As shown in Table 3, the amount of low-temperature water vapor used for desorption and regeneration in 1000 hours was 1120 kg, the high-temperature water vapor amount was 10 kg, and the electric power used by the electric heater was 0.2 kw.

[比較例1]
実施例1の水処理装置を高温水蒸気による再生なしで、1000時間の吸脱着運転を実施した。その際の処理水中の1,4−ジオキサン濃度は、表1に示す通り、5mg/Lと、実施例1の10倍の濃度であった。
[Comparative Example 1]
The water treatment apparatus of Example 1 was subjected to an adsorption / desorption operation for 1000 hours without regeneration with high-temperature steam. As shown in Table 1, the 1,4-dioxane concentration in the treated water at that time was 5 mg / L, which was 10 times the concentration of Example 1.

また、表2に示す通り、1000時間吸脱着運転後のBET比表面積を測定したところ、1500m/gであり、500m/gの比表面積が低減する結果となった。 Moreover, as shown in Table 2, when the BET specific surface area after 1000-hour adsorption / desorption operation was measured, it was 1500 m < 2 > / g, and the specific surface area of 500 m < 2 > / g was reduced.

[比較例2]
実施例1の水処理装置を再生工程なしで、脱着工程に300℃の高温水蒸気を使用して1000時間吸脱着運転を実施した。その際の処理水中の1,4−ジオキサン濃度は0.05mg/L以下、CT濃度は0.01mg/L以下と、実施例1と同様の良好な性能であった。
[Comparative Example 2]
The water treatment apparatus of Example 1 was subjected to an adsorption / desorption operation for 1000 hours using high-temperature steam at 300 ° C. in the desorption step without a regeneration step. The 1,4-dioxane concentration in the treated water at that time was 0.05 mg / L or less, and the CT concentration was 0.01 mg / L or less.

また、1000時間吸脱着運転後のBET比表面積を測定したところ、2000m/gであり、比表面積の低減はない結果となった。 Moreover, when the BET specific surface area after 1000-hour adsorption / desorption operation was measured, it was 2000 m < 2 > / g, and it resulted in the reduction of a specific surface area.

しかし、表3に示す通り、1000時間で脱着に使用した低温水蒸気量は360kg、高温水蒸気量は9000kg、電気ヒーターの使用電力は180kwと実施例1と比べて非常に熱源を使用する結果となった。   However, as shown in Table 3, the amount of low-temperature water vapor used for desorption in 1000 hours was 360 kg, the high-temperature water vapor amount was 9000 kg, and the electric power used by the electric heater was 180 kW, which is a result of using a very heat source compared to Example 1. It was.

100:水処理装置
110:第1処理槽
111:吸着材
120:第2処理槽
121:吸着材
130:凝縮器
100: Water treatment device 110: First treatment tank 111: Adsorbent 120: Second treatment tank 121: Adsorbent 130: Condenser

Claims (7)

吸着素子が収容された処理槽と当該処理槽に接続した配管ラインとを備え、二種以上の被吸着物質を含有する被処理水を前記吸着素子に接触させて被吸着物質を吸着する吸着処理と、前記吸着素子に水蒸気を接触させて吸着した被吸着物質を脱着する脱着処理とを交互に繰返す吸脱着運転を実施して、被処理水を清浄化する水処理装置において、
前記吸脱着運転を一定時間実施した後、前記吸着素子に前記水蒸気よりも高温の高温水蒸気を供給して前記吸着素子を再生する再生処理を実施し、当該再生処理後に、前記吸脱着運転を再開することを特徴とする水処理装置。
An adsorption process comprising a treatment tank in which an adsorbing element is accommodated and a piping line connected to the treatment tank, and adsorbing the adsorbed substance by bringing water to be treated containing two or more adsorbed substances into contact with the adsorbing element If, by carrying out desorption operation repeated alternately and desorption process for desorbing the adsorbed substances adsorbed by contacting the water vapor to the suction device, the water treatment device for cleaning the water to be treated,
After the adsorption-desorption operation carried a certain time, the supplied high-temperature high-temperature steam than the steam suction device carried a reproduction process for reproducing the adsorption element, after the regeneration process, resuming the adsorption-desorption operation The water treatment apparatus characterized by performing.
前記吸着工処理と前記脱着処理との間に、ガスを供給して前記吸着素子に付着した余剰の被処理水を除去してこれを除去水として排出する請求項1に記載の水処理装置。 The water treatment apparatus according to claim 1, wherein a gas is supplied between the adsorption process and the desorption process to remove excess water to be treated adhering to the adsorption element and discharge it as removed water. 前記除去水の除去に使用するガスが水蒸気である請求項2に記載の水処理装置。   The water treatment apparatus according to claim 2, wherein the gas used for removing the removed water is water vapor. 前記除去水が、被処理水として供給されるように構成された請求項2または3に記載の水処理装置。   The water treatment apparatus according to claim 2 or 3, wherein the removed water is supplied as treated water. 前記水蒸気の温度が100℃以上140℃未満であり、前記高温水蒸気の温度が140℃以上450℃以下である請求項1から4のいずれか1項に記載の水処理装置。 The temperature of the steam is lower than 140 ° C. 100 ° C. or higher, the water treatment apparatus according to any one of claims 1 to 4 the temperature of the high-temperature water vapor is 450 ° C. or less 140 ° C. or higher. 前記二種以上の被吸着物質を含有する被処理水が、沸点140℃未満の被吸着物質と140℃以上の被吸着物質をそれぞれ一種以上含む請求項1から5のいずれか1項に記載の水処理装置。 The treated water containing two or more of the adsorption material, according to any one of 5 and the adsorbed substance and 140 ° C. or more adsorbates having a boiling point of lower than 140 ° C. claim 1, each containing more than one Water treatment equipment. 吸着素子を用いて被処理水を清浄化する水処理方法において、  In a water treatment method for cleaning water to be treated using an adsorption element,
二種以上の被吸着物質を含有する被処理水を前記吸着素子に接触させて被吸着物質を吸着する吸着処理と、前記吸着素子に水蒸気を接触させて吸着した被吸着物質を脱着する脱着処理とを交互に繰返す吸脱着工程と、  An adsorption process in which water to be treated containing two or more kinds of substances to be adsorbed is brought into contact with the adsorption element to adsorb the substance to be adsorbed, and a desorption process in which the adsorbed substance adsorbed by bringing water vapor into contact with the adsorption element is desorbed. And an adsorption / desorption process that repeats alternately,
前記吸脱着工程を一定時間実施した後、前記吸着素子に前記水蒸気よりも高温の高温水蒸気を供給して前記吸着素子を再生する再生工程と、を含み  And a regeneration step of regenerating the adsorbing element by supplying the adsorbing element with high-temperature steam at a temperature higher than the water vapor after performing the adsorption / desorption process for a certain period of time.
前記再生工程後に、前記吸脱着工程を再開することを特徴とする水処理方法。  The water treatment method characterized by restarting the adsorption / desorption step after the regeneration step.
JP2015004088A 2015-01-13 2015-01-13 Water treatment equipment Active JP6414470B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015004088A JP6414470B2 (en) 2015-01-13 2015-01-13 Water treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015004088A JP6414470B2 (en) 2015-01-13 2015-01-13 Water treatment equipment

Publications (2)

Publication Number Publication Date
JP2016129862A JP2016129862A (en) 2016-07-21
JP6414470B2 true JP6414470B2 (en) 2018-10-31

Family

ID=56415105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015004088A Active JP6414470B2 (en) 2015-01-13 2015-01-13 Water treatment equipment

Country Status (1)

Country Link
JP (1) JP6414470B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114262014A (en) * 2021-12-24 2022-04-01 江苏南大环保科技有限公司 Constant liquid level variable cross section adsorption device and application thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5016353A (en) * 1973-06-15 1975-02-20
JPS60225641A (en) * 1984-04-25 1985-11-09 Zousui Sokushin Center Regeneration of fibrous activated carbon
DE4433225A1 (en) * 1994-09-17 1996-03-21 Huels Chemische Werke Ag Groundwater purification process
JP4234496B2 (en) * 2003-05-29 2009-03-04 新菱冷熱工業株式会社 Method and apparatus for regenerating activated carbon and air purification system incorporating the same
JP4875473B2 (en) * 2006-11-27 2012-02-15 新日鉄エンジニアリング株式会社 Gasification gas purification method
JP4335292B1 (en) * 2008-08-07 2009-09-30 有限会社Jトップサービス Water treatment apparatus and water treatment method
JP5029590B2 (en) * 2008-12-18 2012-09-19 東洋紡績株式会社 Wastewater treatment system

Also Published As

Publication number Publication date
JP2016129862A (en) 2016-07-21

Similar Documents

Publication Publication Date Title
JP5643680B2 (en) Method and apparatus for removing organic solvent
JP5990722B2 (en) Volatile organic compound recovery equipment
JP2015000381A (en) Organic solvent recovery system
JP2019136640A (en) Method for determining performance recovery possibility of active charcoal, active charcoal regeneration method and active charcoal reuse system
JP6332599B2 (en) Water treatment system
JP6393965B2 (en) Wastewater treatment system
CN109503314B (en) Method for recovering trichloroethane in tail gas in sucralose production
JP6414470B2 (en) Water treatment equipment
JP6409589B2 (en) Water treatment equipment
CN110935281B (en) Adsorption and regeneration device and method for solid adsorbent for adsorbing volatile organic compounds
JP2010142790A (en) System for treating exhaust
CN104289072A (en) Cascade recovery apparatus and method for benzene hydrocarbon volatile gases
JP2009273975A (en) System for treatment of gas containing organic solvent
JP6332586B2 (en) Water treatment device and water treatment system
JP2012081411A (en) Solvent dehydrator
JP6582851B2 (en) Organic solvent recovery system
JP6699129B2 (en) Water treatment system
JP6428992B2 (en) Wastewater treatment system
JP3922449B2 (en) Organic solvent recovery system
JP5978808B2 (en) Wastewater treatment system
KR20050090774A (en) Apparatus and method for decomposing volatile organic compound of facilities for storing oil
JP6661898B2 (en) Water treatment system
JP2012081412A (en) Solvent dehydrator
JP6720599B2 (en) Purification system and purification method
JP2016193412A (en) Organic solvent-containing gas treating system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180918

R151 Written notification of patent or utility model registration

Ref document number: 6414470

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350