JP4728984B2 - Gasification gas purification method and purification device - Google Patents

Gasification gas purification method and purification device Download PDF

Info

Publication number
JP4728984B2
JP4728984B2 JP2007060913A JP2007060913A JP4728984B2 JP 4728984 B2 JP4728984 B2 JP 4728984B2 JP 2007060913 A JP2007060913 A JP 2007060913A JP 2007060913 A JP2007060913 A JP 2007060913A JP 4728984 B2 JP4728984 B2 JP 4728984B2
Authority
JP
Japan
Prior art keywords
activated carbon
gasification gas
gas
gasification
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007060913A
Other languages
Japanese (ja)
Other versions
JP2007296513A (en
Inventor
雅也 栗田
一毅 村橋
重 御手洗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Engineering Co Ltd
Nippon Steel Plant Designing Corp
Original Assignee
Nittetsu Plant Designing Corp
Nippon Steel Corp
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Plant Designing Corp, Nippon Steel Corp, Nippon Steel Engineering Co Ltd filed Critical Nittetsu Plant Designing Corp
Priority to JP2007060913A priority Critical patent/JP4728984B2/en
Publication of JP2007296513A publication Critical patent/JP2007296513A/en
Application granted granted Critical
Publication of JP4728984B2 publication Critical patent/JP4728984B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Processing Of Solid Wastes (AREA)

Description

本発明は、廃プラスチックやバイオマス等の有機性廃棄物又は石炭等の固体有機物を熱分解して得られたガス化ガスの浄化方法及び浄化装置に関し、とくに活性炭充填塔を用いたガス化ガスの浄化方法及び浄化装置に関する。   The present invention relates to a purification method and purification device for gasification gas obtained by pyrolyzing organic waste such as waste plastic and biomass or solid organic matter such as coal, and in particular, the purification of gasification gas using an activated carbon packed tower. The present invention relates to a purification method and a purification device.

近年、地球環境保全とくに地球温暖化防止の一環として、エネルギーの有効利用が改めて注目されるなかで、廃プラスチックやバイオマス等の有機性廃棄物の持つエネルギーを有効利用する方法として、有機性廃棄物を熱分解し可燃性ガスを得る、いわゆるガス化が注目を集めている。   In recent years, effective use of energy has been attracting attention as part of global environmental conservation, especially prevention of global warming. Organic waste is a method for effectively using energy of organic waste such as waste plastic and biomass. So-called gasification, which obtains a combustible gas by pyrolyzing the gas, is attracting attention.

ところが、ガス化によって得られた可燃性ガス、すなわちガス化ガスには有機性廃棄物に含まれる塩素分に起因するダイオキシンが含まれているので、ガス化ガスの利用にあたってはダイオキシンの除去が必要である。また、有機性廃棄物のガス化ガスにはダイオキシンのほか、タール分や軽質油分等の常温常圧で液体若しくは固体である高沸点炭化水素化合物(本願明細書では単に「高沸点炭化水素化合物」という。ここで、「高沸点炭化水素化合物」の沸点は概ね60℃以上である。)が含まれている。これらの高沸点炭化水素化合物は、沸点以下の温度でも高い蒸気圧を持ち、冷却等によって除去することが難しく、ガス中に残存する高沸点炭水素化合物は、ガス化ガスの温度が低下すると凝縮し、ガス配管やその付帯設備に付着して設備トラブルを引き起こす原因となる。したがって、ダイオキシンと共にガス化ガス中から除去する必要がある。   However, combustible gas obtained by gasification, that is, gasification gas contains dioxin due to chlorine contained in organic waste, so it is necessary to remove dioxin when using gasification gas It is. In addition to dioxins, organic waste gasification gases include high-boiling hydrocarbon compounds that are liquid or solid at normal temperature and pressure, such as tar and light oil (in the present specification, simply “high-boiling hydrocarbon compounds”). Here, the boiling point of the “high-boiling hydrocarbon compound” is approximately 60 ° C. or higher). These high boiling hydrocarbon compounds have a high vapor pressure even at temperatures below the boiling point and are difficult to remove by cooling, etc., and the high boiling hydrocarbon compounds remaining in the gas condense when the temperature of the gasification gas decreases. In addition, it may cause equipment trouble by adhering to the gas piping and its ancillary equipment. Therefore, it is necessary to remove from gasification gas with dioxin.

従来、ガス中のダイオキシンを除去する技術として、特許文献1には、ダイオキシンを触媒層により分解し、残分のダイオキシンを活性炭層により吸着するという技術が開示されている。しかし、この特許文献1の技術は、おもに可燃性物質を燃焼させた後の燃焼排ガスを処理対象とするものであり、特許文献1の技術を有機性廃棄物のガス化ガスの処理に適用すると、触媒層ではダイオキシン以外の炭化水素ガスも分解され煤が発生するので、すぐに閉塞し失活する。また、活性炭層ではダイオキシン以外に上述の高沸点炭化水素化合物が吸着され、活性炭の活性を持続させることができない。持続させるためには、常に新しい活性炭を使用する必要があり、運転費が高くなる。   Conventionally, as a technique for removing dioxins in a gas, Patent Document 1 discloses a technique in which dioxins are decomposed by a catalyst layer and the remaining dioxins are adsorbed by an activated carbon layer. However, the technique of this patent document 1 is mainly intended for treating the combustion exhaust gas after burning a combustible substance, and when the technique of patent document 1 is applied to the treatment of gasification gas of organic waste. In the catalyst layer, hydrocarbon gases other than dioxins are also decomposed and soot is generated. Moreover, in the activated carbon layer, the above-described high boiling point hydrocarbon compound is adsorbed in addition to dioxin, and the activity of the activated carbon cannot be maintained. In order to sustain it, it is necessary to always use new activated carbon, which increases operating costs.

また、特許文献2には、バグフィルター等の集塵装置を設け、その上流側で粉末状の活性炭を吹き込み、バグフィルターのろ布表面上に活性炭層を形成し、その活性炭にダイオキシンを吸着させるという技術が開示されている。しかし、この特許文献2の技術においても、これを有機性廃棄物のガス化ガスの処理に適用すると、ガス化ガスに含まれる上述の高沸点炭化水素化合物によって目詰まり等のトラブルが発生し、安定的な運転を継続することができない。   In Patent Document 2, a dust collector such as a bag filter is provided, and powdered activated carbon is blown upstream thereof to form an activated carbon layer on the filter cloth surface of the bag filter, and dioxins are adsorbed on the activated carbon. This technique is disclosed. However, even in the technique of this Patent Document 2, when this is applied to the treatment of gasification gas of organic waste, troubles such as clogging occur due to the above-mentioned high boiling point hydrocarbon compound contained in the gasification gas, Stable operation cannot be continued.

一方、特許文献3及び特許文献4には、排気ガス中の溶剤等の炭化水素、軽質油分を除去するために活性炭を用いた浄化技術が開示されている。しかし、活性炭により有機性廃棄物のガス化ガスに含まれる軽質油分を除去する場合には、ガスの原料が廃棄物であることから原料の性状が安定しないのでガス浄化の制御が難しく、また、ガス化ガス中には軽質油分だけでなくタール分が含まれるので、タール分を含むガスを活性炭で浄化すると、タール分が活性炭から離脱しにくいため、活性炭の寿命が短くなる。   On the other hand, Patent Document 3 and Patent Document 4 disclose a purification technique using activated carbon to remove hydrocarbons such as solvents and light oil in exhaust gas. However, when the light oil contained in the gasification gas of organic waste is removed by activated carbon, it is difficult to control gas purification because the raw material of the gas is waste and the properties of the raw material are not stable. Since the gasified gas contains not only light oil but also tar, if the gas containing tar is purified by activated carbon, the tar is not easily separated from the activated carbon, and the life of the activated carbon is shortened.

また、特許文献5及び特許文献6には、バイオマスを熱分解して得られたバイオマスガス(ガス化ガス)を活性炭を用いて浄化する技術が開示されている。しかし、この技術ではガス処理温度が高く、分子量が大きくて沸点の高いタール分を吸着除去することは可能であるが、分子量が小さくて沸点が比較的低く、高揮発性であって、常温常圧で液状の炭化水素化合物、いわゆる軽質油分を吸着除去することはできない。軽質油分はガス利用の際に、配管中で冷却され、ドレン化する。このドレンは揮発性のきわめて高い引火性油であるため取り扱いが難しい。また、性状の均一なバイオマス以外を原料としたガス化ガスの場合、タール分の発生量及び性状が変化し、活性炭吸着層が閉塞したり、軽質油分がガス利用設備に流れ、トラブルとなる可能性がある。とくに廃プラスチック、石炭等の化石燃料、あるいは化石燃料を原材料とする固体有機物をガス化する場合には、タール分及び軽質油分の量が多く、上記技術による手法では十分な浄化を行うことができない。   Patent Documents 5 and 6 disclose a technique for purifying biomass gas (gasification gas) obtained by pyrolyzing biomass using activated carbon. However, with this technology, it is possible to adsorb and remove tar components having a high gas treatment temperature and a high molecular weight and a high boiling point, but they have a low molecular weight, a relatively low boiling point, a high volatility, and a normal temperature. It is impossible to adsorb and remove liquid hydrocarbon compounds, so-called light oil components, under pressure. Light oil is cooled in the piping and drained when using gas. Since this drain is a highly volatile flammable oil, it is difficult to handle. In addition, in the case of gasification gas using raw materials other than biomass with uniform properties, the generation amount and properties of tar may change, the activated carbon adsorption layer may be clogged, and light oil may flow to the gas utilization facility, causing problems. There is sex. In particular, when fossil fuels such as waste plastics and coal, or solid organic substances made from fossil fuels are gasified, the amount of tar and light oil is large, and the above-mentioned technique cannot perform sufficient purification. .

このように、従来、活性炭を用いてガスを浄化する技術は種々提案されているが、高沸点炭化水素化合物とくにタール分及び軽質油分を多く含むガス化ガスを浄化する場合、上述のような問題があり、活性炭を用いたガス化ガスの浄化技術は確立されていない。   As described above, various techniques for purifying gas using activated carbon have been proposed in the past. However, when purifying gasification gas containing a high boiling point hydrocarbon compound, particularly tar and light oil, the above-mentioned problems are required. However, gasification gas purification technology using activated carbon has not been established.

これに対して、活性炭を用いないガス化ガスの浄化技術も提案されている。例えば特許文献7には、有機性廃棄物をガス化後、酸素及び水蒸気と反応させ、1100℃程度の高温での改質反応により、ガス化ガス中のタール分や軽質油分を低減させる技術が提案されている。しかし、このような改質反応を用いたガスの浄化技術では、改質反応に必要な熱源を得るためにガス化ガスの部分燃焼が必要となり、ガス化ガスの持つエネルギーを消費されガスカロリーが低下するという問題がある。また、改質反応に用いる酸素の製造にエネルギーを多く必要とし、廃棄物処理に必要な総エネルギーが大きくなりすぎる。   On the other hand, a gasification gas purification technique that does not use activated carbon has also been proposed. For example, Patent Document 7 discloses a technology for reducing tar content and light oil content in gasified gas by gasification of organic waste, reaction with oxygen and water vapor, and reforming reaction at a high temperature of about 1100 ° C. Proposed. However, gas purification technology using such a reforming reaction requires partial combustion of the gasified gas in order to obtain a heat source required for the reforming reaction. There is a problem of lowering. In addition, the production of oxygen used for the reforming reaction requires a lot of energy, and the total energy required for waste treatment becomes too large.

他のガス洗浄技術としては、コークス炉ガスの浄化技術に見られるように、低温下でガスを油で洗浄し、ガス中のタール分及び軽質油分等を除去する技術がある。しかし、この技術では、低温下で洗浄を行うにあたり冷熱源を得るためにエネルギーが必要である。また、洗浄後の排水に高度な処理が必要となり、さらに油を再生する工程等が必要となり、再生時に発生するガスの処理等、設備が複雑になる傾向にある。また、ガスの洗浄によってはダイオキシンを除去することはできない。   As another gas cleaning technology, as seen in coke oven gas purification technology, there is a technology in which gas is cleaned with oil at a low temperature to remove tar content and light oil content in the gas. However, with this technique, energy is required to obtain a cold heat source for cleaning at low temperatures. Moreover, advanced treatment is required for the waste water after washing, and further, a step of regenerating oil and the like is required, and facilities such as treatment of gas generated at the time of regeneration tend to be complicated. Further, dioxins cannot be removed by gas cleaning.

このように、ガス中のダイオキシン及びタール分、軽質油分等の高沸点炭化水素化合物を同時に除去してガスを浄化するには、やはり活性炭を用いて乾式処理することが有用かつ簡便であり、活性炭を用いたガス化ガスの浄化技術の確立が望まれている。   Thus, in order to purify the gas by simultaneously removing high-boiling hydrocarbon compounds such as dioxin, tar, and light oil in the gas, it is useful and simple to dry-process using activated carbon. Establishing gasification gas purification technology using methane is desired.

一方で、有機物を熱分解し可燃性のガス化ガスを得る場合、ガス化ガスの利用にあたってはメタン等の炭化水素ガスを残し、ガスのカロリーを高く保つことが望ましい。但し、その場合、タール分及び軽質油分が副生しガス利用の妨げとなる。したがって、この点からもガス化ガス中のタール分及び軽質油分を除去する浄化技術の確立が望まれている。
特開2003−112012号公報 特開平11−230529号公報 特開平9−215908号公報 特開2005−66503号公報 特開2006−16469号公報 特開2006−16470号公報 特開2004−238535号公報
On the other hand, when an organic substance is thermally decomposed to obtain a combustible gasification gas, it is desirable to keep hydrocarbon gas such as methane and keep gas calorie high when using the gasification gas. In this case, however, tar and light oil are by-produced and hinder gas utilization. Therefore, establishment of the purification technology which removes the tar content and light oil content in gasification gas also from this point is desired.
Japanese Patent Laid-Open No. 2003-112012 JP-A-11-230529 JP-A-9-215908 JP 2005-66503 A JP 2006-16469 A JP 2006-16470 A JP 2004-238535 A

本発明が解決しようとする課題は、総括的には、活性炭を用いたガス化ガスの浄化技術を確立し、利用可能な高カロリーガスを得ることにある。   The problem to be solved by the present invention is to establish a purification technology for gasification gas using activated carbon and obtain a usable high calorie gas.

具体的には、ガス化ガス中の高沸点炭化水素化合物の吸着によって活性炭の吸着能力が低下したとしても、その吸着能力を効率的に回復させて、装置のガス浄化能力を持続させることのできるガス化ガスの浄化方法及び浄化装置を提供することにある。   Specifically, even if the adsorption capacity of the activated carbon is reduced due to the adsorption of the high-boiling hydrocarbon compound in the gasification gas, the adsorption capacity can be efficiently recovered and the gas purification capacity of the apparatus can be maintained. An object of the present invention is to provide a purification method and a purification device for gasification gas.

本発明は、有機性廃棄物又は石炭等の固体有機物を熱分解して得られたガス化ガスを複数の活性炭吸着塔からなる活性炭式吸着装置に通し、活性炭にガス化ガス中の高沸点炭化水素化合物を吸着させるガス化ガスの浄化方法において、前記高沸点炭化水素化合物の吸着によって吸着能力の低下した活性炭吸着塔についてはガス化ガスの通ガスを遮断し、蒸気を通すことで吸着した前記高沸点炭化水素化合物を離脱させ廃蒸気として蒸気側に吐き出させて吸着能力を回復させ、その後、ガス化ガスの通ガスを再開させ、活性炭吸着塔から吐き出された前記高沸点炭化水素化合物を含む廃蒸気あるいは廃蒸気が凝縮した廃ドレンを、有機性廃棄物又は石炭等の固体有機物を熱分解してガス化するガス化炉、又はガス化炉に熱を供給する燃焼炉に吹き込み熱源とすることを特徴とする。 In the present invention, gasification gas obtained by pyrolyzing organic waste or solid organic matter such as coal is passed through an activated carbon type adsorption device comprising a plurality of activated carbon adsorption towers, and activated carbon is subjected to high boiling point carbonization in the gasification gas. In the gasification gas purification method for adsorbing a hydrogen compound, the activated carbon adsorption tower whose adsorption capacity is reduced by adsorption of the high boiling point hydrocarbon compound is blocked by passing the gasification gas and adsorbed by passing steam. The high boiling point hydrocarbon compound is released and discharged to the vapor side as waste vapor to recover the adsorption capacity. After that, the gasification gas is restarted, and the high boiling point hydrocarbon compound discharged from the activated carbon adsorption tower is included. Waste steam or waste drain condensed with waste steam is blown into a gasification furnace that thermally decomposes organic waste or solid organic matter such as coal into gasification, or a combustion furnace that supplies heat to the gasification furnace. Characterized in that the write heat source.

本発明では、代表的には有機性廃棄物として廃プラスチック、又は固体有機物として石炭をガス化する。   In the present invention, waste plastic is typically gasified as organic waste, or coal is gasified as solid organic matter.

有機性廃棄物又は固体有機物のガス化ガス中には、ダイオキシン及び高沸点炭化水素化合物が含まれる。また、高沸点炭化水素化合物としては、ナフタレン、アントラセン等のタール分(炭素原子数が10以上の高分子炭化水素化合物)とベンゼン、トルエン、キシレン等の軽質油分(炭素原子数が10未満の低分子炭化水素化合物)が含まれる。これらのダイオキシン及び高沸点炭化水素化合物は、ガス化ガスの有効利用にあたり除去する必要があるが、本発明では、上述のように、複数の活性炭吸着塔からなる活性炭式吸着装置によって、有機性廃棄物又は固体有機物のガス化ガス中に可燃性ガスとともに含まれるダイオキシン及び高沸点炭化水素化合物を除去する。   The organic waste or solid organic gasification gas contains dioxin and a high-boiling hydrocarbon compound. High boiling point hydrocarbon compounds include tar components such as naphthalene and anthracene (polymer hydrocarbon compounds having 10 or more carbon atoms) and light oil components such as benzene, toluene and xylene (low carbon number of less than 10). Molecular hydrocarbon compounds). These dioxins and high-boiling hydrocarbon compounds need to be removed for effective use of gasification gas. In the present invention, as described above, the activated carbon-type adsorption device composed of a plurality of activated carbon adsorption towers is used for organic disposal. Dioxins and high-boiling hydrocarbon compounds contained together with combustible gas in the gasification gas of the product or solid organic matter are removed.

すなわち、活性炭吸着塔に充填されている活性炭には表面に無数の細孔が開いており、この細孔にダイオキシン及び高分子炭化水素化合物の分子が入り込むことで吸着されガス化ガスから除去される。   That is, the activated carbon packed in the activated carbon adsorption tower has innumerable pores on the surface, and dioxin and polymer hydrocarbon compound molecules enter the pores to be adsorbed and removed from the gasification gas. .

そして、活性炭式吸着装置を構成する複数の活性炭吸着塔のうち、高沸点炭化水素化合物の吸着によって吸着能力の低下した活性炭吸着塔についてはガス化ガスの通ガスを遮断し、蒸気を通すことで、活性炭の細孔に吸着していた高沸点炭化水素化合物を気化離脱させ、活性炭の持つ細孔を復活させ、吸着能力を回復させることができる。   And among the plurality of activated carbon adsorption towers constituting the activated carbon adsorption apparatus, for the activated carbon adsorption tower whose adsorption capacity is reduced by adsorption of the high boiling point hydrocarbon compound, the gasification gas passage is shut off and the vapor is allowed to pass. The high boiling point hydrocarbon compound adsorbed on the pores of the activated carbon can be vaporized and released, the pores of the activated carbon can be restored, and the adsorption ability can be restored.

その後、吸着能力を回復させた活性炭吸着塔についてガス化ガスの通ガスを再開させる。この操作を繰り返すことで装置のガス浄化能力を持続させることができる。   Thereafter, the gasification gas passing through the activated carbon adsorption tower whose adsorption capacity has been restored is restarted. By repeating this operation, the gas purification capacity of the apparatus can be maintained.

このガス化ガスの浄化方法を実施するため、本発明の浄化装置では、有機性廃棄物又は固体有機物を熱分解して得られたガス化ガス中のダイオキシン及び高沸点炭化水素化合物を吸着させる複数の活性炭吸着塔ならなる活性炭式吸着装置を有するガス化ガスの浄化装置において、それぞれの活性炭吸着塔のガス導入側及び排出側に開閉弁を設けるとともに、それぞれの活性炭吸着塔に活性炭を再生するための蒸気を供給する蒸気供給配管を設け、さらに、活性炭吸着塔から吐き出された前記高沸点炭化水素化合物を含む廃蒸気あるいは廃蒸気が凝縮した廃ドレンを、有機性廃棄物又は石炭等の固体有機物を熱分解してガス化するガス化炉、又はガス化炉に熱を供給する燃焼炉に戻す配管を設けるIn order to carry out this gasification gas purification method, in the purification apparatus of the present invention, a plurality of dioxins and high-boiling hydrocarbon compounds in the gasification gas obtained by pyrolyzing organic waste or solid organic matter are adsorbed. In the gasification gas purification apparatus having an activated carbon type adsorption device that is an activated carbon adsorption tower, an open / close valve is provided on the gas introduction side and the discharge side of each activated carbon adsorption tower, and the activated carbon is regenerated in each activated carbon adsorption tower. The waste steam containing the high boiling point hydrocarbon compound discharged from the activated carbon adsorption tower or the waste drain condensed with the waste steam is converted into organic waste or solid organic matter such as coal. A pipe for returning to a gasification furnace for pyrolyzing the gas to a gasification furnace or a combustion furnace for supplying heat to the gasification furnace is provided .

すなわち、高沸点炭化水素化合物の吸着によって吸着能力の低下した活性炭吸着塔については、そのガス導入側及び排出側に設けた開閉弁を閉にしてガス化ガスの通ガスを遮断し、蒸気を通すことで吸着能力を回復させる。その後、開閉弁を開にしてガス化ガスの通ガスを再開させる。   That is, for activated carbon adsorption towers that have reduced adsorption capacity due to adsorption of high-boiling hydrocarbon compounds, the on-off valves provided on the gas introduction side and the discharge side are closed to shut off the gasification gas and allow the vapor to pass. To restore the adsorption capacity. Thereafter, the on-off valve is opened to restart the gasification gas flow.

また、本発明では、活性炭吸着塔から吐き出された高沸点炭化水素化合物を含む廃蒸気あるいは廃蒸気が凝縮した廃ドレンを、有機性廃棄物又は固体有機物を熱分解してガス化するガス化炉、又はガス化炉に熱を供給する燃焼炉に吹き込み熱源とする回収された廃蒸気あるいは廃ドレンには、高沸点炭化水素化合物のほかダイオキシン等の有機性塩素化合物を含んでいることが多く、とくに有機性塩素化合物は毒性が強いものが多く、取り扱いが困難である。そこで、上述のように、回収された廃蒸気あるいは廃ドレンを隣接するガス化炉又は燃焼炉に吹き込むことで、これを焼却処理し無害化して放散することができる。 Further, in the present invention, a gasification furnace that gasifies waste waste containing high boiling point hydrocarbon compounds discharged from an activated carbon adsorption tower or waste drain condensed with waste steam, by thermally decomposing organic waste or solid organic matter. Alternatively, the heat source is blown into a combustion furnace that supplies heat to the gasification furnace . The recovered waste steam or drainage often contains high-boiling hydrocarbon compounds and organic chlorine compounds such as dioxins. In particular, organic chlorine compounds are often highly toxic and difficult to handle. is there. Therefore, as described above, the recovered waste steam or waste drain is blown into an adjacent gasification furnace or combustion furnace, so that it can be incinerated and made harmless and dissipated.

すなわち、この方法によれば、活性炭吸着塔の回復過程で発生した廃蒸気あるいは廃ドレンを、新たに排水処置装置等の無害化処理装置を設けることなく、効率的に無害化することができる。   That is, according to this method, waste steam or waste drain generated in the recovery process of the activated carbon adsorption tower can be efficiently rendered harmless without newly providing a harmless treatment device such as a waste water treatment device.

ガス化炉又は燃焼炉に吹き込む方法としては、廃蒸気のまま吹き込む方法と、廃蒸気をドレン化して廃ドレンとし、油水分離装置を用いて水分と油分に分離し、油分を吹き込む方法を採用することができる。廃ドレン化する場合、油分と分離された水分は別途焼却若しくは排水処理後系外に排出することができる。廃ドレン化する方法としては廃蒸気の排出口にコンデンサ等を設けて冷却する方法を採用することができる。   As a method of blowing into the gasification furnace or combustion furnace, a method of blowing the waste steam as it is, a method of draining the waste steam into waste drain, separating it into water and oil using an oil-water separator, and blowing the oil are adopted. be able to. In the case of waste draining, the oil and the separated water can be discharged out of the system after incineration or waste water treatment. As a method of waste draining, a method of cooling by providing a condenser or the like at the exhaust port of the waste steam can be employed.

また、本発明では、ガス化ガスを活性炭式吸着装置に通す前に、ガス化ガス中に含まれるミスト状の水分、高沸点炭化水素化合物のうちタール分、及び固体の煤塵を除去し、その後、ガス化ガスを活性炭式吸着装置に通すようにすることができる。有機性廃棄物又は固体有機物のガス化ガスには、高沸点炭化水素化合物として軽質油分のほかにタール分も含まれる。タール分は高沸点炭化水素化合物のうち比較的高分子のもので、活性炭に吸着させると離脱が困難となり、活性炭の寿命を著しく縮めることがある。このため、本発明では、ガス化ガスを活性炭式吸着装置に通す前にタール分を除去することが好ましい。   Further, in the present invention, before passing the gasification gas through the activated carbon-type adsorption device, mist-like moisture contained in the gasification gas, tar content in the high-boiling hydrocarbon compound, and solid dust are removed, and then The gasification gas can be passed through an activated carbon adsorption device. The gasification gas of organic waste or solid organic matter contains tar as well as light oil as a high-boiling hydrocarbon compound. The tar content is a relatively high molecular weight hydrocarbon compound of high boiling point, and when adsorbed on activated carbon, it becomes difficult to detach and may significantly shorten the life of the activated carbon. For this reason, in this invention, it is preferable to remove a tar content before letting gasification gas pass an activated carbon type adsorption apparatus.

ガス化ガスの活性炭式吸着装置入側でのタール分の濃度は、1g/Nm以下とすることが好ましい。このように、事前にタール分を除去ことで、活性炭を保護し、その活性を長期間維持することができる。また、タール分と共にミスト状の水分及び固体の煤塵も除去する方が好ましい。 The tar content of the gasification gas on the inlet side of the activated carbon adsorption device is preferably 1 g / Nm 3 or less. Thus, by removing the tar content in advance, the activated carbon can be protected and its activity can be maintained for a long time. It is also preferable to remove mist-like moisture and solid dust together with the tar content.

活性炭吸着塔を通過するガス化ガスの相対湿度が100%に近いと、活性炭吸着塔中の活性炭がガス化ガス中に含まれるミスト状の水分を吸着し、必要な活性を得ることができなくなる。したがって、事前にタール分と共にミスト状の水分及び固体の煤塵を除去することが好ましい。タール分、ミスト状の水分及び固体の煤塵を除去する手段としては、電気集塵機、サイクロン等の集塵装置を活性炭式吸着装置の上流に設けることができる。   When the relative humidity of the gasification gas passing through the activated carbon adsorption tower is close to 100%, the activated carbon in the activated carbon adsorption tower adsorbs the mist-like water contained in the gasification gas and cannot obtain the required activity. . Therefore, it is preferable to remove the mist-like water and solid dust together with the tar content in advance. As means for removing tar content, mist-like moisture, and solid dust, a dust collector such as an electric dust collector or a cyclone can be provided upstream of the activated carbon adsorption device.

また、本発明では、ガス化ガスを活性炭式吸着装置に通す前にガス温度を60℃以下まで冷却し、冷却後のガス化ガス中に含まれるミスト状の水分、高沸点炭化水素化合物のうちタール分、及び固体の煤塵を除去し、その後、ガス化ガスを加熱した上で活性炭式吸着装置に通すようにすることもできる。   Further, in the present invention, the gas temperature is cooled to 60 ° C. or lower before the gasified gas is passed through the activated carbon-type adsorption device, and the mist-like moisture contained in the gasified gas after cooling, The tar content and solid soot can be removed, and then the gasification gas can be heated and passed through an activated carbon adsorption device.

このように、ガス化ガスのガス温度を60℃以下、好ましくは40℃以下まで冷却することで、ガス化ガス中のタール分や水分のミスト化が促進され、活性炭式吸着装置にガス化ガスを通す前にタール分、水分及び固体の煤塵を確実に除去することができる。   Thus, by cooling the gas temperature of the gasification gas to 60 ° C. or less, preferably 40 ° C. or less, the mist formation of the tar content and moisture in the gasification gas is promoted, and the gasification gas is introduced into the activated carbon adsorption device. Tar, moisture and solid soot can be reliably removed before passing.

そして、タール分、水分及び固体の煤塵を除去した後にガス化ガスを加熱し、その後活性炭式吸着装置に通すことで、活性炭式吸着装置でのガス化ガスのドレン化を抑制することができ、活性炭の活性を長期間維持することができる。   And after removing the tar content, moisture and solid dust, heating the gasification gas, and then passing through the activated carbon adsorption device, it is possible to suppress the draining of the gasification gas in the activated carbon adsorption device, The activity of the activated carbon can be maintained for a long time.

タール分、水分及び固体の煤塵を除去する前のガス化ガスの温度は、タール分及び水分をミスト化する上では低いほど良いが、20℃以下では、ミスト化の効果に対しランニングコストが大きくなるため好ましくない。   The temperature of the gasification gas before removing the tar content, moisture and solid dust is better when the tar content and moisture are misted. However, at 20 ° C. or less, the running cost is large for the effect of mist formation. Therefore, it is not preferable.

タール分、水分及び固体の煤塵を除去した後のガス化ガスの温度は、相対湿度が60%以下となるよう昇温の温度を制御する。このように、ガス化ガスを活性炭式吸着装置に通す前に、冷却し、タール分、水分及び固体の煤塵を除去し、その後加熱するために、本発明の浄化装置では、活性炭式吸着装置の上流側に、ガス冷却装置、集塵装置、ガス加熱装置を順に設けることができる。   The temperature of the gasification gas after removing tar, moisture and solid dust is controlled so that the relative humidity is 60% or less. Thus, in order to cool the gasified gas before passing it through the activated carbon type adsorption device, to remove tar, moisture and solid dust, and then to heat it, the purification device of the present invention uses the activated carbon type adsorption device. A gas cooling device, a dust collector, and a gas heating device can be provided in this order on the upstream side.

また、本発明では、活性炭吸着塔に通す蒸気の温度を80〜300℃の範囲とすることができる。活性炭吸着塔に通す蒸気の温度が80〜150℃程度の低温である場合、活性炭吸着塔中の活性炭に吸着された高沸点炭化水素化合物のうち、分子量が小さく沸点が比較的低いベンゼン、トルエン、キシレン等の軽質油分については離脱させることが可能である。蒸気温度が80〜150℃の場合、ナフタレン、アントラセンといった、分子量が100以上と大きく沸点が高いタール分については離脱させることは困難である。   Moreover, in this invention, the temperature of the vapor | steam passed through an activated carbon adsorption tower can be made into the range of 80-300 degreeC. When the temperature of the vapor passing through the activated carbon adsorption tower is a low temperature of about 80 to 150 ° C., among the high boiling point hydrocarbon compounds adsorbed on the activated carbon in the activated carbon adsorption tower, benzene, toluene, having a low molecular weight and a relatively low boiling point, Light oil such as xylene can be removed. When the steam temperature is 80 to 150 ° C., it is difficult to remove tar components such as naphthalene and anthracene having a molecular weight of 100 or more and a high boiling point.

したがって、タール分の沸点以上若しくは沸点に近い温度、具体的には80〜300℃の範囲の蒸気を用いることで、活性炭からタール分も離脱させることができ、活性炭の吸着能力を確実に回復させることができる。   Therefore, by using steam at a temperature equal to or higher than the boiling point of the tar content, specifically, steam in the range of 80 to 300 ° C., the tar content can be separated from the activated carbon, and the adsorption ability of the activated carbon is reliably recovered. be able to.

また、本発明では、2塔以上の活性炭吸着塔からなる活性炭式吸着装置をガス化ガスの流れ方向に直列に2段設置し、1段目の活性炭式吸着装置において活性炭吸着塔の吸着能力回復のために通す蒸気の温度を、2段目の活性炭式吸着装置において活性炭吸着塔の吸着能力回復のために通す蒸気の温度よりも高くするようにすることができる。   Further, in the present invention, the activated carbon type adsorption apparatus comprising two or more activated carbon adsorption towers is installed in two stages in series in the gasification gas flow direction, and the adsorption capacity of the activated carbon adsorption tower is recovered in the first activated carbon type adsorption apparatus. The temperature of the steam that is passed for the purpose can be made higher than the temperature of the steam that is passed to recover the adsorption capacity of the activated carbon adsorption tower in the second stage activated carbon type adsorption apparatus.

活性炭式吸着装置を1段のみ設置した場合、分子量の小さい軽質油分と分子量の大きいタール分の両方が1つの活性炭吸着塔に吸着される。そうすると、その活性炭吸着塔の吸着能力を完全に回復させるには上述のとおり高温の蒸気が必要となり、ランニングコストが高くなる。   When only one stage of the activated carbon adsorption device is installed, both the light oil component having a small molecular weight and the tar component having a large molecular weight are adsorbed by one activated carbon adsorption tower. Then, in order to completely recover the adsorption capacity of the activated carbon adsorption tower, high-temperature steam is required as described above, and the running cost becomes high.

ガス化ガス中のタール分については上述とおり事前に除去することができるが、完全に除去することは困難であるので、量は少ないながらもタール分は活性炭吸着塔で吸着され、結局のところ、その活性炭吸着塔の吸着能力の回復には高温の蒸気が必要となる。これに対して、活性炭式吸着装置をガス化ガスの流れ方向に直列に2段設置すると、1段目の活性炭式吸着装置でタール分等の高分子炭化水素化合物が吸着され、2段目の活性炭式吸着装置では残りの軽質油分等の低分子炭化水素化合物が吸着される。   The tar content in the gasification gas can be removed in advance as described above, but since it is difficult to completely remove the tar content, the tar content is adsorbed by the activated carbon adsorption tower even though the amount is small. High temperature steam is required to restore the adsorption capacity of the activated carbon adsorption tower. On the other hand, when the activated carbon type adsorption device is installed in two stages in series in the gasification gas flow direction, the first stage activated carbon type adsorption device adsorbs the polymer hydrocarbon compound such as tar and the like. In the activated carbon type adsorption apparatus, the remaining low-molecular hydrocarbon compounds such as light oil are adsorbed.

したがって、2段目の活性炭式吸着装置において活性炭吸着塔の吸着能力の回復に使用する蒸気の温度は、1段目の活性炭式吸着装置におけるそれに比べて低くすることができ、ランニングコストを抑えることができる。さらに、1段目の活性炭式吸着装置の上流側にて集塵装置等でタール分を除去するようにすれば、1段目の活性炭式吸着装置で吸着されるタール分の量が少なくなり、製造にエネルギーの必要な高温の蒸気を用いた吸着能力の回復操作の頻度が少なくて済み、ランニングコストをさらに抑えることができる。   Therefore, the temperature of the steam used to recover the adsorption capacity of the activated carbon adsorption tower in the second stage activated carbon adsorption device can be lower than that in the first stage activated carbon adsorption device, and the running cost can be reduced. Can do. Furthermore, if the tar content is removed by a dust collector on the upstream side of the first stage activated carbon type adsorption device, the amount of the tar content adsorbed by the first stage activated carbon type adsorption device is reduced, The frequency of the adsorption capacity recovery operation using high-temperature steam that requires energy for production can be reduced, and the running cost can be further reduced.

また、1段目と2段目の活性炭式吸着装置で用いる活性炭としては、細孔の大きさを変えることにより、1段目は高分子吸着用、2段目は低分子吸着用のものを使用することができる。   Also, the activated carbon used in the first and second stage activated carbon adsorption devices can be used for polymer adsorption by changing the size of the pores. Can be used.

なお、本発明で浄化処理するガス化ガスの成分範囲としては、例えば、H=5〜60vol%(dry)、CO=5〜50vol%(dry)、CO=3〜30vol%(dry)、CH=0.1〜30vol%(dry)を含み、かつダイオキシン濃度が0.1ng/Nm以上である。他の成分例は、H=5〜60vol%(dry)、CO=5〜50vol%(dry)、CO=3〜30vol%(dry)、CH=0.1〜30vol%(dry)を含み、かつベンゼン、トルエン、キシレンの濃度の合計が1g/Nm(dry)以上かつ50g/Nm(dry)以下である。 As the component range of the gasification gas purification treatment in the present invention, for example, H 2 = 5~60vol% (dry ), CO = 5~50vol% (dry), CO 2 = 3~30vol% (dry) CH 4 = 0.1 to 30 vol% (dry), and the dioxin concentration is 0.1 ng / Nm 3 or more. Examples of other components are H 2 = 5 to 60 vol% (dry), CO = 5 to 50 vol% (dry), CO 2 = 3 to 30 vol% (dry), CH 4 = 0.1 to 30 vol% (dry) And the total concentration of benzene, toluene and xylene is 1 g / Nm 3 (dry) or more and 50 g / Nm 3 (dry) or less.

また、これらの成分例において、炭素原子を7個以上持つ高沸点炭化水素化合物であるタールの濃度が10mg/Nm(dry)以上のものである。また、これらの成分例において、ガス中に含まれる水分の飽和温度が20℃以上100℃以下のものである。 In these component examples, the concentration of tar, which is a high-boiling hydrocarbon compound having 7 or more carbon atoms, is 10 mg / Nm 3 (dry) or more. In these component examples, the saturation temperature of water contained in the gas is 20 ° C. or higher and 100 ° C. or lower.

本発明によれば、ガス化ガス中の高沸点炭化水素化合物の吸着によって複数の活性炭吸着塔うち一つの吸着能力が低下したとしても、その吸着能力の低下した活性炭吸着塔に蒸気を通すことにより吸着能力を効率的に回復させるので、装置のガス浄化能力を持続させることができる。   According to the present invention, even if the adsorption capacity of one of the plurality of activated carbon adsorption towers is reduced due to the adsorption of the high-boiling hydrocarbon compound in the gasification gas, by passing steam through the activated carbon adsorption tower having the reduced adsorption capacity. Since the adsorption capacity is efficiently recovered, the gas purification capacity of the apparatus can be maintained.

また、ガス化ガス中のタール分及び軽質油分を安定的に除去できるので、ガス化温度、改質温度を下げた運転が可能となり、高カロリーのガス化ガスを安定的に得ることができる。そして、ガス温度を上昇させるために必要なエネルギー、酸素量等を減らすことが可能で、より安価に高カロリーのガス化ガスを得ることが可能となる。   Moreover, since the tar content and light oil content in the gasification gas can be stably removed, an operation with the gasification temperature and the reforming temperature lowered can be performed, and a high calorie gasification gas can be stably obtained. In addition, it is possible to reduce the energy, oxygen amount, and the like necessary for increasing the gas temperature, and it is possible to obtain a high calorie gasified gas at a lower cost.

さらに、回収したタール分及び軽質油分を熱分解用の熱源として利用することができ、システムの熱効率を高めることができる。   Furthermore, the recovered tar content and light oil content can be used as a heat source for thermal decomposition, and the thermal efficiency of the system can be increased.

以下、図面に示す実施例及び参考例に基づき本発明の実施の形態を説明する。 Embodiments of the present invention will be described below based on examples and reference examples shown in the drawings.

図1は本発明の第1参考例を示す装置構成図である。 FIG. 1 is an apparatus configuration diagram showing a first reference example of the present invention.

図1において、活性炭式吸着装置1は3塔の活性炭吸着塔1a〜1cからなる。有機性廃棄物をガス化するガス化炉2で得られたガス化ガスは、ガス化ガス供給本管3を通り、その後、それぞれ活性炭吸着塔1a〜1cに通じるガス化ガス供給支管3a〜3cを通り、活性炭吸着塔1a〜1cにその下部から導入される。   In FIG. 1, the activated carbon adsorption device 1 includes three activated carbon adsorption towers 1 a to 1 c. The gasification gas obtained in the gasification furnace 2 for gasifying organic waste passes through the gasification gas supply main 3, and then gasification gas supply branches 3a to 3c leading to the activated carbon adsorption towers 1a to 1c, respectively. And is introduced into the activated carbon adsorption towers 1a to 1c from below.

活性炭吸着塔1a〜1cにガス化ガスが導入されると、ガス化ガス中のダイオキシン及び高沸点炭化水素化合物が活性炭吸着塔1a〜1c内の活性炭に吸着され、その後、ガス化ガスは、活性炭吸着塔1a〜1c上部に接続されたガス化ガス排出支管4a〜4cから排出され、ガス化ガス排出本管4に合流し、ガス利用設備5まで搬送される。ガス化ガスの具体的な利用先としては、加熱炉、コークス炉等の工業炉用の燃料、ガスエンジンやガスタービン用の燃料、ボイラ燃料、熱風炉用の燃料等が挙げられる。   When the gasification gas is introduced into the activated carbon adsorption towers 1a to 1c, dioxins and high-boiling hydrocarbon compounds in the gasification gas are adsorbed on the activated carbon in the activated carbon adsorption towers 1a to 1c, and then the gasification gas is activated carbon. The gas is discharged from the gasification gas discharge branch pipes 4 a to 4 c connected to the upper portions of the adsorption towers 1 a to 1 c, joins the gasification gas discharge main pipe 4, and is conveyed to the gas utilization facility 5. Specific uses of gasified gas include fuel for industrial furnaces such as heating furnaces and coke ovens, fuel for gas engines and gas turbines, boiler fuel, fuel for hot stove furnaces, and the like.

ガス化ガス供給支管3a〜3c及びガス化ガス排出支管4a〜4cには、それぞれ開閉弁3d〜3f及び開閉弁4d〜4fが設けられている。また、それぞれの活性炭吸着塔1a〜1cには、上部に蒸気供給本管6から分岐した蒸気供給支管6a〜6cが接続され、下部に廃蒸気排出支管7a〜7cが接続されている。蒸気供給支管6a〜6c及び廃蒸気排出支管7a〜7cには、それぞれ開閉弁6d〜6f及び開閉弁7d〜7fが設けられている。   The gasification gas supply branch pipes 3a to 3c and the gasification gas discharge branch pipes 4a to 4c are provided with on-off valves 3d to 3f and on-off valves 4d to 4f, respectively. Further, each of the activated carbon adsorption towers 1a to 1c is connected to steam supply branch pipes 6a to 6c branched from the steam supply main pipe 6 at the upper part and to waste steam discharge branch pipes 7a to 7c at the lower part. The steam supply branch pipes 6a to 6c and the waste steam discharge branch pipes 7a to 7c are provided with on-off valves 6d to 6f and on-off valves 7d to 7f, respectively.

なお、ガス化炉2としては、シャフト炉、ロータリーキルン炉、流動床炉、固定床炉、噴流炉等、各種の炉を使用することができる。また、ガス化炉2の加熱方式としては、生成したガス化ガスの一部燃焼させて熱源とする部分燃焼方式と、外部熱源を使用する外熱方式のいずれでもよい。   In addition, as the gasification furnace 2, various furnaces, such as a shaft furnace, a rotary kiln furnace, a fluidized bed furnace, a fixed bed furnace, a jet-flow furnace, can be used. Further, the heating method of the gasification furnace 2 may be either a partial combustion method in which the generated gasified gas is partially burned to be a heat source, or an external heat method using an external heat source.

以上の構成において、操業時には、3塔ある活性炭吸着塔1a〜1cのうち、2塔にガス化ガスを通ガスしてガス化ガスを浄化し、残りの1塔にはガス化ガスを通ガスせずに蒸気を通し、吸着した高沸点炭化水素化合物を離脱させ廃蒸気として蒸気側に吐き出させて吸着能力を回復させる。   In the above configuration, during operation, among the three activated carbon adsorption towers 1a to 1c, gasification gas is passed through two towers to purify the gasification gas, and gasification gas is passed through the remaining one tower. Without passing the vapor, the adsorbed high boiling point hydrocarbon compound is released and discharged to the vapor side as waste vapor to recover the adsorption capacity.

例えば、活性炭吸着塔1a、1bにガス化ガスを通ガスする際には、活性炭吸着塔1a、1bにガス化ガスを供給するガス化ガス供給支管3a、3bの開閉弁3d、3eを開にすると共に、活性炭吸着塔1a、1bからガス化ガスを排出するガス化ガス排出支管4a、4bの開閉弁4d、4eを開にする。そして、活性炭吸着塔1a、1bに蒸気を導入する蒸気供給支管6a、6bの開閉弁6d、6e及び活性炭吸着塔1a、1bから廃蒸気を排出する廃蒸気排出支管7a、7bの開閉弁7d、7eを閉にする。これにより、ガス化ガスが活性炭吸着塔1a、1bに通ガスされ、ガス化ガス中のダイオキシン及び高沸点炭化水素化合物が吸着除去される。   For example, when passing the gasification gas to the activated carbon adsorption towers 1a and 1b, the on-off valves 3d and 3e of the gasification gas supply branch pipes 3a and 3b for supplying the gasification gas to the activated carbon adsorption towers 1a and 1b are opened. At the same time, the on-off valves 4d and 4e of the gasification gas discharge branches 4a and 4b for discharging the gasification gas from the activated carbon adsorption towers 1a and 1b are opened. And on-off valves 6d, 6e of steam supply branch pipes 6a, 6b for introducing steam into activated carbon adsorption towers 1a, 1b and on-off valves 7d of waste steam discharge branch pipes 7a, 7b for discharging waste steam from activated carbon adsorption towers 1a, 1b, 7e is closed. As a result, the gasification gas is passed through the activated carbon adsorption towers 1a and 1b, and the dioxins and high-boiling hydrocarbon compounds in the gasification gas are adsorbed and removed.

そして、残りの活性炭吸着塔1cについては、ガス化ガス供給支管3cの開閉弁3f及びガス化ガス排出支管4cの開閉弁4fを閉にすると共に、蒸気供給支管6cの開閉弁6f及び廃蒸気排出支管7cの開閉弁7fを開にする。   For the remaining activated carbon adsorption tower 1c, the on-off valve 3f of the gasification gas supply branch 3c and the on-off valve 4f of the gasification gas discharge branch 4c are closed, and the on-off valve 6f of the steam supply branch 6c and waste steam discharge are closed. The on-off valve 7f of the branch pipe 7c is opened.

これによって、活性炭吸着塔1cへのガス化ガスの通ガスが遮断され、代わりに蒸気が通される。この蒸気によって活性炭吸着塔1に吸着していた高沸点炭化水素化合物が離脱し廃蒸気として蒸気側に排出され、活性炭吸着塔1の吸着能力が回復する。廃蒸気は活性炭吸着塔1下部より廃蒸気排出支管7cを介して排出され、蒸気排出本管7に合流後、所定の場所まで搬送される。   As a result, the gasification gas passing through the activated carbon adsorption tower 1c is blocked and steam is passed instead. The high boiling point hydrocarbon compound adsorbed on the activated carbon adsorption tower 1 is released by this vapor and discharged to the vapor side as waste vapor, so that the adsorption capacity of the activated carbon adsorption tower 1 is restored. The waste steam is discharged from the lower part of the activated carbon adsorption tower 1 through the waste steam discharge branch pipe 7c, and after joining the steam discharge main pipe 7, is transported to a predetermined place.

その後、ガス化ガスを通ガス中の活性炭吸着塔1a、1bのいずれかの吸着能力が低下したら、あるいはガス化ガスの通ガスから所定の時間が経過したら、上述のような開閉弁の操作により、吸着能力の低下したいずれか一方の活性炭吸着塔へのガス化ガスの通ガスを遮断する。代わりに吸着能力を回復させておいた活性炭吸着塔1cにガス化ガスを通ガスするようにする。   Thereafter, when the adsorption capacity of any one of the activated carbon adsorption towers 1a and 1b in the gasification gas is reduced or when a predetermined time has elapsed from the gasification gas passage, the operation of the on-off valve as described above is performed. Then, the gasification gas flow to any one of the activated carbon adsorption towers having reduced adsorption capacity is shut off. Instead, the gasification gas is passed through the activated carbon adsorption tower 1c whose adsorption capacity has been recovered.

このように、本参考例では、3塔ある活性炭吸着塔1a〜1cのうち、2塔にガス化ガスを通ガスし、残りの1塔については吸着能力の回復操作を行い、吸着能力の回復操作を行う活性炭吸着塔を順次切り替えて行くことで、吸着能力を維持しつつ連続的にガス化ガスの浄化処理を行うことができる。 Thus, in this reference example , among the three activated carbon adsorption towers 1a to 1c, gasification gas is passed through two towers, and the remaining one tower is subjected to an operation for recovering the adsorption capacity to recover the adsorption capacity. By sequentially switching the activated carbon adsorption tower that performs the operation, the purification process of the gasification gas can be performed continuously while maintaining the adsorption capacity.

なお、操業条件としては、活性炭吸着塔1a〜1cに導入するガス化ガスのガス温度は100℃以下としておくことが好ましい。ガス温度が100℃超ではガス化ガス中の高沸点炭化水素化合物の蒸気圧が高くなり、活性炭による吸着力よりも揮発力が高くなり、吸着能力が十分に確保できない。ガス温度は好ましくは60℃以下とする。ただし、ガス温度を40℃以下にしようとすると、例えば、ガス化ガスの冷却に必要な冷却水の温度を冷却塔等の一般的な設備で得ることができなくなり、冷凍機が必要となる。冷凍機の利用は設備コスト及びランニングコストにおいて大きな負担となるため好ましくない。また、活性炭吸着塔の吸着能力回復のために導入する蒸気の温度は、80〜300℃とする。   In addition, as operation conditions, it is preferable that the gas temperature of the gasification gas introduce | transduced into activated carbon adsorption tower 1a-1c shall be 100 degrees C or less. If the gas temperature exceeds 100 ° C., the vapor pressure of the high-boiling hydrocarbon compound in the gasification gas becomes high, the volatility becomes higher than the adsorption power by the activated carbon, and sufficient adsorption capacity cannot be secured. The gas temperature is preferably 60 ° C. or lower. However, if the gas temperature is set to 40 ° C. or lower, for example, the temperature of the cooling water necessary for cooling the gasification gas cannot be obtained by general equipment such as a cooling tower, and a refrigerator is required. Use of a refrigerator is not preferable because it imposes a heavy burden on equipment costs and running costs. Moreover, the temperature of the vapor | steam introduce | transduced for the adsorption capacity recovery | restoration of an activated carbon adsorption tower shall be 80-300 degreeC.

図2は本発明の第実施例を示す装置構成図である。この実施例では、活性炭式吸着装置1は2塔の活性炭吸着塔1a、1bからなる。操業開始時には、両方の活性炭吸着塔1a、1bにガス化ガスを通ガスし、その後、いずれかの活性炭吸着塔の吸着能力が低下したら、あるいはガス化ガスの通ガスから所定の時間が経過したら、吸着能力の低下したいずれか一方の活性炭吸着塔へのガス化ガスの通ガスを遮断する。 FIG. 2 is an apparatus configuration diagram showing a first embodiment of the present invention. In this embodiment, the activated carbon adsorption device 1 includes two activated carbon adsorption towers 1a and 1b. At the start of operation, gasification gas is passed through both activated carbon adsorption towers 1a and 1b, and after that, if the adsorption capacity of any activated carbon adsorption tower decreases, or if a predetermined time elapses from the gasification gas passage. Then, the gasification gas flow to any one of the activated carbon adsorption towers having reduced adsorption capacity is shut off.

例えば、活性炭吸着塔1aへの通ガスを遮断する場合、ガス化ガス供給支管3aの開閉弁3d及びガス化ガス排出支管4aの開閉弁4dを閉にする。そして、蒸気供給支管6aの開閉弁6d及び廃蒸気排出支管7aの開閉弁7dを開にして、活性炭吸着塔1に蒸気を通ガスして吸着能力を回復させる。吸着能力が回復したら、蒸気供給支管6aの開閉弁6d及び廃蒸気排出支管7aの開閉弁7dを閉にすると共に、ガス化ガス供給支管3aの開閉弁3d及びガス化ガス排出支管4aの開閉弁4dを開にしてガス化ガスの通ガスを再開する。   For example, when shutting off gas flow to the activated carbon adsorption tower 1a, the on-off valve 3d of the gasification gas supply branch 3a and the on-off valve 4d of the gasification gas discharge branch 4a are closed. Then, the on-off valve 6d of the steam supply branch 6a and the on-off valve 7d of the waste steam discharge branch 7a are opened, and steam is passed through the activated carbon adsorption tower 1 to restore the adsorption capacity. When the adsorption capacity is restored, the on-off valve 6d of the steam supply branch 6a and the on-off valve 7d of the waste steam discharge branch 7a are closed, and the on-off valve 3d of the gasification gas supply branch 3a and the on-off valve of the gasification gas discharge branch 4a 4d is opened and gasification gas passage is resumed.

その後、もう一つの活性炭吸着塔1bの吸着能力が低下したら、活性炭吸着塔1aの場合と同様に、ガス化ガスの通ガスを遮断後、蒸気を通して吸着能力を回復させ、その後、ガス化ガスの通ガスを再開する。この実施例では、このような操作を繰り返すことで、吸着能力を維持しつつ連続的にガス化ガスの浄化処理を行うことができる。   After that, when the adsorption capacity of the other activated carbon adsorption tower 1b is reduced, the gasification gas is shut off and then the adsorption capacity is recovered through steam, as in the case of the activated carbon adsorption tower 1a. Restart the gas flow. In this embodiment, by repeating such an operation, it is possible to continuously purify the gasification gas while maintaining the adsorption capacity.

また、この実施例では、活性炭吸着塔の吸着能力回復時に排出される廃蒸気あるいは廃蒸気が凝縮した廃ドレンを、廃蒸気排出本管7を介して、ガス化炉2に熱を供給する燃焼炉2aに吹き込む。これにより、廃蒸気あるいは廃ドレンに含まれる高沸点炭化水素化合物を燃焼炉2aの燃料の一部として有効利用できると共に、廃蒸気あるいは廃ドレンに含まれる有機性塩素化合物等の有害物を焼却処理し無害化して放散することができる。   Further, in this embodiment, the combustion for supplying heat to the gasification furnace 2 through the waste steam discharge main 7 from the waste steam discharged when the adsorption capacity of the activated carbon adsorption tower is recovered or the waste drain condensed. Blow into furnace 2a. As a result, the high boiling point hydrocarbon compound contained in the waste steam or waste drain can be effectively used as part of the fuel in the combustion furnace 2a, and the harmful substances such as the organic chlorine compound contained in the waste steam or waste drain are incinerated. It can be detoxified and released.

図3は本発明の第実施例を示す装置構成図である。この実施例は、先の第実施例の変形例で、活性炭吸着塔の吸着能力回復時に排出される廃蒸気あるいは廃蒸気が凝縮した廃ドレンを、直接、ガス化炉2に吹き込み部分燃焼させるようにしたものである。 FIG. 3 is an apparatus configuration diagram showing a second embodiment of the present invention. This embodiment is a modification of the first embodiment described above, and waste steam discharged when the adsorption capacity of the activated carbon adsorption tower is recovered or waste drain condensed with the waste steam is directly blown into the gasification furnace 2 for partial combustion. It is what I did.

図4は本発明の第実施例を示す装置構成図である。この実施例は、図2に示した第実施例の装置構成において、活性炭式吸着装置1の上流側に、ガス化ガス中に含まれるミスト状の水分、高沸点炭化水素のうちタール分、及び固体の煤塵を除去する集塵装置として電気集塵機8を設けたものである。 FIG. 4 is an apparatus configuration diagram showing a third embodiment of the present invention. In this embodiment, in the apparatus configuration of the first embodiment shown in FIG. 2, on the upstream side of the activated carbon type adsorption apparatus 1, the mist-like moisture contained in the gasification gas, the tar content of the high-boiling hydrocarbons, In addition, an electrostatic precipitator 8 is provided as a dust collector for removing solid dust.

電気集塵機8は乾式、湿式のいずれでもよく、また、集塵装置としては、電気集塵機8のほか、サイクロン、濾過式、スクラバ式のものを使用してもよい。   The electric dust collector 8 may be either a dry type or a wet type, and the dust collector may be a cyclone, a filtration type or a scrubber type in addition to the electric dust collector 8.

このように、活性炭式吸着装置1の上流側に電気集塵機8を設けて事前にタール分、水分及び固体の煤塵を除去することで、活性炭吸着塔の活性炭を保護し、その活性を長期間維持することができる。なお、図4に示すように、電気集塵機8の上流側で、前処理として水スクラバや油スクラバによるガス洗浄等のガス処理を行ってもよい。   In this way, the electrostatic precipitator 8 is provided upstream of the activated carbon type adsorption device 1 to remove the tar, moisture and solid dust beforehand, thereby protecting the activated carbon of the activated carbon adsorption tower and maintaining its activity for a long period of time. can do. As shown in FIG. 4, gas treatment such as gas scrubbing with a water scrubber or an oil scrubber may be performed as a pretreatment on the upstream side of the electric dust collector 8.

図5は本発明の第実施例を示す装置構成図である。この実施例は、図4に示した第実施例の装置構成において、電気集塵機8の上流側にガス化ガスを冷却するガス冷却装置(冷却塔)9を設けると共に、電気集塵機8の流側にガス化ガスを加熱するガス加熱装置10を設けたものである。 FIG. 5 is an apparatus configuration diagram showing a fourth embodiment of the present invention. This embodiment is the apparatus configuration of the third embodiment shown in FIG. 4, the gas cooling device for cooling the gasification gas in the upstream side of the electrostatic precipitator 8 is provided with the (cooling tower) 9, under flow of an electric precipitator 8 A gas heating device 10 for heating the gasification gas is provided on the side.

このように、電気集塵機8の上流側にガス冷却装置9を設けてガス化ガスのガス温度を60℃以下、好ましくは40℃以下まで冷却することで、ガス化ガス中のタール分や水分のミスト化が促進され、活性炭式吸着装置1にガス化ガスを通す前に電気集塵機8にてタール分、水分及び固体の煤塵を確実に除去することができる。そして、タール分、水分及び固体の煤塵を除去した後にガス化ガスをガス加熱装置10にて加熱し、その後活性炭式吸着装置1に通すことで、活性炭式吸着装置1でのガス化ガスのドレン化を抑制することができ、活性炭の活性を長期間維持することができる。   Thus, by providing the gas cooling device 9 upstream of the electrostatic precipitator 8 and cooling the gas temperature of the gasification gas to 60 ° C. or less, preferably 40 ° C. or less, the content of tar or moisture in the gasification gas is reduced. Mistization is promoted, and tar, moisture, and solid dust can be reliably removed by the electric precipitator 8 before passing the gasification gas through the activated carbon adsorption device 1. Then, after removing the tar content, moisture and solid dust, the gasified gas is heated by the gas heating device 10 and then passed through the activated carbon type adsorption device 1, thereby draining the gasification gas in the activated carbon type adsorption device 1. The activation of activated carbon can be maintained for a long time.

図6は本発明の第2参考例を示す装置構成図である。この参考例では、2塔の活性炭吸着塔からなる活性炭式吸着装置をガス化ガスの流れ方向に直列に2段設けたものである。 FIG. 6 is an apparatus configuration diagram showing a second reference example of the present invention. In this reference example , an activated carbon type adsorption device comprising two activated carbon adsorption towers is provided in two stages in series in the gasification gas flow direction.

このように活性炭式吸着装置を直列に2段設けると、1段目の活性炭式吸着装置1でタール分等の高分子炭化水素化合物が吸着され、2段目の活性炭式吸着装置11では残りの軽質油分等の低分子炭化水素化合物が吸着される。したがって、2段目の活性炭式吸着装置11において活性炭吸着塔の吸着能力の回復に使用する蒸気の温度は、1段目の活性炭式吸着装置1におけるそれに比べて低くすることができ、ランニングコストを抑えることができる。   Thus, when two stages of activated carbon type adsorption apparatuses are provided in series, the first stage activated carbon type adsorption apparatus 1 adsorbs the polymer hydrocarbon compound such as tar, and the second stage activated carbon type adsorption apparatus 11 Low molecular hydrocarbon compounds such as light oil are adsorbed. Therefore, the temperature of the steam used for the recovery of the adsorption capacity of the activated carbon adsorption tower in the second stage activated carbon type adsorption apparatus 11 can be made lower than that in the first stage activated carbon type adsorption apparatus 1, and the running cost can be reduced. Can be suppressed.

さらに、1段目の活性炭式吸着装置1の上流側にて先の第4実施例及び第5実施例で説明したように電気集塵装置等でタール分を除去するようにすれば、1段目の活性炭式吸着装置1で吸着されるタール分の量が少なくなり、高温の蒸気を用いた吸着能力の回復操作の頻度が少なくて済み、ランニングコストをさらに抑えることができる。なお、この実施例では、1段目と2段目の活性炭式吸着装置で用いる活性炭としては、細孔の大きさを変えることにより、1段目は高分子吸着用、2段目は低分子吸着用のものを使用した。   Furthermore, if the tar content is removed with an electrostatic precipitator or the like as described in the previous fourth and fifth embodiments on the upstream side of the first-stage activated carbon adsorption device 1, one-stage The amount of tar content adsorbed by the activated carbon type adsorption device 1 is reduced, the frequency of the adsorption capacity recovery operation using high-temperature steam is reduced, and the running cost can be further suppressed. In this embodiment, as the activated carbon used in the first and second stage activated carbon adsorption devices, the first stage is for polymer adsorption, the second stage is for low molecular weight by changing the size of the pores. The one for adsorption was used.

以上、各実施例及び参考例では、有機性廃棄物を熱分解して得られるガス化ガスの浄化方法について説明したが、本発明のガス化ガスの浄化方法は、有機性廃棄物を熱分解して得られるガス化ガスだけでなく、石炭等の固体有機物を熱分解して得られるガス化ガス、例えばコークス炉ガスや石炭ガス化燃料ガスにも適用可能である。 As described above, in each of the examples and the reference examples , the purification method for gasification gas obtained by pyrolyzing organic waste has been described. However, the purification method for gasification gas according to the present invention pyrolyzes organic waste. In addition to the gasified gas obtained in this manner, the present invention can be applied to a gasified gas obtained by thermally decomposing solid organic matter such as coal, for example, coke oven gas or coal gasified fuel gas.

従来、コークス炉ガスの浄化方法では、ナフタリン等を含む洗浄油を用いて軽質油分を捕集し、軽質油分を含んだ洗浄油を加熱して軽質油分を分離し、そして、分離した軽質油分を冷却、凝縮させて回収するようにしていた。しかし、この方法では設備が複雑となりコストが高くなる。また、分離した軽質油分を別途利用する場合には有用であるが、軽質油分を単独で利用する手段がない場合、軽質油分を別途処理する必要があった。また、洗浄油は劣化するため、一定期間使用すると交換する必要があり、その廃洗浄油の取り扱いが困難であった。   Conventionally, in the coke oven gas purification method, light oil is collected using cleaning oil containing naphthalene, etc., the light oil is heated to separate the light oil, and the separated light oil is separated. It was made to collect by cooling and condensing. However, this method complicates the equipment and increases the cost. Moreover, although it is useful when the separated light oil component is used separately, it is necessary to separately process the light oil component when there is no means for using the light oil component alone. Further, since the cleaning oil deteriorates, it is necessary to replace it after a certain period of use, and it is difficult to handle the waste cleaning oil.

これに対して、本発明では設備がシンプルで廃洗浄油の発生もなく運転管理も容易である。本発明は、高純度の軽質油分の回収が不要な場合、ガス量が10万Nm/h以下の中規模以下のガス処理に適する。 On the other hand, in the present invention, the equipment is simple, waste cleaning oil is not generated, and operation management is easy. The present invention is suitable for gas treatment of a medium scale or less with a gas amount of 100,000 Nm 3 / h or less when it is not necessary to recover a light oil component with high purity.

本発明の第1参考例を示す装置構成図である。It is an apparatus block diagram which shows the 1st reference example of this invention. 本発明の第実施例を示す装置構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is an apparatus block diagram which shows 1st Example of this invention. 本発明の第実施例を示す装置構成図である。It is an apparatus block diagram which shows 2nd Example of this invention. 本発明の第実施例を示す装置構成図である。It is an apparatus block diagram which shows 3rd Example of this invention. 本発明の第実施例を示す装置構成図である。It is an apparatus block diagram which shows 4th Example of this invention. 本発明の第2参考例を示す装置構成図である。It is an apparatus block diagram which shows the 2nd reference example of this invention.

1、11 活性炭式吸着装置
1a〜1c、11a、11b 活性炭吸着塔
2 ガス化炉
2a 燃焼炉
3 ガス化ガス供給本管
3a〜3c ガス化ガス供給支管
3d〜3e 開閉弁
4 ガス化ガス排出本管
4a〜4c ガス化ガス排出支管
4d〜4e 開閉弁
5 ガス利用設備
6 蒸気供給本管
6a〜6c 蒸気供給支管
6d〜6e 開閉弁
7 廃蒸気排出本管
7a〜7c 廃蒸気排出支管
7d〜7e 開閉弁
8 電気集塵機
9 ガス冷却装置
10 ガス加熱装置
DESCRIPTION OF SYMBOLS 1,11 Activated carbon type adsorption apparatus 1a-1c, 11a, 11b Activated carbon adsorption tower 2 Gasification furnace 2a Combustion furnace 3 Gasification gas supply main 3a-3c Gasification gas supply branch 3d-3e On-off valve 4 Gasification gas discharge main Pipe 4a-4c Gasification gas discharge branch 4d-4e On-off valve 5 Gas utilization equipment 6 Steam supply main 6a-6c Steam supply branch 6d-6e On-off valve 7 Waste steam discharge main 7a-7c Waste steam discharge branch 7d-7e On-off valve 8 Electric dust collector 9 Gas cooling device 10 Gas heating device

Claims (9)

有機性廃棄物又は石炭等の固体有機物を熱分解して得られたガス化ガスを複数の活性炭吸着塔からなる活性炭式吸着装置に通し、活性炭にガス化ガス中のダイオキシン及び常温常圧で液体若しくは固体である高沸点炭化水素化合物を吸着させるガス化ガスの浄化方法において、前記高沸点炭化水素化合物の吸着によって吸着能力の低下した活性炭吸着塔についてはガス化ガスの通ガスを遮断し、蒸気を通すことで吸着した前記高沸点炭化水素化合物を離脱させ廃蒸気として蒸気側に吐き出させて吸着能力を回復させ、その後、ガス化ガスの通ガスを再開させ、活性炭吸着塔から吐き出された前記高沸点炭化水素化合物を含む廃蒸気あるいは廃蒸気が凝縮した廃ドレンを、有機性廃棄物又は石炭等の固体有機物を熱分解してガス化するガス化炉、又はガス化炉に熱を供給する燃焼炉に吹き込み熱源とすることを特徴とするガス化ガスの浄化方法。 Gasified gas obtained by pyrolyzing organic waste or solid organic matter such as coal is passed through an activated carbon adsorption device consisting of a plurality of activated carbon adsorption towers, and the activated carbon is dioxin in the gasified gas and liquid at normal temperature and pressure Alternatively, in the gasification gas purification method for adsorbing a high-boiling point hydrocarbon compound that is solid, the activated carbon adsorption tower whose adsorption capacity is reduced by adsorption of the high-boiling point hydrocarbon compound is blocked by passing the gasification gas through, The high-boiling point hydrocarbon compound adsorbed by passing through is released and discharged to the vapor side as waste steam to recover the adsorption capacity, and then the gasification gas is restarted and discharged from the activated carbon adsorption tower. A gasifier that gasifies waste steam containing high-boiling hydrocarbon compounds or waste drain condensed with pyrolysis of organic waste or solid organic matter such as coal. Or purification process of gasification gas, characterized by a blowing heat source in the combustion furnace for supplying heat to the gasifier. ガス化ガスを活性炭式吸着装置に通す前に、ガス化ガス中に含まれるミスト状の水分、前記高沸点炭化水素化合物のうちタール分、及び固体の煤塵を除去し、その後、ガス化ガスを活性炭式吸着装置に通す請求項1に記載のガス化ガスの浄化方法。 Before passing the gasification gas through the activated carbon type adsorption device, mist-like moisture contained in the gasification gas, tar content of the high-boiling hydrocarbon compound, and solid dust are removed, and then the gasification gas is removed. The method for purifying a gasification gas according to claim 1, which is passed through an activated carbon type adsorption device . ガス化ガスを活性炭式吸着装置に通す前にガス温度を60℃以下まで冷却し、冷却後のガス化ガス中に含まれるミスト状の水分、液状炭化水素のうちタール分、及び固体の煤塵を除去し、その後、ガス化ガスを加熱した上で活性炭式吸着装置に通す請求項1に記載のガス化ガスの浄化方法。 Before passing the gasification gas through the activated carbon type adsorption device, the gas temperature is cooled to 60 ° C. or less, and the mist-like moisture contained in the gasification gas after cooling, the tar content in the liquid hydrocarbon, and the solid dust are removed. The method for purifying a gasification gas according to claim 1, wherein the gasification gas is heated and then passed through an activated carbon adsorption device . 活性炭吸着塔に通す蒸気の温度を80〜300℃の範囲とする請求項1〜3のいずれかに記載のガス化ガスの浄化方法。 The purification method of the gasification gas in any one of Claims 1-3 which makes the temperature of the vapor | steam passed through an activated carbon adsorption tower into the range of 80-300 degreeC . 2塔以上の活性炭吸着塔からなる活性炭式吸着装置をガス化ガスの流れ方向に直列に2段設置し、1段目の活性炭式吸着装置において活性炭吸着塔の吸着能力回復のために通す蒸気の温度を、2段目の活性炭式吸着装置において活性炭吸着塔の吸着能力回復のために通す蒸気の温度よりも高くする請求項1〜4のいずれかに記載のガス化ガスの浄化方法。 Two stages of activated carbon adsorbers consisting of two or more activated carbon adsorption towers are installed in series in the direction of gasification gas flow, and the first stage activated carbon adsorption apparatus is used to recover the adsorption capacity of activated carbon adsorption tower The purification method of the gasification gas in any one of Claims 1-4 which makes temperature higher than the temperature of the vapor | steam passed in order to recover | restore the adsorption capacity of an activated carbon adsorption tower in the activated carbon type adsorption | suction apparatus of a 2nd stage . 有機性廃棄物又は石炭等の固体有機物を熱分解して得られたガス化ガス中のダイオキシン及び常温常圧で液体若しくは固体である高沸点炭化水素化合物を吸着させる複数の活性炭吸着塔からなる活性炭式吸着装置を有するガス化ガスの浄化装置において、それぞれの活性炭吸着塔のガス導入側及び排出側に開閉弁を設けるとともに、それぞれの活性炭吸着塔に活性炭を再生するための蒸気を供給する蒸気供給配管を設け、さらに、活性炭吸着塔から吐き出された前記高沸点炭化水素化合物を含む廃蒸気あるいは廃蒸気が凝縮した廃ドレンを、有機性廃棄物又は石炭等の固体有機物を熱分解してガス化するガス化炉、又はガス化炉に熱を供給する燃焼炉に戻す配管を設けたことを特徴とするガス化ガスの浄化装置。Activated carbon comprising a plurality of activated carbon adsorption towers for adsorbing dioxins in gasification gas obtained by pyrolyzing organic waste or solid organic matter such as coal and high-boiling hydrocarbon compounds that are liquid or solid at normal temperature and pressure Supply device for supplying gas for regenerating activated carbon to each activated carbon adsorption tower while providing on / off valves on the gas introduction side and exhaust side of each activated carbon adsorption tower Piping is provided, and waste steam containing the high-boiling hydrocarbon compounds discharged from the activated carbon adsorption tower or waste drain condensed with waste steam is pyrolyzed into organic waste or solid organic matter such as coal and gasified. An apparatus for purifying gasification gas, comprising: a gasification furnace to be used, or a pipe for returning to a combustion furnace for supplying heat to the gasification furnace. 活性炭式吸着装置の上流側に、ガス化ガス中に含まれるミスト状の水分、前記高沸点炭化水素化合物のうちタール分、及び固体の煤塵を除去する集塵装置を設けた請求項6に記載のガス化ガスの浄化装置。The dust collector which removes the mist-like water | moisture content contained in gasification gas, the tar content among the said high boiling point hydrocarbon compounds, and solid soot in the upstream of the activated carbon type adsorption device is provided. Gasification gas purification equipment. 活性炭式吸着装置の上流側に、ガス化ガスを60℃以下まで冷却するガス冷却装置と、この冷却装置で冷却されたガス化ガス中に含まれるミスト状の水分、前記高沸点炭化水素化合物のうちタール分、及び固体の煤塵を除去する集塵装置と、集塵装置から出たガス化ガスを加熱するガス加熱装置とを設けた請求項6に記載のガス化ガスの浄化装置。 A gas cooling device that cools the gasification gas to 60 ° C. or less on the upstream side of the activated carbon adsorption device, mist-like moisture contained in the gasification gas cooled by the cooling device, and the high-boiling hydrocarbon compound The purification apparatus of the gasification gas of Claim 6 which provided the dust collector which removes a tar content and solid soot, and the gas heating apparatus which heats the gasification gas which came out of the dust collector . 活性炭式吸着装置をガス化ガスの流れ方向に直列に2段設けた請求項6〜8のいずれかに記載のガス化ガスの浄化装置。 The purification apparatus of the gasification gas in any one of Claims 6-8 which provided the activated carbon type adsorption apparatus in two steps | paragraphs in series with the flow direction of gasification gas.
JP2007060913A 2006-04-07 2007-03-09 Gasification gas purification method and purification device Expired - Fee Related JP4728984B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007060913A JP4728984B2 (en) 2006-04-07 2007-03-09 Gasification gas purification method and purification device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006106950 2006-04-07
JP2006106950 2006-04-07
JP2007060913A JP4728984B2 (en) 2006-04-07 2007-03-09 Gasification gas purification method and purification device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011045261A Division JP5320421B2 (en) 2006-04-07 2011-03-02 Gasification gas purification method and purification device

Publications (2)

Publication Number Publication Date
JP2007296513A JP2007296513A (en) 2007-11-15
JP4728984B2 true JP4728984B2 (en) 2011-07-20

Family

ID=38766454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007060913A Expired - Fee Related JP4728984B2 (en) 2006-04-07 2007-03-09 Gasification gas purification method and purification device

Country Status (1)

Country Link
JP (1) JP4728984B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4875473B2 (en) * 2006-11-27 2012-02-15 新日鉄エンジニアリング株式会社 Gasification gas purification method
BRPI0911224A2 (en) * 2008-04-30 2015-09-29 Exxonmobil Upstream Res Co system and method for treating a gaseous feed stream, and structured adsorbent contactor
JP2011218303A (en) * 2010-04-09 2011-11-04 Central Res Inst Of Electric Power Ind Impurity-removing device
CN102895839B (en) * 2012-10-17 2014-10-22 田鹏程 Device and method for performing integrated purification on smoke

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005126524A (en) * 2003-10-22 2005-05-19 Nippon Steel Corp Method and apparatus for organic matter gasification

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4124584B2 (en) * 2001-10-01 2008-07-23 新日鉄エンジニアリング株式会社 Removal method of dioxins in exhaust gas from waste treatment furnace
JP4534629B2 (en) * 2004-06-30 2010-09-01 Jfeエンジニアリング株式会社 Gas purification device and method for regenerating removal agent used in the gas purification device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005126524A (en) * 2003-10-22 2005-05-19 Nippon Steel Corp Method and apparatus for organic matter gasification

Also Published As

Publication number Publication date
JP2007296513A (en) 2007-11-15

Similar Documents

Publication Publication Date Title
JP4875473B2 (en) Gasification gas purification method
JP5320421B2 (en) Gasification gas purification method and purification device
US7056487B2 (en) Gas cleaning system and method
US20100077767A1 (en) Emission free integrated gasification combined cycle
KR20060121899A (en) Method and apparatus for treating organic matter
US20110120012A1 (en) Minimal sour gas emission for an integrated gasification combined cycle complex
JP4728984B2 (en) Gasification gas purification method and purification device
JP2008222978A (en) Wood charcoal gasification apparatus
EP1649217A1 (en) Gasification system
JP2008222867A (en) Method for cleaning gasified gas and device for the same
JP4664899B2 (en) Gasification gas purification method
KR20140118417A (en) The carbon capture and storage apparatus from waste using plasma pyrolysis device
JP3943042B2 (en) Tar-containing gas cleaning method and apparatus, and combustible gas production method and apparatus
JP2007136396A (en) Waste material treatment method and waste material treatment device
JP4612648B2 (en) Gasification gas purification method
JP4625048B2 (en) Gasification gas purification equipment
JP2008222882A (en) Method for purifying gasified gas and purifying apparatus
EA021586B1 (en) Method and system for the production of a combustible gas from a fuel
JP4598803B2 (en) Gasification gas purification method and purification device
KR101085434B1 (en) Systme and method for removing impurity in syngas using fluid sand
JP4555319B2 (en) Gasification gas purification method and purification device
JP3566667B2 (en) Waste pyrolysis plant
JP2009173717A (en) Fuel gas purification facility and operation method of it
JP5512922B2 (en) Gas purification system and cleaning wastewater treatment method in the system
JP2006037012A (en) Gasification power generation system and gasification power generation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110415

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees