JP2008215748A - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
JP2008215748A
JP2008215748A JP2007055907A JP2007055907A JP2008215748A JP 2008215748 A JP2008215748 A JP 2008215748A JP 2007055907 A JP2007055907 A JP 2007055907A JP 2007055907 A JP2007055907 A JP 2007055907A JP 2008215748 A JP2008215748 A JP 2008215748A
Authority
JP
Japan
Prior art keywords
refrigerant
mixed refrigerant
air conditioner
compressor
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007055907A
Other languages
English (en)
Other versions
JP4855305B2 (ja
Inventor
Shinichi Wakamoto
慎一 若本
Hiroaki Nakamune
浩昭 中宗
Hitoshi Iijima
等 飯嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007055907A priority Critical patent/JP4855305B2/ja
Publication of JP2008215748A publication Critical patent/JP2008215748A/ja
Application granted granted Critical
Publication of JP4855305B2 publication Critical patent/JP4855305B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】地球温暖化を抑制することができ、且つ冷媒の可燃性を低下させるとともに、非共沸によって生じる冷媒の温度変化を小さくすることのできる空気調和装置を提供すること。
【解決手段】圧縮機、凝縮器、減圧器および蒸発器を接続し、冷媒が循環するように構成した空気調和装置において、強燃性で、炭化水素からなる冷媒と、不燃性で、ペンタフルオロエタンよりも地球温暖化係数が小さい冷媒とを、弱燃性になる質量割合で混合した混合冷媒を封入する。
【選択図】図1

Description

本発明は、冷媒を循環させて空気などの被伝熱流体を冷却または加熱する空気調和装置に関するものである。
ジフルオロメタンとペンタフルオロエタンとの混合冷媒を冷凍サイクルで用いる従来の空気調和装置では、圧縮機における吐出圧力が上昇したり、吐出温度が上昇するという問題を解決するために、上記混合冷媒全体に対して65重量%以上のプロパンを混合することが提案されている(例えば、特許文献1を参照)。
特開2005−15634号公報
しかしながら、冷媒全体に占めるプロパンの割合を65重量%以上とした上記従来の混合冷媒は、爆発下限界が2.1〜6体積%、発熱量が30〜46MJ/kgであり、国際規格であるISO規格およびIEC規格に定められた強燃性ガスに相当する。そのため、この混合冷媒は、極めて取扱いに注意が必要な冷媒であり、運転中または設置工事中の冷媒漏洩による爆発が懸念される。なお、規格ISO5149−1993では、爆発下限体積濃度3.5%未満を強燃性ガス、それ以外を弱燃性と定め、規格IEC61D/125/CDVでは、爆発下限質量濃度が0.1kg/m3以下または燃焼熱量19MJ/kg以上を強燃性、それ以外を弱燃性と定めている。
また、ジフルオロメタンおよびペンタフルオロエタンは温室効果が高いという問題があるうえに、沸点の異なる冷媒をこの混合冷媒に混合した場合には非共沸性が大きくなるという問題がある。非共沸性が大きい場合には、冷媒が定圧変化で凝縮または蒸発するときに冷媒の温度変化が大きくなるため、凝縮器および蒸発器における熱交換性能が低下し、空気調和装置の性能が低下するという問題がある。
従って、本発明は、上記のような問題を解決するためになされたものであり、地球温暖化を抑制することができ、且つ冷媒の可燃性を低下させるとともに、非共沸によって生じる冷媒の温度変化を小さくすることのできる空気調和装置を提供することを目的としている。
そこで、本発明者らは上記のような従来の問題点を解決すべく鋭意研究、開発を遂行した結果、このような問題点を解決するためには、強燃性で、炭化水素からなる冷媒と、不燃性で、ペンタフルオロエタンよりも地球温暖化係数が小さい冷媒とを、弱燃性まで可燃性を抑制できる質量割合で混合した混合冷媒を用いることが有効であることに想到し、本発明を完成するに至った。
すなわち、本発明に係る空気調和装置は、圧縮機、凝縮器、減圧器および蒸発器を接続し、冷媒が循環するように構成した空気調和装置において、強燃性で、炭化水素からなる冷媒と、不燃性で、ペンタフルオロエタンよりも地球温暖化係数が小さい冷媒とを、弱燃性になる質量割合で混合した混合冷媒を封入したものである。
本発明によれば、地球温暖化を抑制することができ、且つ冷媒の可燃性を低下させるとともに、非共沸によって生じる冷媒の温度変化を小さくすることのできる空気調和装置を提供することができる。
以下、本発明の実施形態を図面に基づいて説明する。
実施の形態1.
図1は、本発明の実施の形態1に係る空気調和装置の構成図である。図1において、実施の形態1に係る空気調和装置1は、主要構成機器である圧縮機2、凝縮器3、減圧器4および蒸発器5を備えている。これらの主要構成機器は、冷媒配管で順に接続されており、空気調和装置1に封入された混合冷媒が図1の黒矢印の方向に循環するように構成されている。
凝縮器3および蒸発器5は、例えば、図2に示されるように、複数の伝熱フィン6と、その伝熱フィン6と直交する方向に貫通し、混合冷媒が分岐することなく流れる(図2の黒矢印)一繋がりの伝熱管7とにより構成されるフィン−チューブ型の熱交換器であることができる。この熱交換器では、図2に示されるように、空気などの被伝熱流体の流れ方向(図2の白抜き矢印)に対し伝熱管7が1列に配置されている(1列1パスの熱交換器)。この熱交換器では、伝熱管7を流れる混合冷媒が、伝熱管7の外部を流れる空気などの被伝熱流体と熱交換され、蒸発または凝縮する。
混合冷媒としては、強燃性で、炭化水素からなる冷媒と、不燃性で、ペンタフルオロエタンよりも地球温暖化係数が小さい冷媒とを、弱燃性になる質量割合で混合したもの、好ましくは、弱燃性になり且つ非共沸性による凝縮器3または蒸発器4における冷媒の温度変化がジフルオロメタン、ペンタフルオロエタンおよびテトラフルオロエタンからなる混合冷媒(R407C)よりも小さくなる質量割合で混合したものを用いることができる。強燃性で、炭化水素からなる冷媒の具体例としては、プロパン、シクロプロパンおよびこれらの混合物からなる群から選択されるものが挙げられ、また、不燃性で、ペンタフルオロエタンよりも地球温暖化係数が小さい冷媒の具体例としては、テトラフルオロエタン、ペンタフルオロプロパン、テトラフルオロプロパン、テトラフルオロプロピレン、テトラフルオロシクロプロパンおよびこれらの混合物からなる群から選択されるものが挙げられる。これらの冷媒の具体的な混合割合は、強燃性で、炭化水素からなる冷媒の質量割合が、混合冷媒全体に対して好ましくは10質量%以上、45質量%以下、更に好ましくは15質量%以上、40質量%以下である。混合冷媒の混合割合が、上記数値範囲内であれば、非共沸性を小さくすることができ、凝縮器3および蒸発器4での熱交換能が向上する。
なお、本発明において、強燃性とは、爆発下限体積濃度が3.5体積%未満、爆発下限質量濃度が0.1kg/m3以下および燃焼熱量が19MJ/kg以上の何れか1つを少なくとも満たすことを意味し、不燃性とは、燃焼性がないことを意味し、弱燃性とは、爆発下限体積濃度が3.5体積%以上、爆発下限質量濃度が0.1kg/m3を超え且つ燃焼熱量19MJ/kg未満であることを意味する。
また、空気調和装置1には、圧縮機2の動作条件において、凝縮器3の出口の混合冷媒液に0.1質量%以上、好ましくは1質量%以上、5質量%以下溶解し、温度40℃において、2mm2/s以上、好ましくは10mm2/s以上、更に好ましくは20mm2/s以上、100mm2/s以下の粘度を有する圧縮機用潤滑油を封入してもよい。このような特定の圧縮機用潤滑油を封入することで、圧縮機2から吐出される圧縮機用潤滑油は、一般的に流速が最も遅くなる凝縮器3の出口の冷媒配管においてその殆どが混合冷媒液に溶解し、凝縮器3、蒸発器5や冷媒配管に滞留することなく、圧縮機2に戻されるため、信頼性の高い空気調和装置の運転ができる。圧縮機用潤滑油の具体例としては、アルキルベンゼン、ポリオールエステル、ポリアルキレングリコール、ポリビニルエーテル、カーボネイト、鉱油およびこれらの混合物が挙げられる。
次に、実施の形態1に係る空気調和装置1の動作について、図2および3を用いて説明する。図3は、実施の形態1による空気調和装置1の動作を示す温度−エンタルピ線図である。混合冷媒は、低温低圧のガス状態(図2および3の[1])で、圧縮機2に吸入され、高温高圧のガス状態(図2および3の[2])まで昇圧され、圧縮機2の摺動部の潤滑のために封入されている圧縮機用潤滑油の一部(混合冷媒の質量流量の1質量%程度以下である)とともに吐出される。続いて、昇圧された混合冷媒は、凝縮器3で空気などの被伝熱流体を加熱して、ほぼ一定の圧力を保ちながら凝縮し高圧の混合冷媒液(図2および3の[3])に変化し、圧縮機用潤滑油は混合冷媒ガスの凝縮によって生じる混合冷媒液に溶解し、混合冷媒とともに流れる。このとき、例えば、30質量%のプロパンおよび70質量%のテトラフルオロエタン(R134a)からなる混合冷媒(爆発下限体積濃度12体積%、爆発下限質量濃度0.4kg/m3および燃焼熱量14MJ/kg;以下、本発明の混合冷媒1という)を用いた場合、混合冷媒を構成する冷媒の非共沸性、つまり沸点の違いによって混合冷媒液の温度が約1℃低下する。温度低下した混合冷媒液は、減圧器4で低温低圧の気液二相状態の混合冷媒(図2および3の[4])に変化し、蒸発器5で空気などの被伝熱流体を冷却して、ほぼ一定の圧力を保ちながら蒸発し低温低圧の混合冷媒ガス(図2および3の[1])に変化し、混合冷媒の蒸発によって溶出した圧縮機用潤滑油とともに圧縮機2に戻る。蒸発器5においても凝縮器3と同様に、例えば、本発明の混合冷媒1を用いた場合、冷媒の非共沸性によって混合冷媒の温度が約1℃上昇する。
次に、空気調和装置の性能について説明する。一般的に、凝縮器3および蒸発器5における冷媒の温度変化は、非共沸性が大きいほど大きくなり、空気などの被伝熱流体と冷媒とが直交するように流れるフィン−チューブ型の熱交換器では、熱交換能が低下し空気調和装置の効率が低下する。このような温度変化は、例えば蒸発器5の場合には図3の[1]における温度と図3の[4]における温度との差分(ΔTe)である。
例えば、下記式(1)で定義する移動単位数NTUが0.7、下記式(2)で定義する熱容量流量比Rが1.4の条件で、図2に示した1列1パスの熱交換器において、温度変化がない場合の熱交換量Q’[kW]で規格化した熱交換量Q[kW]と混合冷媒の温度変化ΔTe[℃]との関係を図4に示す。なお、Kは熱交換量熱交換器の熱通過率[kW/(m2・℃)]、Aは伝熱面積[m2]、Gaは空気流量[kg/s]、Cpaは空気比熱[kJ/(kg・℃)]、Wは混合冷媒の熱容量流量[kW/℃]である。
Figure 2008215748
Figure 2008215748
図4において、A点は、50質量%のジフルオロメタンおよび50質量%のペンタフルオロエタンからなる従来の混合冷媒(不燃性;以下、従来の混合冷媒1という)、B点は、23質量%のジフルオロメタン、25質量%のペンタフルオロエタンおよび52質量%のテトラフルオロエタンからなる従来の混合冷媒(不燃性;以下、従来の混合冷媒2という)を示している。図4に示されるように、冷媒の非共沸性によって生じる温度変化ΔTeが大きいほど熱交換量Qが低下する。
上述した本発明の混合冷媒1(約1℃の温度差を生じる)は、温度差を生じない場合と比較して熱交換量が約3%低下するが、従来の混合冷媒2よりも、熱交換量が13%も向上する。
次に、上記温度差、冷媒の可燃性、温室効果および高圧側の動作圧力について説明する。本発明の混合冷媒1、従来の混合冷媒1、従来の混合冷媒2、65質量%のプロパン、17.5質量%のジフルオロメタンおよび17.5質量%のペンタフルオロエタンからなる従来の混合冷媒(爆発下限体積濃度6体積%、爆発下限質量濃度0.14kg/m3および燃焼熱量30MJ/kg;以下、従来の混合冷媒3という)について、可燃性、温室効果(地球温暖化係数)、性能および高圧側の動作圧力に関する値を表1に示す。温室効果は二酸化炭素の温室効果を基準にした場合の指標である地球温暖化係数で表す。表1中、性能は、混合冷媒の蒸発器5における混合冷媒の温度変化を、混合冷媒の平均温度が15℃のときに蒸発する際の温度差で示す。また、高圧側の動作圧力は、凝縮温度40℃における飽和圧力を想定したものである。
Figure 2008215748
表1から分かるように、従来の混合冷媒1および2は、地球温暖化係数が大きく、温室効果が高いという問題がある。従来の混合冷媒3は強燃性であるうえに、非共沸性によって生じる温度差が11℃もあり、熱交換能が十分とはいえない。
一方、本発明の混合冷媒1は、弱燃性であり、地球温暖化係数は、他の不燃または弱燃性の混合冷媒と比較して約53〜60%まで低減できる。また、本発明の混合冷媒1の高圧側の動作圧力は、従来の混合冷媒2の1.6MPaや、過去に空調用冷媒として広く利用されていたHCFC冷媒であるジフルオロメタンの1.5MPaとほぼ同程度であり、その他の混合冷媒よりも低い圧力で動作する。
実施の形態1によれば、混合冷媒の可燃性を低下させることができ、さらに、地球温暖化を従来の混合冷媒よりも低くすることができる。さらに、非共沸性による温度差を、従来の混合冷媒よりも小さくすることができるので、空気調和装置の熱交換能を向上させることができる。また、空気調和装を構成する機器の耐圧性にかかわる高圧側の動作圧力を小さくすることができるので、容器や冷媒配管の肉厚を低減することができる。
なお、圧縮機2として、圧縮機内の圧力が低圧側圧力(蒸発圧力)とほぼ同じになる低圧型圧縮機を用いてもよい。このように構成した空気調和装置では、圧縮機内に存在する強燃性で、炭化水素からなる冷媒の量を低減することができる。
なお、混合冷媒に、着臭剤、着色剤などの漏洩検知剤を添加してもよい。漏洩検知剤を添加することで、混合冷媒が冷媒配管の外に漏洩した場合には、混合冷媒とともに着臭剤などの漏洩検知剤が漏洩し、混合冷媒の漏洩を確認することができる。そのため、漏洩箇所の修繕、設置工事の作業停止、もしくは室内の換気などの対策を漏洩の初期段階でとることができる。このような漏洩検知剤の具体例としては、メチルメルカプタン、テトラヒドロチオフェン、アンモニアなどを主成分とする着臭剤、蛍光剤、アゾ顔料などを主成分とする着色剤が挙げられる。
実施の形態2.
プロパンおよびテトラフルオロエタンの混合割合を変えた混合冷媒の可燃性、温室効果、性能、高圧側圧力に関する値を表2に示す。表2から分かるように、特に、プロパンの混合割合を15質量%〜40質量%とした混合冷媒が、可燃性、温室効果および性能において優れている。
Figure 2008215748
実施の形態3.
実施の形態1では、プロパンとテトラフルオロエタンとを混合した混合冷媒について説明したが、プロパンの代わりに、プロパンと同等もしくは低い可燃性および地球温暖化係数の冷媒、例えば、シクロプロパンやプロパンとシクロプロパンとの混合物を用いた混合冷媒でも同様の効果が得られる。
実施の形態4.
実施の形態1では、プロパンとテトラフルオロエタンとを混合した混合冷媒について説明したが、テトラフルオロエタンの代わりに、テトラフルオロエタンと同等もしくは低い可燃性、地球温暖化係数および非共沸性による温度差であり、且つテトラフルオロエタンとほぼ同等の高圧側動作圧力である冷媒、例えば、ペンタフルオロプロパン、テトラフルオロプロパン、テトラフルオロプロピレン、テトラフルオロシクロプロパンおよびこれらの混合物でも同様の効果が得られる。特に、地球温暖化係数が小さい冷媒では、さらに温室効果を小さくできる効果がある。
実施の形態5.
実施の形態5に係る空気調和装置は、凝縮器3または蒸発器5として、図5に示されるような、混合冷媒に対し、被伝熱流体が対向流となるように構成される多列(図5では3列)のフィン−チューブ型熱交換器を備える以外は実施の形態1に係る空気調和装置と同じ構成である。この熱交換器では、図5に示されるように、空気などの被伝熱流体の流れ方向(図5の白抜き矢印)に対し伝熱管7が3列に配置されている(3列のフィン−チューブ型熱交換器)。この熱交換器では、伝熱管7を流れる混合冷媒が、伝熱管7の外部を流れる空気などの被伝熱流体と熱交換され、蒸発または凝縮する。
図2に示した1列のフィン−チューブ型熱交換器を蒸発器として利用した場合における混合冷媒の温度変化と空気の温度変化との関係を図6に示す。混合冷媒は空気との熱交換により温度が上昇するが、空気の熱交換器への入口温度は一定であるため、混合冷媒の熱交換器入口から出口までの空気と冷媒との温度差が変化している。一方、図7に示すように、図5に示した3列のフィン−チューブ型熱交換器を蒸発器として利用した場合、混合冷媒の熱交換器の入口からの温度変化に対応して、空気の温度も変化するために、混合冷媒と空気との温度差を小さくすることができる。このように構成した空気調和装置によれば、熱交換器の性能が向上し、空気調和装置の効率を向上させることができる。
本発明の実施の形態1に係る空気調和装置を示す構成図である。 本発明の実施の形態1におけるフィン−チューブ型熱交換器を説明するための概念図である。 本発明の実施の形態1に係る空気調和装置の動作を示す温度−エンタルピ線図である。 本発明の実施の形態1に係る空気調和装置の熱交換量と温度変化との関係を示すグラフである。 本発明の実施の形態5に係る空気調和装置の熱交換器を説明するための概念図である。 本発明の実施の形態1に係る空気調和装置の1列のフィン−チューブ型熱交換器における冷媒と空気との温度変化を示すグラフである。 本発明の実施の形態5に係る空気調和装置の多列のフィン−チューブ型熱交換器における冷媒と空気との温度変化を示すグラフである。
符号の説明
1 空気調和装置、2 圧縮機、3 凝縮器、4 減圧器、5 蒸発器、6 伝熱フィン、7 伝熱管。

Claims (8)

  1. 圧縮機、凝縮器、減圧器および蒸発器を接続し、冷媒が循環するように構成した空気調和装置において、強燃性で、炭化水素からなる冷媒と、不燃性で、ペンタフルオロエタンよりも地球温暖化係数が小さい冷媒とを、弱燃性になる質量割合で混合した混合冷媒を封入したことを特徴とする空気調和装置。
  2. 前記強燃性で、炭化水素からなる冷媒が、プロパン、シクロプロパンおよびこれらの混合物からなる群から選択されることを特徴とする請求項1に記載の空気調和装置。
  3. 前記不燃性で、ペンタフルオロエタンよりも地球温暖化係数が小さい冷媒が、テトラフルオロエタン、ペンタフルオロプロパン、テトラフルオロプロパン、テトラフルオロプロピレン、テトラフルオロシクロプロパンおよびこれらの混合物からなる群から選択されることを特徴とする請求項1または2に記載の空気調和装置。
  4. 前記強燃性で、炭化水素からなる冷媒の質量割合が、前記混合冷媒全体に対して15質量%以上であることを特徴とする請求項1〜3の何れか一項に記載の空気調和装置。
  5. 前記圧縮機の動作条件において、前記凝縮器の出口の前記混合冷媒液に1質量%以上溶解し、2mm2/s以上の粘度を有する圧縮機用潤滑油を封入したことを特徴とする請求項1〜4の何れか一項に記載の空気調和装置。
  6. 前記凝縮器または前記蒸発器を流れる前記混合冷媒に対し、被伝熱流体が対向流となるように構成して熱交換させることを特徴とする請求項1〜5の何れか一項に記載の空気調和装置。
  7. 前記圧縮機が低圧型圧縮機であることを特徴とする請求項1〜6の何れか一項に記載の空気調和装置。
  8. 前記混合冷媒に、着臭剤または着色剤を添加したことを特徴とする請求項1〜7の何れか一項に記載の空気調和装置。
JP2007055907A 2007-03-06 2007-03-06 空気調和装置 Active JP4855305B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007055907A JP4855305B2 (ja) 2007-03-06 2007-03-06 空気調和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007055907A JP4855305B2 (ja) 2007-03-06 2007-03-06 空気調和装置

Publications (2)

Publication Number Publication Date
JP2008215748A true JP2008215748A (ja) 2008-09-18
JP4855305B2 JP4855305B2 (ja) 2012-01-18

Family

ID=39835989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007055907A Active JP4855305B2 (ja) 2007-03-06 2007-03-06 空気調和装置

Country Status (1)

Country Link
JP (1) JP4855305B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012127519A (ja) * 2010-12-13 2012-07-05 Panasonic Corp 空気調和機
JP2017133827A (ja) * 2017-03-02 2017-08-03 三菱電機株式会社 ヒートポンプ装置
US9915465B2 (en) 2014-04-10 2018-03-13 Mitsubishi Electric Corporation Heat pump compressor including liquid crystal polymer insulating material

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0797587A (ja) * 1993-09-30 1995-04-11 Toshiba Corp Hfc用冷凍機油組成物
JPH07269996A (ja) * 1994-03-31 1995-10-20 Hitachi Ltd 冷凍装置および冷媒圧縮装置
JPH08176536A (ja) * 1994-12-27 1996-07-09 Toshiba Corp 冷媒、冷媒圧縮機および冷凍装置
JPH09157641A (ja) * 1995-12-07 1997-06-17 Denso Corp 冷媒組成物
WO1997043233A1 (fr) * 1996-05-13 1997-11-20 Japan As Represented By Director General Of The Agency Of Industrial Science And Technology Procede de preparation d'olefine fluoree
JP2001174101A (ja) * 1999-12-20 2001-06-29 Fujitsu General Ltd 空気調和機
JP2001234184A (ja) * 2000-02-23 2001-08-28 Matsushita Electric Ind Co Ltd 圧縮機とそれを使用した冷凍装置
JP2001329254A (ja) * 2000-05-25 2001-11-27 Matsushita Electric Ind Co Ltd 混合冷媒および冷凍サイクル装置
JP2002540246A (ja) * 1999-03-22 2002-11-26 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ジフルオロメタン、ペンタフルオロエタン、1,1,1,2−テトラフルオロエタンおよび炭化水素の組成物
JP2006241464A (ja) * 1993-02-05 2006-09-14 E I Du Pont De Nemours & Co ヒドロフルオロカーボンおよび炭化水素の組成物
WO2006116372A1 (en) * 2005-04-26 2006-11-02 E. I. Du Pont De Nemours And Company Heat transfer and refrigerant compositions comprising 3,3,4,4,5,5,6,6,6-nonafluoro-1-hexene and a fluoroether
WO2009150763A1 (ja) * 2008-06-09 2009-12-17 三菱電機株式会社 空気調和装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006241464A (ja) * 1993-02-05 2006-09-14 E I Du Pont De Nemours & Co ヒドロフルオロカーボンおよび炭化水素の組成物
JPH0797587A (ja) * 1993-09-30 1995-04-11 Toshiba Corp Hfc用冷凍機油組成物
JPH07269996A (ja) * 1994-03-31 1995-10-20 Hitachi Ltd 冷凍装置および冷媒圧縮装置
JPH08176536A (ja) * 1994-12-27 1996-07-09 Toshiba Corp 冷媒、冷媒圧縮機および冷凍装置
JPH09157641A (ja) * 1995-12-07 1997-06-17 Denso Corp 冷媒組成物
WO1997043233A1 (fr) * 1996-05-13 1997-11-20 Japan As Represented By Director General Of The Agency Of Industrial Science And Technology Procede de preparation d'olefine fluoree
JP2002540246A (ja) * 1999-03-22 2002-11-26 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ジフルオロメタン、ペンタフルオロエタン、1,1,1,2−テトラフルオロエタンおよび炭化水素の組成物
JP2001174101A (ja) * 1999-12-20 2001-06-29 Fujitsu General Ltd 空気調和機
JP2001234184A (ja) * 2000-02-23 2001-08-28 Matsushita Electric Ind Co Ltd 圧縮機とそれを使用した冷凍装置
JP2001329254A (ja) * 2000-05-25 2001-11-27 Matsushita Electric Ind Co Ltd 混合冷媒および冷凍サイクル装置
WO2006116372A1 (en) * 2005-04-26 2006-11-02 E. I. Du Pont De Nemours And Company Heat transfer and refrigerant compositions comprising 3,3,4,4,5,5,6,6,6-nonafluoro-1-hexene and a fluoroether
WO2009150763A1 (ja) * 2008-06-09 2009-12-17 三菱電機株式会社 空気調和装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012127519A (ja) * 2010-12-13 2012-07-05 Panasonic Corp 空気調和機
US9915465B2 (en) 2014-04-10 2018-03-13 Mitsubishi Electric Corporation Heat pump compressor including liquid crystal polymer insulating material
JP2017133827A (ja) * 2017-03-02 2017-08-03 三菱電機株式会社 ヒートポンプ装置

Also Published As

Publication number Publication date
JP4855305B2 (ja) 2012-01-18

Similar Documents

Publication Publication Date Title
JP7284405B2 (ja) 冷凍サイクル装置
US11906207B2 (en) Refrigeration apparatus
US11820933B2 (en) Refrigeration cycle apparatus
US11549695B2 (en) Heat exchange unit
WO2019124230A1 (ja) 温水製造装置
WO2019124329A1 (ja) 冷凍サイクル装置
KR101992041B1 (ko) 불소화 탄화수소의 혼합물을 냉매로서 사용하는 방법, 및 당해 혼합물을 냉매로서 사용한 냉동 장치
WO2009150763A1 (ja) 空気調和装置
WO2019117213A1 (ja) フッ素化炭化水素及び二酸化炭素を含む冷媒、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法
JP4855305B2 (ja) 空気調和装置
JP6908155B2 (ja) フッ素化炭化水素及び二酸化炭素を含む冷媒、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111026

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4855305

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250