WO2009150763A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
WO2009150763A1
WO2009150763A1 PCT/JP2008/071019 JP2008071019W WO2009150763A1 WO 2009150763 A1 WO2009150763 A1 WO 2009150763A1 JP 2008071019 W JP2008071019 W JP 2008071019W WO 2009150763 A1 WO2009150763 A1 WO 2009150763A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
compressor
mixed refrigerant
air
mass
Prior art date
Application number
PCT/JP2008/071019
Other languages
English (en)
French (fr)
Inventor
慎一 若本
浩司 山下
裕之 森本
多佳志 岡崎
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Publication of WO2009150763A1 publication Critical patent/WO2009150763A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • C09K5/045Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/006Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant containing more than one component
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/126Unsaturated fluorinated hydrocarbons

Definitions

  • the present invention relates to an air conditioner that cools or heats a heat transfer fluid such as air by circulating a refrigerant.
  • the conventional mixed refrigerant in which the proportion of propane in the whole refrigerant is 65% by weight or more has an explosion lower limit of 2.1 to 6% by volume and a calorific value of 30 to 46 MJ / kg, which is an international standard. It corresponds to the highly flammable gas defined in the ISO standard and the IEC standard. Therefore, this mixed refrigerant is a refrigerant that needs to be handled with great care, and there is a concern of explosion due to refrigerant leakage during operation or installation work.
  • the lower explosion limit volume concentration of less than 3.5% is defined as a strong flammable gas, and the others are weakly flammable.
  • the lower explosion limit mass concentration is 0.1 kg / m. 3 or less or combustion heat of 19 MJ / kg or more is defined as strong flammability, and others are defined as weak flammability.
  • R410A has a problem that it has a greenhouse effect 2000 times or more that of carbon dioxide.
  • Tetrafluoropropylene has a smaller greenhouse effect than R410A, but has a higher boiling point than R410A. Therefore, when this refrigerant is used in an air conditioner, the gas density on the low-pressure side of the refrigeration cycle is reduced. There are problems such as a decrease in efficiency due to pressure loss accompanying the flow of the compressor and an increase in the size of the compressor.
  • the present invention has been made to solve the above-described problems, and an air conditioner that can reduce the combustibility of the refrigerant and the greenhouse effect, and can suppress the decrease in efficiency and the increase in size of the compressor. It is intended to provide.
  • the present inventors have obtained a first greenhouse effect smaller than that of R410A in order to solve such problems.
  • the inventors have conceived that it is effective to use a mixed refrigerant obtained by mixing a refrigerant and a second refrigerant having a greenhouse effect smaller than that of R410A and having a boiling point lower than that of the first refrigerant, thereby completing the present invention.
  • an air conditioner according to the present invention is a first refrigerant having a greenhouse effect smaller than that of R410A in an air conditioner configured to connect a compressor, a condenser, a decompressor, and an evaporator so that the refrigerant circulates. And a mixed refrigerant mixed with a second refrigerant having a smaller greenhouse effect than R410A and a lower boiling point than the first refrigerant.
  • an air conditioner capable of reducing the combustibility of the refrigerant and the greenhouse effect, and suppressing the reduction in efficiency and the enlargement of the compressor.
  • Embodiment 6 is a graph showing temperature changes between refrigerant and air in a row of fin-tube heat exchangers of the air-conditioning apparatus according to Embodiment 1 of the present invention. It is a graph which shows the temperature change of the refrigerant
  • FIG. 1 is a configuration diagram of an air-conditioning apparatus according to Embodiment 1 of the present invention.
  • an air conditioner 1 according to Embodiment 1 includes a compressor 2, a condenser 3, a decompressor 4, and an evaporator 5 that are main components. These main components are sequentially connected by refrigerant piping, and the mixed refrigerant sealed in the air conditioner 1 is configured to circulate in the direction of the black arrow in FIG. For example, as shown in FIG.
  • the condenser 3 and the evaporator 5 pass through a plurality of heat transfer fins 6 and a direction orthogonal to the heat transfer fins 6, and the mixed refrigerant flows without branching (see FIG. 2).
  • 2 black arrow) It can be a fin-tube type heat exchanger composed of a continuous heat transfer tube 7.
  • the heat transfer tubes 7 are arranged in one row with respect to the flow direction of the heat transfer fluid such as air (the white arrow in FIG. 2) (one row and one path). Heat exchanger).
  • the mixed refrigerant flowing through the heat transfer tube 7 is heat-exchanged with a heat transfer fluid such as air flowing outside the heat transfer tube 7 and evaporated or condensed.
  • the mixed refrigerant is a mixture of a first refrigerant having a smaller greenhouse effect than R410A and a second refrigerant having a smaller greenhouse effect than R410A and a lower boiling point than the first refrigerant, preferably the first refrigerant
  • a mixture of tetrafluoropropylene as the refrigerant and difluoromethane or fluoromethane as the second refrigerant can be used.
  • the mass ratio of difluoromethane is preferably 20% by mass or more and 50% by mass or less with respect to the entire mixed refrigerant.
  • the mass ratio of the fluoromethane is preferably 50% by mass or more and 80% by mass or less with respect to the entire mixed refrigerant. If the mixing ratio of the mixed refrigerant is within the above numerical range, the lower explosion limit concentration is high and it can be handled as a weakly flammable gas, and the temperature difference and the suction gas specific volume are also small, improving the efficiency.
  • the compressor can also be reduced in size.
  • the tetrafluoropropylene in the present invention includes all tetrafluoropropylenes including various isomers.
  • strong flammability means that the lower explosion limit volume concentration is less than 3.5% by volume
  • weak flammability means that the lower explosion limit volume concentration is 3.5% by volume or more. Means.
  • 0.1 mass% or more, preferably 1 mass% or more and 5 mass% or less is dissolved in the mixed refrigerant liquid at the outlet of the condenser 3 under the operating condition of the compressor 2.
  • a lubricating oil for a compressor having a viscosity of 2 mm 2 / s or more, preferably 10 mm 2 / s or more, more preferably 20 mm 2 / s or more and 100 mm 2 / s or less may be enclosed at ° C.
  • compressor lubricating oils include alkylbenzenes, polyol esters, polyalkylene glycols, polyvinyl ethers, carbonates, mineral oils, and mixtures thereof.
  • FIG. 3 is a temperature-enthalpy diagram showing the operation of the air-conditioning apparatus 1 according to Embodiment 1.
  • the mixed refrigerant is sucked into the compressor 2 in a low-temperature and low-pressure gas state ([1] in FIGS. 1 and 3), and pressurized to a high-temperature and high-pressure gas state ([2] in FIGS. 1 and 3) and compressed. It is discharged together with a part of the lubricating oil for compressor enclosed for lubricating the sliding portion of the machine 2 (which is about 1% by mass or less of the mass flow rate of the mixed refrigerant).
  • the pressurized mixed refrigerant is condensed while heating a heat transfer fluid such as air in the condenser 3 while maintaining a substantially constant pressure ([3] in FIGS. 1 and 3). ),
  • the compressor lubricating oil is dissolved in the mixed refrigerant liquid generated by the condensation of the mixed refrigerant gas, and flows together with the mixed refrigerant.
  • the temperature of the mixed refrigerant liquid decreases due to the non-azeotropic property of the refrigerant constituting the mixed refrigerant, that is, the difference in boiling points.
  • a mixed refrigerant of 30% by mass of difluoromethane and 70% by mass of tetrafluoropropylene (hereinafter referred to as the mixed refrigerant 1 of the present invention) is about 5 ° C., 70% by mass of fluoromethane and 30% by mass of tetrafluoropropylene.
  • the mixed refrigerant (hereinafter referred to as the mixed refrigerant 2 of the present invention) decreases in temperature by about 5 ° C.
  • the mixed refrigerant liquid whose temperature has been reduced is changed into a low-temperature low-pressure gas-liquid two-phase mixed refrigerant ([4] in FIGS.
  • the compressor 2 is cooled and evaporated while maintaining a substantially constant pressure to change to a low-temperature and low-pressure mixed refrigerant gas ([1] in FIGS. 1 and 3) and the compressor lubricating oil eluted by evaporation of the mixed refrigerant.
  • a low-temperature and low-pressure mixed refrigerant gas [1] in FIGS. 1 and 3)
  • the compressor lubricating oil eluted by evaporation of the mixed refrigerant.
  • a mixed refrigerant of 30% by mass of difluoromethane and 70% by mass of tetrafluoropropylene has a temperature of about 5 ° C.
  • a mixed refrigerant of 70% by mass of fluoromethane and 30% by mass of tetrafluoropropylene has a temperature of about 8 ° C.
  • the temperature change of the refrigerant in the condenser 3 and the evaporator 5 increases as the non-azeotropic property increases, and fin-tube heat exchange in which the heat transfer fluid such as air and the refrigerant flow at right angles is performed.
  • the heat exchange capacity is lowered and the efficiency of the air conditioner is lowered.
  • Such a temperature change is, for example, the difference ( ⁇ Te) between the temperature at [1] in FIG. 3 and the temperature at [4] in FIG. 3 in the case of the evaporator 5.
  • FIG. 4 shows the relationship between the heat exchange amount Q [kW] normalized by the heat exchange amount Q ′ [kW] and the temperature change ⁇ Te [° C.] of the mixed refrigerant when there is no temperature change in the exchanger.
  • K is the thermal transfer coefficient of the heat exchange amount heat exchanger [kW / (m 2 ⁇ °C )]
  • A is the heat transfer area [m 2]
  • G a is the air flow rate [kg / s]
  • Cp a is air Specific heat [kJ / (kg ⁇ ° C.)]
  • W is the heat capacity flow rate [kW / ° C.] of the mixed refrigerant.
  • point A is R410A (hereinafter referred to as the conventional mixed refrigerant 1) composed of 50% by mass of difluoromethane and 50% by mass of pentafluoroethane, and point B is 23% by mass of difluoromethane and 25% by mass.
  • % R407C (hereinafter referred to as the conventional mixed refrigerant 2) composed of 25% by mass of pentafluoroethane and 52% by mass of tetrafluoroethane
  • the C point is a conventional mixed refrigerant composed of 65% by mass of propane and 35% by mass of R410A. 3 is shown.
  • the heat exchange amount Q decreases as the temperature change ⁇ Te caused by the non-azeotropic property of the refrigerant increases.
  • the mixed refrigerants 1 and 2 (which produce a temperature difference of about 5 ° C.) used in the first embodiment described above can obtain a heat exchange amount equivalent to that of the conventional mixed refrigerant 2, which is higher than that of the conventional mixed refrigerant 3.
  • the heat exchange amount is improved by 15%.
  • Table 1 shows values relating to combustibility, greenhouse effect and performance (temperature difference and specific volume of inhaled gas) for the mixed refrigerants 1 and 2, the conventional mixed refrigerants 1 to 3, and tetrafluoropropylene.
  • flammability the lower explosion limit and the gas type (weak flammability, strong flammability) in accordance with ISO standards and IEC standards, which are international standards, are shown.
  • the greenhouse effect is represented by the global warming potential, which is an index based on the greenhouse effect of carbon dioxide.
  • the refrigerant temperature difference is a temperature difference that occurs when the refrigerant evaporates when the average refrigerant temperature is 15 ° C.
  • the suction gas specific volume is a value in the heating operation.
  • the mixed refrigerants 1 and 2 used in the first embodiment are weakly flammable gases similar to the conventional mixed refrigerants 1 and 2, and are 1/10 of the conventional mixed refrigerants 1 and 2.
  • the greenhouse effect is about 1/20.
  • the mixed refrigerants 1 and 2 used in the first embodiment are similar to the conventional mixed refrigerants 1 and 2 in terms of the temperature difference and the suction gas specific volume related to performance.
  • the mixed refrigerants 1 and 2 used in the first embodiment have a suction gas specific volume of 40% to 70%, compared to tetrafluoropropylene having a smaller greenhouse effect than the conventional mixed refrigerants 1 and 2.
  • the pressure loss accompanying the flow of the refrigerant can be reduced, the efficiency can be improved, and the compressor 2 can be downsized.
  • the mixed refrigerants 1 and 2 used in the first embodiment have a lower explosion limit concentration than the conventional mixed refrigerant 3 and can be handled as a weakly flammable gas.
  • the suction gas specific volume is small, the efficiency can be improved, and the compressor 2 can be downsized.
  • the greenhouse effect can be reduced to 1/10 to 1/20 while obtaining safety and performance equivalent to those of chlorofluorocarbon refrigerants such as R410A and R407C. Is obtained.
  • the first embodiment it can be handled as a weakly flammable gas, the risk of explosion and the like can be minimized, the greenhouse effect is smaller than R410A, the safety of the air conditioner can be improved, and the refrigerant leakage The greenhouse effect by etc. can be suppressed. Furthermore, the temperature change of the refrigerant in the condenser 3 and the evaporator 5 can be reduced, the gas density on the low pressure side is large, the efficiency of the air conditioner is improved, and the compressor 2 can be miniaturized.
  • the compressor 2 may be a low-pressure compressor in which the pressure in the compressor is substantially the same as the low-pressure side pressure (evaporation pressure).
  • the air conditioner configured as described above, it is possible to reduce the amount of refrigerant composed of highly flammable hydrocarbons present in the compressor.
  • you may add leak detection agents, such as an odorant and a coloring agent, to a mixed refrigerant.
  • a leak detection agent such as an odorant leaks together with the mixed refrigerant, and the leakage of the mixed refrigerant can be confirmed.
  • leak detection agents include odorants mainly composed of methyl mercaptan, tetrahydrothiophene, ammonia, etc., colorants mainly composed of fluorescent agents, azo pigments and the like.
  • FIG. Table 2 shows values relating to flammability, greenhouse effect, and performance of the mixed refrigerant in which the mixing ratio of tetrafluoropropylene and difluoromethane was changed.
  • a mixed refrigerant in which the mixing ratio of difluoromethane is 20% by mass or more and 50% by mass or less is particularly excellent in combustibility, greenhouse effect and performance.
  • Embodiment 3 shows values relating to flammability, greenhouse effect, and performance of the mixed refrigerant in which the mixing ratio of tetrafluoropropylene and fluoromethane was changed. As can be seen from Table 3, a mixed refrigerant in which the mixing ratio of difluoromethane is 50% by mass or more and 70% by mass or less is excellent in combustibility, greenhouse effect and performance.
  • Embodiment 4 the mixed refrigerant using tetrafluoropropylene as the first refrigerant has been described.
  • a refrigerant having flammability, global warming potential, and boiling point equivalent to or lower than tetrafluoropropylene instead of tetrafluoropropylene, a refrigerant having flammability, global warming potential, and boiling point equivalent to or lower than tetrafluoropropylene.
  • the same effect can be obtained with an isomer of tetrafluoropropylene and a mixture of isomers.
  • a refrigerant having a small global warming potential has an effect of further reducing the greenhouse effect.
  • FIG. The air-conditioning apparatus according to Embodiment 5 is a multi-row (condenser 3 or evaporator 5) configured such that the heat transfer fluid is opposed to the mixed refrigerant as shown in FIG. 5.
  • the configuration is the same as that of the air-conditioning apparatus according to Embodiment 1 except that three rows of fin-tube heat exchangers are provided in FIG.
  • the heat transfer tubes 7 are arranged in three rows with respect to the flow direction of the heat transfer fluid such as air (the white arrow in FIG. 5) (three rows of fins). -Tube heat exchanger).
  • the mixed refrigerant flowing through the heat transfer tube 7 is heat-exchanged with a heat transfer fluid such as air flowing outside the heat transfer tube 7 and evaporated or condensed.
  • FIG. 6 shows the relationship between the temperature change of the mixed refrigerant and the temperature change of the air when the one-row fin-tube heat exchanger shown in FIG. 2 is used as an evaporator.
  • the temperature of the mixed refrigerant rises due to heat exchange with air
  • the temperature difference between the air and the refrigerant from the inlet to the outlet of the mixed refrigerant changes because the inlet temperature of the air to the heat exchanger is constant. is doing.
  • FIG. 7 when the three-row fin-tube heat exchanger shown in FIG. 5 is used as an evaporator, the air corresponding to the temperature change from the inlet of the mixed refrigerant heat exchanger Therefore, the temperature difference between the mixed refrigerant and the air can be reduced.
  • the performance of the heat exchanger can be improved and the efficiency of the air conditioner can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Lubricants (AREA)

Abstract

 本発明に係る空気調和装置は、圧縮機、凝縮器、減圧器および蒸発器を接続し、冷媒が循環するように構成し、R410Aよりも温室効果が小さい第1の冷媒、例えば、テトラフロオロプロピレンと、R410Aよりも温室効果が小さく且つ第1の冷媒よりも沸点の低い第2の冷媒、例えば、ジフルオロメタンとを混合した混合冷媒を封入したことを特徴とする。この空気調和装置は、冷媒の可燃性および温室効果を低下させるとともに、効率の低下や圧縮機の大型化を抑制することができる。

Description

空気調和装置
 本発明は、冷媒を循環させて空気などの被伝熱流体を冷却または加熱する空気調和装置に関するものである。
 ジフルオロメタンとペンタフルオロエタンとの混合冷媒(以下、R410Aと略記することがある)を冷凍サイクルで用いる従来の空気調和装置では、圧縮機における吐出圧力が上昇したり、吐出温度が上昇するという問題を解決するために、上記混合冷媒全体に対して65重量%以上のプロパンを混合することが提案されている(例えば、特許文献1を参照)。
 また、従来の空気調和装置や冷凍装置では、温室効果を低減するために、テトラフルオロプロピレンが冷媒として利用されている(例えば、特許文献2を参照)。
特開2005-15634号公報 特表2007-510039号公報
 しかしながら、冷媒全体に占めるプロパンの割合を65重量%以上とした上記従来の混合冷媒は、爆発下限界が2.1~6体積%、発熱量が30~46MJ/kgであり、国際規格であるISO規格およびIEC規格に定められた強燃性ガスに相当する。そのため、この混合冷媒は、極めて取扱いに注意が必要な冷媒であり、運転中または設置工事中の冷媒漏洩による爆発が懸念される。なお、規格ISO5149-1993では、爆発下限体積濃度3.5%未満を強燃性ガス、それ以外を弱燃性と定め、規格IEC61D/125/CDVでは、爆発下限質量濃度が0.1kg/m3以下または燃焼熱量19MJ/kg以上を強燃性、それ以外を弱燃性と定めている。さらに、R410Aは二酸化炭素の2000倍以上の温室効果があるという問題がある。
 また、テトラフルオロプロピレンは、R410Aよりも温室効果が小さいが、R410Aよりも沸点が高いため、この冷媒を空気調和装置に用いた場合には、冷凍サイクルの低圧側のガス密度が小さくなり、冷媒の流動にともなう圧力損失による効率低下や圧縮機の大型化などの問題がある。
 従って、本発明は、上記のような問題を解決するためになされたものであり、冷媒の可燃性および温室効果を低下させるとともに、効率の低下や圧縮機の大型化を抑制できる空気調和装置を提供することを目的としている。
 そこで、本発明者らは上記のような従来の問題点を解決すべく鋭意研究、開発を遂行した結果、このような問題点を解決するためには、R410Aよりも温室効果が小さい第1の冷媒と、R410Aよりも温室効果が小さく且つ第1の冷媒よりも沸点の低い第2の冷媒とを混合した混合冷媒を用いることが有効であることに想到し、本発明を完成するに至った。
 すなわち、本発明に係る空気調和装置は、圧縮機、凝縮器、減圧器および蒸発器を接続し、冷媒が循環するように構成した空気調和装置において、R410Aよりも温室効果が小さい第1の冷媒と、R410Aよりも温室効果が小さく且つ第1の冷媒よりも沸点の低い第2の冷媒とを混合した混合冷媒を封入したのである。
 本発明によれば、冷媒の可燃性および温室効果を低下させるとともに、効率の低下や圧縮機の大型化を抑制できる空気調和装置を提供することができる。
本発明の実施の形態1に係る空気調和装置を示す構成図である。 本発明の実施の形態1におけるフィン-チューブ型熱交換器を説明するための概念図である。 本発明の実施の形態1に係る空気調和装置の動作を示す温度-エンタルピ線図である。 本発明の実施の形態1に係る空気調和装置の熱交換量と温度変化との関係を示すグラフである。 本発明の実施の形態5に係る空気調和装置の熱交換器を説明するための概念図である。 本発明の実施の形態1に係る空気調和装置の1列のフィン-チューブ型熱交換器における冷媒と空気との温度変化を示すグラフである。 本発明の実施の形態5に係る空気調和装置の多列のフィン-チューブ型熱交換器における冷媒と空気との温度変化を示すグラフである。
 以下、本発明の実施の形態を図面に基づいて説明する。
 実施の形態1.
 図1は、本発明の実施の形態1に係る空気調和装置の構成図である。図1において、実施の形態1に係る空気調和装置1は、主要構成機器である圧縮機2、凝縮器3、減圧器4および蒸発器5を備えている。これらの主要構成機器は、冷媒配管で順に接続されており、空気調和装置1に封入された混合冷媒が図1の黒矢印の方向に循環するように構成している。
 凝縮器3および蒸発器5は、例えば、図2に示されるように、複数の伝熱フィン6と、その伝熱フィン6と直交する方向に貫通し、混合冷媒が分岐することなく流れる(図2の黒矢印)一繋がりの伝熱管7とにより構成されるフィン-チューブ型の熱交換器であることができる。この熱交換器では、図2に示されるように、空気などの被伝熱流体の流れ方向(図2の白抜き矢印)に対し伝熱管7が1列に配置されている(1列1パスの熱交換器)。この熱交換器では、伝熱管7を流れる混合冷媒が、伝熱管7の外部を流れる空気などの被伝熱流体と熱交換され、蒸発または凝縮する。
 混合冷媒としては、R410Aよりも温室効果が小さい第1の冷媒と、R410Aよりも温室効果が小さく且つ第1の冷媒よりも沸点の低い第2の冷媒とを混合したもの、好ましくは、第1の冷媒としてのテトラフルオロプロピレンと、第2の冷媒としてのジフルオロメタンまたはフルオロメタンとを混合したものを用いることができる。第1の冷媒としてテトラフルオロプロピレンおよび第2の冷媒としてジフルオロメタンを用いる場合、ジフルオロメタンの質量割合は、混合冷媒全体に対して好ましくは20質量%以上、50質量%以下である。また、第1の冷媒としてテトラフルオロプロピレンおよび第2の冷媒としてフルオロメタンを用いる場合、フルオロメタンの質量割合が、混合冷媒全体に対して好ましくは50質量%以上、80質量%以下である。混合冷媒の混合割合が、上記数値範囲内であれば、爆発下限界濃度が高く、弱燃性ガスとして取り扱いが可能性であり、さらに温度差と吸入ガス比容積も小さく、効率を向上でき、圧縮機も小型化できる。
 なお、本発明におけるテトラフルオロプロピレンには、各種異性体を含む全てのテトラフルオロプロピレンが含まれる。また、本発明において、強燃性とは、爆発下限体積濃度が3.5体積%未満であることを意味し、弱燃性とは、爆発下限体積濃度が3.5体積%以上であることを意味する。
 また、空気調和装置1には、圧縮機2の動作条件において、凝縮器3の出口の混合冷媒液に0.1質量%以上、好ましくは1質量%以上、5質量%以下溶解し、温度40℃において、2mm2/s以上、好ましくは10mm2/s以上、更に好ましくは20mm2/s以上、100mm2/s以下の粘度を有する圧縮機用潤滑油を封入してもよい。このような特定の圧縮機用潤滑油を封入することで、圧縮機2から吐出される圧縮機用潤滑油は、一般的に流速が最も遅くなる凝縮器3の出口の冷媒配管においてその殆どが混合冷媒液に溶解し、凝縮器3、蒸発器5や冷媒配管に滞留することなく、圧縮機2に戻されるため、信頼性の高い空気調和装置の運転ができる。圧縮機用潤滑油の具体例としては、アルキルベンゼン、ポリオールエステル、ポリアルキレングリコール、ポリビニルエーテル、カーボネイト、鉱油およびこれらの混合物が挙げられる。
 次に、実施の形態1に係る空気調和装置1の動作について、図1および3を用いて説明する。図3は、実施の形態1に係る空気調和装置1の動作を示す温度-エンタルピ線図である。混合冷媒は、低温低圧のガス状態(図1および図3の[1])で、圧縮機2に吸入され、高温高圧のガス状態(図1および図3の[2])まで昇圧され、圧縮機2の摺動部の潤滑のために封入されている圧縮機用潤滑油の一部(混合冷媒の質量流量の1質量%程度以下である)とともに吐出される。続いて、昇圧された混合冷媒は、凝縮器3で空気などの被伝熱流体を加熱して、ほぼ一定の圧力を保ちながら凝縮し高圧の混合冷媒液(図1および図3の[3])に変化し、圧縮機用潤滑油は混合冷媒ガスの凝縮によって生じる混合冷媒液に溶解し、混合冷媒とともに流れる。このとき、混合冷媒を構成する冷媒の非共沸性、つまり沸点の違いによって混合冷媒液の温度が低下する。例えば、30質量%のジフルオロメタンと70質量%のテトラフルオロプロピレンとの混合冷媒(以下、本発明の混合冷媒1という)では5℃程度、70質量%のフルオロメタンと30質量%のテトラフルオロプロピレンとの混合冷媒(以下、本発明の混合冷媒2という)では5℃程度、温度が低下する。温度低下した混合冷媒液は、減圧器4で低温低圧の気液二相状態の混合冷媒(図1および図3の[4])に変化し、蒸発器5で空気などの被伝熱流体を冷却して、ほぼ一定の圧力を保ちながら蒸発し低温低圧の混合冷媒ガス(図1および図3の[1])に変化し、混合冷媒の蒸発によって溶出した圧縮機用潤滑油とともに圧縮機2に戻る。蒸発器5においても凝縮器3と同様に、混合冷媒の非共沸性によって温度が上昇する。例えば、30質量%のジフルオロメタンと70質量%のテトラフルオロプロピレンとの混合冷媒では5℃程度、70質量%のフルオロメタンと30質量%のテトラフルオロプロピレンとの混合冷媒では8℃程度、温度が上昇する。
 次に、空気調和装置の性能について説明する。一般的に、凝縮器3および蒸発器5における冷媒の温度変化は、非共沸性が大きいほど大きくなり、空気などの被伝熱流体と冷媒が直交するように流れるフィン-チューブ型の熱交換器では、熱交換能が低下し空気調和装置の効率が低下する。このような温度変化は、例えば、蒸発器5の場合には図3の[1]における温度と図3の[4]における温度との差分(△Te)である。
 例えば、下記式(1)で定義する移動単位数NTUが0.7、下記式(2)で定義する熱容量流量比Rが1.4の条件で、図2に示した1列1パスの熱交換器において、温度変化がない場合の熱交換量Q’[kW]で規格化した熱交換量Q[kW]と混合冷媒の温度変化△Te[℃]との関係を図4に示す。なお、Kは熱交換量熱交換器の熱通過率[kW/(m2・℃)]、Aは伝熱面積[m2]、Gaは空気流量[kg/s]、Cpaは空気比熱[kJ/(kg・℃)]、Wは混合冷媒の熱容量流量[kW/℃]である。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 図4において、A点は、50質量%のジフルオロメタンと50質量%のペンタフルオロエタンとからなるR410A(以下、従来の混合冷媒1という)、B点は、23質量%のジフルオロメタンと25質量%のペンタフルオロエタンと52質量%のテトラフルオロエタンとからなるR407C(以下、従来の混合冷媒2という)、C点は、65質量%のプロパンと35質量%のR410Aとからなる従来の混合冷媒3を示している。図4に示されるように、冷媒の非共沸性によって生じる温度変化△Teが大きいほど熱交換量Qが低下する。
 上述した本実施の形態1で用いられる混合冷媒1および2(約5℃の温度差を生じる)は、従来の混合冷媒2と同等程度の熱交換量を得られ、従来の混合冷媒3よりも、熱交換量が15%も向上する。
 次に、上記温度差、冷媒の可燃性、温室効果および高圧側の動作圧力について説明する。本発明の混合冷媒1および2、従来の混合冷媒1~3、テトラフルオロプロピレンについて、可燃性、温室効果および性能(温度差および吸入ガス比容積)に関する値を表1に示す。可燃性については、爆発下限界、国際規格であるISO規格およびIEC規格に準じたガスの種別(弱燃性、強燃性)を示す。温室効果は、二酸化炭素の温室効果を基準にした場合の指標である地球温暖化係数で表す。性能については、非共沸性によって生じる熱交換器内の温度差と圧力損失による性能低下や圧縮機の大きさに影響を及ぼす吸入ガス比容積を示す。なお、冷媒の温度差は、冷媒の平均温度が15℃のときに冷媒が蒸発する際に生じる温度差とし、吸入ガス比容積は暖房運転での値である。
Figure JPOXMLDOC01-appb-T000003
 表1から分かるように、本実施の形態1に用いられる混合冷媒1および2は、従来の混合冷媒1および2と同様の弱燃性ガスであり、従来の混合冷媒1および2の1/10~1/20程度の温室効果である。また、本実施の形態1に用いられる混合冷媒1および2は、性能に係る温度差および吸入ガス比容積についても従来の混合冷媒1および2と同程度である。
 また、本実施の形態1に用いられる混合冷媒1および2は、従来の混合冷媒1および2より温室効果が小さいテトラフルオロプロピレンと比較して、吸入ガス比容積が40%~70%であり、冷媒の流動に伴う圧力損失を低減でき効率が向上し、さらに圧縮機2を小型化することができる。また、本実施の形態1に用いられる混合冷媒1および2は、従来の混合冷媒3と比較して、爆発下限界濃度が高く、弱燃性ガスとして取り扱いが可能性であり、さらに温度差と吸入ガス比容積も小さく、効率を向上でき、圧縮機2を小型化することができる。
 以上より、本実施の形態1に係る空気調和装置によれば、R410AやR407Cなどのフロン系冷媒と同等の安全性および性能を得ながら、温室効果を1/10~1/20に低減できる効果が得られる。
 実施の形態1によれば、弱燃性ガスとしての取扱いが可能で、爆発などの危険を最小限にでき、また温室効果がR410Aより小さく、空気調和装置の安全性を向上できるとともに、冷媒漏洩などによる温室効果を抑制することができる。さらに、凝縮器3や蒸発器5における冷媒の温度変化を小さくでき、また低圧側のガス密度が大きく、空気調和装置の効率が向上するとともに、圧縮機2を小型化することができる。
 なお、圧縮機2として、圧縮機内の圧力が低圧側圧力(蒸発圧力)とほぼ同じになる低圧型圧縮機を用いてもよい。このように構成した空気調和装置では、圧縮機内に存在する強燃性の炭化水素からなる冷媒の量を低減することができる。
 なお、混合冷媒に、着臭剤、着色剤などの漏洩検知剤を添加してもよい。漏洩検知剤を添加することで、混合冷媒が冷媒配管の外に漏洩した場合には、混合冷媒とともに着臭剤などの漏洩検知剤が漏洩し、混合冷媒の漏洩を確認することができる。そのため、漏洩箇所の修繕、設置工事の作業停止、もしくは室内の換気などの対策を漏洩の初期段階でとることができる。このような漏洩検知剤の具体例としては、メチルメルカプタン、テトラヒドロチオフェン、アンモニアなどを主成分とする着臭剤、蛍光剤、アゾ顔料などを主成分とする着色剤が挙げられる。
 実施の形態2.
 テトラフロオロプロピレンとジフルオロメタンとの混合割合を変えた混合冷媒の可燃性、温室効果および性能に関する値を表2に示す。表2から分かるように、特に、ジフルオロメタンの混合割合を20質量%以上50質量%以下とした混合冷媒が可燃性、温室効果および性能において優れている。
Figure JPOXMLDOC01-appb-T000004
 実施の形態3.
 テトラフロオロプロピレンとフルオロメタンとの混合割合を変えた混合冷媒の可燃性、温室効果および性能に関する値を表3に示す。表3から分かるように、特に、ジフルオロメタンの混合割合を50質量%以上70質量%以下とした混合冷媒が可燃性、温室効果および性能において優れている。
Figure JPOXMLDOC01-appb-T000005
 実施の形態4.
 実施の形態1では、第1の冷媒としてテトラフルオロプロピレンを用いた混合冷媒について説明したが、テトラフルオロプロピレンの代わりに、テトラフルオロプロピレンと同等もしくは低い可燃性、地球温暖化係数および沸点を有する冷媒、例えば、テトラフルオロプロピレンの異性体および異性体の混合物でも同様の効果が得られる。特に、地球温暖化係数が小さい冷媒では、さらに温室効果を小さくできる効果がある。
 実施の形態5.
 実施の形態5に係る空気調和装置は、凝縮器3または蒸発器5として、図5に示されるような、混合冷媒に対し、被伝熱流体が対向流となるように構成される多列(図5では3列)のフィン-チューブ型熱交換器を備える以外は実施の形態1に係る空気調和装置と同じ構成である。この熱交換器では、図5に示されるように、空気などの被伝熱流体の流れ方向(図5の白抜き矢印)に対し伝熱管7が3列に配置されている(3列のフィン-チューブ型熱交換器)。この熱交換器では、伝熱管7を流れる混合冷媒が、伝熱管7の外部を流れる空気などの被伝熱流体と熱交換され、蒸発または凝縮する。
 図2に示した1列のフィン-チューブ型熱交換器を蒸発器として利用した場合における混合冷媒の温度変化と空気の温度変化との関係を図6に示す。混合冷媒は空気との熱交換により温度が上昇するが、空気の熱交換器への入口温度は一定であるため、混合冷媒の熱交換器入口から出口までの空気と冷媒との温度差が変化している。一方、図7に示すように、図5に示した3列のフィン-チューブ型熱交換器を蒸発器として利用した場合、混合冷媒の熱交換器の入口からの温度変化に対応して、空気の温度も変化するために、混合冷媒と空気との温度差を小さくすることができる。このように構成した空気調和装置によれば、熱交換器の性能が向上し、空気調和装置の効率を向上させることができる。

Claims (8)

  1.  圧縮機、凝縮器、減圧器および蒸発器を接続し、冷媒が循環するように構成した空気調和装置において、R410Aよりも温室効果が小さい第1の冷媒と、R410Aよりも温室効果が小さく且つ第1の冷媒よりも沸点の低い第2の冷媒とを混合した混合冷媒を封入したことを特徴とする空気調和装置。
  2.  前記第1の冷媒がテトラフロオロプロピレンであり且つ前記第2の冷媒がジフルオロメタンまたはフルオロメタンであることを特徴とする請求項1に記載の空気調和装置。
  3.  前記第2の冷媒がジフルオロメタンであって、前記第2の冷媒の質量割合が、前記混合冷媒全体に対して20質量%以上であることを特徴とする請求項1または2に記載の空気調和装置。
  4.  前記第2の冷媒がフルオロメタンであって、且つ前記第2の冷媒の質量割合が、前記混合冷媒全体に対して80質量%以下であることを特徴とする請求項1または2に記載の空気調和装置。
  5.  前記圧縮機の動作条件において、前記凝縮器の出口の前記混合冷媒液に1質量%以上溶解し、2mm2/s以上の粘度を有する圧縮機用潤滑油を封入したことを特徴とする請求項1に記載の空気調和装置。
  6.  前記凝縮器または前記蒸発器を流れる前記混合冷媒に対し、被伝熱流体が対向流となるように構成して熱交換させることを特徴とする請求項1に記載の空気調和装置。
  7.  前記圧縮機が低圧型圧縮機であることを特徴とする請求項1に記載の空気調和装置。
  8.  前記混合冷媒に、着臭剤または着色剤を添加したことを特徴とする請求項1に記載の空気調和装置。
PCT/JP2008/071019 2008-06-09 2008-11-19 空気調和装置 WO2009150763A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008150480A JP2011163565A (ja) 2008-06-09 2008-06-09 空気調和装置
JP2008-150480 2008-06-09

Publications (1)

Publication Number Publication Date
WO2009150763A1 true WO2009150763A1 (ja) 2009-12-17

Family

ID=41416482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/071019 WO2009150763A1 (ja) 2008-06-09 2008-11-19 空気調和装置

Country Status (2)

Country Link
JP (1) JP2011163565A (ja)
WO (1) WO2009150763A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008215748A (ja) * 2007-03-06 2008-09-18 Mitsubishi Electric Corp 空気調和装置
WO2011141656A2 (fr) 2010-05-11 2011-11-17 Arkema France Fluides de transfert de chaleur et leur utilisation dans des echangeurs de chaleur a contre-courant
WO2011141654A2 (fr) 2010-05-11 2011-11-17 Arkema France Fluides de transfert de chaleur et leur utilisation dans des echangeurs de chaleur a contre-courant
US9315706B2 (en) 2010-09-20 2016-04-19 Arkema France 3,3,3-trifluoropropene compositions
US9540555B2 (en) 2012-08-23 2017-01-10 The Chemours Company Fc, Llc Refrigerant mixtures comprising tetrafluoropropenes and difluoromethane and uses thereof
US9574124B2 (en) 2010-03-02 2017-02-21 Arkema France Heat-transfer fluid for a centrifugal compressor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3604983A4 (en) * 2017-03-31 2021-01-13 Daikin Industries, Ltd. PROCESS FOR DETECTION OF THE LOCATION OF A REFRIGERANT LEAK

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002054853A (ja) * 2000-06-28 2002-02-20 Praxair Technol Inc 多成分冷却材を使用する食品冷凍法
JP2005015634A (ja) * 2003-06-26 2005-01-20 Matsushita Electric Ind Co Ltd 混合冷媒とそれを用いた冷凍サイクル装置
JP2007510039A (ja) * 2003-10-27 2007-04-19 ハネウェル・インターナショナル・インコーポレーテッド フッ素化アルケン冷媒組成物
JP2007525585A (ja) * 2004-02-26 2007-09-06 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー トレーサ含有組成物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002054853A (ja) * 2000-06-28 2002-02-20 Praxair Technol Inc 多成分冷却材を使用する食品冷凍法
JP2005015634A (ja) * 2003-06-26 2005-01-20 Matsushita Electric Ind Co Ltd 混合冷媒とそれを用いた冷凍サイクル装置
JP2007510039A (ja) * 2003-10-27 2007-04-19 ハネウェル・インターナショナル・インコーポレーテッド フッ素化アルケン冷媒組成物
JP2007525585A (ja) * 2004-02-26 2007-09-06 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー トレーサ含有組成物

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008215748A (ja) * 2007-03-06 2008-09-18 Mitsubishi Electric Corp 空気調和装置
US10450489B2 (en) 2010-03-02 2019-10-22 Arkema France Heat-transfer fluid for a centrifugal compressor
US9574124B2 (en) 2010-03-02 2017-02-21 Arkema France Heat-transfer fluid for a centrifugal compressor
CN102884152B (zh) * 2010-05-11 2016-06-01 阿克马法国公司 传热流体和其在逆流热交换器中的用途
US10308854B2 (en) 2010-05-11 2019-06-04 Arkema France Heat-transfer fluids and use thereof in countercurrent heat exchangers
WO2011141654A3 (fr) * 2010-05-11 2012-03-22 Arkema France Fluides de transfert de chaleur et leur utilisation dans des echangeurs de chaleur a contre-courant
WO2011141656A3 (fr) * 2010-05-11 2012-03-22 Arkema France Fluides de transfert de chaleur et leur utilisation dans des echangeurs de chaleur a contre-courant
CN102884152A (zh) * 2010-05-11 2013-01-16 阿克马法国公司 传热流体和其在逆流热交换器中的用途
US9005468B2 (en) 2010-05-11 2015-04-14 Arkema France Heat-transfer fluids and use thereof in countercurrent heat exchangers
CN111205825B (zh) * 2010-05-11 2021-11-02 阿克马法国公司 传热流体和其在逆流热交换器中的用途
FR2959999A1 (fr) * 2010-05-11 2011-11-18 Arkema France Fluides de transfert de chaleur et leur utilisation dans des echangeurs de chaleur a contre-courant
JP2016196642A (ja) * 2010-05-11 2016-11-24 アルケマ フランス 熱伝達流体と、その向流熱交換器での使用
US10858564B2 (en) 2010-05-11 2020-12-08 Arkema France Heat-transfer fluids and use thereof in countercurrent heat exchangers
WO2011141654A2 (fr) 2010-05-11 2011-11-17 Arkema France Fluides de transfert de chaleur et leur utilisation dans des echangeurs de chaleur a contre-courant
US9683154B2 (en) 2010-05-11 2017-06-20 Arkema France Heat-transfer fluids and use thereof in countercurrent heat exchangers
JP2018188643A (ja) * 2010-05-11 2018-11-29 アルケマ フランス 熱伝達流体と、その向流熱交換器での使用
FR2959997A1 (fr) * 2010-05-11 2011-11-18 Arkema France Fluides de transfert de chaleur et leur utilisation dans des echangeurs de chaleur a contre-courant
WO2011141656A2 (fr) 2010-05-11 2011-11-17 Arkema France Fluides de transfert de chaleur et leur utilisation dans des echangeurs de chaleur a contre-courant
CN111205825A (zh) * 2010-05-11 2020-05-29 阿克马法国公司 传热流体和其在逆流热交换器中的用途
US9315706B2 (en) 2010-09-20 2016-04-19 Arkema France 3,3,3-trifluoropropene compositions
US9540555B2 (en) 2012-08-23 2017-01-10 The Chemours Company Fc, Llc Refrigerant mixtures comprising tetrafluoropropenes and difluoromethane and uses thereof

Also Published As

Publication number Publication date
JP2011163565A (ja) 2011-08-25

Similar Documents

Publication Publication Date Title
JP7284405B2 (ja) 冷凍サイクル装置
US11906207B2 (en) Refrigeration apparatus
US11820933B2 (en) Refrigeration cycle apparatus
US11549695B2 (en) Heat exchange unit
WO2019124230A1 (ja) 温水製造装置
WO2019124329A1 (ja) 冷凍サイクル装置
WO2009150763A1 (ja) 空気調和装置
KR101992041B1 (ko) 불소화 탄화수소의 혼합물을 냉매로서 사용하는 방법, 및 당해 혼합물을 냉매로서 사용한 냉동 장치
WO2019117213A1 (ja) フッ素化炭化水素及び二酸化炭素を含む冷媒、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法
JP4855305B2 (ja) 空気調和装置
CN113840892B (zh) 含有氟代烃和二氧化碳的制冷剂、其使用以及具有其的冷冻机及冷冻机的运转方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08874616

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 08874616

Country of ref document: EP

Kind code of ref document: A1