JP2008214665A - Co基金属ガラス合金、磁心、電磁変換機および時計 - Google Patents

Co基金属ガラス合金、磁心、電磁変換機および時計 Download PDF

Info

Publication number
JP2008214665A
JP2008214665A JP2007050620A JP2007050620A JP2008214665A JP 2008214665 A JP2008214665 A JP 2008214665A JP 2007050620 A JP2007050620 A JP 2007050620A JP 2007050620 A JP2007050620 A JP 2007050620A JP 2008214665 A JP2008214665 A JP 2008214665A
Authority
JP
Japan
Prior art keywords
magnetic core
metallic glass
glass alloy
based metallic
atomic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007050620A
Other languages
English (en)
Other versions
JP4758925B2 (ja
Inventor
Kazuhiro Tsuchiya
和博 土屋
Koju Takazawa
幸樹 高澤
Yoshio Mishima
義雄 三島
Akihisa Inoue
明久 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Seiko Epson Corp
Original Assignee
Tohoku University NUC
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Seiko Epson Corp filed Critical Tohoku University NUC
Priority to JP2007050620A priority Critical patent/JP4758925B2/ja
Publication of JP2008214665A publication Critical patent/JP2008214665A/ja
Application granted granted Critical
Publication of JP4758925B2 publication Critical patent/JP4758925B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

【課題】金属ガラスとして安定的に存在することができ、低い周波数から高い周波数において優れた磁気特性を示すことができるCo基金属ガラス合金、かかるCo基金属ガラス合金で構成された高性能の磁心、および、この磁心を備えた高性能の電磁変換機および時計を提供すること。
【解決手段】電磁変換機2は、磁心1と、磁心1の巻線部40の周囲に複数層にわたって巻き付けられた導線(コイル)43とを有している。この磁心1は、Fe、B、SiおよびNbを含み、Feの含有率が2原子%以上かつ8原子%以下、Bの含有率が23原子%以上かつ27原子%以下、Siの含有率が1原子%以上かつ3原子%以下、Nbの含有率が0.5原子%以上かつ4原子%未満であることを特徴とするCo基金属ガラス合金で構成されている。
【選択図】図2

Description

本発明は、Co基金属ガラス合金、磁心、電磁変換機および時計に関するものである。
特定の金属材料を主成分とし、所定の条件を満たす元素を含む材料とを混合した混合物を、溶融状態から極めて急速に冷却すると、結晶が形成される前のランダムな非晶質状態の合金が形成される場合がある。このような合金のなかで、所定の温度領域において、ガラス様に振る舞う非晶質合金は、「金属ガラス」と呼ばれる。
このような金属ガラスは、その特性を示す指標として、結晶化し始める温度である結晶化開始温度Txと、ガラス転移を生じる温度であるガラス転移温度Tgという相転移温度を有している。そして、これらの温度の差Tx−Tgは、一般に、過冷却液体温度域ΔTxとして定義されている。このΔTxは、金属ガラスのなり易さ(ガラス形成能)を示す指標であり、過冷却液体温度域ΔTxが大きい金属ガラスほど安定的に存在することができる。
また、近年、金属ガラスが有する高強度かつ低ヤング率という優れた機械的特性と、高透磁率の軟磁気特性という優れた磁気的特性等が注目され、例えば、モータ、発電機、アンテナ、電圧変換トランスのような電磁変換機の磁心等として、種々の分野に応用されている。
例えば、特許文献1には、Feを主成分とし、過冷却液体温度域ΔTxが20K以上の金属ガラス合金で構成された磁心が開示されている。
しかしながら、この金属ガラス合金は、100kHz程度の比較的高い周波数領域における比透磁率が10000程度と高いが、10Hz程度の比較的低い周波数領域における比透磁率が十分ではないという問題がある。このため、使用される際の周波数帯によっては、磁心が、十分な磁気特性を発揮することができない。
特開平11−74108号公報
本発明の目的は、金属ガラスとして安定的に存在することができ、低い周波数から高い周波数において優れた磁気特性を示すことができるCo基金属ガラス合金、かかるCo基金属ガラス合金で構成された高性能の磁心、および、この磁心を備えた高性能の電磁変換機および時計を提供することにある。
上記目的は、下記の本発明により達成される。
本発明のCo基金属ガラス合金は、Fe、B、SiおよびNbを含む高透磁率のCo基金属ガラス合金であって、
Feの含有率が2原子%以上かつ8原子%以下、
Bの含有率が23原子%以上かつ27原子%以下、
Siの含有率が1原子%以上かつ3原子%以下、
Nbの含有率が0.5原子%以上かつ4原子%未満であることを特徴とする。
これにより、金属ガラスとして安定的に存在することができ、低い周波数から高い周波数において優れた磁気特性を示すことができるCo基金属ガラス合金が得られる。
本発明のCo基金属ガラス合金では、当該Co基金属ガラス合金は、さらに、Niを0.5原子%以上かつ6原子%以下の含有率で含むことが好ましい。
これにより、Co基金属ガラス合金の比透磁率を高めることができる。その結果、例えば、磁気特性に優れた磁心を得ることができる。
本発明のCo基金属ガラス合金では、当該Co基金属ガラス合金は、さらに、Crを0.5原子%以上かつ4原子%以下の含有率で含むことが好ましい。
これにより、Co基金属ガラス合金の比透磁率を高めるとともに、耐候性および耐薬品性に優れたCo基金属ガラス合金を得ることができる。その結果、例えば、高性能で信頼性の高い磁心を得ることができる。
本発明のCo基金属ガラス合金では、当該Co基金属ガラス合金の結晶化開始温度をTx[K]とし、ガラス転移温度をTg[K]としたとき、Tx−Tgで定義される過冷却液体温度域ΔTxが30K以上であることが好ましい。
これにより、Co基金属ガラス合金は、十分なガラス形成能を示すものとなる。したがって、特殊な冷却手段を用いて、大きな冷却速度で冷却することなく、容易に金属ガラスを得ることができる。
本発明のCo基金属ガラス合金では、測定周波数10Hzにおける最大比透磁率が80000以上であることが好ましい。
これにより、例えば、低周波数帯で使用されるモータや発電機の磁心材料として、本発明のCo基金属ガラス合金が特に好適に用いられる。すなわち、このような磁心においては、比透磁率が大きいほど磁心の内部を通過する磁束密度が大きくなり、モータや発電機の性能を高めることができる。したがって、低周波数帯において高い性能を示す磁心を得ることができる。
本発明のCo基金属ガラス合金では、測定周波数100kHzにおける振幅比透磁率が6000以上であることが好ましい。
これにより、例えば、高周波数帯で使用されるアンテナや、モータ、発電機、アクチュエータ等の磁心材料として、本発明のCo基金属ガラス合金が特に好適に用いられる。すなわち、高周波数帯において高い性能を示す磁心を得ることができる。
本発明の磁心は、本発明のCo基金属ガラス合金で構成されることを特徴とする。
これにより、広い周波数帯において、内部を透過する磁束密度が大きくなり、高性能の磁心を得ることができる。
本発明の磁心では、当該磁心は、前記Co基金属ガラス合金で構成された複数枚の薄膜を積層してなる積層体で構成されることが好ましい。
薄膜状の金属ガラス合金を得るための装置は、その構成が簡単であるという利点がある。また、かかる装置によれば、溶湯の冷却速度が極めて速くなるため、ガラス形成能の低い原材料をも容易にガラス化することができる。したがって、磁心を積層体で構成することにより、原材料の選択の幅を広げることができ、また、原材料の選択を最適化することにより、得られた磁心は高い性能を有するものとなる。
本発明の磁心では、当該磁心は、前記Co基金属ガラス合金で構成された粉末を成形してなる成形体、または、該成形体を焼結してなる焼結体で構成されることが好ましい。
これにより、Co基金属ガラス合金の粒子が、樹脂材料によって絶縁されることになるため、渦電流損失の低減を図ることができる。このため、より低損失の磁心を得ることができる。
本発明の磁心では、前記焼結は、放電プラズマ焼結により行われることが好ましい。
放電プラズマ焼結では、Co基金属ガラス合金の粒子同士の間隙にパルス状の電気エネルギーを投入し、火花放電で発生する高温プラズマによる高いエネルギーを粒子同士の焼結に用いることができる。このため、特に粒子の表面付近を選択的に焼結させ、各粒子は、金属ガラス合金の特性を確実に維持することができる。
本発明の磁心では、当該磁心は、前記Co基金属ガラス合金の溶融物を鋳造成形してなるものであることが好ましい。
これにより、目的とする形状の磁心を高い寸法精度で得ることができる。
本発明の電磁変換機は、本発明の磁心と、該磁心の外周に巻き回されるコイルとを有することを特徴とする。
これにより、広い周波数帯において、内部を透過する磁束密度が大きくなり、電磁変換機として高い性能を示すものとなる。
本発明の電磁変換機では、前記磁心の前記コイルと接触する表面に、前記Co基金属ガラス合金中の元素を含む不働態被膜を有することが好ましい。
これにより、磁心とコイルとの絶縁を図る絶縁層を、容易に形成することができる。
本発明の時計は、本発明の電磁変換機を備えたことを特徴とする。
これにより、高性能の時計を得ることができる。
以下、本発明のCo基金属ガラス合金、磁心、電磁変換機および時計について、添付図面を参照しつつ詳細に説明する。
[Co基金属ガラス合金]
まず、本発明のCo基金属ガラス合金について説明する。
本発明のCo基金属ガラス合金は、Co(コバルト)を主成分とし、Fe(鉄)、B(ホウ素)、Si(ケイ素)およびNb(ニオブ)を含むものである。そして、Feの含有率が2原子%以上かつ8原子%以下、Bの含有率が23原子%以上かつ27原子%以下、Siの含有率が1原子%以上かつ3原子%以下、Nbの含有率が0.5原子%以上かつ4原子%未満とされる。
このようなCo基金属ガラス合金は、過冷却液体温度域ΔTxが大きく、安定したものとなる。また、このCo基金属ガラス合金は、磁気特性に優れ、低い周波数から高い周波数において高い透磁率を示す。このため、例えば、かかるCo基金属ガラス合金で構成された磁心は、高性能で、かつ信頼性の高いものとなる。
ここで、過冷却液体温度域ΔTxは、金属ガラス合金が結晶化し始める温度である結晶化開始温度Txとガラス転移を生じる温度であるガラス転移温度Tgとの差Tx−Tgで定義される指標である。この指標は、金属ガラスのなり易さ(ガラス形成能)を示す指標であり、過冷却液体温度域ΔTxが大きい金属ガラスほど安定的に存在することができる。
以下、本発明のCo基金属ガラス合金の各構成元素について順次説明する。
Coは、本発明のCo基金属ガラス合金の主成分をなし、主に、Co基金属ガラス合金の優れた軟磁気特性(軟磁性)とともに、優れた機械的特性を発現する等の性質を有する成分である。なお、本発明において、主成分とは、Co基金属ガラス合金を構成する各成分の中で、最も含有率が高いもののことを言う。
Feは、主に、Co基金属ガラス合金の飽和磁束密度に大きく影響し、比透磁率を高める等の性質を有する成分である。Feの含有率は、前述したように、2原子%以上かつ8原子%以下とされるが、2.5原子%以上かつ7原子%以下であるのが好ましく、3原子%以上かつ5原子%以下であるのがより好ましい。Feの含有率を前記範囲内とすることにより、Co基金属ガラス合金の飽和磁束密度を高めつつ、十分な過冷却液体温度域ΔTxを確保することができる。
また、Feの含有率が前記下限値を下回ると、Co基金属ガラス合金の飽和磁束密度が大きく低下し、例えば、Co基金属ガラス合金で構成された磁心の磁気特性が低下する。一方、Feの含有率が前記上限値を上回ると、Co基金属ガラス合金の飽和磁束密度が向上するものの、保磁力が高くなり、結果として比透磁率が低下することとなる。このため、前述と同様に磁心の磁気特性が低下するおそれがある。
Bは、主成分のCoに対して原子サイズが異なる元素であるため、主に、ガラス形成能、すなわち過冷却液体温度域ΔTxに影響を及ぼす等の性質を有する成分である。Bの含有率は、前述したように、23原子%以上かつ27原子%以下とされるが、23.5原子%以上かつ26原子%以下であるのが好ましく、24原子%以上かつ25原子%以下であるのがより好ましい。Bの含有率を前記範囲内とすることにより、十分な過冷却液体温度域ΔTxを確保することができる。
また、Bの含有率が前記下限値を下回ると、過冷却液体温度域ΔTxが著しく小さくなり、Co基金属ガラス合金のガラス形成能が著しく低下する。一方、Bの含有率が前記上限値を上回ると、比透磁率が著しく低下する。
Siは、本発明のCo基金属ガラス合金が過冷却液体状態にあるとき、主に、その過冷却液体の粘度に影響を及ぼす等の性質を有する成分である。Siの含有率は、前述したように、1原子%以上かつ3原子%以下とされるが、1.3原子%以上かつ2.7原子%以下であるのが好ましく、1.5原子%以上かつ2.5原子%以下であるのがより好ましい。Siの含有率を前記範囲内とすることにより、Co基金属ガラス合金の過冷却液体の粘度を最適化して、過冷却液体の成形性を高めるとともに、十分な過冷却液体温度域ΔTxを確保することができる。
また、Siの含有率が前記下限値を下回ると、Co基金属ガラス合金のガラス形成能が低下する。一方、Siの含有率が前記上限値を上回った場合も、過冷却液体温度域ΔTxが著しく小さくなり、Co基金属ガラス合金のガラス形成能が著しく低下する。
Nbは、主に、Co基金属ガラス合金の磁歪に影響し、Co基金属ガラス合金の磁気特性に影響を及ぼす等の性質を有する成分である。Nbの含有率は、前述したように、0.5原子%以上かつ4原子%未満とされるが、2原子%以上かつ3.9原子%以下であるのが好ましく、3.3原子%以上かつ3.9原子%以下であるのがより好ましい。Nbの含有率を前記範囲内とすることにより、Co基金属ガラス合金の比透磁率を高めつつ、十分な過冷却液体温度域ΔTxを確保することができる。
また、Nbの含有率が前記下限値を下回る場合、および、前記上限値を上回る場合は、Co基金属ガラス合金の比透磁率が低下し、例えば、Co基金属ガラス合金で構成された磁心の磁気特性が低下する。
このような本発明のCo基金属ガラス合金は、さらに、Ni(ニッケル)を含有率0.5原子%以上かつ6原子%以下で含むのが好ましく、1原子%以上かつ5原子%以下で含むのがより好ましく、2原子%以上かつ4.5原子%以下で含むのがさらに好ましい。Niは、主に、Co基金属ガラス合金の磁歪に影響する等の性質を有する成分であるため、Niを前記範囲内の含有率で含むことにより、Co基金属ガラス合金の比透磁率を高めることができる。これにより、例えば、磁気特性に優れた磁心を得ることができる。
また、本発明のCo基金属ガラス合金は、さらに、Cr(クロム)を含有率0.5原子%以上かつ4原子%以下で含んでいてもよく、含有率1原子%以上かつ3原子%以下で含むのがより好ましく、1原子%以上かつ2原子%以下で含むのがさらに好ましい。Crは、主に、Co基金属ガラス合金の比抵抗を高めるとともに、Co基金属ガラス合金に不働態被膜を形成し得る等の性質を有する成分である。このため、Crを前記範囲内の含有率で含むことにより、Co基金属ガラス合金の比透磁率を高めるとともに、耐候性および耐薬品性に優れたCo基金属ガラス合金を得ることができる。その結果、例えば、高性能で信頼性の高い磁心を得ることができる。
さらに、必要に応じて、その他の成分を含んでいてもよい。その場合、上記の必須構成元素以外の元素の含有率の総和は、2原子%以下とするのが好ましい。
ここで、金属ガラス合金は、溶融状態の原材料を冷却することにより得ることができる。冷却することにより、溶融状態にある原材料の原子配列を固定し、ランダムな原子配列の合金を得ることができる。前述の過冷却液体温度域ΔTxが大きいと、十分な冷却速度を確保できない場合にも、金属ガラス合金を確実に得ることができるようになる。
かかる観点から、本発明のCo基金属ガラス合金は、その過冷却液体温度域ΔTxが30K以上であるのが好ましく、35K以上であるのがより好ましい。過冷却液体温度域ΔTxがこのような範囲内であれば、Co基金属ガラス合金は、十分なガラス形成能を示すものとなる。したがって、特殊な冷却手段を用いて、大きな冷却速度で冷却することなく、容易に金属ガラスを得ることができる。
また、熱容量の大きなバルク状の金属ガラス合金を得る場合、内部の冷却速度が十分に大きくなくても、確実にガラス化することができる。このため、形状にとらわれることなく、所望の形状の金属ガラス合金を得ることができる。
また、本発明のCo基金属ガラス合金は、前述したように、軟磁気特性を示すとともに、高い比透磁率を示す。
ところで、磁性材料の比透磁率は、測定周波数に依存して変化することが知られている。
本発明のCo基金属ガラス合金は、測定周波数10Hzにおける最大比透磁率が80000以上であるのが好ましく、100000以上であるのがより好ましい。10Hz程度の比較的低周波数における最大比透磁率が前記範囲内にあると、例えば、低周波数帯で使用されるモータや発電機の磁心材料として、本発明のCo基金属ガラス合金が特に好適に用いられる。すなわち、このような磁心においては、比透磁率が大きいほど磁心の内部を通過する磁束密度が大きくなり、モータや発電機の性能を高めることができる。したがって、低周波数帯において高い性能を示す磁心を得ることができる。
また、本発明のCo基金属ガラス合金は、測定周波数100kHzにおける振幅比透磁率が6000以上であるのが好ましく、8000以上であるのがより好ましい。100kHz程度の比較的高周波数における振幅比透磁率が前記範囲内にあると、例えば、高周波数帯で使用されるアンテナや、モータ、発電機、アクチュエータ等の磁心材料として、本発明のCo基金属ガラス合金が特に好適に用いられる。すなわち、高周波数帯において高い性能を示す磁心を得ることができる。
なお、振幅比透磁率とは、消磁状態にあり、測定すべき材料で構成された一組の磁心に、時間とともに周期的に変化し、かつ、その強さの平均値が0になるような磁界を印加したときの、磁束密度の最大値と磁界の強さの最大値から得られる比透磁率のことをいう。
ところで、一般的に用いられる金属材料は、結晶金属で構成されている。この結晶金属は、その内部に結晶粒界が存在するとともに、結晶粒内の転位(原子レベルでの位置ズレ)が生じる。このような結晶粒界や結晶粒内転位は、結晶金属中に生じた亀裂の進展を促進するため、金属材料の機械的強度の低下を招く。また、表面付近の結晶粒界や結晶粒内転位が外気と接触すると、その接触部を起点として金属材料の腐食を招くおそれがある。
また、結晶金属の溶融物を成形型に充填して成形体を得る場合、溶融物の温度が低下するとともに結晶化する。この結晶化の際に、溶融物中の原子がより安定な位置に移動するため、得られる成形体には、成形型に対するズレが生じる。すなわち、成形時の転写性に劣るという問題がある。
これに対し、金属ガラス合金は、前述したように、内部の原子配列がランダムになっているため、結晶粒界や結晶粒内転位が存在しない。このため、金属ガラス合金では、結晶金属で問題となっている機械的強度の低下や腐食の進行を、確実に防止することができる。したがって、金属ガラス合金は、優れた機械的特性と、優れた耐候性および耐薬品性を発揮することができる。
また、成形時に、結晶化に伴う原子の移動が起こらないため、成形型を忠実に再現した成形体を得ることができる。すなわち、金属ガラス合金は、転写性に優れている。このような利点を活かすことにより、金属ガラス合金では、より複雑で微細な成形体を得ることや、微細な文字や模様を転写した成形体を得ることもできる。
[磁心および電磁変換機]
<第1実施形態>
次に、本発明の磁心および電磁変換機の第1実施形態について説明する。
図1は、本発明の磁心の第1実施形態を示す模式図(斜視図)である。
図1に示す磁心1は、円柱状の巻線部40と、巻線部40の両端部に設けられた2つのコイル枠41、41と、各コイル枠41、41の巻線部40と反対側に、それぞれ各接続部42、42が設けられている。
また、図1に示す巻線部40、各コイル枠41、41および各接続部42、42は、一体に形成されている。
この磁心1は、前述した本発明のCo基金属ガラス合金で構成されている。前述したように、本発明のCo基金属ガラス合金は、過冷却液体温度域ΔTxが大きく、安定して存在し得るものであり、かつ、低い周波数から高い周波数において高い透磁率を示すものである。したがって、このようなCo基金属ガラス合金で構成された磁心1は、広い周波数帯において、内部を透過する磁束密度が大きくなり、磁心および後述する電磁変換機として高い性能を示すものとなる。
このような磁心1は、巻線部40の周囲に導線(コイル)を巻き付けるようにして用いられ、例えば、モータ、発電機、アンテナ、電圧変換トランスのような各種電磁変換機の磁心に適用される。
このうち、例えば、磁心1をモータの磁心に適用した場合、磁心の磁気特性が向上したことにより、モータの消費電力を低減することができる。その結果、このモータを備えた時計の電池寿命を延長することができる。
また、例えば、磁心1をアンテナの磁心に適用した場合、磁心の磁気特性が向上したことにより、アンテナの受信感度が向上して消費電力を低減したり、受信感度を維持しつつアンテナの小型化を図ることができるようになる。その結果、例えば、このアンテナを備えた時計の電池寿命を延長したり、時計の小型化を図ることができる。
図2は、本発明の電磁変換機の第1実施形態を示す模式図(縦断面図)である。
図2に示す電磁変換機2は、磁心1と、磁心1の巻線部40の周囲に複数層にわたって巻き付けられた導線(コイル)43とを有している。そして、巻き付けられた導線43の外径は、各コイル枠41の外径とほぼ等しくなっている。
前述したように、巻線部40は円柱状をなしているため、導線43は、円弧を描くように巻線部40の周囲に巻き付けられている。このような構成では、導線43と接触する巻線部40は曲面になっているため、角状の部分が接触して導線43が屈曲するのを防止することができる。このため、導線43と巻線部40との接触による導線43の断線を確実に防止することができる。
また、導線43は、表面に絶縁被膜を備えている。本実施形態の巻線部40は、前述のように円柱状をなしているため、絶縁被膜の損傷を確実に防止することができる。これにより、導線43同士の絶縁をより確実に確保することができる。
なお、本実施形態では、導線43が備える絶縁被膜により、導線43と磁心1とが絶縁されているが、この絶縁方法は特に限定されず、例えば、巻線部40の周囲に絶縁層を形成するようにしてもよい。この絶縁層は、例えば、絶縁テープや、有機絶縁材料、無機絶縁材料で構成された各種絶縁層の他、Co基金属ガラス合金中の元素を含む絶縁層(不働態被膜)等で構成することができる。このうち、絶縁層は、不働態被膜で構成されるのが好ましい。この不働態被膜は、磁心1を空気中に放置したり、酸化処理を施したりすることにより形成することができる。したがって、絶縁テープを巻き付けたり、別途絶縁層を成膜することなく、絶縁層を容易に形成することができる。
さらに、巻線部40が円柱状をなしているため、その周囲に巻き付けられた導線43と巻線部40の外周面との間に、隙間が生じ難いという利点がある。これにより、例えば、導線43に電圧を印加した場合、磁心1に対して、より大きな磁束密度をもたらすことができる。
ところで、例えば、導線43の両端に電圧を印加すると、導線43を流れる電流に伴って、磁心1の巻線部40中に磁界が発生する。この磁界は、巻線部40からコイル枠41を通過して、接続部42に到達する。
図1に示す磁心1は、前述したように、巻線部40、各コイル枠41、41、および各接続部42、42が一体に形成されているため、これらの各部の間において磁界が通過し易くなる。このため、接続部42における磁束密度が高くなり、磁心1の性能をより高めることができる。
また、各接続部42、42の巻線部40と反対側の端部は、図1に示すように、それぞれ櫛歯状をなしている。これにより、例えば、各櫛歯部分に、図示しない他の部材の櫛歯部分を嵌め合わせるようにして接続することにより、各接続部42、42と、他の部材との間に隙間が生じ難くなる。これにより、隙間に反磁界が生じるのを防止し、磁心1の磁気特性の低下を防止することができる。その結果、磁心1を、例えば、より高性能のモータ用磁心として用いることができる。
このような磁心1は、例えば、図3に示すような射出成形装置(鋳造成形装置)100を用いて製造することができる。なお、以下の説明では、図3中の上側を「上」、下側を「下」という。
図3に示す射出成形装置100は、装置本体101と、装置本体101内に設けられた円筒状のスリーブ102と、スリーブ102の外周に巻き付けられた誘導コイル103と、スリーブ102内を上下方向に移動可能なピストン104とを有している。
また、射出成形装置100は、装置本体101の上部に、成形型110を有している。そして、成形型110内には、キャビティ111が設けられており、前述のスリーブ102の内部とキャビティ111とが流路(ゲート)112を介して連通している。
さらに、射出成形装置100は、図示しない減圧手段を有しており、スリーブ102の内部、キャビティ111および流路112を減圧することができる。
以下、射出成形装置100の各部について説明する。
スリーブ102は、原材料および原材料を溶解した溶湯(溶融物)を貯留する機能を有するものである。このようなスリーブ102は、例えば、石英ガラスやセラミックス等の高耐熱材料で構成されている。
誘導コイル103は、高周波電圧を印加することにより、原材料内に渦電流を発生させ、原材料を自己発熱させる加熱手段として機能する。このような加熱手段は、アーク加熱、ガス加熱等のその他の加熱手段で代替することもできる。
成形型110は、キャビティ111内に充填された溶湯を、キャビティ111内で固化させることにより、キャビティ111の形状に応じた成形体を得るものである。前述したように、金属ガラス合金を得る場合、溶湯を急速に冷却する必要があるため、成形型110は、キャビティ111内に射出された溶湯を冷却するための冷却手段(図示せず)を有している。このような冷却手段としては、例えば、冷媒を用いた熱交換器等が挙げられる。かかる観点から、成形型110は、耐熱性に優れるとともに、熱伝導性に優れた材料で構成されるのが好ましい。これにより、キャビティ111内に射出された溶湯を急速に冷却することができる。
次に、図3に示す射出成形装置100を用いて、磁心を製造する方法について説明する。
[1]まず、本発明のCo基金属ガラス合金を得るための構成元素材料を、前述の各構成元素の含有率にしたがって秤量し、原材料を得る。
[2]次に、この原材料を、射出成形装置100のスリーブ102内のピストン104上に載置する。そして、減圧手段により、スリーブ102の内部、キャビティ111および流路112を減圧する。
続いて、誘導コイル103に高周波電圧を印加して、スリーブ102内の原材料を所定の温度に加熱する。これにより、原材料を溶解し、溶湯(溶融物)を得る。
[3]次に、成形型110を冷却する。続いて、ピストン104を上方に移動させる。これにより、ピストン104上の溶湯を、流路112を介してキャビティ111内に射出する。キャビティ111内に射出された溶湯は、キャビティ111の内壁に接触することにより急速に冷却される。これにより、溶湯中にランダムに存在していた各原子は、そのランダムな配置を保存した状態で固化に至る。その結果、溶湯は、原子がランダムに配置した金属ガラス合金となる。そして、キャビティ111の形状を忠実に再現して、目的とする形状の磁心を高い寸法精度で得ることができる。
[4]次に、成形型110を開いて、磁心を取り出す。
以上のようにして、図1に示す磁心1を製造することができる。
このような方法で得られた磁心1は、実質的に、その全体が金属ガラス合金で構成されたものとなる。このため、磁心1中において金属ガラス合金が占める割合(占積率)が極めて高くなり、それに伴って、磁心1の磁束密度が向上する。その結果、より高性能な磁心1が得られる。
なお、この後、得られた磁心1の巻線部40に酸化処理を施すのが好ましい。これにより、巻線部40の表面に、Co基金属ガラス合金の酸化物で構成された前述の絶縁層が形成される。このような方法で絶縁層を形成すれば、従来のように、巻線部の表面を絶縁テープ等の絶縁材料で被覆する手間を省略することができ、製造工程の簡略化および低コスト化を図ることができる。
<第2実施形態>
次に、本発明の磁心および電磁変換機の第2実施形態について説明する。
図4は、本発明の磁心の第2実施形態を示す模式図(斜視図)である。
以下、第2実施形態について説明するが、前記第1実施形態との相違点を中心に説明し、同様の事項については、その説明を省略する。
本実施形態の磁心および電磁変換機は、磁心の構成材料および製造方法が異なる以外は、前記第1実施形態と同様である。
図4に示す磁心1aは、前述した本発明のCo基金属ガラス合金の粉末と、この粉末中の粒子同士を絶縁する樹脂材料とで構成されている。
このような磁心1aでは、Co基金属ガラス合金の粒子が、樹脂材料によって絶縁されることになるため、渦電流損失の低減を図ることができる。このため、より低損失の磁心を得ることができる。また、本発明のCo基金属ガラス合金は、前述したように、低い周波数から高い周波数において優れた磁気特性を示すことができるので、広い周波数帯において、高い性能を示す磁心が得られる。
磁心1aは、例えば、図5に示すような射出成形装置200を用いて製造することができる。なお、以下の説明では、図5中の上側を「上」、下側を「下」という。
図5に示す射出成形装置200は、成形型201と、成形型201内に設けられたキャビティ202と、キャビティ202内に溶湯を射出するノズル203と、このノズル203とキャビティ202とを接続する流路(ゲート)204とを有している。
次に、図5に示す射出成形装置200を用いて、磁心1aを製造する方法について説明する。
[1]まず、本発明のCo基金属ガラス合金を得るための構成元素材料を、前述の各構成元素の含有率にしたがって秤量し、原材料を得る。
[2]次に、この原材料を加熱して溶解し、溶湯(溶融物)を得る。
[3]次に、得られた溶湯を、粉末化するとともに急速に冷却して固化し、Co基金属ガラス合金で構成された粉末を得る。
粉末化するとともに冷却する方法としては、例えば、水アトマイズ法、ガスアトマイズ法、高速回転水流アトマイズ法のような各種アトマイズ法を用いることができる。アトマイズ法によれば、極めて微小な粉末を効率よく製造することができる。また、アトマイズ法で製造された粉末中の粒子は、真球に近い球形状をなしているため、分散性や流動性に優れており、例えば、このような粉末を含む組成物を成形型に充填する際には、その充填性が高まるという利点がある。
[4]次に、得られた粉末と樹脂材料とを混練し、混練物を得る。この混練により、混練物中では、粉末と樹脂材料が均一に分散している。
樹脂材料としては、例えば、ポリエチレン、ポリプロピレン、エチレン−酢酸ビニル共重合体等のポリオレフィン、ポリメチルメタクリレート、ポリブチルメタクリレート等のアクリル系樹脂、ポリスチレン等のスチレン系樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリアミド、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル、ポリエーテル、ポリビニルアルコール、またはこれらの共重合体等の各種樹脂や、各種ワックス、パラフィン、高級脂肪酸(例:ステアリン酸)、高級アルコール、高級脂肪酸エステル、高級脂肪酸アミド等が挙げられ、これらのうち1種または2種以上を混合して用いることができる。
また、混練物中に、可塑剤が添加されていてもよい。この可塑剤としては、例えば、フタル酸エステル(例:DOP、DEP、DBP)、アジピン酸エステル、トリメリット酸エステル、セバシン酸エステル等が挙げられ、これらのうちの1種または2種以上を混合して用いることができる。
さらに、混練物中には、粉末、樹脂材料、可塑剤の他に、例えば、酸化防止剤、脱脂促進剤、界面活性剤等の各種添加物を必要に応じ添加することができる。
なお、混練物は、必要に応じて、ペレット(小塊)化してもよい。
[5]次に、得られた混練物またはそのペレットを、図5に示す射出成形装置200のノズル203から流路204を介してキャビティ202内に射出する。これにより、混練物は、キャビティ202内に充填され、磁心の形状をなす成形体が得られる。
[6]次に、得られた成形体に熱処理を施す。これにより、成形体が硬化し、Co基金属ガラス合金の粉末および樹脂材料で構成された磁心1aが得られる。
かかる熱処理としては、放電プラズマ焼結、焼成炉による焼結、マイクロ波またはミリ波の照射による焼結等の方法が挙げられるが、この中でも放電プラズマ焼結による熱処理が好ましい。放電プラズマ焼結では、Co基金属ガラス合金の粒子同士の間隙にパルス状の電気エネルギーを投入し、火花放電で発生する高温プラズマによる高いエネルギーを粒子同士の焼結に用いることができる。このため、特に粒子の表面付近を選択的に焼結させるとともに、各粒子は、金属ガラス合金の特性を確実に維持することができる。
<第3実施形態>
次に、本発明の磁心および電磁変換機の第3実施形態について説明する。
図6は、本発明の磁心の第3実施形態を示す模式図(斜視図)である。
以下、第3実施形態について説明するが、前記第1実施形態との相違点を中心に説明し、同様の事項については、その説明を省略する。
図6に示す磁心1bは、平板状の巻線部40bと、巻線部40bの両端部に設けられた2つのコイル枠41b、41bと、各コイル枠41b、41bの巻線部40bと反対側に、それぞれ各接続部42b、42bが設けられている。
また、図6に示す巻線部40bおよび各接続部42b、42bは一体に形成されており、これらは、前述した本発明のCo基金属ガラス合金の薄膜が複数枚積層してなる積層体で構成されている。
このような磁心1bは、例えば、図7に示すような単ロール急冷装置300を用いて製造することができる。なお、以下の説明では、図7中の上側を「上」、下側を「下」という。
図7に示す単ロール急冷装置300は、チャンバ301と、チャンバ301内に設けられた石英管302と、石英管302の外周に巻き付けられたヒータ303と、石英管302の下方に、石英管302の軸の延長線上に設けられ、高速で回転可能なロール304とを有している。
また、チャンバ301は、図示しない減圧手段を有しており、これにより、チャンバ301内を減圧することができる。
また、ロール304は、図7の矢印の方向に回転する。この回転速度としては、1000rpm以上が好ましく、3000rpm以上がより好ましい。このロール304の構成材料は、耐熱性および熱伝導性に優れた材料であるのが好ましく、例えば、銅、銀、金、白金、アルミニウム等が挙げられる。
次に、図7に示す単ロール急冷装置300を用いて、磁心1bを製造する方法について説明する。
[1]まず、本発明のCo基金属ガラス合金を得るための構成元素材料を、前述の各構成元素の含有率にしたがって秤量し、原材料を得る。
[2]次に、この原材料を、単ロール急冷装置300の石英管302内に収納する。そして、減圧手段により、チャンバ301内を減圧する。
続いて、ヒータ303に通電して、石英管302内の原材料を所定の温度に加熱する。これにより、原材料を溶解し、溶湯(溶解物)を得る。
[3]溶解した原材料(溶湯)は、石英管302からロール304の表面に向かって流れ落ちる。そして、ロール304に接触した溶湯は、ロール304との熱交換によって急速に冷却される。これにより、溶湯中にランダムに存在していた各原子は、そのランダムな配置を保存した状態で固化に至り、リボン状のCo基金属ガラス合金となる。得られたリボン状の金属ガラス合金は、回転しているロール304の遠心力によって、接線方向に放出される。
[4]次に、得られたリボン状の金属ガラス合金を所定の形状に切断して薄膜を得るとともに、複数枚の薄膜を積層する。
以上のようにして、図6に示す磁心1bを製造することができる。
このような方法で得られる金属ガラス合金の形状としては、層状または線状であるのが一般的である。すなわち、ある程度のまとまった大きさのブロック状(バルク状)のものは製造し難い。
しかしながら、薄膜状の金属ガラス合金を得るための装置は、その構成が簡単であるという利点がある。また、かかる装置によれば、溶湯の冷却速度が極めて速くなるため、ガラス形成能の低い原材料をも容易にガラス化することができる。したがって、このような方法によれば、原材料の選択の幅を広げることができ、また、原材料の選択を最適化することにより、得られた磁心1bは高い性能を有するものとなる。
[時計]
以上のような電磁変換機は、例えば、時計に組み込むことができる。以下、本発明の電磁変換機を備える本発明の時計について説明する。
≪第1実施形態≫
まず、本発明の時計の第1実施形態について説明する。
図8は、本発明の時計の第1実施形態を模式的に示す平面図である。
図8に示す時計500は、電子制御式機械時計の一例である。
この時計500は、香箱車501、二番車506、三番車507、秒針車508、四十四番車(中間車)509、四番車510、五番車511、六番車512、およびロータ513の各歯車等の機械部品を有している。
また、香箱車501は、ゼンマイ、香箱歯車、香箱真および香箱蓋(いずれも図示せず)を有している。そして、ゼンマイの回転エネルギーは、香箱車501から二番車506に伝達された後、増速されて三番車507に伝達される。続いて、三番車507から、時計500の秒針(図示せず)を駆動する秒針車508を介して、四十四番車509に伝達される。その後、四十四番車509から、さらに増速しつつ、四番車510、五番車511、六番車512、およびロータ513へと順次伝達される。
また、時計500は、ロータ513、ステータ521、第1コイルブロック522、第2コイルブロック523、および継手524から構成される発電機520を備えている。
ステータ521は、発電機520の磁気回路の一部を形成するものであり、ロータ磁石が配置される配置穴521aを有することでにより、ロータ513の磁束を鎖交させるようになっている。
第1コイルブロック522および第2コイルブロック523は、それぞれ、磁心522a、523aにコイル(導線)を巻き付けてなるものである。このような磁心522a、523aとして、本発明の磁心が用いられており、第1コイルブロック522および第2コイルブロック523として、本発明の電磁変換機が用いられている。これにより、第1コイルブロック522および第2コイルブロック523の磁気特性が向上し、発電機520の発電性能を大幅に高めることができる。
また、ステータ521および継手524を、本発明のCo基金属ガラス合金で構成することもできる。これにより、発電機520の発電性能がさらに向上する。その結果、ゼンマイの回転エネルギーを効率よく利用することができるようになり、1回のゼンマイ巻き上げに伴う時計の駆動時間を延長することができて、より高性能の時計500を得ることができる。
このような発電機520では、香箱車501中のゼンマイを巻き上げると、ゼンマイが解ける際に出力されるトルクが香箱車501から六番車512の輪列を介してロータ513に伝達され、ロータ513の回転によって各コイルブロック522、523に交流電圧が誘起される。
発電機520からの交流出力は、昇圧整流、全波整流、半波整流、トランジスタ整流等で構成された整流回路を介して昇圧、整流されて平滑用コンデンサに充電される。そして、このコンデンサからの電力で発電機20の回転を制御する図示しない制御回路を作動させている。なお、制御回路は、発振回路、分周回路、回転検出回路、回転数比較回路、電磁ブレーキ制御手段等を含む集積回路(IC)を有している。また、発振回路は、水晶振動子を有している。
香箱車501中のゼンマイは、図8に示す角穴車504を回転させることにより巻き上げられる。
この角穴車504を回転させる方法は、図示しない竜頭に接続された巻真530を操作することにより、キチ車531、丸穴車532、角穴中間車533を介して行われるが、この際、角穴車504の回転方向は、コハゼ504aによって規制されている。また、分針および時針を合わせる方法は、同様に、巻真530を操作し、つづみ車534、小鉄車535、日の裏中間車536、日の裏車537を介して行われるが、この際、駆動系は、制御レバー538を五番車511に当接させることにより停止するようになっている。なお、これらの機構は、一般的な機械時計の自動巻または手巻機構と同様であるため、さらなる詳細な説明を省略する。
≪第2実施形態≫
まず、本発明の時計の第2実施形態について説明する。
図9は、本発明の時計の第2実施形態を模式的に示す平面図である。なお、以下の説明では、図9中の紙面手前側を「上」、紙面奥側を「下」という。また、図9は、時計のムーブメントを収納するケースを省略して描いている。
図9に示す時計600は、時刻情報が重畳された標準電波を受信して表示時刻を修正する機能を有する電波修正時計の一例である。
この時計600のムーブメントは、地板681と、秒針、分針および時針で構成される指針(図示せず)を駆動する2つのステッピングモータ682と、これらのステッピングモータ682の回転運動を指針に伝達する図示しない輪列と、電池(駆動源)683と、時計600の動作を制御するCPU(制御手段)684等を備える回路ブロック685と、標準電波を受信する電波受信用アンテナ(本発明の電磁変換機)690を有している。また、時計600の3時方向には、指針位置を手動調整するため巻真686が設けられている。
ステッピングモータ682は、秒針用のステッピングモータ682Aと、分針および時針用のステッピングモータ682Bとを備えている。ステッピングモータ682Aは、図9に示すように、時計600の略8時方向に、ステッピングモータ682Bは、時計600の略5時方向にそれぞれ配設されている。これらのステッピングモータ682A、682Bは、それぞれ独立した輪列を介してムーブメント中央の指針に接続されており、これにより、秒針と、分針および時針とは、それぞれ独立して駆動可能となっている。
電池683は、一次電池または二次電池で構成される。このような電池683は、図9に示すように、時計600の略1時から略2時方向に配設されており、ばね性を有する電池押さえ6831によって導通が図られるとともに地板681に保持されている。
回路ブロック685は、基準クロックを発振する計時用の水晶振動子6851と、前述のCPU684と、標準電波の信号を選択的に通過させるバンドパスフィルタ用水晶振動子(図示せず)と、電波受信用アンテナ690で受信した標準電波を処理する受信用IC(受信用回路)687等とを備えている。このような回路ブロック685は、回路押さえと地板681との間に挟持され、ねじ等の固定手段を用いて地板681に固定されている。
計時用の水晶振動子6851は、図9に示すように、時計600の略3時方向に配設されている。また、バンドパスフィルタ用水晶振動子は、例えば、日本国内では、60kHzの標準電波をフィルタするための水晶振動子と、40kHzの標準電波をフィルタするための水晶振動子との2つが設けられる。また、例えば、欧米では、60kHz用の水晶振動子および77.5kHz用の水晶振動子を用いればよい。
CPU684は、図9に示すように、時計600の略9時から略11時方向に配設されており、水晶振動子6851からの周波数を分周して基準クロックを生成する分周回路、基準クロックをカウントして時刻を計時する計時回路、計時回路からの信号に基づいてステッピングモータ682A、682Bの動作を制御する制御回路などを備えている。
受信用IC687は、電波受信用アンテナ690で受信した標準電波を復調する復調回路や、受信信号を増幅する増幅回路などを備えて構成されている。
電波受信用アンテナ690は、ムーブメント内に配置され、図9に示すように、時計600の略9時方向に配設されており、略7時方向から略12時方向のスペースを占めている。ここで、電波受信用アンテナ690は、ムーブメント内で電池683とは離れた位置に配置されている。これにより、電波受信用アンテナ690が標準電波を受信する際に、電池683の金属外缶が標準電波の受信に及ぼす影響を最小限に抑制することができる。また、ムーブメント内において電波受信用アンテナ690と受信用IC687とが近接して配置されているので、電波受信用アンテナ690から受信用IC687へ受信信号が流れる際に、信号の劣化およびノイズの混入が少なくなり、受信用IC687での信号受信を良好に行うことができる。なお、CPU684およびステッピングモータ682Aは、電波受信用アンテナ690に干渉しない範囲で、電波受信用アンテナ690よりも内側(中央側)に配置するのが好ましい。
本実施形態では、この電波受信用アンテナ690として、本発明の電磁交換機が用いられている。これにより、電波受信用アンテナ690の標準電波受信における受信感度を大幅に高めることができる。その結果、電波受信用アンテナ690の電波受信に要する消費電力を低減して、電池683の寿命を延長することができる。
以上、本発明のCo基金属ガラス合金、磁心、電磁交換機、および時計について、好適な実施形態に基づいて説明したが、本発明はこれに限定されるものではない。
例えば、前記実施形態では、本発明の磁心および電磁交換機を時計に用いた場合を代表に説明したが、このような場合に限定されない。
また、本発明の磁心、電磁交換機および時計の各部は、同様の機能を発揮し得る任意の構成のものと置換することができる。
また、本発明の磁心、電磁交換機および時計の各部は、前記各実施形態で説明した複数の構成を組み合わせたものでもよい。
次に、本発明の具体的実施例について説明する。
1.Co基金属ガラス合金のサンプルの製造
(サンプル1〜5)
表1に示す含有率で各元素が含まれるように原料をそれぞれ秤量した。サンプル1〜5では、Feの含有率を5水準に変化させ、それに応じてCoの含有率を変化させるとともに、B、SiおよびNbをそれぞれ固定の含有率とした。
次いで、この原料から、図7に示す単ロール急冷装置300を用いて、Co基金属ガラス合金のリボン状薄膜(サンプル1〜5)を得た。
Figure 2008214665
(サンプル6〜10)
表2に示す含有率で各元素が含まれるように原料をそれぞれ秤量した。サンプル6〜10では、Bの含有率を5水準に変化させ、それに応じてCoの含有率を変化させるとともに、SiおよびNbをそれぞれ固定の含有率とした。
次いで、この原料から、サンプル1〜5の場合と同様にして、Co基金属ガラス合金のリボン状薄膜(サンプル6〜10)を得た。
Figure 2008214665
(サンプル11〜14)
表3に示す含有率で各元素が含まれるように原料をそれぞれ秤量した。サンプル11〜14では、Siの含有率を4水準に変化させ、それに応じてCoの含有率を変化させるとともに、B、NbおよびNiをそれぞれ固定の含有率とした。
次いで、この原料から、サンプル1〜5の場合と同様にして、Co基金属ガラス合金のリボン状薄膜(サンプル11〜14)を得た。
Figure 2008214665
(サンプル15〜20)
表4に示す含有率で各元素が含まれるように原料をそれぞれ秤量した。サンプル15〜20では、Nbの含有率を6水準に変化させ、それに応じてCoの含有率を変化させるとともに、BおよびSiをそれぞれ固定の含有率とした。
次いで、この原料から、サンプル1〜5の場合と同様にして、Co基金属ガラス合金のリボン状薄膜(サンプル15〜20)を得た。
Figure 2008214665
(サンプル21〜25)
表5に示す含有率で各元素が含まれるように原料をそれぞれ秤量した。サンプル21〜25では、Niの含有率を5水準に変化させ、それに応じてCoの含有率を変化させるとともに、Fe、B、SiおよびNiをそれぞれ固定の含有率とした。
次いで、この原料から、サンプル1〜5の場合と同様にして、Co基金属ガラス合金のリボン状薄膜(サンプル21〜25)を得た。
Figure 2008214665
2.サンプルの評価
サンプル1〜25について、それぞれ測定周波数100kHzにおける振幅比透磁率を、インダクタンス法により測定した。測定結果を表1〜5に示す。なお、表1〜5に示した比透磁率では、各表における比透磁率の測定値の最小値を1としたときの相対値を示している。
表1〜5から明らかなように、Fe、B、Si、NbおよびNiの各元素の含有率を変化させることにより、それぞれ、測定周波数100kHzにおける振幅比透磁率に、極大値を有するような変化が認められた。これにより、測定周波数100kHzのような比較的高い周波数帯において、比透磁率を高め得る各元素の含有率を見出すことができた。
3.磁心の製造
次に、サンプル1〜25の評価結果に基づき、以下の各実施例および各比較例を、それぞれ所定個数の磁心を製造した。
(実施例1A〜5A、および比較例4A)
表6に示す含有率で各元素が含まれるように原料をそれぞれ秤量した。次いで、この原料から、図3に示す射出成形装置100を用いて、それぞれCo基金属ガラス合金で構成された図1に示す形状の磁心を得た。
(比較例1A〜3A)
まず、表6に示す含有率で各元素が含まれるように原料をそれぞれ秤量した。次いで、この原料から、図7に示す単ロール急冷装置300を用いて、それぞれCo基金属ガラス合金のリボン状薄膜を得た。
次に、得られた複数枚のリボン状薄膜を所定の形状に切断するとともに、これらを積層して、図6に示す形状の磁心を得た。
4.磁心の評価
次に、各実施例および各比較例(ただし、比較例2A、3Aは除く。)で得られた磁心に対して、示差走査熱量計(DSC法)により示差走査熱量測定を行った。そして、測定結果から、結晶化開始温度Txと、ガラス転移温度Tgとを見積もり、これらの温度の差ΔTx(=Tx−Tg)を算出した。
次に、各実施例および各比較例で得られた磁心に対して、測定周波数100kHzにおける振幅比透磁率を測定した。また、各実施例および各比較例(ただし、比較例2A、3Aは除く。)で得られた磁心に対して、測定周波数10Hzにおける最大比透磁率を測定した。
次に、各実施例および各比較例で得られた磁心を、長手方向に直交するよう切断し、その切断面を走査電子顕微鏡で観察した。そして、切断面において、Co基金属ガラス合金が占める面積の割合を占積率として算出した。
これらの評価結果を、それぞれ表6に示す。
Figure 2008214665
表6から明らかなように、各実施例で得られた磁心は、いずれも、過冷却液体温度域ΔTxが30K以上であり、ガラス形成能が高いものであった。
また、各実施例で得られた磁心は、10Hzの低周波数帯と100kHzの高周波数帯のいずれにおいても、高い比透磁率を有していた。
さらに、各実施例で得られた磁心は、いずれもその占積率が99%以上と高い値を示した。
一方、各比較例で得られた磁心には、過冷却液体温度ΔTxが低いまたは比透磁率が低いといった問題や、占積率が低いといった問題が認められた。
5.電磁変換機および時計の製造
(実施例B)
まず、図8に示す電子制御式機械時計の構成部品を用意した。なお、磁心522aおよび磁心523aには、実施例3Aで作製した磁心を用いた。
次に、この磁心522aと磁心523aとを用いて、第1コイルブロック522(電磁変換機)と第2コイルブロック523(電磁変換機)とを作製した。
次に、これらの各コイルブロック522、523と、その他の構成部品とを組み立てて、図8に示す電子制御式機械時計を得た。
(比較例B)
磁心522aおよび磁心523aに、比較例1Aで作製した磁心を用いた以外は、前記実施例Bと同様にして電子制御式機械時計を得た。
6.時計の評価
次に、実施例Bおよび比較例Bの各電子制御式機械時計のゼンマイを最後まで巻き上げ、次いで、各時計の指針が停止するまでの時間を測定した。
その結果、実施例Bの時計の駆動時間が84時間であったのに対し、比較例Bの時計の駆動時間は48時間であった。この結果から、磁心および電磁変換機の高性能化を図ったことにより、駆動時間の性能を高め得ることが明らかとなった。
本発明の磁心の第1実施形態を示す模式図(斜視図)である。 本発明の電磁変換機の第1実施形態を示す模式図(縦断面図)である。 図1に示す磁心の製造に用いられる射出成形装置の構成を示す模式図(縦断面図)である。 本発明の磁心の第2実施形態を示す模式図(斜視図)である。 図4に示す磁心の製造に用いられる射出成形装置の構成を示す模式図(縦断面図)である。 本発明の磁心の第3実施形態を示す模式図(斜視図)である。 図6に示す磁心の製造に用いられる単ロール急冷装置の構成を示す模式図(縦断面図)である。 本発明の時計の第1実施形態を模式的に示す平面図である。 本発明の時計の第2実施形態を模式的に示す平面図である。
符号の説明
1、1a、1b……磁心 2……電磁変換機 40、40b……巻線部 41、41b……コイル枠 42、42b……接続部 43……導線(コイル) 100……射出成形装置 101……装置本体 102……スリーブ 103……誘導コイル 104……ピストン 110……成形型 111……キャビティ 112……流路(ゲート) 200……射出成形装置 201……成形型 202……キャビティ 203……ノズル 204……流路(ゲート) 300……単ロール急冷装置 301……チャンバ 302……石英管 303……ヒータ 304……ロール 500……時計 501……香箱車 504……角穴車 504a……コハゼ 506……二番車 507……三番車 508……秒針車 509……四十四番車(中間車) 510……四番車 511……五番車 512……六番車 513……ロータ 520……発電機 521……ステータ 521a……配置穴 522……第1コイルブロック 522a、523a……磁心 523……第2コイルブロック 524……継手 530……巻真 531……キチ車 532……丸穴車 533……角穴中間車 534……つづみ車 535……小鉄車 536……日の裏中間車 537……日の裏車 538……制御レバー 600……時計 681……地板 682、682A、682B……ステッピングモータ 683……電池(駆動源) 6831……電池押さえ 684……CPU(制御手段) 685……回路ブロック 6851……水晶振動子 686……巻真 687……受信用IC 690……電波受信用アンテナ

Claims (14)

  1. Fe、B、SiおよびNbを含む高透磁率のCo基金属ガラス合金であって、
    Feの含有率が2原子%以上かつ8原子%以下、
    Bの含有率が23原子%以上かつ27原子%以下、
    Siの含有率が1原子%以上かつ3原子%以下、
    Nbの含有率が0.5原子%以上かつ4原子%未満であることを特徴とするCo基金属ガラス合金。
  2. 当該Co基金属ガラス合金は、さらに、Niを0.5原子%以上かつ6原子%以下の含有率で含む請求項1に記載のCo基金属ガラス合金。
  3. 当該Co基金属ガラス合金は、さらに、Crを0.5原子%以上かつ4原子%以下の含有率で含む請求項1または2に記載のCo基金属ガラス合金。
  4. 当該Co基金属ガラス合金の結晶化開始温度をTx[K]とし、ガラス転移温度をTg[K]としたとき、Tx−Tgで定義される過冷却液体温度域ΔTxが30K以上である請求項1ないし3のいずれかに記載のCo基金属ガラス合金。
  5. 測定周波数10Hzにおける最大比透磁率が80000以上である請求項1ないし4のいずれかに記載のCo基金属ガラス合金。
  6. 測定周波数100kHzにおける振幅比透磁率が6000以上である請求項1ないし5のいずれかに記載のCo基金属ガラス合金。
  7. 請求項1ないし6のいずれかに記載のCo基金属ガラス合金で構成されることを特徴とする磁心。
  8. 当該磁心は、前記Co基金属ガラス合金で構成された複数枚の薄膜を積層してなる積層体で構成される請求項7に記載の磁心。
  9. 当該磁心は、前記Co基金属ガラス合金で構成された粉末を成形してなる成形体、または、該成形体を焼結してなる焼結体で構成される請求項7に記載の磁心。
  10. 前記焼結は、放電プラズマ焼結により行われる請求項9に記載の磁心。
  11. 当該磁心は、前記Co基金属ガラス合金の溶融物を鋳造成形してなるものである請求項7に記載の磁心。
  12. 請求項7ないし11のいずれかに記載の磁心と、該磁心の外周に巻き回されるコイルとを有することを特徴とする電磁変換機。
  13. 前記磁心の前記コイルと接触する表面に、前記Co基金属ガラス合金中の元素を含む不働態被膜を有する請求項12に記載の電磁変換機。
  14. 請求項13に記載の電磁変換機を備えたことを特徴とする時計。
JP2007050620A 2007-02-28 2007-02-28 Co基金属ガラス合金、磁心、電磁変換機および時計 Expired - Fee Related JP4758925B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007050620A JP4758925B2 (ja) 2007-02-28 2007-02-28 Co基金属ガラス合金、磁心、電磁変換機および時計

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007050620A JP4758925B2 (ja) 2007-02-28 2007-02-28 Co基金属ガラス合金、磁心、電磁変換機および時計

Publications (2)

Publication Number Publication Date
JP2008214665A true JP2008214665A (ja) 2008-09-18
JP4758925B2 JP4758925B2 (ja) 2011-08-31

Family

ID=39835073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007050620A Expired - Fee Related JP4758925B2 (ja) 2007-02-28 2007-02-28 Co基金属ガラス合金、磁心、電磁変換機および時計

Country Status (1)

Country Link
JP (1) JP4758925B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010159459A (ja) * 2009-01-08 2010-07-22 Seiko Epson Corp Co基金属ガラス合金、磁心、電磁変換機および時計
JP2010226887A (ja) * 2009-03-24 2010-10-07 Seiko Epson Corp 発電機および時計
WO2016194936A1 (ja) * 2015-06-02 2016-12-08 Dowaエレクトロニクス株式会社 磁性粉末複合体、アンテナおよび電子機器、とその製造方法
JPWO2018038146A1 (ja) * 2016-08-26 2019-06-24 国立研究開発法人産業技術総合研究所 熱電変換材料

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5489918A (en) * 1977-12-28 1979-07-17 Toshiba Corp High permeability amorphous alloy
JPS54131527A (en) * 1978-04-05 1979-10-12 Toshiba Corp High-permeability amorphous alloy production
JPH0478114A (ja) * 1990-07-20 1992-03-12 Toshiba Corp 複合磁心
JP2003301247A (ja) * 2002-04-10 2003-10-24 Japan Science & Technology Corp 軟磁性Co基金属ガラス合金

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5489918A (en) * 1977-12-28 1979-07-17 Toshiba Corp High permeability amorphous alloy
JPS54131527A (en) * 1978-04-05 1979-10-12 Toshiba Corp High-permeability amorphous alloy production
JPH0478114A (ja) * 1990-07-20 1992-03-12 Toshiba Corp 複合磁心
JP2003301247A (ja) * 2002-04-10 2003-10-24 Japan Science & Technology Corp 軟磁性Co基金属ガラス合金

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010159459A (ja) * 2009-01-08 2010-07-22 Seiko Epson Corp Co基金属ガラス合金、磁心、電磁変換機および時計
JP2010226887A (ja) * 2009-03-24 2010-10-07 Seiko Epson Corp 発電機および時計
WO2016194936A1 (ja) * 2015-06-02 2016-12-08 Dowaエレクトロニクス株式会社 磁性粉末複合体、アンテナおよび電子機器、とその製造方法
JP2016225551A (ja) * 2015-06-02 2016-12-28 Dowaエレクトロニクス株式会社 磁性粉末複合体、アンテナおよび電子機器
CN107615413A (zh) * 2015-06-02 2018-01-19 同和电子科技有限公司 磁性粉末复合体、天线和电子设备、及其制造方法
CN107615413B (zh) * 2015-06-02 2019-12-10 同和电子科技有限公司 磁性粉末复合体、天线和电子设备、及其制造方法
US11114228B2 (en) 2015-06-02 2021-09-07 Dowa Electronics Materials Co., Ltd. Magnetic powder composite, antenna and electronic device, and method for producing the same
JPWO2018038146A1 (ja) * 2016-08-26 2019-06-24 国立研究開発法人産業技術総合研究所 熱電変換材料
JP7054925B2 (ja) 2016-08-26 2022-04-15 国立研究開発法人産業技術総合研究所 熱電変換材料

Also Published As

Publication number Publication date
JP4758925B2 (ja) 2011-08-31

Similar Documents

Publication Publication Date Title
JP5632608B2 (ja) 軟磁性合金及びそれを用いた磁気部品並びにそれらの製造方法
KR100895915B1 (ko) 비결정 연자성 합금 및 상기 비결정 연자성 합금을 이용한인덕턴스 소자
KR102088534B1 (ko) 연자성 분말, 압분 자심 및 자성 소자
US20060170524A1 (en) Magnetic core for high frequency and inductive component using same
JP2010150665A (ja) 合金組成物、Fe基ナノ結晶合金及びその製造方法、並びに磁性部品
WO2011016275A1 (ja) Fe基非晶質合金、及び前記Fe基非晶質合金を用いた圧粉コア、ならびにコイル封入圧粉コア
CN103500623A (zh) 电流变换器芯以及制造电流变换器芯的方法
JP2016014162A (ja) 非晶質合金粉末、圧粉磁心、磁性素子および電子機器
JP4758925B2 (ja) Co基金属ガラス合金、磁心、電磁変換機および時計
TWI495737B (zh) Fe-based amorphous alloy, alloy powder, and the quality of an Fe-based amorphous dust core
WO2022019335A1 (ja) Fe基ナノ結晶軟磁性合金及び磁性部品
US20190013129A1 (en) Dust core
EP0899753B1 (en) Magnetic cores of bulky and laminated types
US20140010955A1 (en) Method of producing alpha-fe/r2tm14b-type nanocomposite magnet
JP4443175B2 (ja) フェライト焼結体とこれを用いたフェライトコアおよびフェライトコイル
JP5700328B2 (ja) Co基金属ガラス合金、磁心、電磁変換機および時計
JP2002184616A (ja) 圧粉磁心
JP2018141198A (ja) 軟磁性合金
JP5413772B2 (ja) Co基金属ガラス合金、磁心、電磁変換機および時計
CN115719668A (zh) 合金粒子
JP2007251041A (ja) インダクタンス素子とそれを用いたアンテナ素子および通信型電子機器
EP0899754A1 (en) Matgnetic core including Fe-based glassy alloy
JP3532392B2 (ja) バルク磁心
JP2006055903A (ja) 希土類磁石用合金薄帯、その製造方法、および希土類磁石用合金
US20240186038A1 (en) Soft magnetic powder, metal powder, dust core, magnetic element, and electronic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110603

R150 Certificate of patent or registration of utility model

Ref document number: 4758925

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees