JP2008205215A - 積層コイルユニット並びにそれを用いた電子機器及び充電器 - Google Patents

積層コイルユニット並びにそれを用いた電子機器及び充電器 Download PDF

Info

Publication number
JP2008205215A
JP2008205215A JP2007039888A JP2007039888A JP2008205215A JP 2008205215 A JP2008205215 A JP 2008205215A JP 2007039888 A JP2007039888 A JP 2007039888A JP 2007039888 A JP2007039888 A JP 2007039888A JP 2008205215 A JP2008205215 A JP 2008205215A
Authority
JP
Japan
Prior art keywords
coil
coil unit
planar air
coils
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007039888A
Other languages
English (en)
Inventor
Minoru Hasegawa
稔 長谷川
Masaaki Kuroda
真朗 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2007039888A priority Critical patent/JP2008205215A/ja
Publication of JP2008205215A publication Critical patent/JP2008205215A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

【課題】多層接続されたコイルの両端を外部に接続するための電極の取り出しを工夫して無接点電力伝送の伝送面をフラットにし、伝送効率を向上できる積層コイルユニット並びにそれを用いた電子機器及び充電器の提供。
【解決手段】無接点電力伝送のための一次側コイル及び二次側コイルの少なくとも一方に用いられる積層コイルユニットは、複数個の平面状空芯コイルを有し、その各々が絶縁基板上に形成された渦巻状の導電パターンから構成されて、絶縁基板の厚さ方向にて積層される。複数個の平面状空芯コイルは、各2個同士を接続することで形成されるコイル両端部を有する。このコイル両端部が接続される第1及び第2の電極パターンが、一次側コイル及び二次側コイルのいずれか他方と対向する伝送面とは逆側の非伝送面側の最端層に位置する絶縁基板の露出面に形成されている。
【選択図】図2

Description

本発明は、積層コイルユニット並びにそれを用いた電子機器及び充電器に関する。
多層基板のパターンでコイルを製造する場合、各層間の接続方法によっては、ビルドアップ基板を用い、ブラインドビアでコイル間の接続を行なっていた(特許文献1)。このため、コストアップとなっていた。リジット基板とスルーホールを用いてコイルを作成する場合、スルーホールとパターンのレイアウトが煩雑になってしまう。さらに、コイルの中心部にスルーホールを多く設けなければならず、コイルの特性の悪化にもつながってしまう。
また、フラットコイルとして、絶縁基板の同一面内に二重スパイラルのコイルを形成して短絡検査を容易にするもの(特許文献2)や、その二重スパイラルコイルを異なる層に形成して、各層のコイル同士を直列または並列に接続したものがある(特許文献3)。
上述した特許文献1〜3に開示されたフラットコイルでは、複数のコイルをその厚さ方向に積層した際に、多層接続されたコイルの両端からの電極の取り出しに工夫がなく、積層コイルの片面を実質的にフラットにすることが困難であった。
なお、同一面内に形成した二重スパイラルのコイルは相互インダクタンスを確保できず、無接点電力伝送に用いるコイルとしてトータルインダクタンスを確保することができない。
特開2000−208327号公報 特開平10−199727号公報 特開2001−185419号公報
そこで、本発明の目的とするところは、多層接続されたコイルの両端を外部に接続するための電極の取り出しを工夫して、無接点電力伝送の伝送面をフラットにし、伝送効率を向上できる積層コイルユニット並びにそれを用いた電子機器及び充電器を提供することにある。
本発明の一態様は、無接点電力伝送のための一次側コイル及び二次側コイルの少なくとも一方に用いられる積層コイルユニットであって、
複数個の平面状空芯コイルを有し、
前記複数個の平面状空芯コイルの各々は、絶縁基板上に形成された渦巻状の導電パターンから構成されて、前記絶縁基板の厚さ方向にて積層され、
前記複数個の平面状空芯コイルは、前記複数個の平面状空芯コイルの各2個同士を接続することで形成されるコイル両端部を有し、
前記コイル両端部が接続される第1及び第2の電極パターンが、前記一次側コイル及び二次側コイルのいずれか他方と対向する伝送面とは逆側の非伝送面側の最端層に位置する前記絶縁基板の露出面に形成されていることを特徴とする。
こうすると、他の露出面にはコイル両端の取出し電極を設ける必要がなく、他の露出面を実質的にフラットにすることができる。この他の露出面を、無接点電力伝送の伝送面に配置すると、一次・二次コイルを近接配置することができ、伝送効率が向上する。また、本発明の一態様によれば、N個の平面状空芯コイル各導電パターンが重なることで、コイル間の相互インダクタンスを増加させることができ、無接点電力伝送に必要なトータルインダクタンスを確保できる。
本発明の一態様では、前記複数個の平面状空芯コイルの各2個の内端同士を接続するために、前記絶縁基板を貫通して形成された第1のスルーホールと、
前記複数個の平面状空芯コイルの各2個の外端同士を接続するために、前記絶縁基板を貫通して形成された第2のスルーホールと、
前記コイル両端部の一端を、前記第1及び第2の電極パターンの一方に接続するために、前記絶縁基板を貫通して形成された第3のスルーホールと、
を有することができる。
こうして、異なる絶縁基板にそれぞれ形成された複数の平面状空芯コイルを、直列及び/または並列にて接続することができる。
本発明の一態様では、前記複数個の平面状空芯コイルは、それぞれ異なる絶縁基板に形成されてもよい。あるいは、複数個の平面状空芯コイルが前記平面状空芯コイルの数よりも少ない数の絶縁基板に形成されてもよい。後者の場合、少なくとも一枚の絶縁基板の両面に、2個の平面状空芯コイルが一つずつ形成されればよい。こうすると、絶縁基板の数を削減でき、より薄型化が図れる。
本発明の一態様では、前記第1、第2、第3のスルーホールを、前記複数個の平面状空芯コイルが形成された全ての絶縁基板に貫通形成することができる。こうすると、一部のスルーホールはダミーとなるが、積層コイルユニットを安価に形成できる。
本発明の一態様では、前記絶縁基板をフレキシブル基板とすることができる。これにより、積層コイルユニットをより薄型化できる。
本発明の一態様では、前記非伝送面側の最端層に位置する絶縁基板の前記露出面であって、該絶縁基板に形成された前記平面状空芯コイルを覆う位置に磁性体シートを積層することができる。こうすると、トータルインダクタンスや、コイルのQ値がさらに向上する。
本発明の他の態様は、上述した積層コイルユニットを前記二次側コイルとして含み、充電器に設けられる前記一次側コイルとの間で無接点電力伝送する電子機器を定義している。
本発明のさらに他の態様は、上述した積層コイルユニットを前記一次側コイルとして含み、電子機器に設けられる前記二次側コイルとの間で無接点電力伝送する充電器を定義している。
以下、本発明の好適な実施の形態について詳細に説明する。なお以下に説明する本実施形態は特許請求の範囲に記載された本発明の内容を不当に限定するものではなく、本実施形態で説明される構成の全てが本発明の解決手段として必須であるとは限らない。
1.第1の実施形態
1.1.充電システム
図1は、充電器10と、この充電器10に電子機器例えば携帯電話機20とを模式的に示す図である。充電器10から携帯電話機20への充電は、充電器10のコイルユニット12の一次側コイルと、その充電器10に横置きされる携帯電話機20のコイルユニット22の二次側コイルとの間に生じる電磁誘導作用を利用し、無接点電力伝送により行われる。
1.2.積層コイルユニットの構造
図2は、コイルユニット12または22に好適な薄型でかつ伝送面が面一となる積層コイルユニット30の分解斜視図である。なお、充電器10と比較して、携帯電話機20に搭載されるコイルユニット12はより薄型が要求されるので、図2に示す積層コイルユニット30は、コイルユニット12に特に好適である。ここで、コイルユニット12,22の伝送面とは、図1に示すようにコイルユニット12,22が対向配置された際の対向面をいう。充電器10のコイルユニット12では伝送面より電力が伝送され、電子機器20のコイルユニット22では伝送面より電力が伝送される。
図2では、N(第1の実施形態ではNは4以上の偶数で、例えばN=4)個の平面状空芯コイル40A,40B,40C,40Dを有する。4個の平面状空芯コイル40A,40B,40C,40Dは、例えばN=4枚の絶縁基板50A,50B,50C,50D上に形成された渦巻状の導電パターン60A,60B,60C,60Dから構成されている。
本実施形態では、N=4個の平面状空芯コイル40A,40B,40C,40Dが、厚さ方向にて積層されるN=4枚の絶縁基板50A,50B,50Cに形成されている。ただし、(N−1)=3枚の絶縁基板50A,50B,50Cを用いても良い。この場合、中央の絶縁基板50Bの両面に、平面状空芯コイル40B,40Cを形成すれば良い。このように、2個の平面状空芯コイル40B,40Cを絶縁基板50Bの両面に形成することで、別個の絶縁基板の片面に形成した場合と比較して、積層コイルユニット30の厚さを、絶縁基板一枚分だけ薄く形成できる。
図3は、携帯電話機20の筐体24に、二次側コイルユニットとして積層コイルユニット30を配置した部分拡大断面図である。ただし、図3は、図2とは異なり、中央の絶縁基板50Bの両面に平面状空芯コイル40B,40Cを形成して、(N−1)=3枚の絶縁基板を用いた例である。図3では、破線は、図示しない充電器10の一次側コイルユニット12から発生する磁力線である。積層コイルユニット30のうち、この磁力線により無接点で電力伝送を受ける最端面を伝送面70と称する。図3の例では、絶縁基板50Cの導電パターン60Dが形成された面(モジュール面)が伝送面70となる。換言すれば、モジュール面が伝送面70と面一となる。なお、図2の構造の場合には、絶縁基板50Dの非パターン面が伝送面70と面一となる。
積層コイルユニット30のうち、この伝送面70とは逆側の最端面を非伝送面72と称する。なお、図3には、積層コイルユニット30の非伝送面72に磁性体シート74を配置している。この磁性体シート74は必須ではないが、後述する通り、磁性体シート74を設けることで積層コイルユニット30のトータルインダクタンスを大きく確保できるなどの利点がある。また、図示していないが、磁性体シート74を覆って磁気シールドシートをさらに追加しても良い。特に、図3のように携帯電話機20等の電子機器に積層コイルユニット30を配置する場合、電子機器内の他の金属に渦電流を生じさせる磁束漏れを防止できる。
図2に示すように、4枚の絶縁基板50A〜50Dのうち、非伝送面72側の最端層に位置する絶縁基板50Aの非伝送面72側の片面52Aに、平面状空芯コイル40Aを形成するための導電パターン60Aが形成されている。
さらに、この絶縁基板50Aの非伝送面72側の片面52Aに、第1の電極パターン55A及び第2の電極パターン56Aが形成されている。なお、この第1,第2の電極パターン55A,56Aを除いて、導電パターン60Aを絶縁被覆することができる。
同様に、2,3枚目の絶縁基板50B,50Cの各片面52B,52Cに、平面状空芯コイル40B,40Cが形成されている。そして、4枚の絶縁基板のうち、伝送面70側の最端層に位置する絶縁基板50Dの片面52Dに、平面状空芯コイル40Dが形成されている。
1.3.積層コイルユニットの接続形態(2組の並列コイルを直列接続)
図4は図2に示す積層コイルユニット30の接続形態を示し、図5はその等価回路図である。図4に示すように、4つの平面状コイルユニット40A〜40Dの内端は共通接続されている。図2で説明すると、3枚の絶縁基板50A,50B,50C,50Dの各コイル内端に対応する同一位置に、それぞれ絶縁基板50A,50B,50C,50Dを貫通する第1のスルーホール57A,57B,57C,57Dが形成されている。これら第1のスルーホール57A,57B,57C,57Dが導通することで、4つの平面状コイルユニット40A〜40Dの内端は共通接続されている。ただし、絶縁基板50Dに形成されたスルーホール57Dはコイル間接続に寄与しないダミーのスルーホールとなる。
一方、平面状空芯コイル40A,40Bの各外端同士は、絶縁基板50A,50Bに形成された第2のスルーホール58A,58Bを介して接続されている。この第2のスルーホール58Aは、絶縁基板50A上の導電パターンを介して第1の電極パターン55Aに接続されている。なお、絶縁基板50Aに形成された第2のスルーホール58Aと対応する位置にて、絶縁基板50C,50Dにも第2のスルーホール58C,58Dが形成されているが、これらは何れのパターンにも接続されないダミーのスルーホールであり、コイル間の接続には寄与しない。ただし、4枚の絶縁基板50A,50B,50C,50Dの同一箇所に第2のスルーホール58A,58B,58C,58Dを形成することで、スルーホール付き多層積層基板を安価に製造できる。
他方、平面状空芯コイル40C,40Dの各外端同士は、絶縁基板50C,50Dに形成された第3のスルーホール59C,59Dを介して接続されている。この第3のスルーホール59Cは、絶縁基板50A,50Bに形成された第3のスルーホール59A,59Bと、絶縁基板50A上の導電パターンとを介して、第2の電極パターン56Aに接続されている。なお、絶縁基板50Dに形成されたスルーホール59Dは、コイル間接続に寄与しないダミーのスルーホールである。
このように接続すると、第1の実施形態の積層コイルユニット30は、N=4個のうちの2個の平面状空芯コイル40A,40Bを並列(広義には直列及び並列の一方である第1の接続形態)接続した1組のコイル接続ユニット80(図4,図5参照)と、N=4個のうちの他の2個の平面状空芯コイル40C,40Dを並列(広義には第1の接続形態)接続した他の1組のコイル接続ユニット82(図4,図5参照)とを含んでいる。つまり、積層コイルユニット30は、(N/2)=2個のコイル接続ユニット80,82を含んでいる。この2個のコイル接続ユニット80,82は、第1,第2の電極パターン55A,56A間にて、直列(広義には直列及び並列の他方である第2の接続形態)接続されている。
なお、本実施形態では、絶縁基板50A〜50Dは四層のフレキシブル印刷回路基板(FPC)にて形成されている。これに限らず、剛体の絶縁基板を用いても良いが、積層コイルユニット30を薄く形成できる点で、FPCの利用が好ましい。
1.4.積層コイルユニットの作用・効果
(1)コイルの特性を示すQ
積層コイルユニット30の第1の利点は、トータルインダクタンスを大きくし、トータル抵抗を小さく維持し、かつ、このコイルを含んで構成されるコイルの特性を表わすQ(Quality factor)が向上する点である。Qは、コイルの特性あらわす量であり、値が大きいほど好ましい。
積層コイルユニット30のトータルインダクタンスをLとし、トータル抵抗をRとし、回路のキャパシタンスをCとすると、Q=(L/C)1/2/Rとなる。
ここで、積層コイルユニット30では、平面状空芯コイル40A,40Bの外端から内端に向かう電流方向A1,A2と、平面状空芯コイル40C,40Dの内端から外端に向かう電流方向A3,A4は、図2中にて反時計方向で全て一致する。さらに、4つの平面状空芯コイル40A〜40Dの各導電パターン60A〜60Dは、内端及び外端形状を除いて一致させることで、コイル間の相互インダクタンスを増加させることができる。
ところで、積層コイルユニット30に対する第1の比較例として、4つのコイル40A〜40Dを直列接続したコイルユニット(図9〜図11に示す第3の実施形態参照)と、第2の比較例として4つのコイル40A〜40Dを並列接続したコイルユニット(図12〜図14に三層並列コイルを第4の実施形態として示す)を想定する。ただし、これらコイルユニットを構成するコイルの線幅やターン数等の形状は、第1の実施形態と同一であるとする。積層コイルユニット30も、第3,第4の実施形態も、共に4つのコイルを積層しているため、コイル自体のインダクタンスに加えて相互インダクタンスを確保できるので、単層コイルや、同一面内に形成した二重スパイラルコイルに比べて、トータルインダクタンスは増大する点で好ましい。特に、本実施形態のように、N=4とすることで、積層による相互インダクタンスの増大効果は大きい。もちろん、Nは4以上の偶数として積層コイルユニット30を構成することができ、Nが大きければトータルインダクタンスは大きくなる。
さらに、積層コイルユニット30は、第3,第4の実施形態と対比して、Qを大きくし易い利点がある。つまり、直列接続のみで構成した第1の比較例(第3の実施形態)は、3つの中でトータルインダクタンスLは最大となるが、抵抗Rも最大となる。よって、Q=(L/C)1/2/Rの分母も分子も大きくなり、Qを大きくすることが困難である。一方、並列接続のみで構成した第2の比較例(第4の実施形態)は、3つの中でトータルインダクタンスLが最小となるが、抵抗Rも最小となる。よって、Q=(L/C)1/2/Rの分母も分子も小さくなり、Qを大きくすることが困難である。
これに対して、本実施形態の積層コイルユニット30は、直列接続を含んでいる分、トータルインダクタンスを増大できると共に、並列接続を含んでいる分、トータル抵抗Rの増大を抑えることができる。従って、Q=(L/C)1/2/Rの分母は小さく分子は大きくなり、Qを大きくすることが容易となるのである。もし、本実施形態に係る積層コイルユニット30と同等の特性を確保するのであれば、第1,第2の比較例でのコイルの線幅やターン数の変更やその組み合わせを、試行錯誤で検証して設計する必要がある。
(2)薄型化
本実施形態の積層コイルユニット30は、絶縁基板50A,50B,50C,50Dを例えばFPCのように薄く形成すれば、導体パターン60A〜60Dの各厚さは0.035mmと極薄に形成できる。よって、渦巻状に形成したコイル線を4層積層したものと対比すれば、積層コイルユニット30の厚さ寸法の改善効果はかなり大きい。薄型化に関しては、図3に示すように、N=4個の平面状空芯コイルを(N−1)=3枚の絶縁基板に形成するとさらに良い。なお、Nの数が多くなれば、基板両面にコイルを形成できる基板数も増やすことができるので、N個のコイルを製造するのに(N−2)枚以下の基板を用いることができる。
特に、図3に示すように、積層コイルユニット30を電子機器に搭載する場合には、電子機器内にて積層コイルユニット30が占めるスペースを縮小でき、電子機器の小型化を維持できる。
(3)電力伝送効率の向上
図3において、積層コイルユニット30の伝送面70は実質的にフラットとすることができる。なぜなら、絶縁基板50C上に突出する導電パターン60Dの厚さは0.035mmであるからである。なお、図2に示すようにN=4枚の絶縁基板を用いる場合には、伝送面70は非パターン面とすることができ、伝送面70をフラットにできる。
加えて、積層コイルユニット30の伝送面70には、第1,第2の電極パターン55A,56Aや、部品は実装されないので、積層コイルユニット30の伝送面70をフラットに維持できる。換言すれば、本実施形態では、積層コイルユニット30の非伝送面72に第1,第2の電極パターン55A,56Aを設けているので、半田付けや実装部品の搭載は非伝送面72側のみで行えば良い。
なお、図2に示す第1,第2の電極パターン55A,56Aは、配線をハンダ付けするための形状である。これに代えて、積層コイルユニット30の非伝送面72が部品実装面となる場合には、第1,第2の電極パターン55A,56Aは、積層コイルユニット30の2つの電極を部品実装面に導通させるためのパターンとして形成すれば良く、線幅を広げる必要はない。つまり、第1,第2の電極パターン55A,56Aは、積層コイルユニット30の2つの端子を取り出すパターンとして機能するものであれば良い。
積層コイルユニット30の伝送面70が実質的にフラットであると、図3に示すようにその伝送面70を電子機器20の筐体24の内壁に密接することができる。こうして、一次・二次コイル間のギャップを、例えば数mm以内に設定することで、無接点電力伝送の効率を向上させることができる。
電力伝送効率の向上の他の理由として、4つの平面状空芯コイル40A〜40Dの各空芯領域には、第1のスルーホール57A,57B,57C,57D以外のパターンは形成しなくて済む。しかも、第1のスルーホール57A,57B,57C,57Dは、4枚の絶縁基板50A〜50Dの平面上で同一位置にて貫通するように一つ設けるだけでよい。
後述する他の接続形態では、第1のスルーホールは絶縁基板の平面上で同一位置にて貫通するように形成できず、複数個所となる。よって、本実施形態は、空芯領域に存在する導体パターン面積が最小となる。空芯領域は図3に示す磁力線の密度が最も高い領域であり、導体パターンの存在による磁力線への悪影響を最小限にとどめることができる。
2.第2の実施形態(2組の直列コイルを並列接続)
図6〜図8は、本発明の第2の実施形態を示している。この第2の実施形態の積層コイルユニット100は、N=4個のうちの2個の平面状空芯コイル110A,110Bを直列(広義には直列及び並列の一方である第1の接続形態)接続した1組のコイル接続ユニット150(図7,図8参照)と、N=4個のうちの他の2個の平面状空芯コイル110C,110Dを直列(広義には第1の接続形態)接続した他の1組のコイル接続ユニット152(図7,図8参照)とを含んでいる。つまり、積層コイルユニット100は、(N/2)=2個のコイル接続ユニット150,152を含んでいる。この2個のコイル接続ユニット150,152は、並列(広義には直列及び並列の他方である第2の接続形態)接続されている。
この第2の実施形態でも、図6に示すように、N=4枚の絶縁基板120A〜120Dに4つの平面状空芯コイル110A〜110Dを形成するための渦巻状導電パターン130A〜130Dが設けられている。これに代えて、(N−1)=3枚の絶縁基板120A〜120Cを用い、中央の絶縁基板120Bの両面に平面状空芯コイル110B,110Cが設けられてもよい。
この第2の実施形態でも、図6に示すように、非伝送面72側の最端層に位置する絶縁基板120Aの露出面に、(N/2)=2組のコイル接続ユニット150,152のコイル両端部が接続される第1,第2の電極パターン156A,157Aが形成されている。
そして、2組のコイル接続ユニット150,152を図8のように並列接続し、かつ、そのコイル両端部を第1,第2の電極パターン156A,157Aに接続するための2箇所で貫通する2つの第1のスルーホール(152A,152B,152C,152D),(153A,153B,153C,153D)が、4枚の絶縁基板120A,120B,120C,120Dに貫通形成されている。なお、図7に示すように、平面状空芯コイル110A,110Bの内端同士はスルーホール152A,152Bを介して接続され、他のスルーホール152C,152Dはダミーのスルーホールである。また、平面状空芯コイル110C,110Dの内端同士はスルーホール153C,153Dを介して接続され、他のスルーホール153A,153Bはダミーのスルーホールである。
また、第1,第2の電極パターン156A,157Aを有する絶縁基板120Aに形成された一つの平面状空芯コイル110A及びそれに並列接続される他の平面状空芯コイル110Cの各外端を接続するために、4枚の絶縁基板120A〜120Dを貫通する第2のスルーホール(154A,154B,154C,154D)が設けられている。ここで、平面状空芯コイル110A,110Cの外端同士はスルーホール154A,154B,154Cを介して、第1の電極パターン156Aに接続されている。他のスルーホール154Dはダミーのスルーホールである。
平面状空芯コイル110B及びそれに並列接続される平面状空芯コイル110Dの各外端を接続するために、4枚の絶縁基板120A〜120Dを貫通する第3のスルーホール(155A,155B,155C,155D)が設けられている。なお、平面状空芯コイル110B,110Dの外端同士はスルーホール154A〜155Dを介してを介して、第2の電極パターン157Aに接続されている。
ここで、図6に示すように、積層コイルユニット100では、平面状空芯コイル110A,110Cの外端から内端に向かう電流方向B1,B3と、平面状空芯コイル110B,110Dの内端から外端に向かう電流方向B2,B4は、図6中にて反時計方向で全て一致する。さらに、4つの平面状空芯コイル110A〜110Dの各導電パターン130A〜130Dは、内端及び外端形状を除いて一致させることで、コイル間の相互インダクタンスを増加させることができる。
第2の実施形態においても、第1の実施形態と同じく、4つの平面状空芯コイルを直列接続及び並列接続しているので、コイルのQ値は第1の実施形態と同じとなり、コイルのQ値を改善できる。また、積層コイルユニット100は第1の実施形態と同様に薄型化が可能である。なお、伝送効率に関して言えば、第1,第2の電極パターン156A,157Aを非伝送面に形成することで、伝送面をフラットにできる点で第1の実施形態と同じ効果が得られる。ただし、第2の実施形態では、コイルの内端同士を接続するための第1のスルーホール(152A,152B,152C,152D),(153A,153B,153C,153D)は2箇所に必要となる点で、空芯領域にスルーホールの数が増える。ただし、2箇所に形成される第1のスルーホールを空芯領域の中心からずれた位置に設定することで、磁束への悪影響を低減できる。
3.第3の実施形態(4つのコイルの直列接続)
図9〜図11は、第3の実施形態を示している。この第3の実施形態に係る積層コイルユニット200は、N=4個のうちの2個の平面状空芯コイル210A,210Bを直列接続した1組のコイル接続ユニット250(図11参照)と、N=4個のうちの他の2個の平面状空芯コイル210C,210Dを直列した他の1組のコイル接続ユニット252(図11参照)とを含んでいる。この2個のコイル接続ユニット250,252が直列接続されることで、4つの平面状空芯コイル210A〜210Dが直列接続されている。
この第3の実施形態でも、図9に示すように、N=4枚の絶縁基板220A〜220Dに4つの平面状空芯コイル210A〜210Dを形成するための渦巻状導電パターン230A〜230Dが設けられている。これに代えて、(N−1)=3枚の絶縁基板220A〜220Cを用い、中央の絶縁基板220Bの両面に平面状空芯コイル210B,210Cが設けられてもよい。
この第3の実施形態でも、図9に示すように、非伝送面72側の最端層に位置する絶縁基板220Aの露出面に、(N/2)=2組のコイル接続ユニット250,252のコイル両端部が接続される第1,第2の電極パターン256A,257Aが形成されている。
そして、2組のコイル接続ユニット250,252を図11のように並列接続し、かつ、そのコイル両端部を第1,第2の電極パターン256A,257Aに接続するための2箇所で貫通する2つの第1のスルーホール(252A,252B,252C,252D),(253A,253B,253C,253D)が、4枚の絶縁基板220A,220B220C,220Dに貫通形成されている。なお、図10に示すように、平面状空芯コイル210A,210Bの内端同士はスルーホール252A,252Bを介して接続され、他のスルーホール252C,252Dはダミーのスルーホールである。また、平面状空芯コイル210C,210Dの内端同士はスルーホール253C,253Dを介して接続され、他のスルーホール253A,253Bはダミーのスルーホールである。
また、平面状空芯コイル210B及び平面状空芯コイル210Cの各外端を接続するために、4枚の絶縁基板220A〜220Dを貫通する第2のスルーホール(254A,254B,254C,254D)が設けられている。ここで、平面状空芯コイル210B,210Cの外端同士はスルーホール254B,254Cを介して接続され、他のスルーホール254A,254Dはダミーのスルーホールである。
平面状空芯コイル210Dの外端を第2の電極パターン257Aに接続するために、第3のスルーホール(255A,255B,255C,255D)が設けられている。
ここで、図9に示すように、積層コイルユニット200では、平面状空芯コイル210A,210Cの外端から内端に向かう電流方向C1,C3と、平面状空芯コイル210B,210Dの内端から外端に向かう電流方向C2,C4は、図9中にて反時計方向で全て一致する。さらに、4つの平面状空芯コイル210A〜210Dの各導電パターン230A〜230Dは、内端及び外端形状を除いて一致させることで、コイル間の相互インダクタンスを増加させることができる。
ただし、第3の実施形態では、第1,第2の実施形態とは異なり、4つの平面状空芯コイルを全て直列接続しているので、インダクタンスLも抵抗Rも大きくなり、コイルのQ値は改善されない。ただし、積層コイルユニット200は第1,第2の実施形態と同様に薄型化が可能である。なお、伝送効率に関して言えば、第1,第2の電極パターン256A,257Aを非伝送面に形成することで、伝送面をフラットにできる点で第1,第2の実施形態と同じ効果が得られる。ただし、第3の実施形態では第2の実施形態と同じく、コイルの内端同士を接続するための第1のスルーホール(252A,252B,252C,252D),(253A,253B,253C,253D)は2箇所に必要となる点で、空芯領域にスルーホールの数が増える。ただし、2箇所に形成される第1のスルーホールを空芯領域の中心からずれた位置に設定することで、磁束への悪影響を低減できる。
4.第4の実施形態(3つのコイルの並列接続)
図12〜図14は、第4の実施形態を示している。この第4の実施形態に係る積層コイルユニット300は、3個の平面状空芯コイル310A,310B,310Cを並列接続したものである。
この第4の実施形態では、図12に示すように、3枚の絶縁基板320A〜320Cに3つの平面状空芯コイル310A〜310Cを形成するための渦巻状導電パターン330A〜330Cが設けられ、他の一枚の絶縁基板320Dは配線専用パターンとして用いている。これに代えて、3枚の絶縁基板320A〜320Cを用い、中央の絶縁基板220Bの両面に平面状空芯コイル210B,210Cが設けられ、絶縁基板320Cを配線専用基板として用いてもよい。
この第4の実施形態でも、図12に示すように、非伝送面72側の最端層に位置する絶縁基板320Aの露出面に、並列接続された3つの平面状空芯コイル310A〜310Cのコイル両端部が接続される第1,第2の電極パターン356A,357Aが形成されている。
そして、3つの平面状空芯コイル310A〜310Cを並列接続し、かつ、そのコイル両端部を第1,第2の電極パターン356A,357Aに接続するための第1のスルーホール(352A,352B,352C,352D)が、4枚の絶縁基板320A,20B320C,20Dに貫通形成されている。なお、図13に示すように、3つの平面状空芯コイル310A〜310Cの内端同士はスルーホール352A,352B,352Cを介して接続され、他のスルーホール352Dと、絶縁基板320Dに形成された配線パターン353Dを介して、後述するスルーホール355Dに接続されている。
また、3つの平面状空芯コイル310A〜310Cの各外端は、4枚の絶縁基板320A〜320Dを貫通する第2のスルーホール(354A,354B,354C,354D)を介して互いに接続されている。ここで、スルーホール354Dはダミーのスルーホールである。
平面状空芯コイル210Cの内端を第2の電極パターン357Aに接続するために、第3のスルーホール(355A,355B,355C,355D)が設けられている。絶縁基板320Dに形成されたスルーホール355Dは、絶縁基板320Dに形成された配線パターン353D及びスルーホール352C,352Dを介して、平面状空芯コイル310Cの内端に接続されている。
ここで、図12に示すように、積層コイルユニット300では、平面状空芯コイル310A〜310Cの外端から内端に向かう電流方向D1〜D3は、図12中にて反時計方向で全て一致する。さらに、3つの平面状空芯コイル310A〜310Cの各導電パターン330A〜330Cは、内端及び外端形状を除いて一致させることで、コイル間の相互インダクタンスを増加させることができる。
第4の実施形態では、第1,第2の実施形態とは異なり、3つの平面状空芯コイルを全て並列接続しているので、インダクタンスLも抵抗Rも小さくなり、コイルのQ値は改善されない。薄型化に関して言えば、配線パターン353Dを形成するための配線専用基板が必要となる分、第1,第2の実施形態及び第3の実施形態に対して劣っている。なお、伝送効率に関して言えば、第1,第2の電極パターン356A,357Aを非伝送面に形成することで、伝送面をフラットにできる点で第1,第2の実施形態及び第3の実施形態と同じ効果が得られる。また、第4の実施形態では第1の実施形態と同じく、コイルの内端同士を接続するための第1のスルーホール(352A,352B,352C,352D)を1箇所に貫通形成すればよい点で、空芯領域にスルーホールの数が増えることはない。
5.電気的特性の対比
図15は、第1,第3及び第4の実施形態について、コイル形状を種々設定して測定したトータルインダクタンスL、トータル抵抗R及び特性Qの測定値を示している。NO.1〜NO.9が第4の実施形態を、NO.10〜NO.18が第3の実施形態を、NO.19〜NO.24が第1の実施形態を示している。
共通条件として、コイルの外形とパターン間のギャップを一定にし、かつ、導体厚(パターン厚)を例えば0.035mmとした。変更条件は、導体幅(パターン幅)、片側ターン数と、接続形態(第1,第3,第4の実施形態)及び磁性体シート74(図2参照)の有無である。なお、導体厚については、0.0035mmに限らず、他の数値を用いることができる。
図15から、磁性体シート74を設けることで、トータルインダクタンスが大きくなり、コイルのQ値も改善されていることが分かる。
また、上述した理由から、第1の実施形態であるNO.19〜NO.24では、導体幅Wや片側ターン数を第3,第4の実施形態ほど極端に変更しなくても、コイルのQ値が向上していることが分かる。
なお、第2の実施形態については未測定であるが、第1の実施形態とほぼ同じ結果が得られると期待できる。
第3の実施形態であるNO.10〜NO.18では、導体幅Wを比較的広くし、片側ターン数を少なくして、直列接続によるトータル抵抗の増加を抑えている。一方、第4の実施形態であるNO.1〜NO.9では、並列接続により抵抗増加が抑えられるため、導体幅Wを比較的狭くして片側ターン数を多く確保することで、トータルインダクタンスを確保できる。
なお、上記のように本実施形態について詳細に説明したが、本発明の新規事項および効果から実体的に逸脱しない多くの変形が可能であることは当業者には容易に理解できるものである。従って、このような変形例はすべて本発明の範囲に含まれるものとする。例えば、明細書又は図面において、少なくとも一度、より広義または同義な異なる用語と共に記載された用語は、明細書又は図面のいかなる箇所においても、その異なる用語に置き換えることができる。
本実施の形態は、無接点電力伝送に係るものであったが、電磁誘導原理を用いた無接点信号伝送にも同様に適用することができる。
本実施の形態は、電力伝送や信号伝送を行うすべての電子機器に適用可能であり、たとえば、腕時計、電動歯ブラシ、電動ひげ剃り、コードレス電話、パーソナルハンディフォン、モバイルパソコン、PDA(Personal Digital Assistants)、電動自転車などの二次電池を備える被充電機器と充電機器とに適用可能である。
本発明に係る充電器及び電子機器の一例を示す斜視図である。 本発明の第1の実施形態に係る積層コイルユニットの分解斜視図である。 本発明に係る積層コイルユニットを電子機器に取り付けた状態を示す断面図である。 図2に示す積層コイルユニットの接続状態を模式的に示す図である。 図2に示す積層コイルユニットの等価回路図である。 本発明の第2の実施形態に係る積層コイルユニットの分解斜視図である。 図6に示す積層コイルユニットの接続状態を模式的に示す図である。 図6に示す積層コイルユニットの等価回路図である。 本発明の第3の実施形態に係る積層コイルユニットの分解斜視図である。 図9に示す積層コイルユニットの接続状態を模式的に示す図である。 図9に示す積層コイルユニットの等価回路図である。 本発明の第4の実施形態に係る積層コイルユニットの分解斜視図である。 図11に示す積層コイルユニットの接続状態を模式的に示す図である。 図11に示す積層コイルユニットの等価回路図である。 本発明の第1の実施形態、第3の実施形態及び第4の実施形態に従って製造した積層コイルユニットの特性図である。
符号の説明
10 充電器、12 コイルユニット、20 電子機器、22 コイルユニット、24 筐体、30,100,200,300 積層コイルユニット、40A〜40D、110A〜110D、210A〜210D、310A〜310C 平面状空芯コイル、50A〜50B、120A〜120D、220A〜220D、320A〜320D 絶縁基板、60A〜60D、130A〜130D、230A〜230D、330A〜330C 導電パターン、55A,156A,256A,356A 第1の電極パターン、56A,157A,257A,357A 第2の電極パターン、57A〜57D、152A〜152D、153A〜153D、252A〜252D、253A〜253D 第1のスルーホール、58A〜58D、154A〜154D、254A〜254D 第2のスルーホール、59A〜59D、155A〜155D、255A〜255D 第3のスルーホール、80,150 第1のコイルユニット、82,152 第2のコイルユニット

Claims (9)

  1. 無接点電力伝送のための一次側コイル及び二次側コイルの少なくとも一方に用いられる積層コイルユニットであって、
    複数個の平面状空芯コイルを有し、
    前記複数個の平面状空芯コイルの各々は、絶縁基板上に形成された渦巻状の導電パターンから構成されて、前記絶縁基板の厚さ方向にて積層され、
    前記複数個の平面状空芯コイルは、前記複数個の平面状空芯コイルの各2個同士を接続することで形成されるコイル両端部を有し、
    前記コイル両端部が接続される第1及び第2の電極パターンが、前記一次側コイル及び二次側コイルのいずれか他方と対向する伝送面とは逆側の非伝送面側の最端層に位置する前記絶縁基板の露出面に形成されていることを特徴とする積層コイルユニット。
  2. 請求項1において、
    前記複数個の平面状空芯コイルの各2個の内端同士を接続するために、前記絶縁基板を貫通して形成された第1のスルーホールと、
    前記複数個の平面状空芯コイルの各2個の外端同士を接続するために、前記絶縁基板を貫通して形成された第2のスルーホールと、
    前記コイル両端部の一端を、前記第1及び第2の電極パターンの一方に接続するために、前記絶縁基板を貫通して形成された第3のスルーホールと、
    を有することを特徴とする積層コイルユニット。
  3. 請求項1または2において、
    前記複数個の平面状空芯コイルは、それぞれ異なる絶縁基板に形成されていることを特徴とする積層コイルユニット。
  4. 請求項1乃至3のいずれかにおいて、
    複数個の平面状空芯コイルが前記平面状コイルの数よりも少ない数の絶縁基板に形成され、少なくとも1枚の絶縁基板の両面に、2個の平面状空芯コイルが一つずつ形成されていることを特徴とする積層コイルユニット。
  5. 請求項2において、
    前記第1、第2、第3のスルーホールが、前記複数個の平面状空芯コイルが形成された全ての絶縁基板に貫通形成されていることを特徴とする積層コイルユニット。
  6. 請求項1乃至5のいずれかにおいて、
    前記絶縁基板はフレキシブル基板であることを特徴とする積層コイルユニット。
  7. 請求項1乃至6のいずれかにおいて、
    前記非伝送面側の最端層に位置する絶縁基板の前記露出面であって、該絶縁基板に形成された前記平面状空芯コイルを覆う位置に磁性体シートが積層されていることを特徴とする積層コイルユニット。
  8. 請求項1乃至7のいずれかに記載の前記積層コイルユニットを前記二次側コイルとして含み、充電器に設けられる前記一次側コイルとの間で無接点電力伝送することを特徴とする電子機器。
  9. 請求項1乃至7のいずれかに記載の前記積層コイルユニットを前記一次側コイルとして含み、電子機器に設けられる前記二次側コイルとの間で無接点電力伝送することを特徴とする充電器。
JP2007039888A 2007-02-20 2007-02-20 積層コイルユニット並びにそれを用いた電子機器及び充電器 Withdrawn JP2008205215A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007039888A JP2008205215A (ja) 2007-02-20 2007-02-20 積層コイルユニット並びにそれを用いた電子機器及び充電器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007039888A JP2008205215A (ja) 2007-02-20 2007-02-20 積層コイルユニット並びにそれを用いた電子機器及び充電器

Publications (1)

Publication Number Publication Date
JP2008205215A true JP2008205215A (ja) 2008-09-04

Family

ID=39782390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007039888A Withdrawn JP2008205215A (ja) 2007-02-20 2007-02-20 積層コイルユニット並びにそれを用いた電子機器及び充電器

Country Status (1)

Country Link
JP (1) JP2008205215A (ja)

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010073976A (ja) * 2008-09-19 2010-04-02 Yazaki Corp ワイヤレス電力伝送装置の通信コイル構造
JP2011229202A (ja) * 2010-04-15 2011-11-10 Panasonic Corp 無線電力伝送用コイル
KR200461709Y1 (ko) 2011-11-23 2012-07-31 문승주 기판형 전력 송수신패턴을 구비하는 무선 전력 전송 시스템
JP2012156281A (ja) * 2011-01-26 2012-08-16 Yazaki Corp 空芯コイル
JP2013016550A (ja) * 2011-06-30 2013-01-24 Equos Research Co Ltd アンテナ
KR101257707B1 (ko) 2012-09-13 2013-04-24 (주)광진텔레콤 송/수신 패턴 구조를 갖는 무선 충전기 및 무선충전기의 송/수신 패턴 제조 방법
KR200467196Y1 (ko) 2011-07-19 2013-05-31 유노시스템 주식회사 모바일 단말기 무선 충전 시스템을 구비한 테이블
KR101339486B1 (ko) * 2012-03-29 2013-12-10 삼성전기주식회사 박막 코일 및 이를 구비하는 전자 기기
JP2013251455A (ja) * 2012-06-01 2013-12-12 Ibiden Co Ltd 電磁コイル
EP2750145A1 (en) * 2012-12-28 2014-07-02 Samsung Electro-Mechanics Co., Ltd Coil for cordless charging and cordless charging apparatus using the same
KR101417388B1 (ko) * 2012-03-23 2014-08-06 엘지이노텍 주식회사 무선전력 수신장치 및 그 제조 방법
US20150001951A1 (en) * 2013-06-28 2015-01-01 Samsung Electro-Mechanics Co., Ltd. Shield part, method of fabricating the same, and contactless power transmission device having the shield part
JP2015512155A (ja) * 2012-02-20 2015-04-23 ホアウェイ・テクノロジーズ・カンパニー・リミテッド 電力伝送用途のための大電流かつ低等価直列抵抗のプリント回路基板コイル
KR101546720B1 (ko) 2015-04-17 2015-08-25 삼성전기주식회사 박막 코일, 케이스 어셈블리, 및 무선 전력 수신 장치와 이를 구비하는 전자 기기
KR101546718B1 (ko) 2015-04-17 2015-08-25 삼성전기주식회사 박막 코일, 케이스 어셈블리, 및 무선 전력 수신 장치와 이를 구비하는 전자 기기
KR101546719B1 (ko) 2015-04-17 2015-08-25 삼성전기주식회사 무선 전력 수신 장치, 케이스 어셈블리, 및 이를 구비하는 전자 기기
EP3016232A1 (en) 2014-11-01 2016-05-04 Panasonic Intellectual Property Management Co., Ltd. Power transmission device, vehicle equipped with power transmission device, and wireless power transmission system
EP3016231A1 (en) 2014-11-01 2016-05-04 Panasonic Intellectual Property Management Co., Ltd. Power transmission device, vehicle equipped with power transmission device, and wireless power transmission system
JP2016093088A (ja) * 2014-11-01 2016-05-23 パナソニックIpマネジメント株式会社 送電装置、送電装置を搭載した車両及び無線電力伝送システム
JP2016093087A (ja) * 2014-11-01 2016-05-23 パナソニックIpマネジメント株式会社 送電装置、送電装置を搭載した車両及び無線電力伝送システム
US9424983B2 (en) 2013-03-13 2016-08-23 Samsung Electro-Mechanics Co., Ltd. Thin film coil, shield part including the same, and contactless power transmission device having the shield part
US9553476B2 (en) 2012-03-23 2017-01-24 Lg Innotek Co., Ltd. Antenna assembly and method for manufacturing same
WO2017047498A1 (ja) * 2015-09-18 2017-03-23 住友電工プリントサーキット株式会社 フレキシブルプリント配線板及び非接触充電システム
CN107240961A (zh) * 2016-03-29 2017-10-10 三星电机株式会社 无线功率发送装置
JP2019114584A (ja) * 2017-12-21 2019-07-11 Tdk株式会社 コイル部品
US10432032B2 (en) 2016-12-09 2019-10-01 Nucurrent, Inc. Wireless system having a substrate configured to facilitate through-metal energy transfer via near field magnetic coupling
DE102019107583A1 (de) 2018-03-31 2019-10-02 Tdk Corporation Spulenbauteil und schaltung zur drahtlosen energieübertragung mit demselben
JP2019186303A (ja) * 2018-04-04 2019-10-24 Tdk株式会社 コイル部品
US10636563B2 (en) 2015-08-07 2020-04-28 Nucurrent, Inc. Method of fabricating a single structure multi mode antenna for wireless power transmission using magnetic field coupling
US10658847B2 (en) 2015-08-07 2020-05-19 Nucurrent, Inc. Method of providing a single structure multi mode antenna for wireless power transmission using magnetic field coupling
US10879704B2 (en) 2016-08-26 2020-12-29 Nucurrent, Inc. Wireless connector receiver module
US10903688B2 (en) 2017-02-13 2021-01-26 Nucurrent, Inc. Wireless electrical energy transmission system with repeater
US10985465B2 (en) 2015-08-19 2021-04-20 Nucurrent, Inc. Multi-mode wireless antenna configurations
US11056922B1 (en) 2020-01-03 2021-07-06 Nucurrent, Inc. Wireless power transfer system for simultaneous transfer to multiple devices
US11152151B2 (en) 2017-05-26 2021-10-19 Nucurrent, Inc. Crossover coil structure for wireless transmission
US11205849B2 (en) 2015-08-07 2021-12-21 Nucurrent, Inc. Multi-coil antenna structure with tunable inductance
US11227712B2 (en) 2019-07-19 2022-01-18 Nucurrent, Inc. Preemptive thermal mitigation for wireless power systems
US11257615B2 (en) 2017-10-16 2022-02-22 Tdk Corporation Coil component
US11271430B2 (en) 2019-07-19 2022-03-08 Nucurrent, Inc. Wireless power transfer system with extended wireless charging range
US11283303B2 (en) 2020-07-24 2022-03-22 Nucurrent, Inc. Area-apportioned wireless power antenna for maximized charging volume
US11335999B2 (en) 2009-03-09 2022-05-17 Nucurrent, Inc. Device having a multi-layer-multi-turn antenna with frequency
US20220200342A1 (en) 2020-12-22 2022-06-23 Nucurrent, Inc. Ruggedized communication for wireless power systems in multi-device environments
US11605492B2 (en) 2017-11-13 2023-03-14 Tdk Corporation Coil component
US11695302B2 (en) 2021-02-01 2023-07-04 Nucurrent, Inc. Segmented shielding for wide area wireless power transmitter
US11831174B2 (en) 2022-03-01 2023-11-28 Nucurrent, Inc. Cross talk and interference mitigation in dual wireless power transmitter
US11854732B2 (en) 2018-10-31 2023-12-26 Tdk Corporation Coil component
US11876386B2 (en) 2020-12-22 2024-01-16 Nucurrent, Inc. Detection of foreign objects in large charging volume applications
US11955809B2 (en) 2015-08-07 2024-04-09 Nucurrent, Inc. Single structure multi mode antenna for wireless power transmission incorporating a selection circuit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08181018A (ja) * 1994-12-26 1996-07-12 Murata Mfg Co Ltd コイル装置
JPH11238639A (ja) * 1998-02-23 1999-08-31 Omron Corp 平面型積層コイル、並びに、電磁波読み取り可能なicシート
JP2001325574A (ja) * 2000-05-17 2001-11-22 Denso Corp Icカード

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08181018A (ja) * 1994-12-26 1996-07-12 Murata Mfg Co Ltd コイル装置
JPH11238639A (ja) * 1998-02-23 1999-08-31 Omron Corp 平面型積層コイル、並びに、電磁波読み取り可能なicシート
JP2001325574A (ja) * 2000-05-17 2001-11-22 Denso Corp Icカード

Cited By (122)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010073976A (ja) * 2008-09-19 2010-04-02 Yazaki Corp ワイヤレス電力伝送装置の通信コイル構造
US11916400B2 (en) 2009-03-09 2024-02-27 Nucurrent, Inc. Multi-layer-multi-turn structure for high efficiency wireless communication
US11335999B2 (en) 2009-03-09 2022-05-17 Nucurrent, Inc. Device having a multi-layer-multi-turn antenna with frequency
US11336003B2 (en) 2009-03-09 2022-05-17 Nucurrent, Inc. Multi-layer, multi-turn inductor structure for wireless transfer of power
US11476566B2 (en) 2009-03-09 2022-10-18 Nucurrent, Inc. Multi-layer-multi-turn structure for high efficiency wireless communication
JP2011229202A (ja) * 2010-04-15 2011-11-10 Panasonic Corp 無線電力伝送用コイル
JP2012156281A (ja) * 2011-01-26 2012-08-16 Yazaki Corp 空芯コイル
JP2013016550A (ja) * 2011-06-30 2013-01-24 Equos Research Co Ltd アンテナ
KR200467196Y1 (ko) 2011-07-19 2013-05-31 유노시스템 주식회사 모바일 단말기 무선 충전 시스템을 구비한 테이블
KR200461709Y1 (ko) 2011-11-23 2012-07-31 문승주 기판형 전력 송수신패턴을 구비하는 무선 전력 전송 시스템
US11538622B2 (en) 2012-02-20 2022-12-27 Futurewei Technologies, Inc. High current, low equivalent series resistance printed circuit board coil for power transfer application
US10431372B2 (en) 2012-02-20 2019-10-01 Futurewei Technologies, Inc. High current, low equivalent series resistance printed circuit board coil for power transfer application
US9837201B2 (en) 2012-02-20 2017-12-05 Futurewei Technologies, Inc. High current, low equivalent series resistance printed circuit board coil for power transfer application
US9818527B2 (en) 2012-02-20 2017-11-14 Futurewei Technologies, Inc. High current, low equivalent series resistance printed circuit board coil for power transfer application
JP2017034283A (ja) * 2012-02-20 2017-02-09 ホアウェイ・テクノロジーズ・カンパニー・リミテッド 電力伝送用途のための大電流かつ低等価直列抵抗のプリント回路基板コイル
US11120937B2 (en) 2012-02-20 2021-09-14 Futurewei Technologies, Inc. High current, low equivalent series resistance printed circuit board coil for power transfer application
JP2015512155A (ja) * 2012-02-20 2015-04-23 ホアウェイ・テクノロジーズ・カンパニー・リミテッド 電力伝送用途のための大電流かつ低等価直列抵抗のプリント回路基板コイル
KR101417388B1 (ko) * 2012-03-23 2014-08-06 엘지이노텍 주식회사 무선전력 수신장치 및 그 제조 방법
US9553476B2 (en) 2012-03-23 2017-01-24 Lg Innotek Co., Ltd. Antenna assembly and method for manufacturing same
US9806565B2 (en) 2012-03-23 2017-10-31 Lg Innotek Co., Ltd. Wireless power receiver and method of manufacturing the same
US10804740B2 (en) 2012-03-23 2020-10-13 Lg Innotek Co., Ltd. Wireless power receiver and method of manufacturing the same
US10673141B2 (en) 2012-03-23 2020-06-02 Lg Innotek Co., Ltd. Antenna assembly and method for manufacturing same
US10256540B2 (en) 2012-03-23 2019-04-09 Lg Innotek Co., Ltd. Antenna assembly and method for manufacturing same
US10270291B2 (en) 2012-03-23 2019-04-23 Lg Innotek Co., Ltd. Wireless power receiver and method of manufacturing the same
US10277071B2 (en) 2012-03-23 2019-04-30 Lg Innotek Co., Ltd. Wireless power receiver and method of manufacturing the same
US10483767B2 (en) 2012-03-29 2019-11-19 Wits Co., Ltd. Thin film coil and electronic device having the same
US10103554B2 (en) 2012-03-29 2018-10-16 Samsung Electro-Mechanics Co., Ltd. Thin film coil and electronic device having the same
KR101339486B1 (ko) * 2012-03-29 2013-12-10 삼성전기주식회사 박막 코일 및 이를 구비하는 전자 기기
US10122183B2 (en) 2012-03-29 2018-11-06 Samsung Electro-Mechanics Co., Ltd. Thin film coil and electronic device having the same
US9165708B2 (en) 2012-03-29 2015-10-20 Samsung Electro-Mechanics Co., Ltd. Thin film coil and electronic device having the same
JP2013251455A (ja) * 2012-06-01 2013-12-12 Ibiden Co Ltd 電磁コイル
KR101257707B1 (ko) 2012-09-13 2013-04-24 (주)광진텔레콤 송/수신 패턴 구조를 갖는 무선 충전기 및 무선충전기의 송/수신 패턴 제조 방법
KR101452076B1 (ko) 2012-12-28 2014-10-16 삼성전기주식회사 무선 충전용 코일 및 이를 구비하는 무선 충전 장치
US9355766B2 (en) 2012-12-28 2016-05-31 Samsung Electro-Mechanics Co., Ltd. Coil for cordless charging and cordless charging apparatus using the same
CN103915903A (zh) * 2012-12-28 2014-07-09 三星电机株式会社 用于无线充电的线圈以及使用该线圈的无线充电装置
EP2750145A1 (en) * 2012-12-28 2014-07-02 Samsung Electro-Mechanics Co., Ltd Coil for cordless charging and cordless charging apparatus using the same
US9424983B2 (en) 2013-03-13 2016-08-23 Samsung Electro-Mechanics Co., Ltd. Thin film coil, shield part including the same, and contactless power transmission device having the shield part
US20150001951A1 (en) * 2013-06-28 2015-01-01 Samsung Electro-Mechanics Co., Ltd. Shield part, method of fabricating the same, and contactless power transmission device having the shield part
US9502173B2 (en) * 2013-06-28 2016-11-22 Samsung Electro-Mechanics Co., Ltd. Shield part, method of fabricating the same, and contactless power transmission device having the shield part
EP3016232A1 (en) 2014-11-01 2016-05-04 Panasonic Intellectual Property Management Co., Ltd. Power transmission device, vehicle equipped with power transmission device, and wireless power transmission system
US10157704B2 (en) 2014-11-01 2018-12-18 Panasonic Intellectual Property Management Co., Ltd. Power transmission device, vehicle equipped with power transmission device, and wireless power transmission system
US10158236B2 (en) 2014-11-01 2018-12-18 Panasonic Intellectual Property Management Co., Ltd. Power transmission device, vehicle equipped with power transmission device, and wireless power transmission system
JP2018207774A (ja) * 2014-11-01 2018-12-27 パナソニックIpマネジメント株式会社 送電装置、送電装置を搭載した車両及び無線電力伝送システム
JP2016093087A (ja) * 2014-11-01 2016-05-23 パナソニックIpマネジメント株式会社 送電装置、送電装置を搭載した車両及び無線電力伝送システム
EP3016231A1 (en) 2014-11-01 2016-05-04 Panasonic Intellectual Property Management Co., Ltd. Power transmission device, vehicle equipped with power transmission device, and wireless power transmission system
JP2018137988A (ja) * 2014-11-01 2018-08-30 パナソニックIpマネジメント株式会社 送電装置、送電装置を搭載した車両及び無線電力伝送システム
CN105576847A (zh) * 2014-11-01 2016-05-11 松下知识产权经营株式会社 送电装置、搭载有送电装置的车辆以及无线电力传输系统
EP3282539A1 (en) 2014-11-01 2018-02-14 Panasonic Intellectual Property Management Co., Ltd. Power transmission device, vehicle equipped with power transmission device, and wireless power transmission system
CN105576715A (zh) * 2014-11-01 2016-05-11 松下知识产权经营株式会社 送电装置、搭载有送电装置的车辆以及无线电力传输系统
JP2016093088A (ja) * 2014-11-01 2016-05-23 パナソニックIpマネジメント株式会社 送電装置、送電装置を搭載した車両及び無線電力伝送システム
KR101546719B1 (ko) 2015-04-17 2015-08-25 삼성전기주식회사 무선 전력 수신 장치, 케이스 어셈블리, 및 이를 구비하는 전자 기기
KR101546718B1 (ko) 2015-04-17 2015-08-25 삼성전기주식회사 박막 코일, 케이스 어셈블리, 및 무선 전력 수신 장치와 이를 구비하는 전자 기기
KR101546720B1 (ko) 2015-04-17 2015-08-25 삼성전기주식회사 박막 코일, 케이스 어셈블리, 및 무선 전력 수신 장치와 이를 구비하는 전자 기기
US11469598B2 (en) 2015-08-07 2022-10-11 Nucurrent, Inc. Device having a multimode antenna with variable width of conductive wire
US10636563B2 (en) 2015-08-07 2020-04-28 Nucurrent, Inc. Method of fabricating a single structure multi mode antenna for wireless power transmission using magnetic field coupling
US10658847B2 (en) 2015-08-07 2020-05-19 Nucurrent, Inc. Method of providing a single structure multi mode antenna for wireless power transmission using magnetic field coupling
US11769629B2 (en) 2015-08-07 2023-09-26 Nucurrent, Inc. Device having a multimode antenna with variable width of conductive wire
US11955809B2 (en) 2015-08-07 2024-04-09 Nucurrent, Inc. Single structure multi mode antenna for wireless power transmission incorporating a selection circuit
US11025070B2 (en) 2015-08-07 2021-06-01 Nucurrent, Inc. Device having a multimode antenna with at least one conductive wire with a plurality of turns
US11196266B2 (en) 2015-08-07 2021-12-07 Nucurrent, Inc. Device having a multimode antenna with conductive wire width
US11205849B2 (en) 2015-08-07 2021-12-21 Nucurrent, Inc. Multi-coil antenna structure with tunable inductance
US11205848B2 (en) 2015-08-07 2021-12-21 Nucurrent, Inc. Method of providing a single structure multi mode antenna having a unitary body construction for wireless power transmission using magnetic field coupling
US11316271B2 (en) 2015-08-19 2022-04-26 Nucurrent, Inc. Multi-mode wireless antenna configurations
US10985465B2 (en) 2015-08-19 2021-04-20 Nucurrent, Inc. Multi-mode wireless antenna configurations
US11670856B2 (en) 2015-08-19 2023-06-06 Nucurrent, Inc. Multi-mode wireless antenna configurations
WO2017047498A1 (ja) * 2015-09-18 2017-03-23 住友電工プリントサーキット株式会社 フレキシブルプリント配線板及び非接触充電システム
CN107240961A (zh) * 2016-03-29 2017-10-10 三星电机株式会社 无线功率发送装置
KR102532879B1 (ko) * 2016-03-29 2023-05-17 주식회사 위츠 무선 전력 송신 장치
KR20170111654A (ko) * 2016-03-29 2017-10-12 삼성전기주식회사 무선 전력 송신 장치
US10879705B2 (en) 2016-08-26 2020-12-29 Nucurrent, Inc. Wireless connector receiver module with an electrical connector
US10903660B2 (en) 2016-08-26 2021-01-26 Nucurrent, Inc. Wireless connector system circuit
US11011915B2 (en) 2016-08-26 2021-05-18 Nucurrent, Inc. Method of making a wireless connector transmitter module
US10938220B2 (en) 2016-08-26 2021-03-02 Nucurrent, Inc. Wireless connector system
US10879704B2 (en) 2016-08-26 2020-12-29 Nucurrent, Inc. Wireless connector receiver module
US10931118B2 (en) 2016-08-26 2021-02-23 Nucurrent, Inc. Wireless connector transmitter module with an electrical connector
US10886751B2 (en) 2016-08-26 2021-01-05 Nucurrent, Inc. Wireless connector transmitter module
US10897140B2 (en) 2016-08-26 2021-01-19 Nucurrent, Inc. Method of operating a wireless connector system
US10916950B2 (en) 2016-08-26 2021-02-09 Nucurrent, Inc. Method of making a wireless connector receiver module
US11764614B2 (en) 2016-12-09 2023-09-19 Nucurrent, Inc. Method of fabricating an antenna having a substrate configured to facilitate through-metal energy transfer via near field magnetic coupling
US10892646B2 (en) 2016-12-09 2021-01-12 Nucurrent, Inc. Method of fabricating an antenna having a substrate configured to facilitate through-metal energy transfer via near field magnetic coupling
US10868444B2 (en) 2016-12-09 2020-12-15 Nucurrent, Inc. Method of operating a system having a substrate configured to facilitate through-metal energy transfer via near field magnetic coupling
US10432032B2 (en) 2016-12-09 2019-10-01 Nucurrent, Inc. Wireless system having a substrate configured to facilitate through-metal energy transfer via near field magnetic coupling
US11418063B2 (en) 2016-12-09 2022-08-16 Nucurrent, Inc. Method of fabricating an antenna having a substrate configured to facilitate through-metal energy transfer via near field magnetic coupling
US10432031B2 (en) 2016-12-09 2019-10-01 Nucurrent, Inc. Antenna having a substrate configured to facilitate through-metal energy transfer via near field magnetic coupling
US10432033B2 (en) 2016-12-09 2019-10-01 Nucurrent, Inc. Electronic device having a sidewall configured to facilitate through-metal energy transfer via near field magnetic coupling
US11264837B2 (en) 2017-02-13 2022-03-01 Nucurrent, Inc. Transmitting base with antenna having magnetic shielding panes
US11431200B2 (en) 2017-02-13 2022-08-30 Nucurrent, Inc. Method of operating a wireless electrical energy transmission system
US11223234B2 (en) 2017-02-13 2022-01-11 Nucurrent, Inc. Method of operating a wireless electrical energy transmission base
US11223235B2 (en) 2017-02-13 2022-01-11 Nucurrent, Inc. Wireless electrical energy transmission system
US11502547B2 (en) 2017-02-13 2022-11-15 Nucurrent, Inc. Wireless electrical energy transmission system with transmitting antenna having magnetic field shielding panes
US10958105B2 (en) 2017-02-13 2021-03-23 Nucurrent, Inc. Transmitting base with repeater
US10903688B2 (en) 2017-02-13 2021-01-26 Nucurrent, Inc. Wireless electrical energy transmission system with repeater
US11705760B2 (en) 2017-02-13 2023-07-18 Nucurrent, Inc. Method of operating a wireless electrical energy transmission system
US11177695B2 (en) 2017-02-13 2021-11-16 Nucurrent, Inc. Transmitting base with magnetic shielding and flexible transmitting antenna
US11282638B2 (en) 2017-05-26 2022-03-22 Nucurrent, Inc. Inductor coil structures to influence wireless transmission performance
US11152151B2 (en) 2017-05-26 2021-10-19 Nucurrent, Inc. Crossover coil structure for wireless transmission
US11283295B2 (en) 2017-05-26 2022-03-22 Nucurrent, Inc. Device orientation independent wireless transmission system
US11283296B2 (en) 2017-05-26 2022-03-22 Nucurrent, Inc. Crossover inductor coil and assembly for wireless transmission
US11652511B2 (en) 2017-05-26 2023-05-16 Nucurrent, Inc. Inductor coil structures to influence wireless transmission performance
US11277028B2 (en) 2017-05-26 2022-03-15 Nucurrent, Inc. Wireless electrical energy transmission system for flexible device orientation
US11277029B2 (en) 2017-05-26 2022-03-15 Nucurrent, Inc. Multi coil array for wireless energy transfer with flexible device orientation
US11257615B2 (en) 2017-10-16 2022-02-22 Tdk Corporation Coil component
US11605492B2 (en) 2017-11-13 2023-03-14 Tdk Corporation Coil component
JP6996276B2 (ja) 2017-12-21 2022-01-17 Tdk株式会社 コイル部品
JP2019114584A (ja) * 2017-12-21 2019-07-11 Tdk株式会社 コイル部品
US11443893B2 (en) 2018-03-31 2022-09-13 Tdk Corporation Coil component and wireless power transmission circuit having the same
DE102019107583A1 (de) 2018-03-31 2019-10-02 Tdk Corporation Spulenbauteil und schaltung zur drahtlosen energieübertragung mit demselben
JP7147230B2 (ja) 2018-04-04 2022-10-05 Tdk株式会社 コイル部品
JP2019186303A (ja) * 2018-04-04 2019-10-24 Tdk株式会社 コイル部品
US11854732B2 (en) 2018-10-31 2023-12-26 Tdk Corporation Coil component
US11756728B2 (en) 2019-07-19 2023-09-12 Nucurrent, Inc. Wireless power transfer system with extended wireless charging range
US11271430B2 (en) 2019-07-19 2022-03-08 Nucurrent, Inc. Wireless power transfer system with extended wireless charging range
US11227712B2 (en) 2019-07-19 2022-01-18 Nucurrent, Inc. Preemptive thermal mitigation for wireless power systems
US11811223B2 (en) 2020-01-03 2023-11-07 Nucurrent, Inc. Wireless power transfer system for simultaneous transfer to multiple devices
US11056922B1 (en) 2020-01-03 2021-07-06 Nucurrent, Inc. Wireless power transfer system for simultaneous transfer to multiple devices
US11658517B2 (en) 2020-07-24 2023-05-23 Nucurrent, Inc. Area-apportioned wireless power antenna for maximized charging volume
US11283303B2 (en) 2020-07-24 2022-03-22 Nucurrent, Inc. Area-apportioned wireless power antenna for maximized charging volume
US11876386B2 (en) 2020-12-22 2024-01-16 Nucurrent, Inc. Detection of foreign objects in large charging volume applications
US11881716B2 (en) 2020-12-22 2024-01-23 Nucurrent, Inc. Ruggedized communication for wireless power systems in multi-device environments
US20220200342A1 (en) 2020-12-22 2022-06-23 Nucurrent, Inc. Ruggedized communication for wireless power systems in multi-device environments
US11695302B2 (en) 2021-02-01 2023-07-04 Nucurrent, Inc. Segmented shielding for wide area wireless power transmitter
US11831174B2 (en) 2022-03-01 2023-11-28 Nucurrent, Inc. Cross talk and interference mitigation in dual wireless power transmitter

Similar Documents

Publication Publication Date Title
JP2008205215A (ja) 積層コイルユニット並びにそれを用いた電子機器及び充電器
JP2008205216A (ja) 積層コイルユニット並びにそれを有する電子機器及び充電器
JP6306288B2 (ja) コイルプリント配線基板、受電モジュール、電池ユニットおよび受電通信モジュール
US7417523B2 (en) Ultra-thin flexible inductor
US20130321117A1 (en) Planar transformer and method of manufacturing the same
JP2021508949A (ja) 無線充電コイル
JP5339398B2 (ja) 積層インダクタ
JP3488869B2 (ja) 平面コイルおよび平面トランス
US20070001796A1 (en) Printed circuit board with integrated inductor
KR20120029433A (ko) 초박형 차폐층을 갖는 유도 수신기 코일을 구비한 전자 장치 및 방법
US10839996B2 (en) Multilayered electromagnetic assembly
JP2013042376A (ja) 携帯機器内蔵アンテナ構造
JP5765507B1 (ja) インダクタ素子及び電子機器
JP6300016B2 (ja) トロイダルコイル装置およびそれを用いた電流計測装置
JP2002270437A (ja) 平面コイルおよび平面トランス
JP2013207149A (ja) トロイダルコイル
JP2014154896A (ja) アンテナ、アンテナ装置、及び携帯端末
KR20070032259A (ko) 인덕터 및 인덕터 제조 방법
KR20160040446A (ko) 적층 인덕터
JP5223509B2 (ja) 電力変換伝送装置および非接触型被充電装置
JP2017216407A (ja) プリント配線板及びその製造方法
JP2013207151A (ja) トランス
JPWO2013171923A1 (ja) インダクタ素子
JP2003197439A (ja) 電磁装置
JP2005294637A (ja) 積層コイルアレイ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20111021