JP2008205199A - METHOD OF MANUFACTURING GaN-BASED SEMICONDUCTOR ELEMENT - Google Patents

METHOD OF MANUFACTURING GaN-BASED SEMICONDUCTOR ELEMENT Download PDF

Info

Publication number
JP2008205199A
JP2008205199A JP2007039701A JP2007039701A JP2008205199A JP 2008205199 A JP2008205199 A JP 2008205199A JP 2007039701 A JP2007039701 A JP 2007039701A JP 2007039701 A JP2007039701 A JP 2007039701A JP 2008205199 A JP2008205199 A JP 2008205199A
Authority
JP
Japan
Prior art keywords
layer
gan
type
electrode
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007039701A
Other languages
Japanese (ja)
Inventor
Hirotaka Otake
浩隆 大嶽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP2007039701A priority Critical patent/JP2008205199A/en
Priority to PCT/JP2008/052861 priority patent/WO2008102806A1/en
Publication of JP2008205199A publication Critical patent/JP2008205199A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66666Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66734Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a GaN-based semiconductor element preventing the semiconductor layer interface of a gate region from deteriorating even if performing annealing treatment to source and drain electrodes. <P>SOLUTION: An undoped GaN layer 2, an n-type AlGaN drain layer 3, an n-type GaN layer 4, a p-type GaN channel layer 5, and an n-type GaN source layer 6 are formed on a sapphire substrate 1. A lamination structure from the n-type AlGaN drain layer 3 to the n-type GaN source layer 6 is etched from the n-type GaN source layer 6 to a depth where the n-type AlGaN drain layer 3 is exposed so that the section becomes nearly rectangular, the drain and source electrodes 8, 7 are manufactured, and electrode annealing treatment is performed. After that, etching for forming a gate is performed, and a gate insulating film 9 and a gate electrode 10 are formed. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、大電流が得られるパワートランジスタ等の半導体増幅素子等に用いられるGaN系半導体素子の製造方法に関する。   The present invention relates to a method for manufacturing a GaN-based semiconductor element used for a semiconductor amplifying element such as a power transistor capable of obtaining a large current.

GaNやAlGaN等のGaN系III−V族化合物半導体をチャネル層に用いたMOS型FETやHEMT(High Electron Mobility Transistor)等は、SiやGaAs等を用いたMOS型FET、HEMTに比べ、動作時のオン抵抗が1桁以上も小さく、高耐圧で高温動作や大電流動作が可能となるデバイスとして注目されている。   MOS type FETs and HEMTs (High Electron Mobility Transistors) using GaN-based III-V group compound semiconductors such as GaN and AlGaN for the channel layer are more operating than MOS type FETs and HEMTs using Si, GaAs, etc. The device has been attracting attention as a device capable of high temperature operation and large current operation with a high withstand voltage and a small on-resistance.

上記GaN系半導体素子は、例えば、特許文献1や非特許文献1に示すように、ソース電極、ゲート電極、ドレイン電極が同一面側に設けられたMIS(Metal Insulator Semiconductor)構造のGaN系半導体素子や、ソース電極とドレイン電極のうち、ソース電極がゲート電極と同一面側に設けられたMIS構造のGaN系半導体素子が知られている。   For example, as shown in Patent Document 1 and Non-Patent Document 1, the GaN-based semiconductor element has a MIS (Metal Insulator Semiconductor) structure in which a source electrode, a gate electrode, and a drain electrode are provided on the same surface side. In addition, a GaN-based semiconductor element having a MIS structure in which a source electrode is provided on the same surface side as a gate electrode among a source electrode and a drain electrode is known.

例えば、特許文献1によれば、GaNの縦型MIS構造を作製する場合、基板上にn型GaNドレイン層、p型GaNチャネル層、n型GaNソース層を積層した後、エッチング除去によって積層構造の側面に傾斜または垂直面を形成し、その後にソース電極およびドレイン電極を形成し、次にゲート電極を形成するようにしている。
特開2003−163354号公報 大久保聡著、「もう光るだけじゃない、機器の進化の裏にGaN」、2006年6月5日、日経エレクトロニクス、p.51−60
For example, according to Patent Document 1, when a vertical MIS structure of GaN is manufactured, an n-type GaN drain layer, a p-type GaN channel layer, and an n-type GaN source layer are stacked on a substrate, and then the stacked structure is removed by etching. An inclined surface or a vertical surface is formed on the side surface of the first electrode, and then a source electrode and a drain electrode are formed, and then a gate electrode is formed.
JP 2003-163354 A Satoshi Okubo, “GaN is behind the evolution of equipment, not just shining”, June 5, 2006, Nikkei Electronics, p. 51-60

上記従来技術の方法では、ゲート絶縁膜やゲート電極を形成するためのGaN系半導体層壁面を形成した後、ソース電極またはドレイン電極を形成している。   In the above prior art method, the source electrode or the drain electrode is formed after the GaN-based semiconductor layer wall surface for forming the gate insulating film and the gate electrode is formed.

上記従来方法を用い、さらにn型GaN層にオーミック接触させる電極としてより好ましい金属であるTi−Al合金を形成すると、オーミック接触を得るために約500℃の熱アロイ(アニール処理)が必要になるため、既に作製されたGaN系半導体層壁面が電極アニール処理によって窒素抜けなどの熱によるダメージを受け、チャネル特性が悪化する。   When a Ti—Al alloy, which is a metal more preferable as an electrode to be in ohmic contact with the n-type GaN layer, is formed using the above-described conventional method, a thermal alloy (annealing treatment) at about 500 ° C. is required to obtain ohmic contact. Therefore, the already fabricated GaN-based semiconductor layer wall surface is damaged by heat such as nitrogen depletion due to the electrode annealing treatment, and the channel characteristics are deteriorated.

FETやHEMTなどの電子デバイスでは、チャネル動作特性が重要な要素となっており、オン抵抗やオン−オフの応答特性などに影響を与えるため、上記のように反転チャネル(反転層)を形成する面が存在する半導体層壁面が熱ダメージを受けて特性が劣化することが問題となっていた。   In electronic devices such as FETs and HEMTs, channel operating characteristics are an important factor, which affects on-resistance and on-off response characteristics, and therefore, an inversion channel (inversion layer) is formed as described above. There has been a problem that the characteristics of the semiconductor layer wall surface where the surface is present are deteriorated due to thermal damage.

本発明は、上述した課題を解決するために創案されたものであり、ソース電極やドレイン電極のアニール処理を行っても、ゲート領域の半導体層界面が劣化しないGaN系半導体素子の製造方法を提供することを目的としている。   The present invention was devised to solve the above-described problems, and provides a method for manufacturing a GaN-based semiconductor element in which the semiconductor layer interface in the gate region does not deteriorate even when annealing of the source electrode and the drain electrode is performed. The purpose is to do.

上記目的を達成するために、請求項1記載の発明は、p型不純物を含む半導体層と該p型不純物を含む半導体層を挟んで配置された2つのn型半導体層とを含む積層構造を備え、p型不純物を含む半導体層と2つのn型半導体層に跨る壁面を有し、該壁面の形成によって露出した前記p型不純物を含む半導体層表面にゲート絶縁膜を介してゲート電極が形成されており、ソース電極がゲート電極と同一面側に形成されたGaN系半導体素子の製造方法であって、前記ソース電極の電極アニールが行われた後に、前記壁面が形成されることを特徴とするGaN系半導体素子の製造方法である。   In order to achieve the above object, a first aspect of the present invention is a stacked structure including a semiconductor layer containing a p-type impurity and two n-type semiconductor layers arranged with the semiconductor layer containing the p-type impurity interposed therebetween. A gate electrode is formed on the surface of the semiconductor layer containing the p-type impurity exposed by forming the wall surface, the gate electrode being interposed between the semiconductor layer containing the p-type impurity and the two n-type semiconductor layers. A method of manufacturing a GaN-based semiconductor device in which a source electrode is formed on the same side as a gate electrode, wherein the wall surface is formed after electrode annealing of the source electrode is performed. A method for manufacturing a GaN-based semiconductor device.

また、請求項2記載の発明は、前記p型不純物を含む半導体層表面に伝導特性の異なる領域を形成し、該領域に接してゲート絶縁膜を形成することを特徴とする請求項1記載のGaN系半導体素子の製造方法である。   According to a second aspect of the present invention, a region having different conduction characteristics is formed on the surface of the semiconductor layer containing the p-type impurity, and a gate insulating film is formed in contact with the region. This is a method for manufacturing a GaN-based semiconductor device.

また、請求項3記載の発明は、前記ソース電極が形成された面と同一面にメサエッチングを行って、露出した前記p型不純物を含む半導体層の下側に位置するn型半導体層にドレイン電極を形成し、前記ソース電極およびドレイン電極の電極アニールを行った後に、前記壁面の形成が行われることを特徴とする請求項1又は請求項2のいずれか1項に記載のGaN系半導体素子の製造方法である。   According to a third aspect of the present invention, mesa etching is performed on the same surface as the surface on which the source electrode is formed, and a drain is formed in the n-type semiconductor layer located below the exposed semiconductor layer containing the p-type impurity. 3. The GaN-based semiconductor device according to claim 1, wherein the wall surface is formed after an electrode is formed and electrode annealing of the source electrode and the drain electrode is performed. 4. It is a manufacturing method.

また、請求項4記載の発明は、前記ソース電極が形成される面とは反対側にドレイン電極が形成されることを特徴とする請求項1又は請求項2のいずれか1項に記載のGaN系半導体素子の製造方法である。   The invention according to claim 4 is characterized in that a drain electrode is formed on the side opposite to the surface on which the source electrode is formed. This is a method for manufacturing a semiconductor device.

本発明によれば、反転分布動作が行われるチャネル領域を含むp型不純物を含む半導体層壁面の形成をゲート電極と同一面側に作製されるソース電極のアニール処理後に行うようにしているので、p型不純物を含む半導体層表面の劣化を防ぎ、チャネル動作特性の悪化を防止することができる。   According to the present invention, the formation of the semiconductor layer wall surface including the p-type impurity including the channel region where the inversion distribution operation is performed is performed after the annealing process of the source electrode manufactured on the same surface side as the gate electrode. Deterioration of the surface of the semiconductor layer containing the p-type impurity can be prevented, and deterioration of channel operation characteristics can be prevented.

以下、図面を参照して本発明の一実施形態を説明する。図1は本発明のGaN系半導体素子の断面構造を示す。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows a cross-sectional structure of a GaN-based semiconductor device of the present invention.

本発明のGaN系半導体素子は、六方晶化合物半導体であるIII−V族GaN系半導体が用いられており、上記III−V族GaN系半導体は、4元混晶系のAlGaInN(x+y+z=1、0≦x≦1、0≦y≦1、0≦z≦1)で表される。また、図1はnpn構造の例を示す。 The GaN-based semiconductor element of the present invention uses a III-V group GaN-based semiconductor that is a hexagonal compound semiconductor, and the III-V group GaN-based semiconductor is a quaternary mixed crystal Al x Ga y In z. N (x + y + z = 1, 0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ z ≦ 1). FIG. 1 shows an example of an npn structure.

サファイア基板1上にアンドープGaN層2、n型AlGaNドレイン層3、n型GaN層4、p型GaNチャネル層5(p型不純物を含む半導体層に相当)、n型GaNソース層6が形成されている。n型AlGaNドレイン層3〜n型GaNソース層6に至る積層構造の両側面は、断面がほぼ矩形となるようにn型GaN層ソース層6からn型AlGaNドレイン層3が露出する深さまでエッチングされている。そして、n型AlGaNドレイン層3は、横方向に引き出された引き出し部3aを有している。この引き出し部3aの表面にドレイン電極8が接触して形成されている。   On the sapphire substrate 1, an undoped GaN layer 2, an n-type AlGaN drain layer 3, an n-type GaN layer 4, a p-type GaN channel layer 5 (corresponding to a semiconductor layer containing p-type impurities), and an n-type GaN source layer 6 are formed. ing. Both side surfaces of the laminated structure from the n-type AlGaN drain layer 3 to the n-type GaN source layer 6 are etched from the n-type GaN layer source layer 6 to a depth at which the n-type AlGaN drain layer 3 is exposed so that the cross section is substantially rectangular. Has been. The n-type AlGaN drain layer 3 has a lead portion 3a drawn in the horizontal direction. A drain electrode 8 is formed in contact with the surface of the lead portion 3a.

一方、n型GaNソース層6〜n型GaN層4の積層構造の中央部には、n型GaN層4の途中に至るまでU字形状の溝Bが形成されており、溝Bによって該積層構造が2つのメサ領域に分離され、各メサ領域のn型GaNソース層6上にはソース電極7が形成されている。また、溝Bの壁面の全域を覆い、かつn型GaNソース層6の上面にかけて、ゲート絶縁膜9が形成され、ゲート絶縁膜9の領域内においてゲート電極10がゲート絶縁膜9上に積層されている(MIS構造)。溝BがV字形状でも構わないが、V字の鋭角となった先端の電界集中による絶縁破壊を避けるためにはU字形状であることがより好ましい。以上のように、本実施例では、ソース電極7、ドレイン電極8、ゲート電極10の各電極すべてが、GaN系半導体素子の同一面側(表面側)に設けられている。   On the other hand, a U-shaped groove B is formed at the center of the laminated structure of the n-type GaN source layer 6 to the n-type GaN layer 4 until reaching the middle of the n-type GaN layer 4. The structure is separated into two mesa regions, and a source electrode 7 is formed on the n-type GaN source layer 6 in each mesa region. A gate insulating film 9 is formed over the entire wall surface of the trench B and over the upper surface of the n-type GaN source layer 6, and a gate electrode 10 is stacked on the gate insulating film 9 in the region of the gate insulating film 9. (MIS structure). The groove B may be V-shaped, but a U-shape is more preferable in order to avoid dielectric breakdown due to electric field concentration at the tip of the V-shaped acute angle. As described above, in this embodiment, all of the source electrode 7, the drain electrode 8, and the gate electrode 10 are provided on the same surface side (front surface side) of the GaN-based semiconductor element.

p型GaNチャネル層5における溝Bの壁面付近の領域は、ゲート電極10に対向した領域5aを形成している。この領域5aを含むメサ領域側面がゲートに相当する領域となり、領域5aに、ゲート電極10に適切なバイアス電圧が与えられると、n型GaN層ソース層6とn型GaN層4間を電気的に導通させる反転チャネル(反転分布)が形成される。   A region near the wall surface of the groove B in the p-type GaN channel layer 5 forms a region 5 a facing the gate electrode 10. The side surface of the mesa region including the region 5a becomes a region corresponding to the gate. When an appropriate bias voltage is applied to the gate electrode 10 in the region 5a, the n-type GaN layer source layer 6 and the n-type GaN layer 4 are electrically connected. An inversion channel (inversion distribution) is formed to be conducted to the.

アンドープGaN層2とn型AlGaNドレイン層3との界面付近においてアンドープGaN層2内には、ピエゾ効果によって、二次元電子ガスが生じている。アンドープGaN層2は、サファイア基板1上に、いわゆる選択横方向エピタキシャル成長(ELO)によって形成されており、基板表面に沿う水平方向に転位密度の高い領域と転位密度の少ない領域(無転位領域)とを有している。そして、引き出し部3a以外の領域は、転位密度の少ない領域(無転位領域)の積層構造となるように、その形成位置が選択されている。   Two-dimensional electron gas is generated in the undoped GaN layer 2 in the vicinity of the interface between the undoped GaN layer 2 and the n-type AlGaN drain layer 3 due to the piezoelectric effect. The undoped GaN layer 2 is formed on the sapphire substrate 1 by so-called selective lateral epitaxial growth (ELO), and includes a region having a high dislocation density and a region having a low dislocation density (non-dislocation region) in the horizontal direction along the substrate surface. have. The formation positions of the regions other than the lead portions 3a are selected so as to have a laminated structure of regions having low dislocation density (non-dislocation regions).

アンドープGaN層2は、その主面(サファイア基板1に平行な表面)が、例えば、C面(0001)となるようにサファイア基板1上に成長させられる。この場合、アンドープGaN層2上にエピタキシャル成長によって積層されるn型AlGaNドレイン層3、n型GaN層4、p型GaNチャネル層5、n型GaNソース層6は、やはりC面(0001)を主面として積層されることになる。また、溝Bの壁面は、例えば、ノンポーラ面(M面(10−10)もしくはA面(11−20))、またはセミポーラ面((10−1−1)、(10−1−3)、(11−22)など)となる。   The undoped GaN layer 2 is grown on the sapphire substrate 1 so that its main surface (surface parallel to the sapphire substrate 1) is, for example, a C plane (0001). In this case, the n-type AlGaN drain layer 3, n-type GaN layer 4, p-type GaN channel layer 5, and n-type GaN source layer 6 stacked on the undoped GaN layer 2 by epitaxial growth again have a C plane (0001) as the main component. It will be laminated as a surface. The wall surface of the groove B is, for example, a nonpolar surface (M surface (10-10) or A surface (11-20)), or a semipolar surface ((10-1-1), (10-1-3), (11-22) etc.).

アンドープGaN層2上は、その主面がノンポーラ面(M面(10−10)もしくはA面(11−20))、またはセミポーラ面((10−1−1)、(10−1−3)、(11−22)など)となるようにサファイア基板1上に成長させられてもよい。この場合には、それに応じて、n型AlGaNドレイン層3〜n型GaNソース層6は、対応する結晶面を主面として積層されることになる。   On the undoped GaN layer 2, the main surface is a nonpolar surface (M surface (10-10) or A surface (11-20)), or semipolar surface ((10-1-1), (10-1-3)). , (11-22), etc.) may be grown on the sapphire substrate 1. In this case, accordingly, the n-type AlGaN drain layer 3 to the n-type GaN source layer 6 are laminated with the corresponding crystal plane as the main surface.

ゲート絶縁膜9は、たとえば窒化物または酸化物で構成することができる。より具体的には、ゲート絶縁膜を窒化シリコン(Si)または酸化シリコンで構成すれば、p型GaN層6との界面の電荷を低減することができ、チャネル領域5aにおけるキャリア移動度を向上することができる。すなわち、チャネル抵抗を低減することができる。ゲート電極10は、Ni−Au合金、Ni−Ti−Au合金、Pd−Au合金、Pd−Ti−Au合金、Pd−Pt−Au合金、Pt、Al、ポリシリコンなどの導電性材料で構成される。 The gate insulating film 9 can be made of, for example, nitride or oxide. More specifically, if the gate insulating film is made of silicon nitride (Si x N y ) or silicon oxide, the charge at the interface with the p-type GaN layer 6 can be reduced, and the carrier mobility in the channel region 5a. Can be improved. That is, channel resistance can be reduced. The gate electrode 10 is made of a conductive material such as a Ni—Au alloy, a Ni—Ti—Au alloy, a Pd—Au alloy, a Pd—Ti—Au alloy, a Pd—Pt—Au alloy, Pt, Al, or polysilicon. The

ドレイン電極8は、少なくともAlを含む金属で構成することが好ましく、たとえばTi−Al合金で構成することができる。ソース電極7も同様に、Alを含む金属で構成することが好ましく、たとえばTi−Al合金で構成することができる。Alを含む金属でドレイン電極8およびソース電極7を構成しておくことにより、配線層(図示せず)との良好なコンタクトをとることができる。その他、ドレイン電極8およびソース電極7は、MoもしくはMo化合物(たとえば、モリブデンシリサイド)、TiもしくはTi化合物(たとえば、チタンシリサイド)、またはWもしくはW化合物(たとえば、タングステンシリサイド)で構成してもよい。   The drain electrode 8 is preferably made of a metal containing at least Al. For example, the drain electrode 8 can be made of a Ti—Al alloy. Similarly, the source electrode 7 is preferably made of a metal containing Al, for example, a Ti—Al alloy. By configuring the drain electrode 8 and the source electrode 7 with a metal containing Al, good contact with a wiring layer (not shown) can be obtained. In addition, the drain electrode 8 and the source electrode 7 may be made of Mo or Mo compound (for example, molybdenum silicide), Ti or Ti compound (for example, titanium silicide), or W or W compound (for example, tungsten silicide). .

また、各半導体層において、n型のドーパントにはSiが、p型のドーパントにはMgが用いられる。n型AlGaNドレイン層3はドレイン電極8とのオーミック接触を取るため、n型GaNソース層6はソース電極7とのオーミック接触を取るため、各々、例えば、不純物濃度が2×1018cm−3となるように不純物Siがドーピングされており、p型GaNチャネル層5は、ゲート電極に電圧がかからない状態で素子がオンとならないように、キャリア濃度を高めておく必要があり、例えば、不純物濃度が3×1019cm−3となるように不純物Mgがドーピングされている。 In each semiconductor layer, Si is used as an n-type dopant, and Mg is used as a p-type dopant. Since the n-type AlGaN drain layer 3 is in ohmic contact with the drain electrode 8 and the n-type GaN source layer 6 is in ohmic contact with the source electrode 7, for example, the impurity concentration is 2 × 10 18 cm −3. The p-type GaN channel layer 5 needs to have a high carrier concentration so that the device is not turned on when no voltage is applied to the gate electrode. Impurity Mg is doped so as to be 3 × 10 19 cm −3 .

次に、上記MIS型のGaN系半導体素子の動作について簡単に説明する。ソース電極7とドレイン電極8との間には、ドレイン電極8側が正となる逆バイアス電圧が与えられる。これにより、n型GaN層4、p型GaNチャネル層5で構成されるpn接合には逆方向電圧が加えられる。このとき、ソース−ドレイン間は遮断状態となるが、この状態で、ソース電極7とゲート電極10との間に、ゲート電極10側が正となる所定の電圧を加えると、p型GaNチャネル層5に対するバイアスがゲート電極10に与えられる。   Next, the operation of the MIS type GaN-based semiconductor element will be briefly described. A reverse bias voltage is applied between the source electrode 7 and the drain electrode 8 so that the drain electrode 8 side is positive. As a result, a reverse voltage is applied to the pn junction composed of the n-type GaN layer 4 and the p-type GaN channel layer 5. At this time, the source-drain is cut off, but in this state, if a predetermined voltage is applied between the source electrode 7 and the gate electrode 10 so that the gate electrode 10 side becomes positive, the p-type GaN channel layer 5 Is applied to the gate electrode 10.

これにより、p型GaNチャネル層5の領域5aには、電子が誘起されて、反転チャネルが形成される。この反転チャネルを介して、n型GaN層4とn型GaNソース層6間が導通し、電子がソース電極7からn型GaNソース層6における溝B側の側面及び領域5aを通過し、n型GaN層4を経由してn型AlGaNドレイン層3に移動する(電流は逆の経路になる)ので、ソース−ドレイン間が導通する。このように、ゲート電極10に所定のバイアスを加えたときにソース−ドレイン間が導通し、ゲート電極10にバイアスを与えないときにはソース−ドレイン間が遮断状態となるノーマリオフ動作が可能となる。   As a result, electrons are induced in the region 5a of the p-type GaN channel layer 5 to form an inversion channel. Through this inversion channel, the n-type GaN layer 4 and the n-type GaN source layer 6 are electrically connected, and electrons pass from the source electrode 7 through the side surface on the groove B side in the n-type GaN source layer 6 and the region 5a, and n Since it moves to the n-type AlGaN drain layer 3 via the type GaN layer 4 (current flows in the reverse path), the source and drain are conducted. In this manner, a normally-off operation is possible in which the source and drain are rendered conductive when a predetermined bias is applied to the gate electrode 10 and the source and drain are disconnected when no bias is applied to the gate electrode 10.

領域5aに反転チャネルが形成されているとき、上述したように、ソース電極7から供給される電子は、n型GaNソース層6から、領域5aを通って、n型GaN層4に流れ込み、アンドープGaN層2とn型AlGaNドレイン層3との界面付近において発生している二次元電子ガスを経由して、ドレイン電極8へと向かう。二次元電子ガスは、アンドープGaN層2とn型AlGaNドレイン層3との界面に広く分布しているため、領域5aからn型GaN層4に流れ込んだ電子は、横方向への電子の移動による抵抗を小さくすることができる。   When the inversion channel is formed in the region 5a, as described above, electrons supplied from the source electrode 7 flow from the n-type GaN source layer 6 through the region 5a into the n-type GaN layer 4 and are undoped. The two-dimensional electron gas generated near the interface between the GaN layer 2 and the n-type AlGaN drain layer 3 goes to the drain electrode 8. Since the two-dimensional electron gas is widely distributed at the interface between the undoped GaN layer 2 and the n-type AlGaN drain layer 3, the electrons flowing from the region 5a into the n-type GaN layer 4 are caused by the movement of electrons in the lateral direction. Resistance can be reduced.

次に、図1のGaN系半導体素子の製造方法を図2〜図6を用いて以下に説明する。製造方法としては、主としてMOCVD法(有機金属気相成長法)を用いる。まず、MOCVD装置内に、サファイア基板1を搬送し、1000℃以上に基板温度を上げて、サファイア基板1上に、アンドープGaN層2、n型AlGaNドレイン層3、n型GaN層4、p型GaNチャネル層5、n型GaNソース層6を順にエピタキシャル成長させて図2のような積層構造を形成する。   Next, a method for manufacturing the GaN-based semiconductor device of FIG. 1 will be described below with reference to FIGS. As a manufacturing method, an MOCVD method (metal organic chemical vapor deposition method) is mainly used. First, the sapphire substrate 1 is transported into the MOCVD apparatus, the substrate temperature is raised to 1000 ° C. or higher, and the undoped GaN layer 2, n-type AlGaN drain layer 3, n-type GaN layer 4, p-type are formed on the sapphire substrate 1. The GaN channel layer 5 and the n-type GaN source layer 6 are epitaxially grown in order to form a stacked structure as shown in FIG.

例えば、GaN層を作製する場合は、キャリアガスの水素又は窒素とともに、Ga原子の原料ガスであるトリメチルガリウム(TMGa)、および、窒素原子の原料ガスであるアンモニア(NH)を用いた。n型GaNとする場合には、n型のドーパントガスとしてのシラン(SiH)等、p型GaNとする場合には、p型のドーパントガスとしてのCPMg(シクロペンタジエチルマグネシウム)等を上記反応ガスに加える。AlGaN層を作製する場合は、TMGa、NHにトリメチルアルミニウム(TMA)を加える。 For example, when a GaN layer is formed, trimethylgallium (TMGa), which is a Ga atom source gas, and ammonia (NH 3 ), which is a nitrogen atom source gas, are used together with hydrogen or nitrogen as a carrier gas. In the case of n-type GaN, silane (SiH 4 ) or the like as an n-type dopant gas, and in the case of p-type GaN, CP 2 Mg (cyclopentadiethyl magnesium) or the like as a p-type dopant gas is used. Add to the reaction gas. When fabricating the AlGaN layer, TMGa, added trimethylaluminum (TMA) in NH 3.

このようにして各半導体層の成分に対応する反応ガス、n型、p型にする場合のドーパントガスを供給して、最適な成長温度に変化させて順次結晶成長させることにより、所定の組成で、所定の導電型の半導体層を、必要な厚さに形成した。不純物のドーピング濃度は、それぞれの原料ガスの流量によって制御した。   In this way, by supplying the reaction gas corresponding to the components of each semiconductor layer, the dopant gas for making the n-type and p-type, the crystal is grown in order by changing to the optimum growth temperature, thereby having a predetermined composition. A semiconductor layer of a predetermined conductivity type was formed to a required thickness. The doping concentration of impurities was controlled by the flow rate of each source gas.

次に、上記積層構造を有するウエハにおけるn型GaNソース層6からn型AlGaNドレイン層3の途中に至るまで第1のメサエッチングを行って、溝Aを作製し、ストライプ状のリッジ部を複数作製するとともに、n型AlGaNドレイン層3の延長部からなる引き出し部3aを同時に形成する。上記第1のメサエッチングは、プラズマを用いたドライエッチングにより行われる。溝Aが形成された後に、ドレイン電極8およびソース電極7がそれぞれ形成されることにより、図3の状態となる。ドレイン電極8は、溝Aの底面、すなわち、引き出し部3aの表面に接触するように形成される。   Next, first mesa etching is performed from the n-type GaN source layer 6 to the middle of the n-type AlGaN drain layer 3 in the wafer having the above-described laminated structure to produce a groove A, and a plurality of stripe-shaped ridge portions are formed. At the same time, a lead portion 3 a made of an extension of the n-type AlGaN drain layer 3 is formed at the same time. The first mesa etching is performed by dry etching using plasma. After the trench A is formed, the drain electrode 8 and the source electrode 7 are formed, respectively, and the state shown in FIG. 3 is obtained. The drain electrode 8 is formed in contact with the bottom surface of the groove A, that is, the surface of the lead portion 3a.

ドレイン電極8およびソース電極7は、スパッタ又は蒸着によって作製された後、例えば、窒素雰囲気中において約500℃の温度でアニール処理されて、ドレイン電極8とn型AlGaNドレイン層3との接触抵抗、ソース電極7とn型GaNソース層6との接触抵抗を各々低減させる。アニール処理を行うときには、ヒーター等の熱源にソース電極7やドレイン電極8が形成されている面(図3の上側)を向けて熱処理することになるが、この時点では、領域5aを含む壁面が形成されておらず、領域5aに相当する領域が表面に露出していないので、アニール処理による熱源からの熱ダメージを防止することができる。   After the drain electrode 8 and the source electrode 7 are produced by sputtering or vapor deposition, for example, they are annealed at a temperature of about 500 ° C. in a nitrogen atmosphere, so that the contact resistance between the drain electrode 8 and the n-type AlGaN drain layer 3 is The contact resistance between the source electrode 7 and the n-type GaN source layer 6 is reduced. When performing the annealing treatment, heat treatment is performed with the surface (upper side in FIG. 3) on which the source electrode 7 and the drain electrode 8 are formed facing a heat source such as a heater. Since it is not formed and a region corresponding to the region 5a is not exposed on the surface, thermal damage from a heat source due to annealing treatment can be prevented.

次に、図4に示すように、ストライプ状に形成した各積層構造の中央部付近に、U字形状の溝Bを第2のメサエッチングにより形成して、2つのメサ領域を作製する。溝Bの形成位置は、側壁からp型GaNチャネル層5の無転位領域が露出して溝Bの壁面を形成するように定められる。上記第2のメサエッチングは、n型GaNソース層6からn型GaN層4の途中まで、プラズマを用いたドライエッチング(異方性エッチング)によって行われる。また、ドライエッチングによってダメージを受けた露出面を改善するためのウェットエッチングを行うようにしている。ドライエッチングによってダメージを受けた壁面に対して、ウェットエッチング処理を施すと、ダメージを受けた表層を除去した新たな壁面が現れる。   Next, as shown in FIG. 4, a U-shaped groove B is formed by the second mesa etching in the vicinity of the central portion of each stacked structure formed in a stripe shape to produce two mesa regions. The formation position of the groove B is determined so that the dislocation-free region of the p-type GaN channel layer 5 is exposed from the side wall to form the wall surface of the groove B. The second mesa etching is performed by dry etching (anisotropic etching) using plasma from the n-type GaN source layer 6 to the middle of the n-type GaN layer 4. Also, wet etching is performed to improve the exposed surface damaged by dry etching. When wet etching treatment is performed on a wall surface damaged by dry etching, a new wall surface from which the damaged surface layer is removed appears.

上記ウェットエッチングには、KOH(水酸化カリウム)やNHOH(アンモニア水)などの塩基性溶液を用いることが好ましい。溝Bの壁面のダメージを低減しておくことにより、チャネル領域5aの結晶状態を良好に保つことができ、また、ゲート絶縁膜9との界面を良好な界面とすることができるので、界面準位を低減することができる。また、ウェットエッチングの代わりに低ダメージのドライエッチングを用いても良い。 It is preferable to use a basic solution such as KOH (potassium hydroxide) or NH 4 OH (ammonia water) for the wet etching. By reducing the damage on the wall surface of the groove B, the crystal state of the channel region 5a can be kept good, and the interface with the gate insulating film 9 can be made a good interface. The position can be reduced. Further, low-damage dry etching may be used instead of wet etching.

次に、図5に示すように、溝Bの壁面にゲート絶縁膜9を形成する。ゲート絶縁膜9は、溝Bの壁面を覆うとともに、メサ領域を構成するn型GaNソース層6の上面の一部を覆うように形成される。ゲート絶縁膜9の形成には、PECVD(プラズマエンハンスド化学的気相堆積)法等を用いるが、より好ましいのは、ECR(Electron Cyclotron Resonance:電子サイクロトロン共鳴)スパッタ法を適用することである。   Next, as shown in FIG. 5, a gate insulating film 9 is formed on the wall surface of the trench B. The gate insulating film 9 is formed so as to cover the wall surface of the trench B and to cover a part of the upper surface of the n-type GaN source layer 6 constituting the mesa region. The gate insulating film 9 is formed by using a PECVD (plasma enhanced chemical vapor deposition) method or the like, but more preferably, an ECR (Electron Cyclotron Resonance) sputtering method is applied.

ECRスパッタ法を用いると、ECRスパッタ法におけるArプラズマ照射等により、U字形状の溝Bの壁面付近の領域、特にp型GaNチャネル層5の溝Bの壁面下の領域にp型GaNチャネル層5とは伝導特性の異なる半導体層が形成される。この伝導特性の異なる半導体層は、p型、i型、n型のいずれかで構成される。この場合、伝導特性の異なる半導体層の領域内に、領域5aが形成されることになる。 When the ECR sputtering method is used, a p-type GaN channel layer is formed in a region near the wall surface of the U-shaped groove B, particularly a region under the wall surface of the groove B of the p-type GaN channel layer 5 by Ar plasma irradiation or the like in the ECR sputtering method. 5, a semiconductor layer having a different conduction characteristic is formed. The semiconductor layers having different conduction characteristics are p - type, i-type, or n-type. In this case, the region 5a is formed in the region of the semiconductor layer having different conduction characteristics.

上記のように、p型GaNチャネル層5が伝導特性の異なる半導体層を有し、この層に反転チャネルを形成させることで、反転分布が発生しやすくなり、トランジスタのオン電圧を低くすることができる。   As described above, the p-type GaN channel layer 5 has semiconductor layers having different conduction characteristics. By forming an inversion channel in this layer, inversion distribution is likely to occur, and the on-voltage of the transistor can be lowered. it can.

絶縁膜9の形成後は、図6に示すように、ゲート電極10をゲート絶縁膜9の領域内に収まるように、蒸着によりゲート絶縁膜9上に形成する。このようにして、図1のMIS型のGaN系半導体素子が完成する。   After the formation of the insulating film 9, as shown in FIG. 6, the gate electrode 10 is formed on the gate insulating film 9 by vapor deposition so as to be within the region of the gate insulating film 9. In this manner, the MIS type GaN-based semiconductor device of FIG. 1 is completed.

以上の実施例では、ソース電極7及びドレイン電極8とゲート電極10のすべての電極が同一面側に形成される場合を示したが、ドレイン電極8がゲート電極10とは反対の面側に形成される場合には、ゲート電極10と同一面側に形成されるソース電極7の電極のアニール処理が終了した後に、エッチングにより領域5aを含む壁面を形成して、この領域5aを含む壁面上にゲート絶縁膜、ゲート電極を順次形成し、その後に裏側にドレイン電極を形成することにより、上記実施例と同様の効果を得ることができる。裏面は電極面積を大きくとることができるため、電極アニールを行わなくても接触抵抗を低く押さえることが可能である。   In the above embodiment, the source electrode 7, the drain electrode 8, and the gate electrode 10 are all formed on the same surface side. However, the drain electrode 8 is formed on the surface side opposite to the gate electrode 10. In this case, after the annealing of the electrode of the source electrode 7 formed on the same surface as the gate electrode 10 is finished, a wall surface including the region 5a is formed by etching, and the wall surface including the region 5a is formed on the wall surface including the region 5a. By sequentially forming the gate insulating film and the gate electrode and then forming the drain electrode on the back side, the same effect as in the above embodiment can be obtained. Since the back surface can have a large electrode area, the contact resistance can be kept low without performing electrode annealing.

なお、サファイア基板1上にストライプ状に形成された複数のメサ領域は、それぞれ単位セルを形成している。ゲート電極10は、隣接するメサ領域で共通の電極となり、また、ドレイン電極8も、隣接するメサ領域で共有することができる。 また、ドレイン電極8、ゲート電極10およびソース電極7は、それぞれ、図示しない位置で共通接続されている。
A plurality of mesa regions formed in a stripe shape on the sapphire substrate 1 each form a unit cell. The gate electrode 10 becomes a common electrode in adjacent mesa regions, and the drain electrode 8 can also be shared by adjacent mesa regions. The drain electrode 8, the gate electrode 10 and the source electrode 7 are commonly connected at positions not shown.

本発明のGaN系半導体素子の断面構造を示す図である。It is a figure which shows the cross-section of the GaN-type semiconductor element of this invention. 本発明のGaN系半導体素子の製造方法の一工程を示す図である。It is a figure which shows 1 process of the manufacturing method of the GaN-type semiconductor element of this invention. 本発明のGaN系半導体素子の製造方法の一工程を示す図である。It is a figure which shows 1 process of the manufacturing method of the GaN-type semiconductor element of this invention. 本発明のGaN系半導体素子の製造方法の一工程を示す図である。It is a figure which shows 1 process of the manufacturing method of the GaN-type semiconductor element of this invention. 本発明のGaN系半導体素子の製造方法の一工程を示す図である。It is a figure which shows 1 process of the manufacturing method of the GaN-type semiconductor element of this invention. 本発明のGaN系半導体素子の製造方法の一工程を示す図である。It is a figure which shows 1 process of the manufacturing method of the GaN-type semiconductor element of this invention.

符号の説明Explanation of symbols

1 サファイア基板
2 アンドープGaN層
3 n型AlGaNドレイン層
4 n型GaN層
5 p型GaNチャネル層
5a 領域
6 n型GaNソース層
7 ソース電極
8 ドレイン電極
9 ゲート絶縁膜
10 ゲート電極
DESCRIPTION OF SYMBOLS 1 Sapphire substrate 2 Undoped GaN layer 3 n-type AlGaN drain layer 4 n-type GaN layer 5 p-type GaN channel layer 5a region 6 n-type GaN source layer 7 source electrode 8 drain electrode 9 gate insulating film 10 gate electrode

Claims (4)

p型不純物を含む半導体層と該p型不純物を含む半導体層を挟んで配置された2つのn型半導体層とを含む積層構造を備え、p型不純物を含む半導体層と2つのn型半導体層に跨る壁面を有し、該壁面の形成によって露出した前記p型不純物を含む半導体層表面にゲート絶縁膜を介してゲート電極が形成されており、ソース電極がゲート電極と同一面側に形成されたGaN系半導体素子の製造方法であって、
前記ソース電極の電極アニールが行われた後に、前記壁面が形成されることを特徴とするGaN系半導体素子の製造方法。
A semiconductor layer including a p-type impurity and a semiconductor layer including two n-type semiconductor layers, each including a stacked structure including a semiconductor layer including a p-type impurity and two n-type semiconductor layers arranged with the semiconductor layer including the p-type impurity interposed therebetween A gate electrode is formed on the surface of the semiconductor layer containing the p-type impurity exposed by forming the wall surface via a gate insulating film, and the source electrode is formed on the same side as the gate electrode. A method of manufacturing a GaN-based semiconductor device,
The method of manufacturing a GaN-based semiconductor device, wherein the wall surface is formed after electrode annealing of the source electrode is performed.
前記p型不純物を含む半導体層表面に伝導特性の異なる領域を形成し、該領域に接してゲート絶縁膜を形成することを特徴とする請求項1記載のGaN系半導体素子の製造方法。   2. The method of manufacturing a GaN-based semiconductor element according to claim 1, wherein a region having different conduction characteristics is formed on a surface of the semiconductor layer containing the p-type impurity, and a gate insulating film is formed in contact with the region. 前記ソース電極が形成された面と同一面にメサエッチングを行って、露出した前記p型不純物を含む半導体層の下側に位置するn型半導体層にドレイン電極を形成し、前記ソース電極およびドレイン電極の電極アニールを行った後に、前記壁面の形成が行われることを特徴とする請求項1又は請求項2のいずれか1項に記載のGaN系半導体素子の製造方法。   Mesa etching is performed on the same surface as the surface on which the source electrode is formed, and a drain electrode is formed on the exposed n-type semiconductor layer under the semiconductor layer containing the p-type impurity. The method for manufacturing a GaN-based semiconductor device according to claim 1, wherein the wall surface is formed after electrode annealing of the electrode. 前記ソース電極が形成される面とは反対側にドレイン電極が形成されることを特徴とする請求項1又は請求項2のいずれか1項に記載のGaN系半導体素子の製造方法。

The method for manufacturing a GaN-based semiconductor device according to claim 1, wherein a drain electrode is formed on a side opposite to a surface on which the source electrode is formed.

JP2007039701A 2007-02-20 2007-02-20 METHOD OF MANUFACTURING GaN-BASED SEMICONDUCTOR ELEMENT Withdrawn JP2008205199A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007039701A JP2008205199A (en) 2007-02-20 2007-02-20 METHOD OF MANUFACTURING GaN-BASED SEMICONDUCTOR ELEMENT
PCT/JP2008/052861 WO2008102806A1 (en) 2007-02-20 2008-02-20 METHOD FOR MANUFACTURING GaN SEMICONDUCTOR ELEMENT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007039701A JP2008205199A (en) 2007-02-20 2007-02-20 METHOD OF MANUFACTURING GaN-BASED SEMICONDUCTOR ELEMENT

Publications (1)

Publication Number Publication Date
JP2008205199A true JP2008205199A (en) 2008-09-04

Family

ID=39710080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007039701A Withdrawn JP2008205199A (en) 2007-02-20 2007-02-20 METHOD OF MANUFACTURING GaN-BASED SEMICONDUCTOR ELEMENT

Country Status (2)

Country Link
JP (1) JP2008205199A (en)
WO (1) WO2008102806A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101018239B1 (en) * 2008-11-07 2011-03-03 삼성엘이디 주식회사 Nitride based hetero-junction feild effect transistor
US8981434B2 (en) 2009-08-31 2015-03-17 Renesas Electronics Corporation Semiconductor device and field effect transistor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102097477B (en) * 2010-12-15 2012-10-17 复旦大学 MIS (metal-insulator-semiconductor) and MIM (metal-insulator-metal) device provided with gate
CN116960174B (en) * 2023-09-19 2024-01-23 广东致能科技有限公司 P-channel semiconductor device and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000208760A (en) * 1999-01-13 2000-07-28 Furukawa Electric Co Ltd:The Field effect transistor
JP4986406B2 (en) * 2005-03-31 2012-07-25 住友電工デバイス・イノベーション株式会社 Manufacturing method of semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101018239B1 (en) * 2008-11-07 2011-03-03 삼성엘이디 주식회사 Nitride based hetero-junction feild effect transistor
US8981434B2 (en) 2009-08-31 2015-03-17 Renesas Electronics Corporation Semiconductor device and field effect transistor

Also Published As

Publication number Publication date
WO2008102806A1 (en) 2008-08-28

Similar Documents

Publication Publication Date Title
US11699748B2 (en) Normally-off HEMT transistor with selective generation of 2DEG channel, and manufacturing method thereof
US8039872B2 (en) Nitride semiconductor device including a group III nitride semiconductor structure
US9466705B2 (en) Semiconductor device and method of manufacturing the same
JP5189771B2 (en) GaN-based semiconductor devices
US8378387B2 (en) Field effect transistor and method of manufacturing the same
US8093627B2 (en) Nitride semiconductor device and method for producing nitride semiconductor device
US20090321854A1 (en) Mis field effect transistor and method for manufacturing the same
JP4993673B2 (en) MIS field effect transistor and manufacturing method thereof
EP2793270B1 (en) Nitride Semiconductor Device and Fabricating Method thereof
US20190115448A1 (en) Iii-nitride vertical transistor with aperture region formed using ion implantation
JP2008205414A (en) Nitride semiconductor element and manufacturing method thereof, and nitride semiconductor package
EP2843708A1 (en) Nitride-based transistors and methods of fabricating the same
US8035131B2 (en) Method for forming a nitride semiconductor laminated structure and method for manufacturing a nitride semiconductor element
JP2012084739A (en) Semiconductor device and method of manufacturing the same
JP2008210936A (en) Nitride semiconductor element and manufacturing method of nitride semiconductor element
JP2013115362A (en) Nitride semiconductor diode
JP2012094688A (en) Semiconductor device and method of manufacturing the same
JP2010171416A (en) Semiconductor device, manufacturing method therefor, and leakage-current reduction method therefor
JP2011187623A (en) Semiconductor element and manufacturing method thereof
JP2008226914A (en) Gan-based semiconductor element
JP2016100450A (en) Heterojunction field effect transistor and manufacturing method of the same
JP2008198787A (en) GaN-BASED SEMICONDUCTOR DEVICE
JP2008205199A (en) METHOD OF MANUFACTURING GaN-BASED SEMICONDUCTOR ELEMENT
JP2013055224A (en) Semiconductor device and manufacturing method therefor
JP4748501B2 (en) High electron mobility transistor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100511