JP2008202499A - 回転翼 - Google Patents

回転翼 Download PDF

Info

Publication number
JP2008202499A
JP2008202499A JP2007039541A JP2007039541A JP2008202499A JP 2008202499 A JP2008202499 A JP 2008202499A JP 2007039541 A JP2007039541 A JP 2007039541A JP 2007039541 A JP2007039541 A JP 2007039541A JP 2008202499 A JP2008202499 A JP 2008202499A
Authority
JP
Japan
Prior art keywords
main shaft
link
eccentric
sub
rotation center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007039541A
Other languages
English (en)
Inventor
Kazuo Tanaka
一男 田中
Yoshiyuki Azuma
善之 東
Tadahiro Hara
直裕 原
Makoto Hasegawa
信 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Campus Create Co Ltd
Original Assignee
Campus Create Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Campus Create Co Ltd filed Critical Campus Create Co Ltd
Priority to JP2007039541A priority Critical patent/JP2008202499A/ja
Publication of JP2008202499A publication Critical patent/JP2008202499A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Landscapes

  • Wind Motors (AREA)

Abstract

【課題】強風時における回転翼の損傷を防止し、かつ、エネルギー消費を押さえて発電効率を向上させる。
【解決手段】主リンク12は、軸回りに回転可能な主軸11からその外側方向へ延長されている。翼部材13は、主リンク12に対して回動可能となっている。副リンク14は、副リンク支持部15と翼部材13との間を連結している。副リンク支持部15は、副リンク14を、主軸11とは偏心された偏心回転中心を中心として回転させる。副リンク14は、主軸11を中心として回転する翼部材13の迎角を変化させる。発電機2は、主軸11の回転を用いて電力を発生させる。駆動部3は、主軸11に対する、偏心回転中心の相対位置を変化させる。
【選択図】図1

Description

本発明は、風力発電のために用いられる発電装置に関するものである。
いわゆるサイクロジャイロ翼を用いて風力発電を行うことができる回転翼としては、下記特許文献に示すものがある。この種の回転翼は、一般に、第1回転中心と、第1リンクと、翼部材と、第2回転中心と、第2リンクとを備えている。第1リンクは、第1回転中心からその外側方向へ延長されており、かつ、第1回転中心に対して回転可能となっている。翼部材は、第1リンクに対して回動可能な状態で取り付けられている。第2回転中心は、第1回転中心から偏心させられている。第2リンクは、第2回転中心と翼部材との間を連結しており、かつ、第2回転中心に対して回転可能となっている。かつ、第2リンクは、第2回転中心と翼部材との間における離間距離を一定に保持している。
この回転翼によれば、第1リンク及びそれに取り付けられた翼部材は、第1回転中心を中心として回転する。第1リンクが回転すると、翼部材を介して、第2リンクが、第2回転中心を中心として回転する。ここで、第2回転中心は、第1回転中心から偏心しているので、空気流に対する翼部材の迎角は、第1リンクの回転角に応じて変化する。
この回転翼では、翼部材の迎角が回転角により変化するので、回転翼全体として、揚力を生じる。すなわち、適切な方向からの風力が与えられると、回転翼は、第1回転中心を中心として自転する。この回転を用いて、風力発電を行うことができる。
従来の回転翼では、風力に対して最大の効率を得るために、風向きに対応して偏心角(第1回転中心を中心とした、第2回転中心の公転角)を調整することが提案されている。
たとえば、下記特許文献3の技術では、羽根を有する調整機構を用いて、いわば風見鶏の原理により、偏心角を調整し、最大効率を得ようとしている。
しかしながら、この技術では、強風時における回転翼の過剰な回転を抑制するためには、ブレーキ機構を用いる必要がある。すると、ブレーキ機構のために電力を消費することになり、結果的に、発電の効率が低下してしまう。
このように、特に強風時の対策については、さらに改良の余地が残されている。
また、下記特許文献4に記載の技術では、翼部材の迎角を制御するためにターンテーブルを用いており、このターンテーブルの回転を制御することにより、偏心角を制御することができる。しかしながら、この技術では、重量のあるターンテーブルを回転させる必要があるので、そのために電力を消費してしまい、系の全体としての発電効率が低下するという問題がある。
特開2005−53347号公報 特開2006−214534号公報 特開2006−242169号公報 特開2003−155972号公報 特開昭51−10243号公報
本発明は、このような事情に鑑みてなされたものである。本発明の第1の目的は、強風時において回転翼の過回転を防止することができ、かつ、エネルギー消費を押さえて発電効率を向上させることができる発電装置を提供することである。本発明の第2の目的は、強風時における回転翼の角速度の上昇を迅速に抑えることができる発電装置を提供することである。
本発明に係る発電装置は、回転翼と、発電機と、駆動部と、制御部とを備えている。前記回転翼は、主軸と、主リンクと、翼部材と、副リンクと、副リンク支持部とを備えている。前記主軸は、軸回りに回転可能となっている。前記主リンクは、前記主軸からその外側方向へ延長されている。前記翼部材は、前記主リンクに対して回動可能な状態で取り付けられている。前記副リンクは、前記副リンク支持部と前記翼部材との間を連結している。さらに、前記副リンク支持部は、前記副リンクを、前記主軸とは偏心された偏心回転中心を中心として回転させるように支持している。さらに、前記副リンクは、前記偏心回転中心と前記翼部材との間における離間距離を一定に保持することにより、前記主軸を中心として回転する前記翼部材の迎角を変化させる構成となっている。前記発電機は、前記回転翼における前記主軸の回転を用いて電力を発生させる構成となっている。前記駆動部は、前記主軸に対する、前記偏心回転中心の相対位置を変化させる構成となっている。前記制御部は、前記駆動部の動作を制御することにより、
(1)前記主軸の回転の角速度が規定値以下のときには、風向に対する前記偏心回転中心の偏心角を、風力に対する前記翼部材の回転効率が最大となる、最大効率位置またはその近傍に設定し
(2)前記主軸の回転の角速度が前記規定値を超えたときには、風向に対する前記偏心角を、前記最大効率位置から移動させることにより、前記風力に対する前記翼部材の回転効率を低下させる
という制御を行う構成となっている。
前記制御部は、さらに、
(3)風速又は前記主軸の回転の角速度が上限値を超えたときに、前記規定値の大きさを減少させる
という制御を行うことも可能である。
前記制御部は、さらに、
(4)前記主軸の回転の角速度が前記規定値を超えたときに、前記最大効率位置に対する前記偏心角をπ/2からπまでの間とすることにより、前記翼部材に対して、逆方向への回転力を加える
という制御を行うことも可能である。
前記制御部は、さらに、
(5)前記風速が下限値より低いときに、前記駆動部の動作間隔を長くする
という制御を行うことも可能である。
前記制御部は、前記偏心回転中心の偏心角を、以下の範囲で制御する構成であってもよい。
θ≦θ(i)≦θ
但し、
θ:風力に対する翼部材の回転効率が最大となる、最大効率位置の偏心角;
θ=θ+π
θ(i):i番目の時点での偏心角
本発明の回転翼によれば、風速が低い時には、風力を効率的に利用して翼部材を回転させることができる。また、強風時には、偏心角を制御することで、翼部材の角速度の上昇を抑えることができる。これにより、回転翼の過回転やそれに伴う損傷を防止することができる。
また、本発明の回転翼によれば、ブレーキ機構を用いずに、翼部材の角速度を抑えることができるので、エネルギー消費を押さえて発電効率を向上させることが可能である。
以下、本発明の一実施形態に係る発電装置を、添付図面を参照して説明する。
(実施形態の構成)
この発電装置は、回転翼1と、発電機2と、駆動部3と、制御部4と、風向風速計5と、回転計6とを主要な構成として備えている。
回転翼1は、主軸11と、主リンク12と、翼部材13と、副リンク14と、副リンク支持部15と、基台16とを備えている(図1参照)。
主軸1は、図1に示されるように、上下方向に延長されている。主軸1の下端は、基台16に、軸受を介して、軸回りに回転自在となるように取り付けられている。
主リンク12は、図2に示されるように、合計で8本となっている。これらの主リンク12は、多少の変形は許容されるものの、実質的に剛体となっている。
各々の主リンク12の一端は、適宜な取り付け具を介して、主軸11に取り付けられている。これにより、各主リンクは、主軸11から、その外側方向へ延長されたものとなっている。主軸11は、各主リンクが、主軸11を中心として回転すると、それに伴って回転するようになっている。
翼部材13は、この実施形態では単純な矩形の板状とされている。翼部材3は、各主リンク12の先端に取り付けられている。ここで、翼部材13は、各主リンク12に対して、回動可能(本明細書においては、少なくとも一定の角度範囲で正逆方向に回転可能なことをいう)な状態で取り付けられている。翼部材13としては、飛行機用の翼の形状や、プロペラの形状であってもよい。また、翼部材13の断面形状も、矩形に限らず、楕円形や円形など、適宜な形状を選択することができる。ただし、風向に対する傾斜によって揚力を得られる形状である必要がある。
副リンク14は、副リンク支持部15と翼部材13との間を連結している。副リンク14は、この実施形態では4本となっている(図2参照)。副リンク14は、主リンク12と同様に、実質的な剛体とされることが好ましい。
また、副リンク14は、主リンク12と同様に、翼部材13に対して、回動自在な状態で取り付けられている。
副リンク支持部15は、副リンク14を、主軸11の回転中心C1とは偏心された偏心回転中心C2を中心として回転させるように支持している(図3参照)。なお、図3は、一つの翼部材13の回転軌跡と、回転に伴う迎角の変化を示すものである。
具体的には、副リンク支持部15は、内輪部151と、転動体152と、外輪部153と、支持部154とを備えている(図1参照)。
内輪部151は、主軸11に緩く嵌め込まれており、主軸11に対して回転自在となっている。また、内輪部151は、支持部154により支持されており、落下が防止されている。
外輪部153は、転動体152を介して、内輪部151に、回転自在となるように取り付けられている。これにより、内輪部151と転動体152と外輪部153とは、内輪部151を中心として回転する軸受を構成している。また、外輪部153の回転中心は、主軸11とは偏心した位置、すなわち偏心回転中心C2とされている。
外輪部153は、主軸11の外側に位置するので、副リンク14は、主軸11と干渉することなく、主軸11に対して偏心した位置を中心として回転することができる。
支持部154は、軸受を介して、主軸11に回転自在に取り付けられている。また、支持部154は、基台16によって支持されており、落下しないようになっている。
前記の構成により、副リンク14は、偏心回転中心C2と翼部材13との間における離間距離を一定に保持するようになっている。また、副リンク14は、主軸11を中心として回転する翼部材13の迎角を変化させる構成となっている。
発電機2は、回転翼1における主軸11の回転を用いて電力を発生させる構成となっている。発電機2の構成や、主軸11の回転を発電機2に伝達するための構成としては、従来から知られているものを用いることができるので、詳細な説明は省略する。
駆動部3は、主軸11に対する、偏心回転中心C2の相対位置(公転角度)を変化させる構成となっている。具体的には、駆動部3は、例えばサーボモータである。駆動部3は、図示しない動力伝達手段(例えば歯車やベルトやチェーンなど)を用いて、副リンク支持部15の全体を、主軸11に対して回転させることができるようになっている。これにより、駆動部3は、主軸11の中心C1を中心とした、偏心回転中心C2の角度(偏心角)を変更することができる。
制御部4は、駆動部3の動作を制御することにより、以下の動作を行うようになっている。
(1)主軸11の角速度が規定値以下のときには、風向に対する偏心回転中心C2の偏心角を、風力に対する翼部材13の回転効率が最大となる、最大効率位置またはその近傍に設定すること、及び、
(2)主軸11の角速度が規定値を超えたときには、風向に対する偏心角を、最大効率位置から移動させることにより、風力に対する翼部材13の回転効率を低下させること。
例えば、制御部4は、機能要素として、平滑処理部41と、上下限生成部42と、目標値についての上下限制限部43と、角速度の上限値設定部44と、PIDコントローラ45と、出力更新制限部46と、平滑処理部47とを備えている。
平滑処理部41は、風向風速計5からの出力を平滑化するものである。上下限生成部42は、偏心角の上下限を生成するものである。上下限制限部43は、制御目標となる偏心角の目標値を制限するものである。上限値設定部44は、風速に応じて、角速度の上限値ωrefを設定するものである。PIDコントローラ45は、仮の制御目標となる偏心角θ'(後述)を生成するものである。出力更新制限部46は、後述するように、制御目標値と現在値との差分が小さい場合に、偏心角の更新を制限するものである。平滑処理部47は、回転計6からの出力を平滑化するものである。
制御部4の構成については、後述する実施形態の動作において詳しく述べる。
風向風速計5及び回転計6は、従来から用いられているものと同様でよいので、詳しい説明を省略する。
(実施形態の動作)
次に、本実施形態に係る発電装置の動作を、図5〜図9に示すフローチャートを主に参照しながら説明する。
詳しい手順を説明する前に、本実施形態における制御の原理を概説しておく。この例では,風見効果(風向に合わせて、発電効率が高くなる偏心角に調節する効果)と強風対策とを同時に行うために、角速度上限値を目標値としたフィーバック制御をベースにしている。
一般に、回転翼では、最も高い回転が得られる偏心角θmaxとθmax+πの間には、θmaxに近づくほど角速度が高いという単調な関係が成り立つ。そこで、この範囲内に偏心角を制限しつつ,下記フィードバックを行う。これにより、風見効果と強風対策とを同時に満足するシステムを構築することが可能となる。
Figure 2008202499
Figure 2008202499
ここで、
Δθr:偏心角の変化量、
K:フィードバックゲイン
ωref:主軸角速度の上限値
ω(t):主軸角速度
θr(i):i番目の時点での偏心角
θr(i-1):i−1番目の時点での偏心角
である。
(図5のステップSA−1)
まず、制御部4における初期設定を行う。初期設定の具体例を図6に示す。この例では、角速度フィードバックゲインKと、最適偏心角度θmaxと、角速度上限値関数f(V(t))とを設定する(図6のステップSB−1)。ついで、各変数を初期化する(図6のステップSB−2)。
ここで、角速度フィードバックゲインKとしては、制御系に適切な値が適宜に設定されている。前記の式(1)から明らかなように、フィードバックゲインKの設定によって、適宜の偏心角を得ることができる。最適偏心角度θmaxは、回転翼1の回転効率が最も高くなる偏心角(つまり、最大効率となる位置)である。最適偏心角度θmaxは、回転翼1の構成に応じて、特有の値となる。
回転翼角速度の上限値関数f(V(t))は、風速V(t)に応じて、角速度上限値ωrefを変化させる関数である。上限値関数t(V(t))の具体例を図10に示す。この例では、風速がおよそ12m/sのときに、角速度上限値ωrefを下げるという設定になっている。
(図5のステップSA−2)
つぎに、制御部4は、風向風速計5及び回転計6から、風向、風速及び回転角速度のデータを受け取る。その手順の一例を図7に示す(ステップSC−1〜3参照)。この例では、風速値V(t)、風向値θ(t)、角速度ω(t)がそれぞれ検出され、制御部4に送られる。これらの値は、平滑処理部41及び47によって平滑化されている。
(図5のステップSA−3)
つぎに、制御部4は、偏心角制御量の計算に用いる基準値を計算する。基準値算出の一例を図8に示す。
まず、上限値設定部44により、角速度上限値ωrefを計算する(図8のステップSD−1)。ωrefは、前記した上限値関数f(V)により算出される(図10参照)。
ついで、上下限生成部42により、風向上限値θを計算する(図8のステップSD−2)。θは、次式により算出できる。
θ=θ(t)−θmax
ここで、θ(t)は、ある時刻tでの風向値であり、時間により変化する。この上限値θは、偏心角が取りうる最大値を意味する。図11に示されるように、偏心角がθのときは、偏心回転中心C2が、風向に対してθmaxだけ傾くことになる。よって、この状態では、回転翼1は、風速に対して最大の回転効率を発揮する。
ついで、上下限生成部42により、風向下限値θを計算する(図8のステップSD−3)。θは次式により算出できる。
θ=θ+π
ただし、θ=θ−πという式を用いることもでき、実質的に両者は等価である。
この上限値θは、偏心角が取りうる下限値を意味する。図11に示されるように、偏心角がθのときは、偏心回転位置C2が、風向に対してθmax+πだけ傾くことになる。この状態では、回転翼1は、風速に対して、風向がθmaxの場合とは逆の回転を与えることになる。このことは実験的にも既に確認されている。
以上をまとめると、制御部4は、偏心回転中心C2の偏心角を、以下の範囲で制御することになる。
θ≦θ(i)≦θ
但し、
θ:風力に対する翼部材の回転効率が最大となる、最大効率位置の偏心角;
θ=θ+π
θ(i):i番目の時点での偏心角
である。
(図5のステップSA−4)
ついで、制御部4のPIDコントローラ45は、回転翼1の現在の角速度を、上限角速度ωrefと比較し、さらに、偏心角の上限及び下限の範囲内で、偏心角制御量を算出する。この処理の一例を図9に示す。
まず、仮の偏心角制御量Δθr'を計算する(図9のステップSE−1)。このような仮の制御量を算出するのは、後述するように、偏心角の上限及び下限値の内側で偏心角を制御するためである。算出式は以下のようになる。
Δθr'=K(ωref−ω)
ここで、ωは、回転翼1の現時点での角速度である。フィードバックゲインKは、例えば負の一定値とされる。これにより、現在の角速度ωがωrefより小さいときには、θに向けて偏心角を変化させることができる。一方、現在の角速度ωがωrefより大きいときには、逆向きに、すなわち、θに向けて偏心角を変化させることができる。
ついで、上下限制限部43により、仮の目標となる偏心角の値θr'(i)を計算する(図9のステップSE−2)。その算出式は以下のようになる。
θr'(i)=θr(i-1)+Δθr'
ここで、θr(i-1)は、前回の制御時点での偏心角である。
ついで、上限値θ及び下限値θと、仮の偏心角θ'(i)とを比較し、比較結果に応じた処理を行う(図9のステップSE−3)。
もし、θ'(i)がθより小さい場合には、偏心角の目標値θr(i)をθとする(図9のステップSE−4)。
もし、θ'(i)がθより大きい場合には、偏心角の目標値θr(i)をθ とする(図9のステップSE−5)。
それ以外の場合には、偏心角の目標値θr(i)を、仮の目標値であったθr'(i)とする(図9のステップSE−6)。
これにより、偏心角の上限及び下限値の内側で偏心角を制御することができる。
ついで、偏心角の目標値θr(i)を得るための制御量Δθrを次式により算出する(図9のステップSE−7)。
Δθr=θr(i)−θr(i-1)
(図5のステップSA−5)
ついで、制御部4の出力更新制限部46は、算出された制御量Δθrが、出力更新条件に合致するかどうか判定する。ここで、出力更新条件とは、制御量Δθrが規定値に達しているか否かである。算出された制御量Δθrが規定値以下の場合には、制御を行わない(すなわち駆動部3を駆動しない)とすることにより、駆動部の駆動間隔を長くし、一定時間内に消費される電力量を低下させることができる。これにより、発電装置全体としての消費電力量を抑えることができ、その結果、発電効率を向上させることができるという利点がある。
このステップSA−5における判断がNoであればステップSA−2に戻り、前記したステップを繰り返す。ステップSA−5における判断がYesであれば、次のステップSA−6に進む。
(図5のステップSA−6)
ついで、制御部4は、駆動部3に駆動信号を送り、偏心角を目標値θr(i)とするように指示する。ここで、制御部4としては、目標値の差分である制御量Δθrを制御信号として駆動部3に送ることも可能である。この場合はいわゆるインクリメンタル式の動作となる。
(図5のステップSA−7)
ついで、駆動部3は、制御部4からの制御信号に基づいて、副リンク支持部15を、主軸11を中心として、所定の角度だけ公転させる。これにより、偏心回転中心C2の位置、すなわち偏心角を、所望の値に調整することができる。
(図5のステップSA−8)
ついで、制御部4は、前記したiに1を加えた値を新たなiとして、ステップSA−2以降の動作を繰り返す。
(実施例1)
弱風時(例えば風速が10m/s以下)の場合における、本実施形態の発電装置の動作例を、図12に基づいて説明する。なお、強風時の動作は、実施例2として後述する。
実施例1及び2では、制御部4における前記した規定値ωrefが8Hzに設定され、風速の上限値が10m/sに設定されているものとする。但し、これらの数値はあくまで一例である。
図12の例では、風速の上昇に対応して(図12(d)参照)、角速度ω(t)が上昇する(図12(a)参照)。このとき、風速は上限値以下なので、規定値ωrefは一定である(図12(b)参照)。この状態では、制御部4が算出する目標値θr(t)は、θとなる(図12(c)参照)。
つまり、制御部4は、風向が変わらなければ、偏心回転中心C2の偏心角を常に一定とする。一方、制御部4は、風向が変わったとき、その風向に対応して、偏心角がθとなるように制御する。これにより、回転翼1は、風速に対して最大の効率で回転力を得ることができる。
(実施例2)
つぎに、強風時(例えば風速が10m/s以上)の場合における、本実施形態の発電装置の動作例を、図13に基づいて説明する。この実施例2では、前記したように、規定値ωrefが8Hzに設定され、風速の上限値が10m/sに設定されているものとする。
図13の例では、時間tにおいて、角速度ωがωref=8Hzを超えている(図13(a)参照)。このため、制御部4は、前記した方法に従って目標値θr(t)を設定し、偏心角を、θ+π/2の方向へ移動させることができる。偏心角がθ±π/2の場合、回転翼1全体への揚力はほぼ零になることが実験的にも確認されている。したがって、回転翼1の角速度上昇を抑えることができる。
さらに、引き続いて、角速度がωrefより大きい場合は、制御部4は、目標値θr(t)を設定し、偏心角を、θに向けて移動させる(図13(c)参照)。偏心角がθの近傍である場合(つまり、偏心回転中心の位置が180°ずれた場合)には、風向を一定とすれば、回転翼1に対して、逆転方向への回転力が加わる。したがって、本実施形態のように制御することにより、角速度の過剰な上昇を迅速に防止することができるという利点がある。ここで、本実施形態の制御部4は、「主軸11の角速度が規定値ωrefを超えたときに、最大効率位置(つまりθ)に対する偏心角をπ/2からπの範囲とすることにより、翼部材13に対して、逆方向への回転力を加える」という制御を行っていることになる。
また、前記したように、制御目標の上限θ及び下限θは、風向に対応して随時設定されるので、風向の変化にあわせて、適切な制御目標を設定することができる。
さらに、この実施例2では、時間tにおいて、風速が、その上限値(この例では10m/s)を超えている。この場合、制御部4は、図10に示したような風速と上限値ωrefとの関係に従って、規定値ωref自体を低下させる(図13(b)参照)。このようにωref自体が低下していくと、回転翼1の角速度が低下しても、偏心角の目標値θr(t)は、引き続いて、θよりもθの方向に偏心した角度となる(図13(a)及び(c)参照)。
本実施形態では、外部条件である風速が上昇して上限値を超えたときに、角速度の規定値ωrefそのものを低下させるので、角速度が過剰に上昇する危険性を確実に低下させることができる。したがって、角速度抑制のためにブレーキを用いる確率が低下し、ブレーキのための消費電力を削減することができる。ただし、本実施形態の発電装置においても、安全のために、補助的なブレーキ装置を設けておくことは可能である。
前記の制御により、角速度ωが低下し、ほぼωrefで収束すると(図13(a)参照)、偏心角θは、ほぼθ+π/2近辺となる。この状態は、風による回転力がほとんど発生していないが、風向の乱れによる回転力や慣性力などの要因で、角速度ωが安定している状態である。風速が上限値以下となれば、角速度の規定値ωrefは元に戻る。さらに、角速度がωref以下となれば、図12に示されるような制御が行われる。
本実施形態の装置では、軸受を用いた副リンク支持部15により、偏心回転中心C2を、偏心回転中心C1の回りで公転させることができる。よって、ターンテーブルにより偏心回転中心を操作する方式に比較して、より小さい力で、偏心回転中心の偏心角を変更することができる。つまり、偏心角の変更に要する電力を小さくできるので、発電装置全体としての発電効率が高くなるという利点もある。
なお、本発明に係る発電装置は、前記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることはもちろんである。
例えば前記実施形態では、「風速が上限値を超えたときに、角速度の規定値ωrefの大きさを減少させる」という制御を行っている。しかしながら、風速に代えて、主軸角速度の上限値を別途設定し、この上限値を超えたときに規定値ωrefを低下させても良い。
また、制御部4は、「風速が下限値より低いときに、駆動部3の動作間隔を長くする」という制御を行ってもよい。下限値は適宜に設定できるが、例えば2m/sである。動作間隔を長くするためには、例えば、駆動部3への制御信号の出力周期を長くすることが考えられる。
さらに、前記実施形態では、角速度という表現を用いているが、角速度に相当する物理量として、単位時間あたりの回転数を用いても良いことは当然である。
本発明の一実施形態に係る発電装置の概略的な構成を示す要部断面図である。 図1に示す発電装置の要部の斜視図である。 回転翼における翼部材の傾斜の変化を示す説明図である。 発電装置における制御系の概略を説明するためのブロック図である。 制御部の動作を説明するための概略的なフローチャートである。 制御部の動作を説明するための概略的なフローチャートである。 制御部の動作を説明するための概略的なフローチャートである。 制御部の動作を説明するための概略的なフローチャートである。 制御部の動作を説明するための概略的なフローチャートである。 風速に応じて角速度の上限値を低下させる制御を説明するための概略的なグラフである。 偏心角の取り方を説明するための説明図である。 弱風時における制御の例を示すものであり、各図における横軸は時間(秒)である。図(a)の縦軸は主軸の角速度、図(b)の縦軸は角速度の上限値、図(c)の縦軸は制御目標値、図(d)の縦軸は風速である。 強風時における制御の例を示すものであり、各図における横軸は時間(秒)である。図(a)の縦軸は主軸の角速度、図(b)の縦軸は角速度の上限値、図(c)の縦軸は制御目標値、図(d)の縦軸は風速である。
符号の説明
1 回転翼
11 主軸
12 主リンク
13 翼部材
14 副リンク
15 副リンク支持部
151 内輪部
152 転動体
153 外輪部
154 支持部
16 基台
2 発電機
3 駆動部
4 制御部
5 風向風速計
6 回転計
C1 主軸の回転中心
C2 偏心回転中心

Claims (5)

  1. 回転翼と、発電機と、駆動部と、制御部とを備えており、
    前記回転翼は、主軸と、主リンクと、翼部材と、副リンクと、副リンク支持部とを備えており、
    前記主軸は、軸回りに回転可能となっており、
    前記主リンクは、前記主軸からその外側方向へ延長されており、
    前記翼部材は、前記主リンクに対して回動可能な状態で取り付けられており、
    前記副リンクは、前記副リンク支持部と前記翼部材との間を連結しており、
    さらに、前記副リンク支持部は、前記副リンクを、前記主軸とは偏心された偏心回転中心を中心として回転させるように支持しており、
    さらに、前記副リンクは、前記偏心回転中心と前記翼部材との間における離間距離を一定に保持することにより、前記主軸を中心として回転する前記翼部材の迎角を変化させる構成となっており、
    前記発電機は、前記回転翼における前記主軸の回転を用いて電力を発生させる構成となっており、
    前記駆動部は、前記主軸に対する、前記偏心回転中心の相対位置を変化させる構成となっており、
    前記制御部は、前記駆動部の動作を制御することにより、
    (1)前記主軸の回転の角速度が規定値以下のときには、風向に対する前記偏心回転中心の偏心角を、風力に対する前記翼部材の回転効率が最大となる、最大効率位置またはその近傍に設定し
    (2)前記主軸の回転の角速度が前記規定値を超えたときには、風向に対する前記偏心角を、前記最大効率位置から移動させることにより、前記風力に対する前記翼部材の回転効率を低下させる
    という制御を行う
    ことを特徴とする発電装置。
  2. 前記制御部は、さらに、
    (3)風速又は前記主軸の回転の角速度が上限値を超えたときに、前記規定値の大きさを減少させる
    という制御を行うことを特徴とする請求項1に記載の発電装置。
  3. 前記制御部は、さらに、
    (4)前記主軸の回転の角速度が前記規定値を超えたときに、前記最大効率位置に対する前記偏心角をπ/2からπまでの間とすることにより、前記翼部材に対して、逆方向への回転力を加える
    という制御を行うことを特徴とする請求項1又は2に記載の発電装置。
  4. 前記制御部は、さらに、
    (5)前記風速が下限値より低いときに、前記駆動部の動作間隔を長くする
    という制御を行うことを特徴とする請求項1〜3のいずれか1項に記載の発電装置。
  5. 前記制御部は、前記偏心回転中心の偏心角を、以下の範囲で制御することを特徴とする、請求項1〜4のいずれか1項に記載の発電装置。
    θ≦θ(i)≦θ
    但し、
    θ:風力に対する翼部材の回転効率が最大となる、最大効率位置の偏心角;
    θ=θ+π
    θ(i):i番目の時点での偏心角
JP2007039541A 2007-02-20 2007-02-20 回転翼 Withdrawn JP2008202499A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007039541A JP2008202499A (ja) 2007-02-20 2007-02-20 回転翼

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007039541A JP2008202499A (ja) 2007-02-20 2007-02-20 回転翼

Publications (1)

Publication Number Publication Date
JP2008202499A true JP2008202499A (ja) 2008-09-04

Family

ID=39780259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007039541A Withdrawn JP2008202499A (ja) 2007-02-20 2007-02-20 回転翼

Country Status (1)

Country Link
JP (1) JP2008202499A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010074377A1 (ko) * 2008-12-23 2010-07-01 Choi Mal-Hee 편심 회전자형 풍력 에너지 발생장치
WO2010080574A2 (en) * 2008-12-18 2010-07-15 Rydon Energy, L.L.C. Wind turbine
WO2011085615A1 (zh) * 2010-01-14 2011-07-21 上海凡鸿环保科技发展有限公司 垂直轴风力发电系统及其风叶角度自动调节装置
KR101096673B1 (ko) 2009-06-02 2011-12-22 김영호 풍력과 수력을 이용한 발전장치
CN102359435A (zh) * 2010-01-14 2012-02-22 上海倍努利环保科技有限公司 垂直轴风力发电系统及其风叶角度自动调节装置
CN101994643B (zh) * 2009-08-19 2012-05-23 严强 升力型垂直轴风力发电机的风轮结构和风轮安装方法
JP2013245564A (ja) * 2012-05-23 2013-12-09 Ritsumeikan 垂直軸風車用ブレード及び垂直軸風車
CN103670941A (zh) * 2014-01-09 2014-03-26 天津市职业大学 一种变桨距垂直轴风力发电机

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010080574A2 (en) * 2008-12-18 2010-07-15 Rydon Energy, L.L.C. Wind turbine
WO2010080574A3 (en) * 2008-12-18 2010-09-23 Rydon Energy, L.L.C. Wind turbine
WO2010074377A1 (ko) * 2008-12-23 2010-07-01 Choi Mal-Hee 편심 회전자형 풍력 에너지 발생장치
KR101096673B1 (ko) 2009-06-02 2011-12-22 김영호 풍력과 수력을 이용한 발전장치
CN101994643B (zh) * 2009-08-19 2012-05-23 严强 升力型垂直轴风力发电机的风轮结构和风轮安装方法
CN102359435A (zh) * 2010-01-14 2012-02-22 上海倍努利环保科技有限公司 垂直轴风力发电系统及其风叶角度自动调节装置
CN101761449B (zh) * 2010-01-14 2011-11-02 上海凡鸿环保科技发展有限公司 垂直轴风力发电系统及其风叶角度自动调节装置
WO2011085615A1 (zh) * 2010-01-14 2011-07-21 上海凡鸿环保科技发展有限公司 垂直轴风力发电系统及其风叶角度自动调节装置
EP2514966A1 (en) * 2010-01-14 2012-10-24 Shanghai Fanhong Environmental Protection Technology Development Co., Ltd. Vertical shaft wind power generating system and blade angle automatic regulating device thereof
EP2514966A4 (en) * 2010-01-14 2012-12-19 Shanghai Fanhong Environmental Prot Technology Dev Co Ltd WIND ENERGY GENERATION SYSTEM WITH VERTICAL AXIS AND DEVICE FOR AUTOMATIC SHAFT ANGLE CONTROL THEREFOR
RU2536065C2 (ru) * 2010-01-14 2014-12-20 Шанхаи Фанхонг Энвайронментал Протекшн Текнолоджи Девелопмент Ко., Лтд. Ветроэнергетическая система с вертикальным валом и устройство автоматического регулирования угла лопасти
JP2013245564A (ja) * 2012-05-23 2013-12-09 Ritsumeikan 垂直軸風車用ブレード及び垂直軸風車
CN103670941A (zh) * 2014-01-09 2014-03-26 天津市职业大学 一种变桨距垂直轴风力发电机

Similar Documents

Publication Publication Date Title
JP2008202499A (ja) 回転翼
JP6559559B2 (ja) 風力発電システムおよび風力発電システムの運転方法
JP6506664B2 (ja) 風力発電システムまたは風力発電システムの制御方法
JP4058341B2 (ja) 風力装置
JP2018017198A (ja) 風力発電システム
WO2009109918A4 (en) Cycloidal rotor with non-circular blade orbit
JP6228914B2 (ja) ヨーイングによって動力出力を制御する2枚羽根付き揺動ヒンジ風力タービンにおいて動力出力を制御するために必要とされるヨートルクを最小にするためのシステム
JP5944531B2 (ja) 浮体式風力発電装置の制御方法及び制御装置、並びに浮体式風力発電装置
TWI544145B (zh) Wind power generation system
JP2019183802A (ja) 風力発電システム
TW200949069A (en) Windmill pitch angle controller and method for controlling windmill pitch angle
JP2006152922A (ja) 風車
CN105317627B (zh) 用于根据风向跟踪调整风能设备的转子的方法和控制设备
TW201937056A (zh) 風力發電裝置及其之控制方法
JP4494813B2 (ja) 水平軸風車及びその制御方法
JP6920932B2 (ja) 風力発電装置
JP2004108163A (ja) 翼通過面積調整装置を備えた風車及びその運転方法
JP3810723B2 (ja) 連環式翼通過面積調整装置を備えた風車
CN118361344B (zh) 离心自适应转动惯量风电装置及其控制方法
TWI626370B (zh) Method of controlling a wind power generation device
JPH09280155A (ja) 風 車
JP6430221B2 (ja) 風力発電装置
JP6643615B2 (ja) 風力発電機のティータ角制御装置
JP2024512013A (ja) 浮体式風力タービンの動作を制御する方法および装置
JP2004360669A (ja) 水平軸風車の支承方法

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100511