JP2018017198A - 風力発電システム - Google Patents

風力発電システム Download PDF

Info

Publication number
JP2018017198A
JP2018017198A JP2016149183A JP2016149183A JP2018017198A JP 2018017198 A JP2018017198 A JP 2018017198A JP 2016149183 A JP2016149183 A JP 2016149183A JP 2016149183 A JP2016149183 A JP 2016149183A JP 2018017198 A JP2018017198 A JP 2018017198A
Authority
JP
Japan
Prior art keywords
power generation
wind
generation system
wind speed
nacelle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016149183A
Other languages
English (en)
Inventor
啓 角谷
Hiromu Kakuya
啓 角谷
山本 幸生
Yukio Yamamoto
幸生 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2016149183A priority Critical patent/JP2018017198A/ja
Priority to EP17183383.3A priority patent/EP3276166A1/en
Priority to TW106125314A priority patent/TW201809460A/zh
Priority to US15/662,852 priority patent/US20180034394A1/en
Publication of JP2018017198A publication Critical patent/JP2018017198A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/008Arrangements for controlling electric generators for the purpose of obtaining a desired output wherein the generator is controlled by the requirements of the prime mover
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0224Adjusting blade pitch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • F03D13/25Arrangements for mounting or supporting wind motors; Masts or towers for wind motors specially adapted for offshore installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0272Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor by measures acting on the electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • F03D7/043Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines
    • H02K7/183Rotary generators structurally associated with turbines or similar engines wherein the turbine is a wind turbine
    • H02K7/1838Generators mounted in a nacelle or similar structure of a horizontal axis wind turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/93Mounting on supporting structures or systems on a structure floating on a liquid surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/82Forecasts
    • F05B2260/821Parameter estimation or prediction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/32Wind speeds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/727Offshore wind turbines

Abstract

【課題】浮体姿勢を安定化可能な風力発電システムを提供する。【解決手段】ピッチ角度を変更可能なブレード2を有し、風を受けて回転するロータ4と、ロータ4の回転エネルギーを用いて発電する発電機6を備える風力発電システム1であって、風力発電システム1に含まれる機器を制御する制御装置10を備え、制御装置10は、発電機6の回転速度が定格に至る風速以上かつ定格発電電力に至る風速以下である場合に、風力発電システム1に加わる風速に基づいて、発電機6に指令する発電機トルクをフィードフォワード制御して入力エネルギーの変化を調整することを特徴とする。【選択図】図1

Description

本発明は、風力発電システムに係り、特に、浮体に発生する前後方向の振動を好適に低減する風力発電システムに関する。
近年、二酸化炭素の排出量増加を起因とする地球温暖化や、化石燃料の枯渇によるエネルギー不足が懸念されており、二酸化炭素排出の低減や、エネルギー自給率の向上が求められている。これらの実現のためには、二酸化炭素を排出せず、輸入に依存する化石燃料を利用することなく、風力や太陽光などの自然から得られる再生可能エネルギーにて発電が可能な発電システムの導入が有効である。
再生可能エネルギーを利用した発電システムの中でも、太陽光発電システムのように日射による急峻な出力変化をしない風力発電システムは、比較的安定した発電出力ができる発電システムとして注目されている。また、地上と比較して、風速が高く、風速変化が少ない洋上に設置する風力発電システムも有力な発電システムとして注目されている。なお、風力発電システムはロータのエネルギー変換効率が風速に応じて異なることから、ロータ回転速度の運転範囲を可変とする可変速運転を実施している。
上記可変速制御は風力発電システムの発電電力を調整できる有効な手段であるが、当該風力発電システムが洋上に浮かべられる土台(以下、浮体)に設置された場合には、浮体の前後方向の角度(浮体の場合のナセルピッチ角度)の固有振動を励起させる、すなわち共振が発生する場合がある。この振動は一般的にネガティブダンピング現象と呼ばれている。ネガティブダンピング現象の発生原因は、上記可変速制御によるブレードピッチ角度の操作である。ロータ回転速度(または発電機回転速度)を定格値に保持するようにブレードピッチ角度を操作することが、ナセルピッチ角度の固有振動を励起するように、ロータが風から前後方向に受ける力であるスラスト力を増減させてしまうためである。対策が施されなければナセルピッチ角度の振動振幅が増加し、タワーや他構造物の荷重増加、疲労蓄積に繋がる。
上記ネガティブダンピング現象を抑制する手段として、特許文献1に「風力発電装置およびそのアクティブ制振方法並びに風車タワー」が開示されている。要約すると、「ナセルに取り付けられ、該ナセルの振動の加速度を検出する加速度計と、前記加速度計により検出された加速度に基づき、前記ナセルの振動を打ち消すように前記風車ブレードにスラスト力を発生させるための該風車ブレードのピッチ角を算出」する手段である。
特許第4599350号公報
風力発電システムでは、発電機またはロータの回転速度が定格に維持され始める風速と発電電力が定格に維持され始める風速が異なり、発電機またはロータが定格回転速度に維持され始める風速の方が定格発電電力に維持され始める風速よりも小さい。そして、発電機回転速度制御のみが行われる場合、本来の定格発電電力に至る前にブレードのピッチ角をフェザー側へ移行させ始めることになってしまうため、電力制御も併せて行い、定格発電電力に至るまでは風からの入力エネルギーを最大限に確保すべく、ブレードのピッチ角をファイン側で固定し続ける様にしている。
ここで、発電機回転速度制御と電力制御の両者の関係については、発電機が定格回転速度に維持され始める風速以下では、発電機回転速度及び発電電力の双方が大きくしようとするため、互いに同じ方向の(ファイン側の)ピッチ角を志向することになる。また、定格発電電力に維持され始める風速以上では、発電機回転側及び発電電力の双方が値を維持しようとするため、やはり互いに同じ方向のピッチ角を志向することになる。一方で、定格回転速度に維持され始める風速と定格発電電力に維持され始める風速の間の風速領域では、発電機回転速度を維持しつつ、発電電力を大きくする必要があり、双方でおよそ異なる方向のピッチ角を志向することになる。
特許文献1に記載された様な風車ブレードのピッチ角の制御を通じてナセルの振動低減は、風速とは無関係に行われるが、上記の様に定格回転速度に維持され始める風速と定格発電電力に維持され始める風速の間の風速領域では、同じブレードのピッチ角を通じて行える制御の自由度が他の風速領域と比較して小さく、振動低減には改善の余地が認められることを発明者は知見として把握した。そこで本発明では、定格発電電力に至る風速以下で、かつ、発電機回転速度が定格に至る風速以上の領域における振動抑制を図ることができる風力発電システムまたは風力発電システムの運転方法を提供することを目的とする。
上記課題を解決するために、本発明に係るピッチ角度を変更可能なブレードを有し、風を受けて回転するロータと、前記ロータの回転エネルギーを用いて発電する発電機を備える風力発電システムであって、前記風力発電システムに含まれる機器を制御する制御装置を備え、前記制御装置は、前記発電機の回転速度が定格に至る風速以上かつ定格発電電力に至る風速以下である場合に、前記風力発電システムに加わる風速に基づいて、前記発電機に指令する発電機トルクをフィードフォワード制御して入力エネルギーの変化を調整することを特徴とする。
また、本発明に係る風力発電システムの運転方法は、ピッチ角度を変更可能なブレードを有し、風を受けて回転するロータと、前記ロータの回転エネルギーを用いて発電する発電機を備える風力発電システムの運転方法であって、前記発電機の回転速度が定格に至る風速以上かつ定格発電電力に至る風速以下である場合に、前記風力発電システムに加わる風速に基づいて、前記発電機に指令する発電機トルクをフィードフォワード制御して入力エネルギーの変化を調整することを特徴とする。
本発明によれば、定格発電電力に至る風速以下で、かつ、発電機回転速度が定格に至る風速以上の領域における振動抑制を図ることができる風力発電システムまたは風力発電システムの運転方法を提供することが可能になる。
本発明を実施しない場合の風力発電システム1の構成概要を示す図である。 本発明を実施しない場合の風力発電システム1のコントローラ10に実装される運転制御手段の処理概要を示すブロック線図である。 本発明を実施しない場合の運転制御手段23に実装される運転制御手段の処理概要を示すブロック線図である。 本発明を実施しない場合の運転制御手段24に実装される運転制御手段の処理概要を示すブロック線図である。 本発明を実施しない場合の風力発電システム1の風速と発電電力、発電機回転速度、およびブレードピッチ角度の関係を示す概略図である。 本発明を実施しない場合の風力発電システム1の所定風速条件における風速、発電電力、発電機回転速度、発電機トルク、発電電力、ブレードピッチ角度、およびナセルピッチ角度の変化概略を示すタイムチャートである。 本発明を実施しない場合の風力発電システム1の風速と発電電力、発電機回転速度、および発電機トルクの関係を示す概略図である。 本発明の第1の実施形態に係るコントローラ10に実装される運転制御手段の処理概要を示すブロック線図である。 本発明の第1の実施形態に係るコントローラ10に実装される運転制御手段32の処理概要を示すブロック線図である。 本発明の第1の実施形態に係るコントローラ10に実装される運転制御手段32aの処理概要を示すブロック線図である。 本発明の第1の実施形態に係る風力発電システム1の所定風速条件における風速、発電電力、発電機回転速度、発電機トルク、発電電力、ブレードピッチ角度、およびナセルピッチ角度の変化概略を示すタイムチャートである。 本発明の第1の実施形態に係る運転制御手段32の処理概要を示すフローチャートである。 本発明の第1の実施形態に係る風力発電システム1において、コントローラ10の処理内でナセル風速が演算できない場合での、風速と発電電力、および発電機回転速度の関係を示す概略図である。 本発明の第2の実施形態に係る風力発電システム1の構成概要を示す図である。 本発明の第2の実施形態に係るコントローラ10に実装されるナセル風速演算手段の処理概要を示すブロック線図である。 本発明の第2の実施形態に係るコントローラ10に実装されるナセル風速演算手段の処理における、ブレード変形量とナセル風速の関係を示す概略図である。 本発明の第3の実施形態に係る風力発電システム1の構成概要を示す図である。 本発明の第3の実施形態に係るコントローラ10に実装されるナセル風速演算手段の処理概要を示すブロック線図である。 本発明の第3の実施形態に係るコントローラ10に実装されるナセル風速演算手段の処理における、タワー変形量とナセル風速の関係を示す概略図である。 本発明の第4の実施形態に係るコントローラ10に実装されるナセル風速演算手段の処理概要を示すブロック線図である。
以下、図面を用いて、本発明の実施形態について具体的に説明する。尚、下記はあくまでも実施例であって、本発明の実施態様が下記実施例に限定されることを意図するものではない。
[参考例]
まず、図1を用いて、本発明を適用可能な風力発電システム全体の概略構成について説明する。
図1の風力発電システム1は、複数のブレード2と、複数のブレード2を接続するハブ3とで構成されるロータ4を備える。ロータ4はナセル5に回転軸(図1では省略する)を介して連結されており、回転することでブレード2の位置を変更可能である。ナセル5はロータ4を回転可能に支持している。ナセル5は発電機6を適宜位置に備える。ブレード2が風を受けることによりロータ4が回転し、ロータ4の回転力が発電機6を回転させることで電力を発生することができる。
ブレード2の各々には、ブレード2とハブ3の位置関係、すなわちピッチ角と呼ぶブレードの角度、を変更可能なピッチアクチュエータ8を備えている。ピッチアクチュエータ8を用いてブレード2のピッチ角を変更することにより、風に対するロータ4の回転エネルギーを変更できる。これにより、広い風速領域においてロータ4の回転速度を制御しながら、風力発電システム1の発電電力を制御することができる。
図1の風力発電システム1では、ナセル5はタワー9上に設置されており、タワー9に対して回転可能に支持されている。ハブ3やナセル5を介してブレード2の荷重がタワー9に支持される。タワー9は、基部(図では省略)に設置され、地上、洋上、浮体等の所定位置に設置される。
ナセル5に設置される発電機6は、タワー9内(またはナセル5内)に設置されるパワーコンディショニングシステム7によって発生するトルクが制御され、ロータ4の回転トルクを制御することができる。
また、風力発電システム1はコントローラ10を備えており、発電機6の回転速度を計測する回転速度センサ11と、パワーコンディショニングシステム7にて計測する発電電力に基づき、コントローラ10が発電機6とピッチアクチュエータ7を調整することで、風力発電システム1が出力する電力を調整する。また、コントローラ10は、ナセルの加速度またはナセルピッチ角度を計測するセンサ12に基づき、ピッチアクチュエータ7を調整することで、ナセルピッチ角度の振動を低減する。なお、ナセル5上にはナセル近傍の風速を計測する風速センサ13が設置され、コントローラ10に入力される。ここで、ナセル近傍の風速を計測することを例に説明しているが、これは風速計は通常ナセル上に配置されることが多く、結果的にナセル近傍(言い換えると風速計設置位置の近傍)における風速の風速を検出することになるためである。風力発電システムに加わる風速であれば、ナセル近傍の風速であるナセル風速に限定されずに用いることが可能である。
ここで、センサ12の出力であるナセルピッチ角度は、水平面から垂直方向を基準とした角度であっても良いし、所定条件下の角度を基準とした角度であっても良い。風力発電システム1が陸上に設置される場合は、上記垂直方向を基準としても良いし、無風時のナセルの状態を基準角度としても良い。また、風力発電システム1が浮体台上に設置される場合には、水平面に対する垂直方向を基準角度としても良いし、無風時かつ波高が低い条件下でのナセルの状態を基準角度としても良い。
図1ではコントローラ10はナセル5またはタワー9の外部に設置される形態にて図示されているが、これに限ったものではなく、ナセル5またはタワー9の内部またはそれ以外の所定位置、または風力発電システム1の外部に設置される形態であっても良い。また、パワーコンディショニングシステム7がタワー9内に設置される形態にて図示されているが、これに限ったものではなく、ナセル5の所定位置に設置される形態であっても良い。
次に、図2から図5を用いてコントローラ10に実装される制御手段について述べる。
図2は、コントローラ10に実装される運転制御手段の概要を示すブロック線図である。図2に示す運転制御手段は、可変速制御部21と浮体振動制御部22により構成される。可変速制御部21は、発電電力と発電機回転速度に基づいてブレードピッチ角度指令値を決定するブレードピッチ角度制御部23と、発電機回転速度に基づいて発電機トルク指令値を決定する発電機トルク制御部24を備える。また、浮体振動制御部22はナセルピッチ角度に基づいてブレードピッチ角度指令値を決定する。浮体振動制御部22の別形態として、ナセルの加速度を入力する形態もあるが、以下では、上述のようにナセルピッチ角度を入力として用いる形態を例に取って説明する。さらにコントローラ10では、可変速制御部21と浮体振動制御部22が決定するブレードピッチ角度指令値を加算し、最終的なブレードピッチ角度指令値を決定する。
図3は、可変速制御部21のブレードピッチ角度制御部23の概要を示すブロック線図である。ブレードピッチ角度制御部23は、発電機回転速度制御部23aと、電力制御部23bより構成される。発電機回転速度制御部23aは、発電機回転速度に基づいてブレードピッチ角度指令値を決定し、電力制御部23bは、発電電力に基づいてブレードピッチ角度指令値を決定する。2つの値を加算することで、ブレードピッチ角度制御部23の最終的なブレードピッチ角度指令値を決定する。なお、発電機回転速度制御部23aおよび電力制御部23bは、フィードバック制御の処理内容を備えている。
図4は、可変速制御部21の発電機トルク制御部24の概要を示すブロック線図である。発電機トルク制御部24は発電機回転速度に基づいてフィードバック制御により発電機トルク指令値を決定する。
図5は、図2から図4に示すコントローラ10に実装される運転制御手段によって得られる風力発電システム1の特性を示す。図5の横軸は風速、縦軸は図上方より発電電力、発電機回転速度、およびブレードピッチ角度を示す。図5において上方が、発電電力が高い、発電機回転速度が高い、ブレードピッチ角度がフェザー、を示す。
可変速制御21の発電機回転速度制御部23により、図5中段に示すように、風速V0からV1の条件で発電機回転速度をΩ1に保持し、風速V1からV2の条件で発電機回転速度をΩ1からΩ2へ増加させ、風速V2以上の条件では発電機回転速度をΩ2に保持する。ここで、上述のように発電機回転速度制御部23がフィードバック制御の処理構造を備える場合には、風速V2以上の条件で発電機回転速度をΩ2に保持するようにブレードピッチ角度指令値をフェザー側に操作する。そのため、発電機回転速度制御部23のみで構成された場合には、図5中の点線に示すようにブレードピッチ角度が風速V2以上でフェザー側に動作する。これにより、ロータが受ける風力エネルギーが低下するために、発電電力がP1に制限されてしまう。このような発電電力制限を抑制するべく電力制御部23bが設けられており、発電機回転速度がΩ2に保持され、かつ発電電力が定格Prated未満の場合に、ロータが受ける風力エネルギーを低下させないように、ブレードピッチ角度をファイン側に保持するようにブレードピッチ角度指令値を出力する。これによって、図5のブレードピッチ角度の実線に示すように、風速がV2からV3の条件でブレードピッチ角度をファイン側であるθfに保持する。
上述のように電力制御部23bを備えることで、風速V3以上の条件でブレードピッチ角度がフェザー側へ大きく動作する様になる。このことから、上記ネガティブダンピング現象は風速V3以上で発生する。浮体振動制御部22は風速条件に関わらず、ナセルピッチ角度に基づいて実行されるが、風速V3以上の条件で特に効果を発揮し、ナセルピッチ角度の振動を低減できる。
上述のように浮体振動制御部22はネガティブダンピング現象の低減に効果的であるが、風速がV2からV3の条件で発生するナセルピッチ角度の振動を低減できないという課題がある。
この理由は、制御間の干渉である。ブレードピッチ角度指令値を演算する制御部は、発電機回転速度制御部23a、電力制御部23b、および浮体振動制御部22の3つがあり、風速がV2からV3の条件では3者の指令値が加算される。このとき、3者の要求を同時に満たすブレードピッチ角度を決定できない場合がある。特に、3つの制御部はフィードバック制御に基づくものであることから、発電機回転速度およびナセルピッチ角度の応答に対するブレードピッチ角度の応答が遅くなる。これが原因で最適値の決定に時間を要し、ブレードピッチ角度の変動が発生することでナセルピッチ角度の振動が発生する。
また、風速に対するブレードピッチ角度の特性は、図5に示すように風速V2以下ではθfに保持されると述べたが、風速の急峻な増加がある場合には発電機回転速度制御部23aの効果が大きくなることで、ブレードピッチ角度が変化し、これがブレードピッチ角度の周期的な振動の引き金になる場合がある。その様子を図6を利用して説明する。
図6は、ナセルピッチ角度の変動を示すタイムチャートである。図6の横軸は時刻、縦軸は図上方より風速、発電機回転速度、発電機トルク、発電電力、ブレードピッチ角度、およびナセルピッチ角度を示す。図6は図上方が、風速が高い、発電機回転速度が高い、発電機トルクが高い、ブレードピッチ角度がフェザー、ナセルピッチ角度が後方にそれぞれ対応する。タイムチャート初期に発生した風速の急激な増加に応じて発電機回転速度が変動し、これに伴ってブレードピッチ角度が大きく変化する。このブレードピッチ角度の変化により、ロータが受けるスラスト力が変化することで、ナセルピッチ角度が変化を開始し、固有振動が励起される。この振動を抑制するために発電機回転速度制御部23aと浮体振動制御部22がブレードピッチ角度に指令すると共に、電力制御部23bからもブレードピッチ角度指令値が出力される。しかしながら、本方式の下では、これら3つのブレードピッチ角度が加算されることで、それぞれの指令成分が打ち消しあう、または増幅されるため、発電機回転速度の収束性やナセルピッチ角度の固有振動の収束性を悪化させる。
〔第1の実施形態〕
以下、図7から図11を用いて本発明の第1の実施例について説明する。尚、本発明適用の前提となる風力発電システム1の概略構成は図1と同様のため説明を省略する。
図7は、コントローラ10に実装する本発明の第1の実施形態に係る運転制御手段の処理概要を示すブロック線図である。本運転制御手段は、可変速制御部31および浮体振動制御部22を備える。
可変速制御部31は、ブレードピッチ角度制御部23およびナセル風速利用発電機トルク制御部32を備えており、発電電力、発電機回転速度、およびナセル風速に基づいてブレードピッチ角度指令値および発電機トルク指令値を決定する。図2に示す構成と異なる点は、発電機トルク制御部が、ナセル風速を用いて発電機トルク指令値を決定する処理へと変更されたことである。ブレードピッチ角度制御部23は図3に示す構成と同様であるため、説明を省略する。また、本発明の第1の実施形態に係る運転制御手段を構成する浮体振動制御部22も図2に示すものと同様であるため、説明を省略する。
ナセル風速利用発電機トルク制御部32は、直接または間接的に計測したナセル風速に基づき、発電機トルク指令値を演算する。
図8は、ナセル風速利用発電機トルク制御部32の処理概要を示すブロック線図である。ナセル風速利用発電機トルク制御部32は、フィードバック制御部24a、フィードフォワード制御部32a、および発電機トルク指令値選択部32bを備えている。
フィードバック制御部24aは、発電機回転速度に基づいて発電機トルク指令値1を決定する部分であり、図24に示す上述の構成と同様であるため、説明を省略する。
フィードフォワード制御部32aは、直接的または間接的に計測したナセル風速に基づき、発電機トルク指令値2を決定する。本制御部での処理概要を図9を用いて説明する。
図9は、フィードフォワード制御部32aにおいて、ナセル風速から発電機トルク指令値2を決定するための特性を示した図である。図9に示すように、発電機トルク指令値2はナセル風速を用いた一次関数にて決定される。また、フィードフォワード制御部32aの処理形態はこれに限ったものではなく、ナセル風速の増加に従って発電機トルク指令値2を増加させ、かつ、ナセル風速の減少に従って発電機トルク指令値2を減少させる処理であれば、二次関数であっても良いし、他の関数の形態、またはテーブルなどを利用する形態であっても良い。検出したナセル風速に基づいたフィードフォワード制御を行い、風から受ける入力エネルギーの変化を調整する。
図8に示す発電機トルク制御部32bは、ナセル風速に基づき、フィードバック制御部24aが決定する発電機トルク指令値1と、フィードフォワード制御部32aが決定する発電機トルク指令値2を選択し、ナセル風速利用発電機トルク制御部32の出力として発電機トルク指令値に格納する。より具体的には、風速V2に相当するナセル風速Vn2未満かつ風速V3に相当するナセル風速Vn3以上では発電機トルク指令値に発電機トルク指令値1を格納し、ナセル風速がVn2以上からVn3未満では発電機トルク指令値に発電機トルク指令値2を格納する。
なお、本発明の第1の実施形態では、図7に示すナセル風速は、図1に示すナセル5上に設置した風速センサ13の出力に基づいて決定する。風速センサ13の出力をそのまま利用しても良いし、ローパスフィルタなどフィルタ処理を施した値であっても良いし、これに限定するものではない。
図10は、本発明の第1の実施形態に係る運転制御手段を適用した場合の風力発電システム1における風速と発電電力、発電機回転速度、および発電機トルク指令値の関係を示す図である。図10の横軸は風速であり、縦軸は図上方より発電電力、発電機回転速度、および発電機トルク指令値を示す。図10の縦軸は図上方が、発電電力が高い、発電機回転速度が高い、発電機トルク指令値が高いことにそれぞれ対応する。図9に示す、ナセル風速と発電機トルクの特性を実現することにより、図10下段に示す発電機トルク指令値が、風速がV2からV3においてTq1からTq2へ連続的に変化する特性を備える。即ち、ナセル風速が増加するにしたがって発電機トルク指令値を増加させ、ナセル風速が低下するにしたがって発電機トルク指令値を低下させる。なお、風速V2未満、かつ風速V3以上ではこれまで同様に、本発明の第1の実施形態を適用しない場合と同様のフィードバック制御部24aが出力する値を採用する。これにより、図10の上段と中段に示すように、風速V3まで発電電力と発電機回転速度(V2以降一定)を変化させる特性を実現する。
図11を用いて、本発明の第1の実施形態を適用した場合の風力発電システム1の応答について説明する。図11は、本発明の第1の実施形態に係る風力発電システム1の所定風速条件における風速、発電電力、発電機回転速度、発電機トルク、発電電力、ブレードピッチ角度、およびナセルピッチ角度の変化概略を示すタイムチャートである。図の横軸は時間を示し、縦軸は図上方より風速、発電機回転速度、発電機トルク、発電電力、ブレードピッチ角度、ナセルピッチ角度、をそれぞれ示す。図上方が風速が高い、発電機回転速度が高い、発電機トルクが高い、発電電力が高い、ブレードピッチ角度がフェザー、ナセルピッチ角度が後方、にそれぞれ対応する。なお、図11には、図6に示した本発明の第1の実施形態を適用しない場合のタイムチャート概要を点線にて示し、実線にて本発明の第1の実施形態を適用した場合のタイムチャートを示す。
風力発電システム1ではブレードピッチ角度、発電機トルク、およびヨー角度を調整することで、ブレードが受けるスラスト力を調整できる。この中でも、ヨー角度は動作に時間を要するため、本願が対象とするナセルピッチ角度の振動の低減に有効活用することができない。また、ブレードピッチ角度を利用する手段として、特許文献1にて公開された手段がある。これに対し、本発明の第1の実施形態は、発電機トルクを操作することでナセルピッチ角度の振動を低減することを狙う。本発明の第1の実施形態を適用することにより、風速に応じて変化するナセル風速(図では省略)が変化し、それに基づいて発電機トルクを変化させる。これにより、本風速条件にてロータに入力する風力エネルギーの変化が発電機トルクにて吸収されるため、発電機回転速度がほぼ一定に制御される。これはブレードピッチ角度に指令値を出力する制御部が2つに変化することで、制御間の干渉に伴うブレードピッチ角度の変動を抑制することも貢献している。発電機回転速度の変動を低減することにより、ロータに加わるスラスト力の急変を抑制することで、ナセルピッチ角度の振動を低減することができる。なお、発電電力は本発明の第1の実施形態の適用如何に関わらず大きく変化しないが、ナセルピッチ角度の振動に伴う変動成分を低減できる。
図12は、本発明に係る運転制御手段におけるナセル風速利用発電機トルク制御部32の処理概要を示すフローチャートである。
ステップS01ではナセル風速Vnを計算し、ステップS02に進む。ステップS02ではナセル風速Vnがナセル風速がVn2以上かつVn3未満であるか否かを判定し、正(yes)の場合はステップS03に進み、否(no)の場合はステップS05に進む。ステップS03ではナセル風速に基づいて発電機トルク指令値1を決定し、ステップS04に進む。ステップS04では発電機トルク指令値に発電機トルク指令値1を格納し、一連の動作を終了する。ステップS05では発電機トルク指令値2を演算し、ステップS06に進む。ステップS06では発電機トルク指令値に発電機トルク指令値2を格納し、一連の動作を終了する。
なお、上述では本発明の第1の実施形態では,コントローラ10の処理において、ナセル風速Vnが演算可能な場合について説明しているがこれに限ったものではない。例えば、風速センサ13が故障し、コントローラ10の処理でナセル風速Vnが演算できなかった場合には、上述のナセル風速に応じた発電機トルクの調整ができなくなる。この場合の対応手段を図13を用いて説明する。
図13は、コントローラ10の処理においてナセル風速Vnが演算できない場合での風速と発電電力の関係を示す。ナセル風速Vnの入力情報がなくとも発電運転は停止させず運転を継続する。図13の横軸は風速を、縦軸は図上方より発電電力、および発電機回転速度を示し、図上方が発電電力が高、発電機回転速度が高、を示す。また、図中において、点線はナセル風速Vnが演算できる場合を、実線はナセル風速Vnが演算できない場合をそれぞれ示す。
コントローラ10の処理においてナセル風速Vnが演算できない場合には、ピッチ角度をファイン側に保持しながら発電機の回転速度が定格に至る風速で発生可能な発電機トルクの値に発電機トルク指令値を制限する様にする。具体的には、発電電力Pを風速V2以上の風速、すなわち発電機回転速度が定格値Ω2に達する発電電力P1に制限する。これにより、上述のナセル風速Vnがナセル風速がVn2以上かつVn3未満での振動を抑制できる。
〔第2の実施形態〕
次に、図14から図16を用いて、本発明の第2の実施形態について説明する。
図14は、本発明の第2の実施形態に係る風力発電システム1の構成概要を示す図である。図1と異なり、ブレード変形量センサ50を各ブレードに備えており、センサによって検出された信号がコントローラ10に入力される。このブレード変形量センサ50は風から受けるスラスト力によって発生するブレードの変形量を計測できるセンサである。
本発明の第2の実施形態に係る運転制御手段は第1の実施形態と同様のため説明を省略する。 第1の実施形態との違いは、ナセル風速の決定方法である。
図15に、ナセル風速の決定方法概要を示すブロック線図を示す。本発明の第2の実施形態の運転制御手段は、ナセル風速演算部1を備えており、ブレード変形量センサ50の出力であるブレード変形量に基づいてナセル風速を決定する。ブレード変形量は風から受けるスラスト力によって定まるものであるため、風速計の様にブレード変形量を用いることが出来る。
図16に、ブレード変形量BLからナセル風速Vnの演算方法を示す。図16の横軸はブレード変形量BLを、縦軸はナセル風速Vnを示す。図16のように、ブレード変形量BLとナセル風速Vnが比例する形態を取るが、これに限ったものではなく、ブレード変形量BLに基づいて多項式や指数関数などに従ってナセル風速Vnが増加する形態であってもよい。
本発明の第2の実施形態を適用した場合のタイムチャートおよびフローチャートは第1の実施形態と同様のため、説明を省略する。
〔第3の実施形態〕
次に、図17から図19を用いて、本発明の第3の実施形態について説明する。
図17は、本発明の第3の実施形態に係る風力発電システム1の構成概要を示す図である。図1および図14と異なり、タワー変形量センサ60をタワーに備えており、コントローラ10に入力される。このタワー変形量センサ60は風から受けるスラスト力によって発生するタワーの変形量を計測できるセンサである。
本発明の第3の実施形態に係る運転制御手段は前記各実施形態と同様のため説明を省略する。 前記各実施形態との違いは、ナセル風速の決定方法である。
図18に、ナセル風速の決定方法概要を示すブロック線図を示す。本発明の第3の実施形態の運転制御手段は、ナセル風速演算部2を備えており、タワー変形量センサ50の出力であるタワー変形量に基づいてナセル風速を決定する。タワー変形量も第2の実施形態におけるブレード変形量と同じく、風から受けるスラスト力によって定まるものであるため、風速計の様にタワー変形量を用いることが出来る。
図19に、タワー変形量TLからナセル風速Vnの演算方法を示す。図19の横軸はタワー変形量TLを、縦軸はナセル風速Vnを示す。図19のように、タワー変形量TLとナセル風速Vnが比例する形態を取るが、これに限ったものではなく、タワー変形量TLに基づいて多項式や指数関数などに従ってナセル風速Vnが増加する形態であってもよい。
本発明の第3の実施形態を適用した場合のタイムチャートおよびフローチャートは第1および第2の実施形態と同様のため、説明を省略する。
〔第4の実施形態〕
次に、図20を用いて、本発明の第4の実施形態について説明する。
本発明の第4の実施形態は前記各実施形態の風力発電システム1のいずれにも適用できるものであるため、構成概要の説明を省略する。
本発明の第4の実施形態に係る運転制御手段は前記各実施形態と同様のため説明を省略する。前記各実施形態との違いは、ナセル風速の決定方法である。
図20に、ナセル風速の決定方法概要を示すブロック線図を示す。本発明の第4の実施形態の運転制御手段は、ナセル風速演算部3を備えており、信号A、ヨー誤差、およびナセルピッチ角度に基づいてナセル風速を決定する。信号Aとは上述の風速センサ13の出力、またはブレード変形量センサ50の出力、またはタワー変形量センサ60の出力のいずれかである。これに限ったものではなく、いずれかまたは複数であっても良い。信号Aと共にヨー誤差やナセルピッチ角度を利用することにより、風に対するロータ面の角度を調整することにより、より正確なナセル風速を決定することができる。即ち、ナセル風速の検出結果は、風速計或いはブレードやタワー等が受けるスラスト力によるが、ロータ面が傾くことで実際の風速からずれた方向成分が検出されることに繋がる。よって、その様なずれを補正するべく、ヨー誤差(水平面内のずれを考慮)やナセルピッチ角(鉛直方向からのずれを考慮)も併せて用いる様にしている。
本発明の第4の実施形態を適用した場合のタイムチャートおよびフローチャートは第1、第2、および第3の実施形態と同様のため、説明を省略する。
以上説明したように、各実施例の風力発電システムおよびその運転方法により、風速条件に依らずナセルピッチ角度の固有振動の励起を抑制することができる。これにより、風力発電システムの信頼性向上、長寿命化、発電効率の向上などを図ることができる。
なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
1…風力発電システム、2…ブレード、3…ハブ、4…ロータ、5…ナセル、6…発電機、7…パワーコンディショニングシステム、8…ピッチアクチュエータ、9…タワー、10…コントローラ、11…回転速度センサ、12…ナセルピッチ角度センサ、13…風速センサ、50…ブレード変形量計測センサ、60…タワー変形量計測センサ。

Claims (10)

  1. ピッチ角度を変更可能なブレードを有し、風を受けて回転するロータと、
    前記ロータを回転可能に支持するナセルと、
    前記ロータの回転エネルギーを用いて発電する発電機を備える風力発電システムであって、
    前記風力発電システムに含まれる機器を制御する制御装置を備え、
    前記制御装置は、前記発電機の回転速度が定格に至る風速以上かつ定格発電電力に至る風速以下である場合に、
    前記風力発電システムに加わる風速に基づいて、前記発電機に指令する発電機トルクをフィードフォワード制御して入力エネルギーの変化を調整することを特徴とする風力発電システム。
  2. 請求項1に記載の風力発電システムであって、
    前記制御装置は、前記風速の増加にしたがって前記発電機トルクの指令値を増加させると共に、前記風速の低下にしたがって前記発電機トルクの指令値を低下させることを特徴とする風力発電システム。
  3. 請求項1または2に記載の風力発電システムであって、
    前記制御装置は、前記風速を計測する風速センサの出力信号に基づいて前記風速を決定することを特徴とする風力発電システム。
  4. 請求項1または2に記載の風力発電システムであって、
    前記制御装置は、前記ブレードの変形量を計測するセンサの出力信号に基づいて前記風速を決定することを特徴とする風力発電システム。
  5. 請求項1または2に記載の風力発電システムであって、
    前記制御装置は、前記ナセルを設置するタワーの変形量を計測するセンサの出力信号に基づいて前記風速を決定することを特徴とする風力発電システム。
  6. 請求項1ないし5のいずれか1項に記載の風力発電システムであって、
    前記制御装置は、前記風速を、前記ロータの風向に対する前記ナセル方向の差を示すヨー誤差または前記ナセルの水平面からの傾斜角度のうち少なくともいずれかに基づいて補正することを特徴とする風力発電システム。
  7. 請求項1ないし6のいずれか1項に記載の風力発電システムであって、
    前記制御装置は、前記風速が入力されない場合に、前記ピッチ角度をファイン側に保持しながら前記発電機の回転速度が定格に至る風速で発生可能な発電機トルクの値に前記発電機トルクの指令値を制限することを特徴とする風力発電システム。
  8. 請求項1ないし7のいずれか1項に記載の風力発電システムは、発電運転時の前記ロータの位置が前記ナセルよりも風下に配置するダウンウィンド型であることを特徴とする風力発電システム。
  9. 請求項1ないし8のいずれか1項に記載の風力発電システムは、
    洋上に浮かべられた土台である浮体上に設置されることを特徴とする風力発電システム。
  10. ピッチ角度を変更可能なブレードを有し、風を受けて回転するロータと、
    前記ロータの回転エネルギーを用いて発電する発電機を備える風力発電システムの運転方法であって、
    前記発電機の回転速度が定格に至る風速以上かつ定格発電電力に至る風速以下である場合に、
    前記風力発電システムに加わる風速に基づいて、前記発電機に指令する発電機トルクをフィードフォワード制御して入力エネルギーの変化を調整することを特徴とする風力発電システムの運転方法。
JP2016149183A 2016-07-29 2016-07-29 風力発電システム Pending JP2018017198A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016149183A JP2018017198A (ja) 2016-07-29 2016-07-29 風力発電システム
EP17183383.3A EP3276166A1 (en) 2016-07-29 2017-07-26 Wind power generating system
TW106125314A TW201809460A (zh) 2016-07-29 2017-07-27 風力發電系統
US15/662,852 US20180034394A1 (en) 2016-07-29 2017-07-28 Wind power generating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016149183A JP2018017198A (ja) 2016-07-29 2016-07-29 風力発電システム

Publications (1)

Publication Number Publication Date
JP2018017198A true JP2018017198A (ja) 2018-02-01

Family

ID=59409294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016149183A Pending JP2018017198A (ja) 2016-07-29 2016-07-29 風力発電システム

Country Status (4)

Country Link
US (1) US20180034394A1 (ja)
EP (1) EP3276166A1 (ja)
JP (1) JP2018017198A (ja)
TW (1) TW201809460A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020041498A (ja) * 2018-09-12 2020-03-19 株式会社日立製作所 風力発電システムとその制御方法
CN113309663A (zh) * 2021-03-08 2021-08-27 新疆金风科技股份有限公司 用于风力发电机组的控制方法及控制装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2950363T3 (es) * 2017-11-28 2023-10-09 Nordex Energy Se & Co Kg Procedimiento y dispositivo para el funcionamiento de una turbina eólica
CN110206685B (zh) * 2018-02-28 2020-07-28 北京金风科创风电设备有限公司 风电场中的风力发电机组的前馈控制方法和设备
DE102019105296A1 (de) * 2019-03-01 2020-09-03 Wobben Properties Gmbh Verfahren zum Betreiben einer Windenergieanlage, Reglerstruktur, Windenergieanlage und Windpark
CN110374806B (zh) * 2019-09-02 2020-11-06 中国船舶重工集团海装风电股份有限公司 风力发电机组降载控制方法及风力发电机组
CN112943528B (zh) * 2019-11-26 2022-11-01 新疆金风科技股份有限公司 风力发电机组的控制方法和装置
CN113090453B (zh) * 2019-12-23 2023-03-03 新疆金风科技股份有限公司 风力发电机组的控制方法、装置和风力发电机组
CN112302870B (zh) * 2020-10-14 2022-03-29 明阳智慧能源集团股份公司 一种漂浮式风力发电机组稳定控制方法
CN114294153B (zh) * 2022-01-10 2023-03-31 江苏金风科技有限公司 一种风力发电机组控制方法、装置及设备
CN115199471A (zh) * 2022-06-24 2022-10-18 兰州理工大学 一种基于偏航变桨联动控制降载的功率控制方法和系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100140940A1 (en) * 2009-12-04 2010-06-10 General Electric Company System and method for controlling wind turbine actuation
US20110006539A1 (en) * 2007-11-19 2011-01-13 Windsea As Floating Wind Power Apparatus
EP2317327A1 (en) * 2009-10-28 2011-05-04 SSB Wind Systems GmbH & Co. KG Wind sensor system using blade signals
US20110316277A1 (en) * 2008-12-30 2011-12-29 Statoil, Asa Blade Pitch Control in a Wind Turbine Installation
US20130214535A1 (en) * 2010-08-23 2013-08-22 Per Brath Method of operating a wind turbine and wind turbine
US20130241209A1 (en) * 2012-03-15 2013-09-19 Claus Andersen Method and arrangement for operating a wind turbine taking into account power losses
WO2016002321A1 (ja) * 2014-06-30 2016-01-07 株式会社日立製作所 風力発電設備および風力発電設備の監視システム、風力発電設備の監視方法
EP3020959A1 (en) * 2014-11-11 2016-05-18 ALSTOM Renewable Technologies Methods of operating a wind turbine and wind turbines

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100400861C (zh) 2004-02-27 2008-07-09 三菱重工业株式会社 风力发电装置及其主动式减振方法以及风车塔架

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110006539A1 (en) * 2007-11-19 2011-01-13 Windsea As Floating Wind Power Apparatus
US20110316277A1 (en) * 2008-12-30 2011-12-29 Statoil, Asa Blade Pitch Control in a Wind Turbine Installation
EP2317327A1 (en) * 2009-10-28 2011-05-04 SSB Wind Systems GmbH & Co. KG Wind sensor system using blade signals
US20100140940A1 (en) * 2009-12-04 2010-06-10 General Electric Company System and method for controlling wind turbine actuation
US20130214535A1 (en) * 2010-08-23 2013-08-22 Per Brath Method of operating a wind turbine and wind turbine
US20130241209A1 (en) * 2012-03-15 2013-09-19 Claus Andersen Method and arrangement for operating a wind turbine taking into account power losses
WO2016002321A1 (ja) * 2014-06-30 2016-01-07 株式会社日立製作所 風力発電設備および風力発電設備の監視システム、風力発電設備の監視方法
EP3020959A1 (en) * 2014-11-11 2016-05-18 ALSTOM Renewable Technologies Methods of operating a wind turbine and wind turbines

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DAVID SCHLIPF: "Prospects of Multivariable Feedforward Control of Wind Turbines Using Lidar", 2016 AMERICAN CONTROL CONFERENCE(ACC), JPN6019036917, 6 July 2016 (2016-07-06), US, pages 1393 - 1398, XP032932875, ISSN: 0004245105, DOI: 10.1109/ACC.2016.7525112 *
JACOB AHO: "Optimal Trajectory Tracking Control for Wind Turbines During Operating Region Transitions", 2013 AMERICAN CONTROL CONFERENCE(ACC), JPN6019036919, 17 June 2013 (2013-06-17), US, pages 1424 - 1429, XP032476119, ISSN: 0004245106, DOI: 10.1109/ACC.2013.6580036 *
NA WANG: "Lidar-Assisted Wind Turbine Feedforward Torque Controller Design Below Rated", 2014 AMERICAN CONTROL CONFERENCE(ACC), JPN6019036916, 4 June 2014 (2014-06-04), US, pages 3728 - 3733, XP032621232, ISSN: 0004245104, DOI: 10.1109/ACC.2014.6859039 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020041498A (ja) * 2018-09-12 2020-03-19 株式会社日立製作所 風力発電システムとその制御方法
CN113309663A (zh) * 2021-03-08 2021-08-27 新疆金风科技股份有限公司 用于风力发电机组的控制方法及控制装置

Also Published As

Publication number Publication date
EP3276166A1 (en) 2018-01-31
TW201809460A (zh) 2018-03-16
US20180034394A1 (en) 2018-02-01

Similar Documents

Publication Publication Date Title
JP2018017198A (ja) 風力発電システム
JP6559559B2 (ja) 風力発電システムおよび風力発電システムの運転方法
CN110446853B (zh) 用于管理风力涡轮机塔架的扭转振荡的系统和方法
US10590912B2 (en) Counteracting tower oscillations of an idling wind turbine
KR101660553B1 (ko) 윈드 터빈 설비에서의 블레이드 피치 제어
EP2107236B1 (en) Method of damping tower vibrations of a wind turbine and control system for wind turbines
CN109891091B (zh) 动态控制的风力涡轮机关闭
DK2063110T3 (en) Method for attenuating tower vibration of a wind turbine and slope control system
JP6506664B2 (ja) 風力発電システムまたは風力発電システムの制御方法
JP2019183802A (ja) 風力発電システム
JP2020041498A (ja) 風力発電システムとその制御方法
JP2014070516A (ja) 風力発電システム
JP2017145733A (ja) 風力発電装置および風力発電装置の制御方法
JP6554368B2 (ja) 風力発電システムまたは風力発電システムの制御方法
JP6388759B2 (ja) 浮体式風力発電装置
AU2020410032B2 (en) Wind turbine control
KR102515403B1 (ko) 풍력 터빈용 블레이드 피치 제어기
JP2018119427A (ja) 風力発電システムまたは風力発電システムの運転方法
WO2019049502A1 (ja) 風力発電装置
JP2020148092A (ja) 風力発電装置、風力発電装置の制御方法
JP2019090375A (ja) 風力発電システム及びその運転方法
JP2016145523A (ja) 風力発電装置とその運転方法
WO2023057029A1 (en) Method of damping motion of a floating wind turbine

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170111

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191003

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200331