JP2008201143A - 工作物の切断方法 - Google Patents

工作物の切断方法 Download PDF

Info

Publication number
JP2008201143A
JP2008201143A JP2008144757A JP2008144757A JP2008201143A JP 2008201143 A JP2008201143 A JP 2008201143A JP 2008144757 A JP2008144757 A JP 2008144757A JP 2008144757 A JP2008144757 A JP 2008144757A JP 2008201143 A JP2008201143 A JP 2008201143A
Authority
JP
Japan
Prior art keywords
workpiece
cutting
region
crushing
cut
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008144757A
Other languages
English (en)
Inventor
Michio Kameyama
美知夫 亀山
Takashi Nakayama
崇志 中山
Terukazu Azuma
輝和 東
Takamasa Suzuki
孝昌 鈴木
Tetsuaki Kamiya
哲章 神谷
Shinji Mukoda
慎二 向田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2008144757A priority Critical patent/JP2008201143A/ja
Publication of JP2008201143A publication Critical patent/JP2008201143A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】工作物の切断面におけるうねりの発生と工作物の切断時における挫屈の発生とを抑制することができる工作物の切断方法を提供する。
【解決手段】圧力容器の圧力室の中心付近において、内部に複数の破砕領域9が形成された工作物6を配置し、工作物6の外周には側圧伝達筒を配置し、側圧伝達筒の軸方向の両端部と圧力容器との間にはOリングを配置する。この工作物6の側面には平面6aを形成し、この平面6a側から高密度エネルギービーム8aを照射することによって破砕領域9を形成してある。そして、圧力室内に圧力媒体を導入することにより、側圧伝達筒を介して工作物6を加圧し、破砕領域9において工作物6を切断する。
【選択図】図4

Description

本発明は、ガラス、水晶、サファイア、炭化珪素等の脆性材料からなる工作物を、分離切断する方法に関するものである。
従来、工作物を分離切断する場合、一般的に用いられている方法は、砥石を用いて機械的に切断する方法である。この方法は、砥石の種類、大きさ、加工条件を任意に変えることで幅広い適応性がある。しかし、砥石幅分の切断代が必要であるため、切断代分の工作物が無駄になるという欠点がある。また、硬度の高い工作物は加工性が著しく悪く、砥石の寿命が短くなる等の問題がある。
これらの問題を解決する切断法として、工作物は脆性材に限られるが、側圧による切断方法が知られている。この切断方法では、まず、例えば棒形状にした脆性材である工作物の被切断部位に、ダイヤモンド等の工具を用いて工作物の表面を微少に砕く、或は引っ掻く等して微細な切欠(切欠)を形成する。そして、工作物のうちの切欠を形成した部位を含む部分に、樹脂等でできた側圧伝達筒を被せる。その後、工作物がその軸方向に変形自在な状態で、側圧伝達筒の外周から加圧圧縮することにより切欠部位において切断する。この切断方法の利点としては、切断代が全く無いこと、割断のため加工時間が著しく短いこと等があげられる。
しかしながら、上記した側圧による切断方法では、切欠を形成する際に工具等の固体が工作物と接触するため、接触条件によっては接触時に工作物に過大な応力が加わるという問題がある。また、切断の起点となる切欠のみを形成した状態で側圧を加えて切断するため、切断面における最も突出した部分と最も窪んだ部分の差であるうねりが大きくなってしまう。また、切断するにはかなり大きな側圧を加える必要があるため、工作物を薄い部材に切断しようとすると切断されたウェハ状の薄い部材が挫屈する恐れがある。
更に、工作物に切欠を形成するだけでは、側圧の印加方向と切断面の法線とが直角の位置関係に無い平面で工作物を切断(以下、斜めの切断という)したり、切断面が3次元形状になるように切断したりすることは非常に難しい。
本発明は、上記問題点に鑑み、工作物の切断面におけるうねりの発生と工作物の切断時における挫屈の発生とを抑制することができる工作物の切断方法を提供することを目的とする。また、任意の切断面を形成することができる工作物の切断方法を提供することを目的とする。
上記目的を達成するため、請求項1に記載の発明では、脆性材からなる工作物(6)の内部に高密度エネルギービーム(8a)を照射することにより、工作物のうちの切断する部位を指定する破砕領域(9)を形成する工程と、工作物のうちの少なくとも破砕領域を含む部位を側圧伝達筒(4)で覆う工程と、側圧伝達筒の外周に沿って側圧を加えて工作物に側圧を伝達することにより、破砕領域において工作物を切断する工程とを含むことを特徴としている。
本発明によれば、破砕領域を形成して工作物における切断する部位を指定しているため、工作物の切断面におけるうねりの発生を抑制することができる。また、予め破砕領域を形成しているため工作物を切断する際に大きな応力を必要としない。その結果、工作物の挫屈の発生を抑制することができる。また、工作物の内部において切断する部位を指定しているため、工作物を斜めに切断するなど、任意の切断面を形成することができる。
この請求項1の発明においては、請求項2に記載の発明のように、高密度エネルギービームを、工作物の外表面のうち該工作物の切断面となる領域における外縁部が位置する面から照射することができる。また、請求項3に記載の発明のように、高密度エネルギービームを、工作物の外表面のうち該工作物の切断面となる領域における外縁部を含む面以外の面から照射することもできる。
この場合、高密度エネルギービームが工作物の内部に最も効率良く進入するのは、高密度エネルギービームの入射角が0度のときであるため、請求項4に記載の発明のように、工作物の外表面のうち高密度エネルギービームを照射する部位に平面(6a、6b)を形成し、該平面から高密度エネルギービームを照射すると良い。
また、高密度エネルギービームを用いて工作物の内部に破砕領域を形成することにより、請求項5に記載の発明のように、破砕領域を3次元形状にすることができる。
また、破砕領域が平面であり高密度エネルギービームを工作物に照射する際は、請求項6に記載の発明のように、破砕領域の法線に平行な方向を中心軸として工作物を回動させることにより破砕領域を形成することができる。
この破砕領域は工作物の切断面となる領域の全面に設けても良いが、請求項7に記載の発明のように、工作物の切断面となる領域のうちの一部に対して形成しても工作物を切断することができる。
また、請求項8に記載の発明のように、破砕領域を複数形成する場合は、破砕領域は高密度エネルギービームの透過が悪いため、高密度エネルギービームを照射する側から距離が遠い部位から順に破砕領域を形成すると良い。
また、請求項1〜8の発明においては、高密度エネルギービームが工作物の内部に入射するように、請求項9に記載の発明のように、工作物は透過性の物質からなることが必要である。
また、請求項10に記載の発明のように、工作物の外表面のうち、高密度エネルギービームを照射する部位が鏡面であると、高密度エネルギービームが透過し易く、より安定した切断面を得ることができる。
また、上述のように、高密度エネルギービームの入射角が0度の場合が最も安定した破砕領域を形成することができるが、請求項11に記載の発明のように、工作物に対する高密度エネルギービームの入射角が0度以上45度以下であれば、好適に破砕領域を形成することができる。
また、工作物によって光を透過する際の屈折率が異なるため、請求項12に記載の発明のように、工作物の屈折率を考慮して高密度エネルギービームを照射すると好適である。
なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
(第1実施形態)
以下、図に示す実施形態について説明する。図1に本実施形態に係る側圧切断装置を概略断面図にて示す。まず、本実施形態の側圧切断方法で用いる側圧切断装置の構成を図1を参照して説明する。圧力容器1は高圧に耐え得る材質で構成された中空形状の部材からなり、圧力容器1の中空部によって円柱形状の圧力室1aが形成されている。また、圧力容器1には、圧力室1aの内部と外部とを連通する圧力媒体進入孔1bが形成されている。また、圧力媒体進入孔1bには、配管2を介して圧力装置3が接続されている。この圧力装置3は、後述のように圧力容器1に対して圧力媒体を導入するためのものである。
圧力室1aには、側圧伝達筒4が配置されている。この側圧伝達筒4は、アクリル樹脂等からなり、後述のように工作物を切断する際に、工作物の側面に圧力を加えるためのものである。側圧伝達筒4の軸方向の両端部と圧力容器1との間には、Oリング5が配置されている。このOリング5は、後述のように圧力媒体を圧力容器1内に充填する際に、圧力媒体が漏れて工作物の両端部にまでおよび、圧力媒体によって工作物に対して軸方向に縮むような圧力が加えられることを防止するためのものである。
そして、このような構成の側圧切断装置における側圧伝達筒4内に、脆性材からなる工作物6を配置してこの工作物6の切断を行う。この工作物6としては、例えば棒状のものを適用することができ、本実施形態では、直径が25mm、長さが30mmの円柱形状のソーダガラスを切断する。
この工作物6の側面(外表面)には、切断する部分を指定する切欠(ノッチ)7が形成されている。切欠7は、工作物6の切断面となる領域における外縁部のうちの一部分に形成されており、本実施形態では2mm間隔で10本形成されている。以下に、工作物6に切欠7を形成する方法について説明する。図2は、この切欠7の形成に係る高密度エネルギービーム装置8及び工作物6の模式的な斜視図である。
図2に示すように、高密度エネルギービーム装置8から高密度エネルギービーム(以下、単にビームという)8aを照射する。ビーム8aとしては、高調波YAGレーザを用いている。このレーザの波長は、1.064μm以下であることが好ましい。これは、波長が1.064μmより大きいと工作物6が割れる可能性があるためである。また、好ましくは、0.532μm、0.266μmなどの短波長レーザを用いると良く、本実施形態では、0.532μmの波長を採用している。
そして、工作物6の側面にビーム8aの焦点が合うようにして、出力1W、送り速度を300mm/minの条件で、図2中の矢印の方向に工作物6を移動させながらビーム8aを照射する。このようにして、工作物6の側面に工作物6の軸と直交するように、長さが約5mmの切欠7を形成する。
次に、工作物6の切断方法について説明する。図1に示すように、上述のようにして全ての切欠7が形成された工作物6を切断装置の側圧伝達筒4内に配置して、切欠7を含む部位を側圧伝達筒4で覆う。そして圧力容器1に対して、圧力装置3を用いて圧力媒体進入孔1bから圧力媒体を導入して圧力容器1と側圧伝達筒4との間に圧力媒体を充填する。この圧力媒体によって側圧伝達筒4の外周部が加圧圧縮され、工作物6に応力が加えられて切欠7を起点として工作物6が切断される。
本実施形態では、圧力媒体による液圧を約700kg/cmにした結果、ガラスを2mm間隔で9枚に切断することができた。この切断面の法線は、工作物6の軸と平行になっており、工作物6の側面における母線に対して直交する面で工作物6が切断された。切断後に切断面を観察したところ、切欠7が形成されていた部位には欠け等は見受けられず、良好な切断が行われていた。
このように、切欠7の形成をビーム8aを用いて行っているため、ダイヤモンドカッター等の工具によって砕いたり、引っ掻いたりして切欠を形成する場合のように固体が工作物6と接触する必要が無く、工作物6に過大な応力が加わることを防止することができる。その結果、切欠7を形成する際に、切欠7部位の周囲が欠けることを防止できる。また、割れやひび等の無い良好な切欠7を形成することができるため、特に、工作物6を薄い部材に切断しようとして切欠7の間隔が狭い場合にも、工作物6を切断する際に切欠7部位において挫屈が発生することを防止できる。ただし、工作物6の側面に切欠7を形成して大きな側圧を加えることにより切断しているため、切断面におけるうねりは0.1mm以上であった。
また、仮に、工作物6の切断面となる領域における外縁部の全て(全周囲)に切欠を形成した状態で切断を行うと、切断が複数の起点から起こることがある。その場合、切断面には段差が現れる。従って、本実施形態のように工作物6の切断面となる領域における外縁部のうちの一部分に切欠7を形成することが好ましい。また、このように一部分に切欠7を形成すると切欠7を形成する際に工作物6を回転させる必要が無く、効率良く切断部位を指定することができる。
また、更に微細な切欠7を形成するためには、ビーム8aとして電子ビーム8aを用いると好適である。
(第2実施形態)
第1実施形態の工作物6の切断方法では、切欠7の周辺における工作物6の欠けを防ぐことはできるが、切断面におけるうねりを低減することはできない。また、側圧の印加方向と切断面の法線とが直交し、切断面が平面である切断はできても、側圧の印加方向と切断面の法線とが任意の角度をなす切断を行うことは難しい。本実施形態は、このような不具合を改善するものである。
以下、図に示す実施形態について説明する。図3に本実施形態に係る側圧切断装置を概略断面図にて示す。本実施形態における側圧切断装置は第1実施形態と同様であり、側圧切断装置に配置される工作物6のみ異なるため、側圧切断装置の構成については、図中図1と同一符号を付して説明を省略する。
工作物6としては、第1実施形態と同様のサイズ、材質のものを切断する例について説明する。また、本実施形態は、斜めの切断(工作物6における切断面の法線と工作物6の軸とが平行になっていない切断)を行う例である。また、切断面は平面である。図3に示すように、工作物6には切断する部位を指定する破砕領域9が形成されている。破砕領域9は工作物6内に平面で形成され、破砕領域9の面における法線と工作物6の軸とのなす角αが10度になっている。
次に、破砕領域9の形成方法について図4を用いて説明する。図4は、破砕領域9の形成に係る高密度エネルギービーム装置8及び工作物6の模式的な斜視図である。図4に示すように、工作物6の外表面のうち工作物6の切断面となる領域における外縁部が位置する面である側面の一部には平面6aが形成されている。
この平面6aには鏡面仕上げが施されていることが望ましい。これは、表面が荒れている面にビーム8aを照射した場合、ビーム8aが散乱して工作物6の内部への透過を妨げるため、後述のようにビーム8aをこの平面6aに照射したときにビーム8aの透過が好適に行われるようにするためである。本実施形態では、平面6aの表面粗さはRz0.01μm以下に仕上げてある。また、ビーム8aの散乱を防ぐため、側面における平面6aの端部と側面における曲面との接続部分において、面取りを行わないか微少にすることが望ましい。更に、工作物6の表面に汚れが付着していないように、ビーム8aを照射する前に工作物6の洗浄を行う。
そして、この工作物6を側面における平面6aが高密度エネルギービーム装置8側に向くような状態でXYZテーブル上に配置する。そして、ビーム8aが工作物6の側面における平面6a側から照射され、ビーム8aの焦点が工作物6の内部に位置するように、工作物6及び高密度エネルギービーム装置8を位置決めする。その後、高密度エネルギービーム装置8からビーム8aを照射することにより、ビーム8aが焦点を結んだ点で微細破壊が起こる。
この際、工作物6における切断面となる領域の全面に破砕領域9を形成するために、工作物6の母線が常に平行な状態で工作物6とビーム8aとを相対移動する。具体的には、工作物6の軸と平行な方向を中心軸として工作物6を回転したり揺動したり(回動)する。または、工作物6における切断面となる領域を含む平面に対して平行となるようにして工作物6とビーム8aとを相対移動させても良い。具体的には、切断面となる領域の法線に平行な方向を中心軸として工作物6を回転したり揺動したりする。なお、安定した微細破砕を形成するためには、ビーム8aの入射角度が0度であることが好ましいが、入射角度が0度以上45度以下であれば微細破砕を形成することができる。
そして、このような工作物6の回転と、XYZテーブルを利用した工作物6のXYZ方向への移動とを調節して微細破壊を連続的に形成する。この際、所望の位置において微細破壊が起こるように工作物6の屈折率を考慮すると良い。このようにして、工作物6の切断面となる領域において破砕領域9を形成する。この破砕領域9は、例えば、工作物6の内部で工作物6が割れているような状態になっており、後述の工作物6の切断の際に、この破砕領域9で切断される。
なお、ビーム8aの波長や出力の条件は第1実施形態と同様であり、レーザの波長は1.064μm以下であることが望ましい。これは、波長が1.064μmより大きいと、レーザを工作物に照射することにより形成される破砕領域が大きくなって切断面における表面粗さが大きくなったり、工作物が割れたりする不具合が生じるためである。
この破砕領域9の形成においては、破砕領域9のうち、ビーム8aを照射する側、つまり、工作物6の側面における平面6a側から距離が遠い部位から順に形成するようにする。これは、工作物6において工作物6が破砕された点(以下、単に破砕点という)はビーム8aの透過性が悪いため、ビーム8aの照射軸上に破砕点が存在し、この破砕点よりも遠い部位に他の破砕点を形成することは困難であるためである。
このようにして切断面となる領域の全てにおいて破砕領域9を形成した後、第1実施形態と同様にして、工作物6を切断装置における側圧伝達筒4内に配置して切断を行う。本実施形態では、圧力媒体による液圧を約300kg/cmにした結果、工作物6を破砕領域9において切断することができた。そして、切断面を観察したところ、うねりが0.1mm以下であった。
ところで、本実施形態のように工作物6の内部に破砕領域9を形成することにより斜めの切断を行うことができる。また、破砕領域9を形成して切断面を指定しているため、工作物6の外表面に切欠を設け、この切欠を起点として切断する場合と比較してうねりの発生を抑制することができる。ただし、切断面におけるうねりよりもミクロな凹凸である表面粗さを観察したところ、破砕領域9を形成した分悪くなっている。しかし、この凹凸は研削で除去することができる。
また、一般に後工程において例えば研削加工を施す等して切断面を平面にするが、切断面のうねりが大きいと、この加工によるウェハ(切断された工作物6)の除去量が多くなる。このため、ウェハの内部にクラックや破砕層が入りやすくなる。その結果、特に工作物6として半導体を用いる場合は、そのクラック等が生じた領域に素子等を形成すると、その素子に不具合が生じる。しかし、本実施形態の切断方法では切断面におけるうねりを小さくすることができるため、研磨等による負荷の小さな加工で後工程を行うことが可能となり、ウェハ内部へのダメージを抑制することができ、信頼性の高いウェハを提供することができる。
また、予め破砕領域9を形成しているため、小さい側圧力で工作物6を切断することができる。その結果、工作物6の切断間隔が小さい場合も工作物6の挫屈の発生を抑制することができる。また、工作物6に対するビーム8aの入射角が大きいと工作物6の内部にビーム8aの焦点を結ぶことが困難であるが、工作物6に平面6aを形成しているためビーム8aを好適に工作物6の内部に導くことができる。
なお、工作物6の平面6aからビーム8aを照射することが望ましいが、曲面にビーム8aを照射しても工作物6の内部にビーム8aを導くことはできる。その場合は、ビーム8aの乱反射を防ぐために工作物6の側面の頂点にビーム8aを照射するようにすると良い。また、切断面となる領域の全面に破砕領域9を設けるためには、工作物6を回転させながらビーム8aを照射すれば良い。ただし、この場合は工作物6の回転軸を決定するなどの段取りが必要になるため、一般には、上述のように工作物6の側面に平面6aを形成してビーム8aを照射する方が容易である。
また、工作物6として半導体インゴットを用いるときは、インゴットにおけるオリエンテーションフラット加工された部位を上記側面における平面6aとして利用すると好適である。
(第3実施形態)
第2実施形態では工作物6の側面側から内部にビーム8aを照射する例について示したが、本実施形態では、工作物6の外表面のうち工作物6の切断面となる領域における外縁部を含む面以外の面である端面側からビーム8aを照射する例について示す。本実施形態における側圧切断装置は第2実施形態と同様であるため説明を省略する。以下、主として工作物6に対する破砕領域9の形成方法について、第2実施形態と異なる点について述べる。
図5は、破砕領域9の形成に係る高密度エネルギービーム装置8及び工作物6の模式的な斜視図である。本実施形態は、工作物6に対して斜めの切断を行う例であり、切断面は平面である。具体的には、第2実施形態と同様に、工作物6の軸と切断面となる領域の法線とのなす角αが10度になった平面で切断する。
図5に示すように、円柱形状の工作物6を端面6bが高密度エネルギービーム装置8側に向くような状態でXYZテーブル上に配置する。そして、この端面6b側からビーム8aを照射する。このビーム8aが照射される端面6bは、ビーム8aの散乱を防止するために鏡面であることが望ましく、本実施形態では表面粗さがRz0.01μm以下になっている。
ビーム8aを照射する際は、工作物6の内部にビーム8aの焦点が結ばれて微細破砕が形成されるように位置決めして行う。そして、XYZテーブル上に工作物6を載せて操作を行うことにより連続的に微細破砕を形成し破砕領域9とする。この場合、第2実施形態と同様に、破砕領域9のうちビーム8aを照射する側から遠い部位から順に破砕領域9を形成する。
図6は、この工作物6の切断の前後における工作物6の斜視図であって、(a)は切断する前の破砕領域9を形成した状態であり、(b)は切断後の状態を示す。上述のようにして全ての破砕領域9を形成した結果、図6(a)のように、複数(図示例では7部位)の破砕領域9が形成された状態になる。
その後、第1及び第2実施形態と同様に、工作物6を切断装置の側圧伝達筒4内に配置して切断を行うことにより破砕領域9における工作物6の切断を行う。その結果、本実施形態では、図6(b)に示すように、斜めの切断を良好に行うことができた。切断面は、第2実施形態と同様に、うねりは0.1mm以下であって良好であり、表面粗さは破砕されている分悪くなっている。
ところで、本実施形態のように、工作物6の端面6b側からビーム8aを照射する場合も、第2実施形態と同様の効果を発揮することができる。また、切断面となる領域の全面に破砕領域9を形成する際に、工作物6を回転したり揺動したりする必要が無く、容易に破砕領域9を形成することができる。また、特に、予め端面が平面である工作物6を用いれば、側面に平面を形成しなくてもビーム8aの乱反射を防止して良好に破砕領域9を形成することができる。
(第4実施形態)
上記第2及び第3実施形態では、切断面となる領域の全面に破砕領域9を設ける例について示したが、切断面となる領域の一部に対して破砕領域9を形成し(以下、このような破砕領域を部分的破砕領域という)ても良い。以下、工作物6の側面側からビーム8aを照射する場合について図7を用いて説明する。図7は、部分的破砕領域9を形成する際の工作物6の模式図であり、(a)は斜視図、(b)は(a)における白抜き矢印方向から見た透視図である。
図7に示すように、この工作物6にも側面に平面6aを形成している。そして、図7(b)に示すように、工作物6の側面における平面6aをこの平面6aの法線方向に延長した領域内に部分的破砕領域9を形成している。そして、切断する際には、この部分的破砕領域9を起点として切断が始まり、切断面となる領域に切断が広がっていく。これにより、部分的破砕領域9を形成する際に工作物6を回転したり揺動したりする必要が無いため、効率良く部分的破砕領域9を形成することができる。
この部分的破砕領域9を形成して工作物6を切断する方法は、特に、結晶が規則的に層状に形成された工作物6、例えば、単結晶の炭化珪素を層状の面に沿って切断する場合に適している。
なお、部分的破砕領域9を形成する際も、その形成位置によっては第2実施形態の様に工作物6を回転又は揺動させても良い。
(他の実施形態)
上記各実施形態は、切断面が平面である例について示したが、工作物を載せたXYZテーブルを適宜移動させて3次元の破砕領域を形成することもできる。これにより、切断面が3次元形状の切断を行うこともできる。特に、従来、ガラスレンズを製作する場合ガラスの切断面は平面であったため、切断した後に研削でレンズ形状にしていた。しかし、レンズ形状の3次元の破砕領域を形成することにより、研削でレンズ形状にする工程を省くことができる。このように、ビームを用いて工作物の内部に破砕領域を形成することにより、任意の切断面を形成することができる。
また、上記各実施形態に示す工作物の切断方法では、ガラス以外にも、SiやSiC等の半導体インゴットや、セラミック、水晶、サファイア等の脆性材料を切断することができる。ただし、第2〜第4実施形態の様に、工作物6の内部に破砕領域9を形成する場合は、ビーム8aが内部に焦点を結ぶことができるように、工作物6が透過性の物質からなることが必要である。
また、工作物の形状としては、一般的には円柱が望ましいが、円筒形状や六角柱など、様々な形状のものを用いることができる。また、必ずしも棒状の工作物を用いる必要は無く、側圧伝達筒の軸方向、つまり切断面となる領域における外縁部が位置する面である側面の母線方向に短く、ウェハに近い形状の工作物を用いても良い。また、複数の工作物を同時に側圧伝達筒内に嵌入しても良い。
また、第2及び第3実施形態の様に、工作物6の内部に破砕領域9を形成する場合は、側圧切断装置を用いずに他の方法で工作物6に応力を加えても、工作物6を切断することができる。具体的には、工作物6の側面に金属物等を用いて衝撃を与えたり、超音波等の振動を与えたり、加熱による熱膨張に起因する応力を利用したりすることができる。この方法は、場合によっては、第4実施形態のように部分的破砕領域9を形成する場合も可能である。
また、上記第2及び第3実施形態は、斜めの切断を行う例について示したが、工作物の軸と切断面の法線とが平行になるように切断しても良い。また、第2〜第4実施形態においては、破砕領域を形成する際にXYZの方向に移動可能なNCコントローラを利用して行うことにより、自動で破砕領域を形成することができる。このとき、予め工作物の屈折率を入力しておけば、自動で屈折率を考慮した補正を行って所望の位置においてビームの焦点を好適に結ぶことができる。
第1実施形態に係る側圧切断装置の概略断面図である。 第1実施形態における切欠の形成に係る高密度エネルギービーム装置及び工作物の模式的な斜視図である。 第2実施形態に係る側圧切断装置の概略断面図である。 第2実施形態における破砕領域の形成に係る高密度エネルギービーム装置及び工作物の模式的な斜視図である。 第3実施形態における破砕領域の形成に係る高密度エネルギービーム装置及び工作物の模式的な斜視図である。 第3実施形態に係る切断前後の工作物の斜視図である。 部分的破砕領域を形成する際の工作物の模式図である。
符号の説明
4 側圧伝達筒
6 工作物
6a 平面
6b 端面
7 切欠
8a ビーム
9 破砕領域

Claims (12)

  1. 脆性材からなる工作物(6)の内部に高密度エネルギービーム(8a)を照射することにより、前記工作物のうちの切断する部位を指定する破砕領域(9)を形成する工程と、
    前記工作物のうちの少なくとも前記破砕領域を含む部位を側圧伝達筒(4)で覆う工程と、
    前記側圧伝達筒の外周に沿って側圧を加えて前記工作物に側圧を伝達することにより、前記破砕領域において前記工作物を切断する工程とを含むことを特徴とする工作物の切断方法。
  2. 前記高密度エネルギービームを、前記工作物の外表面のうち該工作物の切断面となる領域における外縁部が位置する面から照射することを特徴とする請求項1に記載の工作物の切断方法。
  3. 前記高密度エネルギービームを、前記工作物の外表面のうち該工作物の切断面となる領域における外縁部を含む面以外の面から照射することを特徴とする請求項1に記載の工作物の切断方法。
  4. 前記工作物の外表面のうち前記高密度エネルギービームを照射する部位に平面(6a、6b)を形成し、該平面から前記高密度エネルギービームを照射することを特徴とする請求項2または3に記載の工作物の切断方法。
  5. 前記破砕領域が3次元形状であることを特徴とする請求項1ないし4のいずれか1つに記載の工作物の切断方法。
  6. 前記破砕領域が平面であり、前記高密度エネルギービームを照射する際に、前記破砕領域の法線に平行な方向を中心軸として前記工作物を回動させることを特徴とする請求項1ないし4のいずれか1つに記載の工作物の切断方法。
  7. 前記工作物の切断面となる領域のうちの一部に対して、前記破砕領域を形成することを特徴とする請求項1ないし6のいずれか1つに記載の工作物の切断方法。
  8. 前記破砕領域を複数形成し、前記高密度エネルギービームを照射する側から距離が遠い部位から順に、前記破砕領域を形成することを特徴とする請求項1ないし7のいずれか1つに記載の工作物の切断方法。
  9. 前記工作物は透過性の物質からなることを特徴とする請求項1ないし8のいずれか1つに記載の工作物の切断方法。
  10. 前記工作物の外表面のうち前記高密度エネルギービームを照射する部位が鏡面であることを特徴とする請求項1ないし9のいずれか1つに記載の工作物の切断方法。
  11. 前記工作物に対する前記高密度エネルギービームの入射角が0度以上45度以下であることを特徴とする請求項1ないし10のいずれか1つに記載の工作物の切断方法。
  12. 前記高密度エネルギービームを、前記工作物の屈折率を考慮して照射することを特徴とする請求項1ないし11のいずれか1つに記載の工作物の切断方法。
JP2008144757A 2008-06-02 2008-06-02 工作物の切断方法 Pending JP2008201143A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008144757A JP2008201143A (ja) 2008-06-02 2008-06-02 工作物の切断方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008144757A JP2008201143A (ja) 2008-06-02 2008-06-02 工作物の切断方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000162700A Division JP4399960B2 (ja) 2000-05-31 2000-05-31 工作物の切断方法

Publications (1)

Publication Number Publication Date
JP2008201143A true JP2008201143A (ja) 2008-09-04

Family

ID=39779092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008144757A Pending JP2008201143A (ja) 2008-06-02 2008-06-02 工作物の切断方法

Country Status (1)

Country Link
JP (1) JP2008201143A (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013049161A (ja) * 2011-08-30 2013-03-14 Hamamatsu Photonics Kk 加工対象物切断方法
CN103459082A (zh) * 2010-11-29 2013-12-18 尤里·杰奥尔杰维奇·施赖特尔 用垂直于分离面的激光束分离半导体晶体的表面层的方法
JP2016111148A (ja) * 2014-12-04 2016-06-20 株式会社ディスコ ウエーハの生成方法
JP2016111147A (ja) * 2014-12-04 2016-06-20 株式会社ディスコ ウエーハの生成方法
JP2016111146A (ja) * 2014-12-04 2016-06-20 株式会社ディスコ ウエーハの生成方法
JP2016111150A (ja) * 2014-12-04 2016-06-20 株式会社ディスコ ウエーハの生成方法
KR20160098054A (ko) * 2015-02-09 2016-08-18 가부시기가이샤 디스코 웨이퍼의 생성 방법
WO2016207277A1 (de) * 2015-06-23 2016-12-29 Siltectra Gmbh Verfahren zum führen eines risses im randbereich eines spendersubstrats mit einem geneigten laserstrahl
JP2017024188A (ja) * 2015-07-16 2017-02-02 株式会社ディスコ ウエーハの生成方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5398588A (en) * 1977-02-09 1978-08-29 Sato Kazuo Method of cutting works by side pressure
JPH04111800A (ja) * 1990-08-31 1992-04-13 Nippon Sekiei Glass Kk 石英ガラス材料の切断加工方法
JPH1171124A (ja) * 1997-07-07 1999-03-16 Schott Ruhrglas Gmbh ガラス物体に破断点を形成する方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5398588A (en) * 1977-02-09 1978-08-29 Sato Kazuo Method of cutting works by side pressure
JPH04111800A (ja) * 1990-08-31 1992-04-13 Nippon Sekiei Glass Kk 石英ガラス材料の切断加工方法
JPH1171124A (ja) * 1997-07-07 1999-03-16 Schott Ruhrglas Gmbh ガラス物体に破断点を形成する方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103459082A (zh) * 2010-11-29 2013-12-18 尤里·杰奥尔杰维奇·施赖特尔 用垂直于分离面的激光束分离半导体晶体的表面层的方法
JP2013049161A (ja) * 2011-08-30 2013-03-14 Hamamatsu Photonics Kk 加工対象物切断方法
JP2016111148A (ja) * 2014-12-04 2016-06-20 株式会社ディスコ ウエーハの生成方法
JP2016111147A (ja) * 2014-12-04 2016-06-20 株式会社ディスコ ウエーハの生成方法
JP2016111146A (ja) * 2014-12-04 2016-06-20 株式会社ディスコ ウエーハの生成方法
JP2016111150A (ja) * 2014-12-04 2016-06-20 株式会社ディスコ ウエーハの生成方法
KR20160098054A (ko) * 2015-02-09 2016-08-18 가부시기가이샤 디스코 웨이퍼의 생성 방법
KR102361278B1 (ko) 2015-02-09 2022-02-10 가부시기가이샤 디스코 웨이퍼의 생성 방법
WO2016207277A1 (de) * 2015-06-23 2016-12-29 Siltectra Gmbh Verfahren zum führen eines risses im randbereich eines spendersubstrats mit einem geneigten laserstrahl
CN107848067A (zh) * 2015-06-23 2018-03-27 西尔特克特拉有限责任公司 用倾斜激光射束在供体基底的边缘区域中引导裂纹的方法
CN107848067B (zh) * 2015-06-23 2020-10-27 西尔特克特拉有限责任公司 用倾斜激光射束在供体基底的边缘区域中引导裂纹的方法
US10994442B2 (en) 2015-06-23 2021-05-04 Siltectra Gmbh Method for forming a crack in the edge region of a donor substrate, using an inclined laser beam
US20210213643A1 (en) * 2015-06-23 2021-07-15 Siltectra Gmbh Method for forming a crack in an edge region of a donor substrate
JP2017024188A (ja) * 2015-07-16 2017-02-02 株式会社ディスコ ウエーハの生成方法

Similar Documents

Publication Publication Date Title
JP2008201143A (ja) 工作物の切断方法
JP4399960B2 (ja) 工作物の切断方法
CN107438581B (zh) 用于低损耗地制造多组分晶片的方法
JP4932956B2 (ja) 切断起点領域の形成方法
JP5917862B2 (ja) 加工対象物切断方法
JP4907965B2 (ja) レーザ加工方法
JP5134928B2 (ja) 加工対象物研削方法
KR101771420B1 (ko) 분할 방법
KR20170021731A (ko) 웨이퍼의 가공 방법
KR20170055909A (ko) SiC 기판의 분리 방법
KR20170021730A (ko) 웨이퍼의 가공 방법
CN107000125B (zh) 基于激光器的分离方法
JP2010003817A (ja) レーザーダイシング方法及びレーザーダイシング装置
JP2004111606A (ja) ウェーハの加工方法
TW201705243A (zh) 光元件晶片之製造方法
US20150158117A1 (en) System and method for obtaining laminae made of a material having known optical transparency characteristics
JP2007076953A (ja) ガラス板の切断方法及びガラス板切断装置
JP5894754B2 (ja) レーザ加工方法
JP2007227768A (ja) 半導体ウェハのダイシング方法
JP2007160920A (ja) ウェハおよびウェハの加工方法
JP2000117471A (ja) ガラスの加工方法及びその装置
KR20100015895A (ko) 반도체 바디로부터 얇은 디스크 또는 필름을 제조하기 위한 방법 및 장치
JP2007021527A (ja) レーザ加工方法
JP6065518B2 (ja) 切削工具の製造方法及び製造装置
RU2404931C1 (ru) Способ резки пластин из хрупких материалов

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110218

A131 Notification of reasons for refusal

Effective date: 20110222

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110719