JP2008199782A - 電力制御装置およびそれを備えた電動車両 - Google Patents

電力制御装置およびそれを備えた電動車両 Download PDF

Info

Publication number
JP2008199782A
JP2008199782A JP2007032125A JP2007032125A JP2008199782A JP 2008199782 A JP2008199782 A JP 2008199782A JP 2007032125 A JP2007032125 A JP 2007032125A JP 2007032125 A JP2007032125 A JP 2007032125A JP 2008199782 A JP2008199782 A JP 2008199782A
Authority
JP
Japan
Prior art keywords
voltage
power
phase
control unit
multiphase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007032125A
Other languages
English (en)
Inventor
Makoto Nakamura
誠 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007032125A priority Critical patent/JP2008199782A/ja
Publication of JP2008199782A publication Critical patent/JP2008199782A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Multiple Motors (AREA)

Abstract

【課題】過剰な回生電力を消費することなくシステム電圧の上昇を防止可能な電力制御装置およびそれを備えた電動車両を提供する。
【解決手段】走行状況の急変によりモータジェネレータの電力バランスが急変し、蓄電装置の充電電力許容値あるいはコンデンサC2の耐電圧を超える過剰電力が発生すると、3相コイル12の中性点N1と3相コイル14の中性点N2との間にコンデンサC3が接続される。制御装置は、インバータ20,30の零電圧ベクトルを制御することにより電圧VHに基づいて中性点N1,N2間に電圧差を発生させ、発生した過剰電力をコンデンサC3に蓄積させる。
【選択図】図3

Description

この発明は、電力制御装置およびそれを備えた電動車両に関し、特に、電動車両において過剰な回生電力が発生したときの電力制御に関する。
ハイブリッド車両(Hybrid Vehicle)や電気自動車(Electric Vehicle)など走行用の電動機を搭載する電動車両においては、車両の制動時に駆動輪の回転力を用いて電動機を回生発電させ、その発生した回生電力を蓄電装置に回収することが一般的に行なわれる。また、ハイブリッド車両においては、エンジンを用いて発電機を駆動し、発電機が発生した回生電力を用いて蓄電装置を充電するものが知られている。
このような電動車両においては、急ブレーキ時やスリップ時などに電力バランスが急変し、回生電力が急増する場合がある。そして、回生電力の急増によりシステム電圧が急激に上昇し、電動機や発電機を駆動するインバータの入力側に設けられた平滑コンデンサや蓄電装置に悪影響を与える可能性がある。
このような問題に対し、特開2004−254465号公報は、車両の回生制動時に発生する余剰電力を適切に処理してバッテリへの悪影響を抑止可能な回生制動装置を開示する。この回生制動装置においては、回生制動においてバッテリの好適な充電電力を超える余剰電力が回生発電の結果として発生すると、余剰電力の大きさに応じて複数の電気負荷から余剰電力消費負荷を選択し、その選択された余剰電力消費負荷により余剰電力を消費する。
この回生制動装置によれば、余剰電力を捨てようとした電気負荷が既に稼動中であって余剰電力を捨てられなかったり、余剰電力消費専用の電気負荷を別途増設しなければならないといった問題を引き起こすことなく、余剰電力を消費することができる。その結果、簡素な構成でバッテリへの悪影響を抑止することができる(特許文献1参照)。
特開2004−254465号公報 特開2002−218793号公報 特開2005−204361号公報
しかしながら、特開2004−254465号公報に開示された回生制動装置では、発生した過剰電力は、選択された電気負荷により消費されるので、電力を損失してしまう。
また、過剰電力を消費可能な適切な電気負荷がない場合には別途過剰電力消費専用の電気負荷を設けることになるが、その場合には、搭載スペース確保の関係上、できる限り負荷を小型化する必要がある。
それゆえに、この発明は、過剰な回生電力を消費することなくシステム電圧の上昇を防止可能な電力制御装置およびそれを備えた電動車両を提供することである。
また、この発明の別の目的は、過剰な回生電力を消費可能な負荷の小型化を図り得る電力制御装置およびそれを備えた電動車両を提供することである。
この発明によれば、電力制御装置は、第1および第2の多相交流電動機と、第1および第2のインバータと、コンデンサと、電圧制御部とを備える。第1の多相交流電動機は、星形結線された第1の多相巻線を固定子巻線として含む。第2の多相交流電動機は、星形結線された第2の多相巻線を固定子巻線として含む。第1および第2のインバータは、第1および第2の多相交流電動機にそれぞれ対応して設けられ、直流電力線に互いに並列に接続される。コンデンサは、第1の多相巻線の第1の中性点と第2の多相巻線の第2の中性点との間に接続される。電圧制御部は、第1および第2の中性点間の電圧差を制御することによって、第1および第2の多相交流電動機の少なくとも一方が発電する回生電力の一部をコンデンサに蓄積させる。
好ましくは、電力制御装置は、平滑コンデンサと、電圧検出装置とをさらに備える。平滑コンデンサは、直流電力線に接続される。電圧検出装置は、平滑コンデンサの両端の電圧を検出する。そして、電圧制御部は、電圧検出装置からの検出値に基づいて電圧差を制御する。
さらに好ましくは、電圧制御部は、電圧検出装置からの検出値が大きいほど電圧差を大きくする。
また、この発明によれば、電力制御装置は、第1および第2の多相交流電動機と、第1および第2のインバータと、誘導性負荷と、電圧制御部とを備える。第1の多相交流電動機は、星形結線された第1の多相巻線を固定子巻線として含む。第2の多相交流電動機は、星形結線された第2の多相巻線を固定子巻線として含む。第1および第2のインバータは、第1および第2の多相交流電動機にそれぞれ対応して設けられ、直流電力線に互いに並列に接続される。誘導性負荷は、第1の多相巻線の第1の中性点と第2の多相巻線の第2の中性点との間に接続される。電圧制御部は、第1および第2の中性点間の電圧差を高周波で変化させることによって、第1および第2の多相交流電動機の少なくとも一方が発電する回生電力の一部を誘導性負荷に消費させる。
好ましくは、電力制御装置は、平滑コンデンサと、電圧検出装置とをさらに備える。平滑コンデンサは、直流電力線に接続される。電圧検出装置は、平滑コンデンサの両端の電圧を検出する。そして、電圧制御部は、電圧検出装置からの検出値に基づいて電圧差の周波数を制御する。
さらに好ましくは、電圧制御部は、電圧検出装置からの検出値が大きいほど周波数を高くする。
好ましくは、電圧制御部は、電圧検出装置からの検出値に基づいて電圧差をさらに制御する。
好ましくは、誘導性負荷は、リアクトルを含む。
また、この発明によれば、電動車両は、上述したいずれかの電力制御装置と、電力制御装置に含まれる第1および第2の多相交流電動機の少なくとも一方に連結される駆動輪とを備える。
この発明においては、第1の多相巻線の第1の中性点と第2の多相巻線の第2の中性点との間にコンデンサが接続される。そして、電圧制御部により第1および第2の中性点間の電圧差を制御することによって、第1および第2の多相交流電動機の少なくとも一方が発電する回生電力の一部をコンデンサに蓄積させることができるので、過剰な回生電力の発生時に過剰電力をコンデンサに蓄えることができる。
したがって、この発明によれば、過剰な回生電力を消費することなくシステム電圧の上昇を防止することができる。
また、この発明においては、第1の多相巻線の第1の中性点と第2の多相巻線の第2の中性点との間に誘導性負荷が接続される。そして、電圧制御部により第1および第2の中性点間の電圧差を高周波で変化させることによって、第1および第2の多相交流電動機の少なくとも一方が発電する回生電力の一部を誘導性負荷に消費させることができるので、過剰な回生電力の発生時に過剰電力を誘導性負荷で消費させることができる。
したがって、この発明によれば、システム電圧の上昇を防止することができる。そして、過剰な回生電力を消費可能な負荷を抵抗で構成する場合に比べて負荷を小型化し得る。
以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。
[実施の形態1]
図1は、この発明の実施の形態1による電動車両の一例として示されるハイブリッド車両100の全体ブロック図である。図1を参照して、このハイブリッド車両100は、エンジン4と、モータジェネレータMG1,MG2と、動力分配機構3と、車輪2とを備える。また、ハイブリッド車両100は、蓄電装置Bと、昇圧コンバータ10と、インバータ20,30と、制御装置60と、コンデンサC1,C2と、正極線PL1,PL2と、負極線NLと、U相ラインUL1,UL2と、V相ラインVL1,VL2と、W相ラインWL1,WL2と、電圧センサ70,72と、電流センサ80,82とをさらに備える。さらに、ハイブリッド車両100は、電力線DCL1,DCL2と、リレー回路40と、コンデンサC3とをさらに備える。
このハイブリッド車両100は、エンジン4およびモータジェネレータMG2を動力源として走行する。動力分配機構3は、エンジン4とモータジェネレータMG1,MG2とに結合されてこれらの間で動力を分配する。たとえば、動力分配機構3としては、サンギヤ、プラネタリキャリヤおよびリングギヤの3つの回転軸を有する遊星歯車機構を用いることができる。この3つの回転軸がエンジン4およびモータジェネレータMG1,MG2の各回転軸にそれぞれ接続される。たとえば、モータジェネレータMG1のロータを中空としてその中心にエンジン4のクランク軸を通すことで動力分配機構3にエンジン4とモータジェネレータMG1,MG2とを機械的に接続することができる。モータジェネレータMG2の回転軸は、図示されない減速ギヤによって車輪2に結合されている。
そして、モータジェネレータMG1は、エンジン4によって駆動される発電機として動作し、かつ、エンジン4の始動を行ない得る電動機として動作するものとしてハイブリッド車両100に組込まれ、モータジェネレータMG2は、車輪2を駆動する電動機としてハイブリッド車両100に組込まれる。
蓄電装置Bの正極は、正極線PL1に接続され、蓄電装置Bの負極は、負極線NLに接続される。コンデンサC1は、正極線PL1と負極線NLとの間に接続される。
昇圧コンバータ10は、リアクトルL1と、npn型トランジスタQ1,Q2と、ダイオードD1,D2とを含む。npn型トランジスタQ1,Q2は、正極線PL2と負極線NLとの間に直列に接続される。各npn型トランジスタQ1,Q2のコレクタ−エミッタ間には、エミッタ側からコレクタ側へ電流を流すようにダイオードD1,D2がそれぞれ接続される。そして、リアクトルL1の一端は、npn型トランジスタQ1,Q2の接続点に接続され、その他端は、正極線PL1に接続される。
なお、上記のnpn型トランジスタおよび以下の本明細書中のnpn型トランジスタとして、たとえば、IGBT(Insulated Gate Bipolar Transistor)を用いることができ、また、npn型トランジスタに代えてパワーMOSFET(Metal Oxide Semiconductor Field-Effect Transistor)等の電力スイッチング素子を用いてもよい。
コンデンサC2は、正極線PL2と負極線NLとの間に接続される。インバータ20は、U相アーム22、V相アーム24およびW相アーム26を含む。U相アーム22、V相アーム24およびW相アーム26は、正極線PL2と負極線NLとの間に並列に接続される。U相アーム22は、直列に接続されたnpn型トランジスタQ11,Q12からなり、V相アーム24は、直列に接続されたnpn型トランジスタQ13,Q14からなり、W相アーム26は、直列に接続されたnpn型トランジスタQ15,Q16からなる。各npn型トランジスタQ11〜Q16のコレクタ−エミッタ間には、エミッタ側からコレクタ側へ電流を流すダイオードD11〜D16がそれぞれ接続される。
モータジェネレータMG1は、3相コイル12をステータコイルとして含む。3相コイル12を形成するU相コイルU1、V相コイルV1およびW相コイルW1の一端は、互いに接続されて中性点N1を形成し、U相コイルU1、V相コイルV1およびW相コイルW1の他端は、インバータ20のU相アーム22、V相アーム24およびW相アーム26の各々における上下アームの接続点にそれぞれ接続される。
インバータ30は、U相アーム32、V相アーム34およびW相アーム36を含む。モータジェネレータMG2は、3相コイル14をステータコイルとして含む。インバータ30およびモータジェネレータMG2の構成は、それぞれインバータ20およびモータジェネレータMG1と同様である。
リレー回路40は、リレーRY1,RY2を含む。そして、中性点N1に電力線DCL1の一方端が接続され、その他方端がリレーRY1の一端に接続される。また、中性点N2に電力線DCL2の一方端が接続され、その他方端がリレーRY2の一端に接続される。さらに、リレーRY1の他端にコンデンサC3の一方端が接続され、リレーRY2の他端にコンデンサC3の他方端が接続される。
蓄電装置Bは、充電可能な直流電源であり、たとえば、ニッケル水素やリチウムイオン等の二次電池からなる。蓄電装置Bは、直流電力を昇圧コンバータ10へ出力する。また、蓄電装置Bは、昇圧コンバータ10によって充電される。なお、蓄電装置Bとして、大容量のキャパシタを用いてもよい。
電圧センサ70は、蓄電装置Bの電圧VBを検出し、その検出値を制御装置60へ出力する。コンデンサC1は、正極線PL1と負極線NLとの間の電圧変動を平滑化する。
昇圧コンバータ10は、制御装置60からの信号PWCに基づいて、蓄電装置Bから受ける直流電圧をリアクトルL1を用いて昇圧し、その昇圧した昇圧電圧を正極線PL2に供給する。具体的には、昇圧コンバータ10は、制御装置60からの信号PWCに基づいて、npn型トランジスタQ2のスイッチング動作に応じて流れる電流をリアクトルL1に磁場エネルギーとして蓄積することによって蓄電装置Bからの直流電圧を昇圧する。そして、昇圧コンバータ10は、その昇圧した昇圧電圧をnpn型トランジスタQ2がオフされたタイミングに同期してダイオードD1を介して正極線PL2へ出力する。また、昇圧コンバータ10は、制御装置60からの信号PWCに基づいて、正極線PL2から供給される直流電圧を降圧して蓄電装置Bを充電する。
コンデンサC2は、正極線PL2と負極線NLとの間の電圧変動を平滑化する。電圧センサ72は、コンデンサC2の端子間電圧、すなわち負極線NLに対する正極線PL2の電圧VHを検出し、その検出値を制御装置60へ出力する。
インバータ20は、制御装置60からの信号PWM1に基づいて、正極線PL2から受ける直流電圧を3相交流電圧に変換し、その変換した3相交流電圧をモータジェネレータMG1へ出力する。また、インバータ20は、エンジン4からの出力を用いてモータジェネレータMG1が発電した3相交流電圧を制御装置60からの信号PWM1に基づいて直流電圧に変換し、その変換した直流電圧を正極線PL2へ出力する。
インバータ30は、制御装置60からの信号PWM2に基づいて、正極線PL2から受ける直流電圧を3相交流電圧に変換し、その変換した3相交流電圧をモータジェネレータMG2へ出力する。また、インバータ30は、車両の回生制動時、車輪2からの回転力を用いてモータジェネレータMG2が発電した3相交流電圧を制御装置60からの信号PWM2に基づいて直流電圧に変換し、その変換した直流電圧を正極線PL2へ出力する。
ここで、走行状況の急変(たとえば急ブレーキやスリップなど)によりモータジェネレータMG1,MG2の電力バランスが急変し、蓄電装置Bの充電電力許容値WinあるいはコンデンサC2の耐電圧を超えるような回生電力(以下、この超過電力を「過剰電力」とも称する。)が発生すると、インバータ20,30は、それぞれ中性点N1,N2の電圧を制御して中性点N1,N2間に電圧を発生させ、中性点N1,N2間に接続されたコンデンサC3にその過剰電力を蓄積させる。
モータジェネレータMG1,MG2の各々は、3相交流電動機であり、たとえばIPM(Interior Permanent Magnet)型3相交流同期電動機から成る。モータジェネレータMG1は、動力分配機構3によってエンジン4と連結され、エンジン4からの出力を用いて3相交流電圧を発生し、その発生した3相交流電圧をインバータ20へ出力する。また、モータジェネレータMG1は、インバータ20から受ける3相交流電圧によって駆動力を発生し、エンジン4の始動を行なう。モータジェネレータMG2は、車輪2と連結され、インバータ30から受ける3相交流電圧によって車両の駆動トルクを発生する。また、モータジェネレータMG2は、車両の回生制動時、3相交流電圧を発生してインバータ30へ出力する。
リレー回路40のリレーRY1,RY2は、電力線DCL1,DCL2とコンデンサC3との接続/切離しを行なう。リレー回路40は、制御装置60から受ける信号ENが活性化されるとリレーRY1,RY2をオンさせ、コンデンサC3を電力線DCL1,DCL2と電気的に接続する。
コンデンサC3は、走行状況の急変により発生した過剰電力を一時的に蓄積するために設けられる。コンデンサC3は、走行状況の急変により過剰電力が発生すると、リレー回路40によりモータジェネレータMG1,MG2の中性点N1,N2に接続され、中性点N1,N2から電力線DCL1,DCL2を介して与えられる電力を蓄積する。
電流センサ80は、モータジェネレータMG1に流れるモータ電流MCRT1を検出し、その検出値を制御装置60へ出力する。電流センサ82は、モータジェネレータMG2に流れるモータ電流MCRT2を検出し、その検出値を制御装置60へ出力する。
制御装置60は、モータジェネレータMG1,MG2のトルク指令値TR1,TR2およびモータ回転数MRN1,MRN2、電圧センサ70からの電圧VBならびに電圧センサ72からの電圧VHに基づいて、昇圧コンバータ10を駆動するための信号PWCを生成し、その生成した信号PWCを昇圧コンバータ10へ出力する。なお、トルク指令値TR1,TR2およびモータ回転数MRN1,MRN2は、図示されない車両ECU(Electronic Control Unit)によって算出される。
また、制御装置60は、電圧VH、トルク指令値TR1、電流センサ80からのモータ電流MCRT1およびモータジェネレータMG1のロータ回転位置θ1に基づいて、モータジェネレータMG1を駆動するための信号PWM1を生成し、その生成した信号PWM1をインバータ20へ出力する。さらに、制御装置60は、電圧VH、トルク指令値TR2、電流センサ82からのモータ電流MCRT2およびモータジェネレータMG2のロータ回転位置θ2に基づいて、モータジェネレータMG2を駆動するための信号PWM2を生成し、その生成した信号PWM2をインバータ30へ出力する。
さらに、制御装置60は、電圧VHに基づいて過剰電力が発生したか否かを判定し、過剰電力が発生したと判定すると、リレー回路40へ出力される信号ENを活性化する。そして、制御装置60は、中性点N1,N2間に電圧差を発生させるための電圧指令を生成し、その生成した電圧指令を用いて信号PWM1,PWM2を生成する。なお、電圧VHに代えて、蓄電装置Bの充電電力に基づいて過剰電力の発生有無を判定してもよい。
図2は、過剰電力の発生状況の一例を示した図である。図2を参照して、実線k1は、蓄電装置Bの充放電電力を示し、正値は放電を、負値は充電を示す。また、実線k2,k3は、それぞれモータジェネレータMG2,MG1の電力状態を示し、正値は力行状態(電力消費)を、負値は回生状態(発電)を示す。コンデンサC1,C2や図示されない補機などによる電力吸収があるものの、基本的には、実線k2で示される値と実線k3で示される値との和が実線k1となる。点線k4,k5は、それぞれ蓄電装置Bの放電電力許容値Woutおよび充電電力許容値Winを示す。
モータジェネレータMG2の消費電力とモータジェネレータMG1の発電電力とのバランスが取れている状態において、時刻t1においてスリップが発生すると、車両駆動力を発生するモータジェネレータMG2の負荷が急激に減少し、それに伴なってモータジェネレータMG2の消費電力が急激に減少する。この急激な変化にモータジェネレータMG1の発電制御は追従できず、蓄電装置Bの充電電力が急激に増大する。
そして、時刻t2において、蓄電装置Bの充電電力許容値Winを超える充電電力が蓄電装置Bに供給される。このとき、コンデンサC2(C1)の両端には、コンデンサC2(C1)の耐電圧を超えるような過大な電圧が発生する。そして、しばらくしてモータジェネレータMG1の発電電力が抑制され、時刻t3において、蓄電装置Bの充電電力が充電電力許容値Winを下回る(コンデンサC2の電圧VHも正常範囲内に復帰する。)。
そこで、この実施の形態1では、時刻t2〜t3に発生する過剰電力を中性点N1,N2間に接続されるコンデンサC3に蓄積し、モータジェネレータMG1,MG2の電力バランスが安定したところで、コンデンサC3に蓄積された電力を放電することとしたものである。
図3は、図1に示したインバータ20,30およびモータジェネレータMG1,MG2の零相等価回路を示した図である。図3を参照して、3相インバータであるインバータ20,30の各々においては、6個のnpn型トランジスタのオン/オフの組合わせは8パターン存在する。その8つのスイッチングパターンのうち2つは相間電圧が零となり、そのような電圧状態は零電圧ベクトルと称される。零電圧ベクトルについては、上アームの3つのトランジスタは互いに同じスイッチング状態(全てオンまたはオフ)とみなすことができ、また、下アームの3つのトランジスタも互いに同じスイッチング状態とみなすことができる。そこで、この図3では、インバータ20のnpn型トランジスタQ11,Q13,Q15は上アーム20Aとして総括的に示され、インバータ20のnpn型トランジスタQ12,Q14,Q16は下アーム20Bとして総括的に示されている。また、インバータ30のnpn型トランジスタQ21,Q23,Q25は上アーム30Aとして総括的に示され、インバータ30のnpn型トランジスタQ22,Q24,Q26は下アーム30Bとして総括的に示されている。
この零電圧ベクトルを用いて、インバータ20,30の各々において、対応するモータジェネレータのd軸電流およびq軸電流に変化を与えることなく、すなわちモータジェネレータのトルク制御に影響を与えることなく、対応する中性点の電位を制御することができる。
そこで、この実施の形態1では、車両状況の急変により過剰電力が発生したとき、インバータ20,30の各々の零電圧ベクトルを用いて中性点N1,N2間に電圧差を発生させ、中性点N1,N2間に接続されるコンデンサC3に過剰電力を蓄積させる。なお、中性点N1,N2間に発生させる電圧差は、コンデンサC2の電圧VHに基づいて算出される。
図4は、図1に示した制御装置60の機能ブロック図である。図4を参照して、制御装置60は、コンバータ制御部61と、第1のインバータ制御部62と、第2のインバータ制御部63と、電圧制御部64とを含む。コンバータ制御部61は、電圧センサ70からの電圧VB、電圧センサ72からの電圧VH、トルク指令値TR1,TR2およびモータ回転数MRN1,MRN2に基づいて、昇圧コンバータ10のnpn型トランジスタQ1,Q2をオン/オフするための信号PWCを生成し、その生成した信号PWCを昇圧コンバータ10へ出力する。
第1のインバータ制御部62は、モータジェネレータMG1のトルク指令値TR1、モータ電流MCRT1およびロータ回転位置θ1、ならびに電圧VHに基づいて、インバータ20のnpn型トランジスタQ11〜Q16をオン/オフするための信号PWM1を生成し、その生成した信号PWM1をインバータ20へ出力する。
第2のインバータ制御部63は、モータジェネレータMG2のトルク指令値TR2、モータ電流MCRT2およびロータ回転位置θ2、ならびに電圧VHに基づいて、インバータ30のnpn型トランジスタQ21〜Q26をオン/オフするための信号PWM2を生成し、その生成した信号PWM2をインバータ30へ出力する。
ここで、第1および第2のインバータ制御部62,63は、電圧制御部64から電圧指令値を受けているとき、その電圧指令値に基づいてそれぞれインバータ20,30の零電圧ベクトルを変化させて信号PWM1,PWM2を生成する。
電圧制御部64は、予め定められたしきい値VH0を電圧VHが超えると、リレー回路40へ出力される信号ENを活性化する。そして、電圧制御部64は、中性点N1,N2間に電圧差を発生させるための電圧指令値を電圧VHに基づいて生成し、その生成した電圧指令値を第1および第2のインバータ制御部62,63へ出力する。なお、しきい値VH0は、蓄電装置Bの充電電力許容値WinやコンデンサC2の耐電圧などを考慮して決定される。
図5は、図4に示した第1および第2のインバータ制御部62,63ならびに電圧制御部64の詳細な機能ブロック図である。図5を参照して、第1のインバータ制御部62は、電流変換部102と、MG1電流指令演算部104と、PI制御部106,108と、変換部110と、PWM信号生成部114とから成る。
電流変換部102は、モータジェネレータMG1のロータ回転位置θ1を用いて、電流センサ80によって検出されたU相電流Iu1およびV相電流Iv1をd軸電流Id1およびq軸電流Iq1に変換する。MG1電流指令演算部104は、モータジェネレータMG1のトルク指令値TR1に基づいて、d,q軸におけるモータジェネレータMG1の電流指令Id1r,Iq1rを算出する。
PI制御部106は、電流変換部102からのd軸電流Id1とMG1電流指令演算部104からの電流指令Id1rとの偏差を受け、その偏差を入力として比例積分演算を行ない、その演算結果を変換部110へ出力する。PI制御部108は、電流変換部102からのq軸電流Iq1とMG1電流指令演算部104からの電流指令Iq1rとの偏差を受け、その偏差を入力として比例積分演算を行ない、その演算結果を変換部110へ出力する。
変換部110は、ロータ回転位置θ1を用いて、PI制御部106,108からそれぞれ受けるd,q軸上の電圧指令をモータジェネレータMG1のU,V,W各相電圧指令に変換する。
PWM信号生成部114は、変換部110からのU,V,W各相電圧指令(以下「変調波」とも称する。)に基づいて、インバータ20に対応するPWM信号Pu1,Pv1,Pw1を生成する。ここで、PWM信号生成部114は、電圧制御部64から受ける電圧指令値に基づいてU,V,W各相変調波の中心値(以下「PWMセンター値」とも称する。)を変化させる。そして、PWM信号生成部114は、生成したPWM信号Pu1,Pv1,Pw1を信号PWM1としてインバータ20へ出力する。
なお、電圧制御部64から受ける電圧指令値に基づいてインバータ20におけるPWMセンター値を変化させることは、インバータ20の零電圧ベクトルを変化させることに対応する。
第2のインバータ制御部63は、電流変換部122と、MG2電流指令演算部124と、PI制御部126,128と、変換部130と、PWM信号生成部134とから成る。電流変換部122は、モータジェネレータMG2のロータ回転位置θ2を用いて、電流センサ82によって検出されたU相電流Iu2およびV相電流Iv2をd軸電流Id2およびq軸電流Iq2に変換する。MG2電流指令演算部124は、モータジェネレータMG2のトルク指令値TR2に基づいて、d,q軸におけるモータジェネレータMG2の電流指令Id2r,Iq2rを算出する。
PI制御部126は、電流変換部122からのd軸電流Id2とMG2電流指令演算部124からの電流指令Id2rとの偏差を受け、その偏差を入力として比例積分演算を行ない、その演算結果を変換部130へ出力する。PI制御部128は、電流変換部122からのq軸電流Iq2とMG2電流指令演算部124からの電流指令Iq2rとの偏差を受け、その偏差を入力として比例積分演算を行ない、その演算結果を変換部130へ出力する。
変換部130は、ロータ回転位置θ2を用いて、PI制御部126,128からそれぞれ受けるd,q軸上の電圧指令をモータジェネレータMG2のU,V,W各相電圧指令に変換する。
PWM信号生成部134は、変換部130からのU,V,W各相電圧指令に基づいて、インバータ30に対応するPWM信号Pu2,Pv2,Pw2を生成する。ここで、PWM信号生成部134は、電圧制御部64から受ける電圧指令値に基づいてPWMセンター値を変化させる。そして、PWM信号生成部134は、生成したPWM信号Pu2,Pv2,Pw2を信号PWM2としてインバータ30へ出力する。
なお、電圧制御部64から受ける電圧指令値に基づいてインバータ30におけるPWMセンター値を変化させることは、インバータ30の零電圧ベクトルを変化させることに対応する。
電圧制御部64は、指令演算部142と、乗算部144と、減算部146とから成る。指令演算部142は、電圧VHとしきい値VH0との偏差に基づいて、中性点N1,N2間に電圧差を発生させるための電圧指令値VRを生成する。
乗算部144は、指令演算部142からの電圧指令値VRをk倍(kは0以上1以下の定数)し、その演算結果を第1のインバータ制御部62のPWM信号生成部114へ出力する。減算部146は、乗算部144の出力値から電圧指令値VRを減算し、その演算結果を第2のインバータ制御部63のPWM信号生成部134へ出力する。
すなわち、指令演算部142によって算出された電圧指令値VRは、k倍されて第1のインバータ制御部62のPWM信号生成部114へ出力され、−(1−k)倍されて第2のインバータ制御部63のPWM信号生成部134へ出力される。つまり、kは、電圧指令値VRに相当する電圧差を中性点N1,N2間に生成する際のインバータ20,30の電圧分担率であって、kが0.5を超えるとインバータ20の電圧負担が大きくなり、kが0.5よりも小さいとインバータ30の電圧負担が大きくなる。
なお、電圧制御部64は、過剰電力が発生していないときは、電圧指令値VRを0とする。したがって、電圧制御部64から第1および第2のインバータ制御部62,63のPWM信号生成部114,134へ出力される電圧指令値は0となる。
図6は、図5に示したPWM信号生成部114,134における各相変調波の中心値の変化を示した図である。図6を参照して、実線k11は、PWM信号生成部114におけるPWMセンター値の変化を示し、実線k12は、PWM信号生成部134におけるPWMセンター値の変化を示す。また、UL,LLは、それぞれ搬送波の上限値および下限値を示し、CEは、搬送波の中央値を示す。
時刻t11において過剰電力が発生すると、電圧制御部64からの電圧指令値に基づいて、PWM信号生成部114におけるPWMセンター値は中央値CEから上昇する。一方、PWM信号生成部134には、PWM信号生成部114に与えられる電圧指令値と符号が異なる電圧指令値が与えられるので、PWM信号生成部134におけるPWMセンター値は、電圧制御部64からの電圧指令値に基づいて中央値CEから下降する。
そして、モータジェネレータMG1,MG2の電力バランスが安定した時刻t12において、電圧制御部64からの電圧指令値が0となり、PWMセンター値は中央値CEに復帰する。
ここで、PWMセンター値は、電圧制御部64の指令演算部142(図5)によって生成される電圧指令値VRに応じて変化するところ、指令演算部142は、PWMセンター値がステップ状に変化しないように、電圧指令値VRの変化に遅れを持たせる(たとえば一次遅れ)。これにより、中性点N1,N2間の電圧差がステップ状に変化するのを防止し、コンデンサC3に突入電流が流れるのを防止することができる。
図7は、電圧VHとPWMセンター値の変化量との関係を示した図である。図7を参照して、電圧VHがしきい値VH0を超えると、PWMセンター値が変化する。そして、電圧VHが上昇するほど、PWMセンター値の変化量は大きくなる。すなわち、電圧制御部64の指令演算部142(図5)は、電圧VHが上昇するほど電圧指令値VRを大きくする。
これにより、電圧VHが高いほど、すなわち過剰電力が大きいほど、中性点N1,N2間の電圧差が大きくなるように中性点N1,N2の電圧が制御され、コンデンサC3に多くの電力が蓄積される。
なお、上記においては、中性点N1,N2間に発生させる電圧差は、コンデンサC2の電圧VHに基づいて算出するものとしたが、蓄電装置Bの充電電力に基づいて算出してもよい。すなわち、電圧制御部64の指令演算部142(図5)において、蓄電装置Bの充電電力許容値Winを考慮して決定されるしきい値と充電電力との偏差に基づいて電圧指令値VRを算出してもよい。
以上のように、この実施の形態1においては、車両状況の急変により過剰電力が発生すると、リレー回路40により中性点N1,N2間にコンデンサC3が接続される。そして、電圧制御部64により中性点N1,N2間の電圧差が制御され、過剰電力がコンデンサC3に蓄積される。したがって、この実施の形態1によれば、過剰な回生電力を消費することなくシステム電圧の上昇を防止することができる。
また、インバータ20,30の零電圧ベクトルを制御してコンデンサC3に過剰電力を蓄積させるための電圧を生成するので、モータジェネレータMG1,MG2のトルク制御に影響を与えない。したがって、走行性能に影響を与えることなく、過剰電力をコンデンサC3に蓄積させることができる。
さらに、過剰電力を蓄積するためのコンデンサC3に与える電圧を生成するための専用コンバータを別途備える必要がないので、車両の軽量化や小型化を阻害することはない。
[実施の形態2]
図8は、実施の形態2による電動車両の一例として示されるハイブリッド車両100Aの全体ブロック図である。図8を参照して、このハイブリッド車両100Aは、図1に示した実施の形態1によるハイブリッド車両100の構成において、コンデンサC3に代えて誘導性負荷L2を備え、制御装置60に代えて制御装置60Aを備える。
誘導性負荷L2は、たとえばリアクトルから成り、鉄損(特にヒステリシス損)が極力大きくなるように設計されている。そして、誘導性負荷L2は、走行状況の急変により過剰電力が発生すると、モータジェネレータMG1,MG2の中性点N1,N2から電力線DCL1,DCL2を介して与えられる高周波の交流電力を鉄損により消費する。
制御装置60Aは、電圧センサ72からの電圧VHに基づいて過剰電力が発生したか否かを判定し、過剰電力が発生したと判定すると、中性点N1,N2間に高周波の交流電圧を発生させるための電圧指令を生成し、その生成した電圧指令を用いて信号PWM1,PWM2を生成する。なお、電圧VHに代えて、蓄電装置Bの充電電力に基づいて過剰電力の発生有無を判定してもよい。なお、制御装置60Aのその他の構成は、制御装置60と同じである。
図9は、図8に示したインバータ20,30およびモータジェネレータMG1,MG2の零相等価回路を示した図である。図9を参照して、図3で説明したように、零電圧ベクトルを用いて、インバータ20,30の各々において、対応のモータジェネレータのトルク制御に影響を与えることなく対応の中性点の電位を制御することができる。
そして、車両状況の急変により過剰電力が発生したとき、インバータ20,30の各々の零電圧ベクトルを用いて中性点N1,N2間に高周波の交流電圧を発生させ、中性点N1,N2間に接続される誘導性負荷L2に過剰電力を消費させる。
再び図5を参照して、制御装置60Aの電圧制御部64Aは、実施の形態1における電圧制御部64の構成において、指令演算部142に代えて指令演算部142Aを含む。指令演算部142Aは、電圧VHとしきい値VH0との偏差に基づいて、中性点N1,N2間に高周波の交流電圧を発生させるための電圧指令値VRを生成する。電圧制御部64Aのその他の構成は、電圧制御部64と同じである。
図10は、図9に示した誘導性負荷L2のBHカーブを示した図である。図10を参照して、横軸は磁界Hを示し、磁界Hは誘導性負荷L2に流される電流(励磁電流)に依存する。縦軸は磁束密度Bを示す。曲線150はヒステリシスカーブを示し、曲線150で囲まれる領域152の面積はヒステリシス損を示す。
誘導性負荷L2に交流電圧を印加すると、誘導性負荷L2は、1周期あたり領域152の面積に相当するヒステリシス損を発生する。そこで、この実施の形態2では、過剰電力の発生時、中性点N1,N2間に高周波の交流電圧を発生させ、中性点N1,N2間に接続される誘導性負荷L2に与えることによって過剰電力を誘導性負荷L2で消費させることとしたものである。
図11は、実施の形態2におけるPWM信号生成部114,134でのPWMセンター値の変化を示した図である。図11を参照して、実線k21は、PWM信号生成部114におけるPWMセンター値の変化を示し、実線k22は、PWM信号生成部134におけるPWMセンター値の変化を示す。
時刻t21において過剰電力が発生すると、電圧制御部64からの電圧指令値に基づいて、PWM信号生成部114におけるPWMセンター値は、中央値CEを中心として高周波で変動する。一方、PWM信号生成部134には、PWM信号生成部114に与えられる電圧指令値と符号が異なる電圧指令値が与えられるので、PWM信号生成部134におけるPWMセンター値は、PWM信号生成部114におけるPWMセンター値と逆位相で中央値CEを中心として高周波で変動する。
そして、モータジェネレータMG1,MG2の電力バランスが安定した時刻t22において、電圧制御部64Aからの電圧指令値が0となり、PWMセンター値は中央値CEで安定する。
図12は、電圧VHとPWMセンター値の変動周波数との関係を示した図である。図12を参照して、電圧VHがしきい値VH0を超えると、PWMセンター値は予め定められた周波数f0で変動する。そして、電圧VHが上昇するほど、PWMセンター値の変動周波数は高くなる。すなわち、電圧制御部64Aの指令演算部142A(図5)は、電圧VHが上昇するほど電圧指令値VRの変動周波数を高くする。
これにより、電圧VHが高いほど、すなわち過剰電力が大きいほど、中性点N1,N2間に発生させる交流電圧の周波数が高くなるように中性点N1,N2の電圧が制御され、誘導性負荷L2において消費される電力が大きくなる。
図13は、電圧VHとPWMセンター値の変動振幅との関係を示した図である。図13を参照して、電圧VHがしきい値VH0を超えると、PWMセンター値は予め定められた振幅AMP0で変動する。そして、電圧VHがしきい値VH1(>VH0)を超えると、電圧VHが上昇するほどPWMセンター値の振幅は大きくなる。すなわち、電圧制御部64Aの指令演算部142A(図5)は、電圧VHが上昇するほど電圧指令値VRの振幅を大きくする。
これにより、電圧VHがしきい値VH1よりも高い領域では、電圧VHが高いほど、すなわち過剰電力が大きいほど、中性点N1,N2間に発生させる交流電圧の振幅が大きくなるように中性点N1,N2の電圧が制御される。したがって、誘導性負荷L2の単位時間当りの鉄損(ヒステリシス損)が大きくなり、誘導性負荷L2において消費される電力はさらに増大する。
なお、上記においても、中性点N1,N2間に発生させる電圧差の周波数および振幅は、コンデンサC2の電圧VHに基づいて算出するものとしたが、蓄電装置Bの充電電力に基づいて算出してもよい。すなわち、電圧制御部64Aの指令演算部142A(図5)において、蓄電装置Bの充電電力許容値Winを考慮して決定されるしきい値と充電電力との偏差に基づいて、電圧指令値VRの変動周波数および振幅を算出してもよい。
以上のように、この実施の形態2においては、車両状況の急変により過剰電力が発生すると、リレー回路40により中性点N1,N2間に誘導性負荷L2が接続される。そして、電圧制御部64Aにより中性点N1,N2間の電圧差を高周波で変化させることによって、誘導性負荷L3の鉄損(主にヒステリシス損)を用いて過剰電力が消費される。したがって、この実施の形態2によれば、システム電圧の上昇を防止することができる。そして、過剰な回生電力を消費するための負荷を抵抗で構成する場合に比べて負荷を小型化し得る。
なお、上記の各実施の形態においては、電動車両の一例としてハイブリッド車両の場合について説明したが、この発明の適用範囲は、少なくとも2台のモータジェネレータを搭載した電気自動車や燃料電池自動車も含む。さらには、この発明は、一般に少なくとも2台のモータジェネレータを搭載した電動車両に適用可能である。
また、上記の各実施の形態においては、ハイブリッド車両100,100Aは、昇圧コンバータ10を備えるものとしたが、昇圧コンバータ10を備えないハイブリッド車両およびその他の電動車両においても、この発明は適用可能である。
なお、上記において、モータジェネレータMG1,MG2は、それぞれこの発明における「第1の多相交流電動機」および「第2の多相交流電動機」に対応し、3相コイル12,14は、それぞれこの発明における「第1の多相巻線」および「第2の多相巻線」に対応する。また、インバータ20,30は、それぞれこの発明における「第1のインバータ」および「第2のインバータ」に対応し、コンデンサC3は、この発明における「コンデンサ」に対応する。さらに、コンデンサC2は、この発明における「平滑コンデンサ」に対応し、電圧センサ72は、この発明における「電圧検出装置」に対応する。
今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
この発明の実施の形態1による電動車両の一例として示されるハイブリッド車両の全体ブロック図である。 過剰電力の発生状況の一例を示した図である。 図1に示すインバータおよびモータジェネレータの零相等価回路を示した図である。 図1に示す制御装置の機能ブロック図である。 図4に示す第1および第2のインバータ制御部ならびに電圧制御部の詳細な機能ブロック図である。 図5に示すPWM信号生成部における各相変調波の中心値の変化を示した図である。 電圧とPWMセンター値の変化量との関係を示した図である。 実施の形態2による電動車両の一例として示されるハイブリッド車両の全体ブロック図である。 図8に示すインバータおよびモータジェネレータの零相等価回路を示した図である。 図9に示す誘導性負荷のBHカーブを示した図である。 実施の形態2におけるPWM信号生成部でのPWMセンター値の変化を示した図である。 電圧とPWMセンター値の変動周波数との関係を示した図である。 電圧とPWMセンター値の変動振幅との関係を示した図である。
符号の説明
2 車輪、3 動力分配機構、4 エンジン、10 昇圧コンバータ、12,14 3相コイル、20,30 インバータ、20A,30A 上アーム、20B,30B 下アーム、22,32 U相アーム、24,34 V相アーム、26,36 W相アーム、40 リレー回路、60,60A 制御装置、61 コンバータ制御部、62 第1のインバータ制御部、63 第2のインバータ制御部、64,64A 電圧制御部、70,72 電圧センサ、80,82 電流センサ、100,100A ハイブリッド車両、102,122 電流変換部、104 MG1電流指令演算部、106,108,126,128 PI制御部、110,130 変換部、114,134 PWM信号生成部、124 MG2電流指令演算部、142,142A 指令演算部、144 乗算部、146 減算部、150 曲線、152 領域、B 蓄電装置、C1〜C3 コンデンサ、PL1,PL2 正極線、NL 負極線、L1 リアクトル、Q1,Q2,Q11〜Q16,Q21〜Q26 npn型トランジスタ、D1,D2,D11〜D16,D21〜D26 ダイオード、MG1,MG2 モータジェネレータ、UL1,UL2 U相ライン、VL1,VL2 V相ライン、WL1,WL2 W相ライン、N1,N2 中性点、U1,U2 U相コイル、V1,V2 V相コイル、W1,W2 W相コイル、DCL1,DCL2 電力線、RY1,RY2 リレー、L2 誘導性負荷。

Claims (9)

  1. 星形結線された第1の多相巻線を固定子巻線として含む第1の多相交流電動機と、
    星形結線された第2の多相巻線を固定子巻線として含む第2の多相交流電動機と、
    前記第1および第2の多相交流電動機にそれぞれ対応して設けられ、直流電力線に互いに並列に接続される第1および第2のインバータと、
    前記第1の多相巻線の第1の中性点と前記第2の多相巻線の第2の中性点との間に接続されるコンデンサと、
    前記第1および第2の中性点間の電圧差を制御することによって、前記第1および第2の多相交流電動機の少なくとも一方が発電する回生電力の一部を前記コンデンサに蓄積させる電圧制御部とを備える電力制御装置。
  2. 前記直流電力線に接続される平滑コンデンサと、
    前記平滑コンデンサの両端の電圧を検出する電圧検出装置とをさらに備え、
    前記電圧制御部は、前記電圧検出装置からの検出値に基づいて前記電圧差を制御する、請求項1に記載の電力制御装置。
  3. 前記電圧制御部は、前記電圧検出装置からの検出値が大きいほど前記電圧差を大きくする、請求項2に記載の電力制御装置。
  4. 星形結線された第1の多相巻線を固定子巻線として含む第1の多相交流電動機と、
    星形結線された第2の多相巻線を固定子巻線として含む第2の多相交流電動機と、
    前記第1および第2の多相交流電動機にそれぞれ対応して設けられ、直流電力線に互いに並列に接続される第1および第2のインバータと、
    前記第1の多相巻線の第1の中性点と前記第2の多相巻線の第2の中性点との間に接続される誘導性負荷と、
    前記第1および第2の中性点間の電圧差を高周波で変化させることによって、前記第1および第2の多相交流電動機の少なくとも一方が発電する回生電力の一部を前記誘導性負荷に消費させる電圧制御部とを備える電力制御装置。
  5. 前記直流電力線に接続される平滑コンデンサと、
    前記平滑コンデンサの両端の電圧を検出する電圧検出装置とをさらに備え、
    前記電圧制御部は、前記電圧検出装置からの検出値に基づいて前記電圧差の周波数を制御する、請求項4に記載の電力制御装置。
  6. 前記電圧制御部は、前記電圧検出装置からの検出値が大きいほど前記周波数を高くする、請求項5に記載の電力制御装置。
  7. 前記電圧制御部は、前記電圧検出装置からの検出値に基づいて前記電圧差をさらに制御する、請求項5または請求項6に記載の電力制御装置。
  8. 前記誘導性負荷は、リアクトルを含む、請求項4から請求項7のいずれか1項に記載の電力制御装置。
  9. 請求項1から請求項8に記載の電力制御装置と、
    前記電力制御装置に含まれる前記第1および第2の多相交流電動機の少なくとも一方に連結される駆動輪とを備える電動車両。
JP2007032125A 2007-02-13 2007-02-13 電力制御装置およびそれを備えた電動車両 Withdrawn JP2008199782A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007032125A JP2008199782A (ja) 2007-02-13 2007-02-13 電力制御装置およびそれを備えた電動車両

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007032125A JP2008199782A (ja) 2007-02-13 2007-02-13 電力制御装置およびそれを備えた電動車両

Publications (1)

Publication Number Publication Date
JP2008199782A true JP2008199782A (ja) 2008-08-28

Family

ID=39758230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007032125A Withdrawn JP2008199782A (ja) 2007-02-13 2007-02-13 電力制御装置およびそれを備えた電動車両

Country Status (1)

Country Link
JP (1) JP2008199782A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102075107A (zh) * 2010-12-17 2011-05-25 湘潭大学 一种三相四线制dc/ac变换器主电路及其控制方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102075107A (zh) * 2010-12-17 2011-05-25 湘潭大学 一种三相四线制dc/ac变换器主电路及其控制方法

Similar Documents

Publication Publication Date Title
JP4337797B2 (ja) 電力制御装置および電動車両
JP4491434B2 (ja) 電力制御装置およびそれを備えた車両
JP4752352B2 (ja) 交流電圧出力装置およびそれを備えたハイブリッド自動車
JP5751240B2 (ja) 交流電動機の制御システム
JP4591294B2 (ja) 電力制御装置およびそれを備えた電動車両
JP4742781B2 (ja) 交流電圧出力装置およびそれを備えたハイブリッド自動車
JP4517994B2 (ja) 充電制御装置および電動車両
WO2013008328A1 (ja) 車両の駆動装置
JP6645407B2 (ja) 駆動システム
JP2007099223A (ja) ハイブリッド自動車
JP2009189181A (ja) モータ駆動システムおよびその制御方法ならびに電動車両
WO2013051152A1 (ja) 電圧変換装置の制御装置及び制御方法
JP4412270B2 (ja) 電力出力装置およびそれを備えた車両
JP2010051092A (ja) 充電システムおよびそれを備えた車両
JP5780197B2 (ja) 電圧変換装置
JP5438328B2 (ja) 車両のモータ制御システム
JP2014139038A (ja) 車両
JP2008199782A (ja) 電力制御装置およびそれを備えた電動車両
JP2016100965A (ja) 電動車両
JP2010273512A (ja) モータ駆動システムおよび車両
JP2007189854A (ja) 車両の電源装置
JP5618012B2 (ja) 電圧変換装置の制御装置及び制御方法
JP2017070048A (ja) 電動機駆動制御システム
JP2012065479A (ja) モータ駆動装置およびそれを搭載する車両
JP2006101594A (ja) 動力出力装置およびそれを備えた車両

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090922

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110322