JP2008198715A - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP2008198715A
JP2008198715A JP2007030526A JP2007030526A JP2008198715A JP 2008198715 A JP2008198715 A JP 2008198715A JP 2007030526 A JP2007030526 A JP 2007030526A JP 2007030526 A JP2007030526 A JP 2007030526A JP 2008198715 A JP2008198715 A JP 2008198715A
Authority
JP
Japan
Prior art keywords
crystal
layer
channel region
type transistor
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007030526A
Other languages
English (en)
Inventor
Naoki Kusunoki
直樹 楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2007030526A priority Critical patent/JP2008198715A/ja
Publication of JP2008198715A publication Critical patent/JP2008198715A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】p型トランジスタとn型トランジスタの両者の動作速度を向上させることのできる半導体装置を提供する。
【解決手段】第1のゲート絶縁膜を介して形成された第1のゲート電極と、第1のチャネル領域と、第1の格子定数を有する第1の結晶からなり、前記Si基板の前記第1のチャネル領域を挟んだ領域に位置する上層、および前記第1の格子定数と異なる第2の格子定数を有する第2の結晶からなり、前記上層の下に位置する下層を含み、前記第1のチャネル領域に歪みを与える第1の歪み付与層と、を含む第1のトランジスタと、第2のゲート絶縁膜を介して形成された第2のゲート電極と、第2のチャネル領域と、前記第2の結晶からなり、前記Si基板の前記第2のチャネル領域を挟んだ領域に位置し、前記第2のチャネル領域に歪みを与える第2の歪み付与層と、を含む前記第1のトランジスタと異なる導電型を有する第2のトランジスタと、を有する。
【選択図】図1

Description

本発明は、エピタキシャル結晶成長法を用いた歪みシリコン技術を導入した半導体装置に関する。
近年、チャネル領域のSi結晶に歪みを与えてトランジスタの動作速度を向上させる、歪みシリコン技術を導入した半導体装置が報告されている。
従来の半導体装置として、p型トランジスタのチャネル領域を挟む位置に、Si結晶よりも格子定数の大きいSiGe結晶をエピタキシャル成長させることにより、チャネル領域に圧縮応力を加えて歪みを生じさせた半導体装置がある(例えば、特許文献1参照)。この特許文献1に記載の半導体装置によれば、チャネル領域を構成するSi結晶に圧縮歪みを生じさせることにより、チャネル領域中の電荷(正孔)の移動度を向上させ、p型トランジスタの動作速度を向上させることができる。
また、従来の他の半導体装置として、n型トランジスタのチャネル領域を挟む位置に、Si結晶よりも格子定数の小さいSiC結晶をエピタキシャル成長させることにより、チャネル領域に引張応力を加えて歪みを生じさせた半導体装置がある(例えば、特許文献2参照)。この特許文献1に記載の半導体装置によれば、チャネル領域を構成するSi結晶に引張歪みを生じさせることにより、チャネル領域中の電荷(電子)の移動度を向上させ、n型トランジスタの動作速度を向上させることができる。
p型トランジスタとn型トランジスタを混載した半導体装置を製造する場合、上記の特許文献1、特許文献2等に記載された技術を組み合わせれば、p型トランジスタとn型トランジスタの両者の動作速度を向上させることができる。
しかし、この場合、p型トランジスタとn型トランジスタでSiGe結晶とSiC結晶を使い分ける必要があるため、製造工程の複雑化や製造コストの増加の原因となるおそれがある。
特開2006−13428号 米国特許第6621131号明細書
本発明の目的は、2種以上のチャネル領域に応力を印加する結晶を併用せずに、混載されたp型トランジスタとn型トランジスタの両者の動作速度を向上させることのできる半導体装置を提供することにある。
本発明の一態様は、SiからなるSi基板と、前記Si基板上に第1のゲート絶縁膜を介して形成された第1のゲート電極と、前記Si基板の前記第1のゲート電極の下方に形成された第1のチャネル領域と、エピタキシャル結晶成長法により形成された第1の格子定数を有する第1の結晶からなり、前記Si基板の前記第1のチャネル領域を挟んだ領域に位置する上層、およびエピタキシャル結晶成長法により形成された前記第1の格子定数と異なる第2の格子定数を有する第2の結晶からなり、前記上層の下に位置する下層を含み、前記第1のチャネル領域に歪みを与える第1の歪み付与層と、を含む第1のトランジスタと、前記Si基板上に第2のゲート絶縁膜を介して形成された第2のゲート電極と、前記Si基板の前記第2のゲート電極の下方に形成された第2のチャネル領域と、前記第2の結晶からなり、前記Si基板の前記第2のチャネル領域を挟んだ領域に位置し、前記第2のチャネル領域に歪みを与える第2の歪み付与層と、を含む前記第1のトランジスタと異なる導電型を有する第2のトランジスタと、を有することを特徴とする半導体装置を提供する。
本発明によれば、2種以上のチャネル領域に応力を印加する結晶を併用せずに、混載されたp型トランジスタとn型トランジスタの両者の動作速度を向上させることのできる半導体装置を提供することができる。
〔第1の実施の形態〕
(半導体装置の構成)
図1は、本発明の第1の実施の形態に係る半導体装置の断面図である。半導体装置1は、Si基板2上に素子分離領域3により電気的に分離されたn型トランジスタ10およびp型トランジスタ20を有する。
Si基板2は、例えば{100}面を主面とするSi基板を用いることができる。なお、{100}面は、(100)面、および(100)面と等価な面を表す。
素子分離領域3は、例えば、SiO等の絶縁材料からなり、STI(Shallow Trench Isolation)構造を有する。
n型トランジスタ10は、Si基板2上にゲート絶縁膜11を介して形成されたゲート電極12と、ゲート電極12の側面に形成されたゲート側壁13と、Si基板2内のゲート電極12直下のチャネル領域17を挟む領域に形成されたSi層15と、Si層15の下に形成されたSiGe層14と、Si基板2内に形成されたエクステンション領域16eを含むソース・ドレイン領域16と、を有して概略構成される。
p型トランジスタ20は、Si基板2上にゲート絶縁膜21を介して形成されたゲート電極22と、ゲート電極22の側面に形成されたゲート側壁23と、Si基板2内のゲート電極22直下のチャネル領域27を挟む領域に形成されたSiGe層24と、Si基板2内に形成されたエクステンション領域26eを含むソース・ドレイン領域26と、を有して概略構成される。
ゲート絶縁膜11、21は、例えばSiO、SiONや、高誘電材料(例えば、HfSiON、HfSiO、HfO等のHf系材料、ZrSiON、ZrSiO、ZrO等のZr系材料、Y等のY系材料)からなる。
ゲート電極12、22は、例えば多結晶Siからなる。なお、ゲート電極12、22の上面に、例えばNi、Pt、Co、Er、NiPt、CoNi等の金属とSiとの化合物からなるシリサイド層が形成されてもよい。
ゲート側壁13、23は、それぞれ例えばSiNからなる単層構造や、例えばSiNとSiOからなる2層構造、更には3層以上の構造であってもよい。
SiGe層14は、Si基板2のn型トランジスタ10の領域に形成したトレンチ内にSiGe結晶をエピタキシャル成長させることにより形成する。SiGe結晶は、Si結晶よりも大きい格子定数を有する。なお、SiGe層14のGe濃度は、例えば10〜30原子%であることが好ましい。これは、10原子%未満ではGe含有による効果が小さく、30原子%を超えると結晶欠陥が増加する傾向があるためである。
Si層15は、SiGe層14上にSi結晶をエピタキシャル成長させることにより形成する。なお、Si層15の代わりにSiC層(図示しない)を形成してもよい。SiC層は、SiGe層14上にSiC結晶をエピタキシャル成長させることにより形成する。SiC結晶は、Si結晶よりも小さい格子定数を有する。なお、SiC層のC濃度は、例えば1〜3原子%であることが好ましい。これは、1原子%未満ではC含有による効果が小さく、3原子%を超えると結晶欠陥が増加する傾向があるためである。
SiGe層24は、Si基板2のp型トランジスタ20の領域に形成したトレンチ内にSiGe結晶をエピタキシャル成長させることにより形成する。なお、SiGe層24のGe濃度は、SiGe層14と同様に、例えば10〜30原子%であることが好ましい。
ソース・ドレイン領域16およびエクステンション領域16aは、As、P等のn型不純物イオンをSi基板2のn型トランジスタ10の領域に注入することにより形成される。なお、ソース・ドレイン領域16の上面に、例えばNi、Pt、Co、Er、NiPt、CoNi等の金属とSiを含む化合物からなるシリサイド層が形成されてもよい。
ソース・ドレイン領域26およびエクステンション領域26aは、B、BF等のp型不純物イオンをSi基板2のp型トランジスタ20の領域に注入することにより形成される。なお、ソース・ドレイン領域26の表面に、例えばNi、Pt、Co、Er、NiPt、CoNi等の金属とSiを含む化合物からなるシリサイド層が形成されてもよい。
図2A、図2Bは、n型トランジスタおよびp型トランジスタのチャネル領域に印加される応力の方向を示す断面図である。図2A中の引張応力Fs(矢印)は、n型トランジスタ10のチャネル領域17に印加されるSi基板2の表面に水平な方向の応力を概略的に示したものである。また、図2B中の圧縮応力Fc(矢印)は、p型トランジスタ20のチャネル領域27に印加されるSi基板2の表面に水平な方向の応力を概略的に示したものである。
例えば、Si基板2の主面が{100}面であり、n型トランジスタ10およびp型トランジスタ20のチャネル方向がSi基板2の<110>または<100>軸方向に平行である場合、図2A、図2Bに示すように、n型トランジスタ10のチャネル領域17にはチャネル方向に平行な方向の引張応力Fs、p型トランジスタ20のチャネル領域27にはチャネル方向に平行な方向の圧縮応力Fcがそれぞれ印加されることにより、電荷(n型トランジスタ10においては電子、p型トランジスタ20においては正孔)移動度が向上する。なお、<110>軸方向は、[110]軸方向、および[110]軸方向と等価な軸方向を表し、<100>軸方向は、[100]軸方向、および[100]軸方向と等価な軸方向を表す。
引張応力Fsおよび圧縮応力Fcの発生は、SiGe層14、24のSiGe結晶の格子定数と、Si層15およびSi基板2のSi結晶の格子定数が異なることに起因する。SiGe結晶の方がSi結晶よりも格子定数が大きいために、SiGe結晶に隣接するSi結晶はSiGe結晶とSi結晶の界面に沿った方向に引張応力を受けて引張歪みを生じ、それに伴い、SiGe結晶とSi結晶の界面に垂直な方向には圧縮歪みを生じる。チャネル領域17は主にSi層15を介してSiGe層14から応力を受け、チャネル方向の引張歪みを生じる。一方、チャネル領域27はSiGe層24から直接的に応力を受けてチャネル方向の圧縮歪みを生じる。
なお、Si層15の代わりにSiC結晶からなるSiC層を用いた場合、SiC結晶の方がSi結晶よりも格子定数が小さく、SiGe結晶との格子定数の差がより大きくなるため、歪みがさらに大きくなる。
(半導体装置の製造)
図3A(a)〜(d)、図3B(e)〜(h)は、本発明の第1の実施の形態に係る半導体装置の製造工程を示す断面図である。
まず、図3A(a)に示すように、Si基板2上に素子分離領域3を形成してn型トランジスタ10を形成するn型トランジスタ領域100とp型トランジスタ20を形成するp型トランジスタ領域200を分離した後、n型トランジスタ領域100にゲート絶縁膜11、ゲート電極12、およびダミー側壁18を形成し、p型トランジスタ領域200にゲート絶縁膜21、ゲート電極22、およびダミー側壁28を形成する。
次に、図3A(b)に示すように、ゲート電極12、22およびダミー側壁18、28をマスクとして用いてSi基板2にエッチングを施し、n型トランジスタ領域100にトレンチ19、p型トランジスタ領域200にトレンチ29を形成する。
次に、図3A(c)に示すように、トレンチ19、29の内面に露出したSi基板2の表面を下地としてSiGe結晶をエピタキシャル成長させ、n型トランジスタ領域100にSiGe層14、p型トランジスタ領域200にSiGe層24を形成する。SiGe結晶のエピタキシャル成長は化学蒸着チャンバー内で行い、例えば、モノシラン(SiH)、水素化ゲルマニウム(GeH)、水素ガス(H)等の雰囲気中で700〜750℃の温度条件で行う。
次に、図3A(d)に示すように、フォトリソグラフィ法等によりp型トランジスタ領域200にマスク4を形成し、n型トランジスタ領域100のSiGe層14のみを選択的に所定の深さまでエッチバックする。
次に、図3B(e)に示すように、n型トランジスタ領域100のSiGe層14の上に選択的にSi結晶をエピタキシャル成長させてSi層15を形成し、トレンチ19を埋める。Si結晶のエピタキシャル成長は化学蒸着チャンバー内で行い、例えば、モノシラン(SiH)、水素ガス(H)等の雰囲気中で700〜750℃の温度条件で行う。
なお、Si結晶の代わりにSiC結晶をSiGe層14の上にエピタキシャル成長させ、SiC層を形成してもよい。SiC結晶のエピタキシャル成長は化学蒸着チャンバー内で行い、例えば、モノシラン(SiH)、プロパン(C)、水素ガス(H)等の雰囲気中で700〜750℃の温度条件で行う。
次に、図3B(f)に示すように、マスク4およびダミー側壁18、28をエッチングにより除去した後、ゲート電極12、22をマスクとして用いて、イオン注入法により不純物イオンをSi基板2に注入し、n型トランジスタ領域100にソース・ドレイン領域16のエクステンション領域16e、p型トランジスタ領域200にソース・ドレイン領域26のエクステンション領域26eを形成する。ここで、n型トランジスタ領域100に注入する不純物イオンにはAs、P等のn型不純物イオン、p型トランジスタ領域200に注入する不純物イオンにはB、BF、In等のp型不純物イオンが用いられる。
次に、図3B(g)に示すように、ゲート電極12、22の側面にゲート側壁13、23をそれぞれ形成する。
次に、図3B(h)に示すように、ゲート電極12、22およびゲート側壁13、23をマスクとして用いて、イオン注入法により不純物イオンをSi基板2にエクステンション領域16e、26eより深くまで注入し、n型トランジスタ領域100にソース・ドレイン領域16、p型トランジスタ領域200にソース・ドレイン領域26を形成する。ここで、n型トランジスタ領域100にはエクステンション領域16eと同じ、または同じ導電型の不純物イオンが注入され、p型トランジスタ領域200にはエクステンション領域26eと同じ、または同じ導電型の不純物イオンが注入される。
(第1の実施の形態の効果)
本発明の第1の実施の形態によれば、SiGe結晶からなるSiGe層17によりn型トランジスタ10のチャネル領域17に引張応力Fsを印加することができるため、SiC等の他の結晶を用いずにSiGe結晶のみを用いて、p型トランジスタ20のみならず、n型トランジスタ10の動作速度を向上させることができる。
また、Si層15の代わりにSiC層を形成することにより、SiGe結晶とSiC結晶の2種の結晶を用いる必要があるものの、n型トランジスタ10の動作速度をより向上させることができる。例えば、SiGe結晶中のGe濃度には限界があるため、隣接するSi結晶に与える歪みの大きさにも限界がある。そこで、Si結晶の代わりにSiC結晶を用いれば、SiGe結晶との格子定数の差を大きくとることができるので、さらに歪みの大きさを増すことができる。
なお、SiGe層14の厚さは、SiGe層14の厚さとSi層15(またはSiC層)の厚さの合計の9〜50%であることが好ましい。これは、9%未満の場合はチャネル領域17に十分な引張応力Fsを印加することが難しく、50%を超える場合はSi層15(またはSiC層)の影響が薄れてSiGe層14がチャネル領域17に直接印加する応力が支配的になるために引張応力Fsが弱まり、場合によっては反対に圧縮応力が印加されるおそれがあるためである。
〔第2の実施の形態〕
本発明の第2の実施の形態に係る半導体装置1は、n型トランジスタ10のSiGe層14およびSi層15の代わりにSiC層、p型トランジスタ20のSiGe層24の代わりにSiC層およびSi層を用いる点で第1の実施の形態と異なる。なお、その他の部分の構成等、第1の実施の形態と同様の点については説明を省略する。
(半導体装置の構成)
図4は、本発明の第2の実施の形態に係る半導体装置の断面図である。半導体装置1は、Si基板2上に素子分離領域3により電気的に分離されたn型トランジスタ10およびp型トランジスタ20を有する。
n型トランジスタ10は、Si基板2上にゲート絶縁膜11を介して形成されたゲート電極12と、ゲート電極12の側面に形成されたゲート側壁13と、Si基板2内のゲート電極12直下のチャネル領域17を挟む領域に形成されたSiC層18と、Si基板2内に形成されたエクステンション領域16eを含むソース・ドレイン領域16と、を有して概略構成される。
p型トランジスタ20は、Si基板2上にゲート絶縁膜21を介して形成されたゲート電極22と、ゲート電極22の側面に形成されたゲート側壁23と、Si基板2内のゲート電極22直下のチャネル領域27を挟む領域に形成されたSi層25と、Si層25の下に形成されたSiC層28と、Si基板2内に形成されたエクステンション領域26eを含むソース・ドレイン領域26と、を有して概略構成される。
SiC層18は、Si基板2のn型トランジスタ10の領域に形成したトレンチ内にSiC結晶をエピタキシャル成長させることにより形成する。SiC結晶は、Si結晶よりも小さい格子定数を有する。なお、SiC層18のC濃度は、例えば1〜3原子%であることが好ましい。これは、1原子%未満ではC含有による効果が小さく、3原子%を超えると結晶欠陥が増加する傾向があるためである。
SiC層28は、Si基板2のp型トランジスタ20の領域に形成したトレンチ内にSiC結晶をエピタキシャル成長させることにより形成する。なお、SiC層28のC濃度は、SiC層18と同様に、例えば1〜3原子%であることが好ましい。
Si層25は、SiC層28上にSi結晶をエピタキシャル成長させることにより形成する。なお、Si層25の代わりにSiGe層(図示しない)を形成してもよい。SiGe層は、SiC層28上にSiGe結晶をエピタキシャル成長させることにより形成する。なお、SiGe層のGe濃度は、例えば10〜30原子%であることが好ましい。これは、10原子%未満ではGe含有による効果が小さく、30原子%を超えると結晶欠陥が増加する傾向があるためである。
図5A、図5Bは、n型トランジスタおよびp型トランジスタのチャネル領域に印加される応力の方向を示す断面図である。図5A中の引張応力Fs(矢印)は、n型トランジスタ10のチャネル領域17に印加されるSi基板2の表面に水平な方向の応力を概略的に示したものである。また、図5B中の圧縮応力Fc(矢印)は、p型トランジスタ20のチャネル領域27に印加されるSi基板2の表面に水平な方向の応力を概略的に示したものである。
例えば、Si基板2の主面が{100}面であり、n型トランジスタ10およびp型トランジスタ20のチャネル方向がSi基板2の<110>または<100>軸方向に平行である場合、図5A、図5Bに示すように、n型トランジスタ10のチャネル領域17にはチャネル方向に平行な方向の引張応力Fs、p型トランジスタ20のチャネル領域27にはチャネル方向に平行な方向の圧縮応力Fcがそれぞれ印加されることにより、電荷移動度が向上する。
引張応力Fsおよび圧縮応力Fcの発生は、SiC層18、28のSiC結晶の格子定数と、Si層25およびSi基板2のSi結晶の格子定数が異なることに起因する。SiC結晶の方がSi結晶よりも格子定数が小さいために、SiC結晶に隣接するSi結晶はSiC結晶とSi結晶の界面に沿った方向に圧縮応力を受けて圧縮歪みを生じ、それに伴い、SiC結晶とSi結晶の界面に垂直な方向には引張歪みを生じる。チャネル領域17はSiC層18から直接的に応力を受けてチャネル方向の引張歪みを生じる。一方、チャネル領域27は主にSi層25を介してSiC層28から応力を受け、チャネル方向の圧縮歪みを生じる。
なお、Si層25の代わりにSiGe結晶からなるSiGe層を用いた場合、SiGe結晶の方がSi結晶よりも格子定数が大きく、SiC結晶との格子定数の差がより大きくなるため、歪みがさらに大きくなる。
なお、第2の実施の形態に係る半導体装置1の製造方法は、n型トランジスタ10のSiGe層14およびSi層15の代わりにSiC層18、p型トランジスタ20のSiGe層24の代わりにSiC層28およびSi層25を形成する点以外は第1の実施の形態に係る半導体装置1の製造方法と同様であるので、説明を省略する。
(第2の実施の形態の効果)
本発明の第2の実施の形態によれば、SiC結晶からなるSiC層28によりp型トランジスタ20のチャネル領域27に圧縮応力Fcを印加することができるため、SiGe等の他の結晶を用いずにSiC結晶のみを用いて、n型トランジスタ10のみならず、p型トランジスタ20の動作速度を向上させることができる。
また、Si層25の代わりにSiGe層を形成することにより、SiGe結晶とSiC結晶の2種の結晶を用いる必要があるものの、p型トランジスタ20の動作速度をより向上させることができる。例えば、SiC結晶中のC濃度には限界があるため、隣接するSi結晶に与える歪みの大きさにも限界がある。そこで、Si結晶の代わりにSiGe結晶を用いれば、SiC結晶との格子定数の差を大きくとることができるので、さらに歪みの大きさを増すことができる。
なお、SiC層28の厚さは、SiC層28の厚さとSi層25(またはSiGe層)の厚さの合計の9〜50%であることが好ましい。これは、9%未満の場合はチャネル領域27に十分な圧縮応力Fcを印加することが難しく、50%を超える場合はSi層25(またはSiGe層)の影響が薄れてSiC層28がチャネル領域27に直接印加する応力が支配的になるために圧縮応力Fcが弱まり、場合によっては反対に引張応力が印加されるおそれがあるためである。
〔他の実施の形態〕
本発明は、上記各実施の形態に限定されず、発明の主旨を逸脱しない範囲内において種々変形実施が可能である。例えば、SiGe層14、24、またはSiC層28上に形成されるSiGe層の代わりに、Si結晶よりも格子定数の大きい結晶からなる他の層を用いてもよい。また、SiC層18、28、またはSiGe層14上に形成されるSiC層の代わりに、Si結晶よりも格子定数の小さい結晶からなる他の層を用いてもよい。
また、発明の主旨を逸脱しない範囲内において上記各実施の形態の構成要素を任意に組み合わせることができる。
以下に、本発明の実施例について具体的に説明するが、本発明はそれらによって限定されるものではない。
本実施例において、本発明の第1の実施の形態に係る半導体装置1のn型トランジスタ10のチャネル領域17に加わる応力の大きさをシミュレーションにより求めた。
図6は、シミュレーションに用いたn型トランジスタの構成図である。図中の縦軸はSi基板2の表面を原点とする深さを示し、横軸はゲート長の中心を原点とするチャネル長方向の距離を示す。ここで、ゲート長を34nm、SiGe層14の底面とSi基板2の界面の深さを80nm、SiGe層14およびSi層15の側面とSi基板2の界面のチャネル方向距離を62nm、SiGe層14のGe濃度を20atm%、測定点Cをチャネル方向距離0nm、深さ2nmの点と設定した。この様な構成において、SiGe層14とSi層15の界面の深さを変えながら、測定点Cに印加される応力を計算した。
図7は、SiGe層とSi層の界面の深さと測定点に印加される応力の関係についての計算結果を示すグラフである。図中の縦軸は測定点Cに印加される応力を示す。ここで、正の値を有する応力が引張応力、負の値を有する応力が圧縮応力である。また、図中の横軸はSi基板2の表面を原点としたSiGe層14とSi層15の界面の深さを示す。
図7に示されるように、SiGe層14とSi層15の界面の深さを浅くすると、30nm弱(約27.5nm)の深さを境界として、測定点Cに係る応力が引張応力から圧縮応力に切り替わる。これは、SiGe層14とSi層15の界面の深さが30nm弱よりも深い場合には、Si層15の影響が大きく現れるが、30nm弱よりも浅い場合には、その影響が薄れてSiGe層14が測定点Cに直接印加する応力が支配的になるためであると考えられる。なお、SiGe層14とSi層15の界面の深さが約27.5nmのとき、SiGe層14の厚さは、SiGe層14の厚さとSi層15の厚さの合計の約65%である。
また、図7に示されるように、SiGe層14とSi層15の界面の深さが約40〜73nm、即ちSiGe層14の厚さが、SiGe層14の厚さとSi層15の厚さの合計の9〜50%の場合に引張応力が特に効果的に働く。
本発明の第1の実施の形態に係る半導体装置の断面図である。 本発明の第1の実施の形態に係るn型トランジスタのチャネル領域に印加される応力の方向を示す断面図である。 本発明の第1の実施の形態に係るp型トランジスタのチャネル領域に印加される応力の方向を示す断面図である。 (a)〜(d)は、本発明の第1の実施の形態に係る半導体装置の製造工程を示す断面図である。 (e)〜(h)は、本発明の第1の実施の形態に係る半導体装置の製造工程を示す断面図である。 本発明の第2の実施の形態に係る半導体装置の断面図である。 本発明の第2の実施の形態に係るn型トランジスタのチャネル領域に印加される応力の方向を示す断面図である。 本発明の第2の実施の形態に係るp型トランジスタのチャネル領域に印加される応力の方向を示す断面図である。 本発明の実施例に係るシミュレーションに用いたn型トランジスタの構成図である。 本発明の実施例に係るSiGe層とSi層の界面の深さと測定点に印加される応力の関係についての計算結果を示すグラフである。
符号の説明
1 半導体装置
2 Si基板
10 n型トランジスタ
20 p型トランジスタ
11、21 ゲート絶縁膜
12、22 ゲート電極
14、24 SiGe層
15、25 Si層
17、27 チャネル領域
18、28 SiC層

Claims (5)

  1. SiからなるSi基板と、
    前記Si基板上に第1のゲート絶縁膜を介して形成された第1のゲート電極と、前記Si基板の前記第1のゲート電極の下方に形成された第1のチャネル領域と、エピタキシャル結晶成長法により形成された第1の格子定数を有する第1の結晶からなり、前記Si基板の前記第1のチャネル領域を挟んだ領域に位置する上層、およびエピタキシャル結晶成長法により形成された前記第1の格子定数と異なる第2の格子定数を有する第2の結晶からなり、前記上層の下に位置する下層を含み、前記第1のチャネル領域に歪みを与える第1の歪み付与層と、を含む第1のトランジスタと、
    前記Si基板上に第2のゲート絶縁膜を介して形成された第2のゲート電極と、前記Si基板の前記第2のゲート電極の下方に形成された第2のチャネル領域と、前記第2の結晶からなり、前記Si基板の前記第2のチャネル領域を挟んだ領域に位置し、前記第2のチャネル領域に歪みを与える第2の歪み付与層と、を含む前記第1のトランジスタと異なる導電型を有する第2のトランジスタと、
    を有することを特徴とする半導体装置。
  2. 前記第1の格子定数は前記第2の格子定数よりも小さく、前記第1のチャネル領域に与えられるチャネル方向の歪みは引張歪みであり、前記第2のチャネル領域に与えられるチャネル方向の歪みは圧縮歪みであることを特徴とする請求項1に記載の半導体装置。
  3. 前記第1の結晶は、SiまたはSiC結晶であり、
    前記第2の結晶は、SiGe結晶であることを特徴とする請求項2に記載の半導体装置。
  4. 前記第1の格子定数は前記第2の格子定数よりも大きく、前記第1のチャネル領域に与えられるチャネル方向の歪みは圧縮歪みであり、前記第2のチャネル領域に与えられるチャネル方向の歪みは引張歪みであることを特徴とする請求項1に記載の半導体装置。
  5. 前記第1の結晶は、SiまたはSiGe結晶であり、
    前記第2の結晶は、SiC結晶であることを特徴とする請求項4に記載の半導体装置。
JP2007030526A 2007-02-09 2007-02-09 半導体装置 Pending JP2008198715A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007030526A JP2008198715A (ja) 2007-02-09 2007-02-09 半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007030526A JP2008198715A (ja) 2007-02-09 2007-02-09 半導体装置

Publications (1)

Publication Number Publication Date
JP2008198715A true JP2008198715A (ja) 2008-08-28

Family

ID=39757412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007030526A Pending JP2008198715A (ja) 2007-02-09 2007-02-09 半導体装置

Country Status (1)

Country Link
JP (1) JP2008198715A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011515871A (ja) * 2008-03-25 2011-05-19 インターナショナル・ビジネス・マシーンズ・コーポレーション 引張り歪み及び/又は圧縮歪みを有する半導体デバイス並びに製造方法及び設計構造体
KR20110123733A (ko) * 2009-01-26 2011-11-15 글로벌파운드리즈 인크. 에피택셜 성장된 스트레스-유도 소오스 및 드레인 영역들을 가지는 mos 디바이스들의 제조 방법
JP2012049248A (ja) * 2010-08-25 2012-03-08 Renesas Electronics Corp 半導体装置およびその製造方法
CN102623342A (zh) * 2011-01-27 2012-08-01 格罗方德半导体公司 具有封装的压力源区域的半导体装置及制作方法
CN114267724A (zh) * 2022-03-01 2022-04-01 北京芯可鉴科技有限公司 横向双扩散场效应晶体管、制作方法、芯片及电路

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011515871A (ja) * 2008-03-25 2011-05-19 インターナショナル・ビジネス・マシーンズ・コーポレーション 引張り歪み及び/又は圧縮歪みを有する半導体デバイス並びに製造方法及び設計構造体
US8578305B2 (en) 2008-03-25 2013-11-05 International Business Machines Corporation Semiconductor devices having tensile and/or compressive strain and methods of manufacturing and design structure
US8916933B2 (en) 2008-03-25 2014-12-23 International Business Machines Corporation Semiconductor devices having tensile and/or compressive strain and methods of manufacturing and design structure
KR20110123733A (ko) * 2009-01-26 2011-11-15 글로벌파운드리즈 인크. 에피택셜 성장된 스트레스-유도 소오스 및 드레인 영역들을 가지는 mos 디바이스들의 제조 방법
KR101600553B1 (ko) * 2009-01-26 2016-03-07 글로벌파운드리즈 인크. 에피택셜 성장된 스트레스-유도 소오스 및 드레인 영역들을 가지는 mos 디바이스들의 제조 방법
JP2012049248A (ja) * 2010-08-25 2012-03-08 Renesas Electronics Corp 半導体装置およびその製造方法
CN102623342A (zh) * 2011-01-27 2012-08-01 格罗方德半导体公司 具有封装的压力源区域的半导体装置及制作方法
US8951873B2 (en) 2011-01-27 2015-02-10 GlobalFoundries, Inc. Semiconductor devices having encapsulated stressor regions and related fabrication methods
CN114267724A (zh) * 2022-03-01 2022-04-01 北京芯可鉴科技有限公司 横向双扩散场效应晶体管、制作方法、芯片及电路

Similar Documents

Publication Publication Date Title
KR100845175B1 (ko) 반도체 디바이스 및 그 제조 방법
TWI323944B (en) Semiconductor device and fabrication method thereof
JP5141029B2 (ja) 半導体装置とその製造方法
US6882025B2 (en) Strained-channel transistor and methods of manufacture
TWI254355B (en) Strained transistor with hybrid-strain inducing layer
US8299535B2 (en) Delta monolayer dopants epitaxy for embedded source/drain silicide
US7670934B1 (en) Methods for fabricating MOS devices having epitaxially grown stress-inducing source and drain regions
US7683436B2 (en) Semiconductor device having a pole-shaped portion and method of fabricating the same
JP4481181B2 (ja) 半導体装置およびその製造方法
US20100155790A1 (en) N-FET with a Highly Doped Source/Drain and Strain Booster
JP4664950B2 (ja) 半導体装置
CN108281422A (zh) 应变沟道的场效应晶体管
JP2009099702A (ja) 半導体装置及びその製造方法
US7776699B2 (en) Strained channel transistor structure and method
JP2009182297A (ja) 半導体装置、およびその製造方法
JP2007281038A (ja) 半導体装置
KR20150000386A (ko) 응력 변형된 반도체 구조물 형성 방법
US9947774B2 (en) Fin field effect transistor complementary metal oxide semiconductor with dual strained channels with solid phase doping
JP2009105163A (ja) 半導体装置
JP2008198715A (ja) 半導体装置
US9214514B2 (en) Mechanisms for forming semiconductor device having stable dislocation profile
WO2011033695A1 (ja) 半導体装置とその製造方法
JP2008171999A (ja) 半導体装置およびその製造方法
JP2011199112A (ja) 半導体装置およびその製造方法
JP2009064875A (ja) 半導体装置