JP2008197043A - 光信号測定装置 - Google Patents

光信号測定装置 Download PDF

Info

Publication number
JP2008197043A
JP2008197043A JP2007034608A JP2007034608A JP2008197043A JP 2008197043 A JP2008197043 A JP 2008197043A JP 2007034608 A JP2007034608 A JP 2007034608A JP 2007034608 A JP2007034608 A JP 2007034608A JP 2008197043 A JP2008197043 A JP 2008197043A
Authority
JP
Japan
Prior art keywords
light receiving
pds
optical signal
optical
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007034608A
Other languages
English (en)
Inventor
Mamoru Arihara
守 在原
Yasuyuki Suzuki
泰幸 鈴木
Hiroaki Kamiya
宏昭 神谷
Shuhei Okada
修平 岡田
Shin Kamei
伸 亀井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2007034608A priority Critical patent/JP2008197043A/ja
Publication of JP2008197043A publication Critical patent/JP2008197043A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Optical Communication System (AREA)

Abstract

【課題】光信号の光スペクトルを高精度で測定する高精度光モニタと、波長分割多重光の各チャネルの光強度を高速に測定する光チャネルモニタとを1台で実現することができる光信号測定装置を提供する。
【解決手段】光信号測定装置は、測定対象の光信号を波長毎に分散させる回折格子等の波長分散素子と、波長分散素子で波長毎に分散された光を、波長分散素子の分散方向に配列された複数のPD(フォトダイオード)21a〜21dで受光するPDA(フォトダイオードアレイ)21とを備える。切り替え部22は、PDA21に設けられたPD21a〜21dのうちの隣接する少なくとも2つの受光素子(例えば、PD21a,21b)を1つの受光素子とするか否かを切り替える。
【選択図】図2

Description

本発明は、波長分割多重(WDM:Wavelength Division Multiplexing)光等の光信号の強度又は波長スペクトルを測定する光信号測定装置に関する。
光信号測定装置は、一般的に回折格子等の波長分散素子とフォトダイオード等の受光素子とを備えた構成であり、波長分散素子で波長毎に異なる角度で波長分散された光信号を、波長分散素子を回転させながら受光素子で受光することにより光信号の光スペクトルを測定する装置である。近年においては、例えば以下の特許文献1に開示されている通り、波長分散素子と複数の受光素子を有する光検出器とを備え、波長分散素子を回転させずに各受光素子が設けられている位置と各受光素子から出力される信号の強度とから演算により光スペクトルを求める光信号測定装置が開発されている。
この光信号測定装置は、光検出器の単位長さ当たりの受光素子の数を多くすることで、光スペクトルを高精度で測定する高精度光モニタとして用いることができる。一方、測定する光信号の波長が既知である場合には、光信号に含まれる波長の数まで受光素子の数を減じることにより、波長分割多重光の各チャネルの光強度を測定する光チャネルモニタとして用いることができる。
光信号測定装置を波長分割多重光の光チャネルモニタとして用いる場合には、各ャネルの光が光検出器に入射する位置はチャネル毎にほぼ一定であるため、その入射位置にそれぞれ1つの受光素子を配置した構成にすれば良い。かかる構成にすることで、各受光素子から出力される信号の強度から波長分割多重光の各チャネルの光強度を高速に測定することができる。
尚、以下の特許文献2には複数の受光素子を有する光検出器から信号を読み出す回路が開示されており、以下の特許文献3には光検出器からの信号読み出しを高速に行う技術が開示されている。
特開2000−304614号公報 特開平9−55650号公報 特開2003−161655号公報
ところで、上述した高精度光モニタ及び光チャネルモニタは、光検出器が備える受光素子の数が異なる点において相違があるものの他の構成は殆ど同じであるため、1台で高精度光モニタと光チャネルモニタとを兼用することができるとも考えられる。しかしながら、高精度光モニタが備える光検出器は、受光面積が小さな受光素子を多数備えたものであるため、高精度での測定が可能ではあるが高速測定が困難である。
また、光チャネルモニタが備える光検出器は、受光面積が大きな受光素子を少数備えたものであるため、高速な測定が可能ではあるが高精度の測定が困難である。このように、従来の光信号測定装置は、構成が殆ど同じであるにも拘わらず、高精度光モニタと光チャネルモニタとを兼用することができない。このため、従来は、高精度光モニタと光チャネルモニタとを別々に用意して目的に応じてこれらを使い分ける必要があった。
本発明は上記事情に鑑みてなされたものであり、光信号の光スペクトルを高精度で測定する高精度光モニタと、波長分割多重光の各チャネルの光強度を高速に測定する光チャネルモニタとを1台で実現することができる光信号測定装置を提供することを目的とする。
上記課題を解決するために、本発明の光信号測定装置は、測定対象の光信号を波長毎に分散させる波長分散素子(14)と、当該波長分散素子で分散された光を前記波長分散素子の分散方向に配列された複数の受光素子(21a〜21f)で受光する光検出器(16)とを備える光信号測定装置(1)において、前記光検出器に設けられた複数の受光素子のうちの隣接する少なくとも2つの受光素子を1つの受光素子とするか否かを切り替える切替部(22)を備えることを特徴としている。
この発明によると、光検出器に設けられた複数の受光素子のうちの隣接する少なくとも2つの受光素子を1つの受光素子とするか否かが切替部によって切り替えられる。
また、本発明の光信号測定装置は、前記切替部が、隣接する受光素子間に設けられ、当該隣接する受光素子を電気的に接続するか否かを切り替えるスイッチ(22a〜22e)を備えることを特徴としている。
また、本発明の光信号測定装置は、前記光検出器に設けられた複数の受光素子の何れか一つを順次選択する選択部(23)と、前記選択部で選択された受光素子の出力信号を増幅する増幅部(24)とを備え、前記選択部は、前記切替部の切り替え状況に応じて前記受光素子の選択方法を変えることを特徴としている。
また、本発明の光信号測定装置は、前記切替部が、前記複数の受光素子のうちの奇数番目の受光素子の何れか一つを順次選択する第1選択部(41a)と、前記複数の受光素子のうちの偶数番目の受光素子の何れか一つを前記第1選択部に同期して順次選択する第2選択部(41b)と、前記第1選択部で選択された受光素子の出力信号と、前記第2選択部で選択された受光素子の出力信号とを加算する加算部(43)とを備えることを特徴としている。
更に、本発明の光信号測定装置は、前記切替部が、前記第1選択部で選択された受光素子の出力信号を増幅する第1増幅部(42a)と、前記第2選択部で選択された受光素子の出力信号を増幅する第2増幅部(42b)とを備えることを特徴としている。
本発明によれば、光検出器に設けられた複数の受光素子のうちの隣接する少なくとも2つの受光素子を1つの受光素子とするか否かを切替部によって切り替えているため、受光素子の各々を個別の受光素子として用いることも、隣接する複数の受光素子を1つの受光素子として用いることもでき、光信号の光スペクトルを高精度で測定する高精度光モニタと、波長分割多重光の各チャネルの光強度を高速に測定する光チャネルモニタとを1台で実現することができるという効果がある。
以下、図面を参照して本発明の実施形態による光信号測定装置について詳細に説明する。
〔第1実施形態〕
図1は、本発明の第1実施形態による光信号測定装置の全体構成の概略を示す図である。図1に示す通り、本実施形態の光信号測定装置1は、光ファイバ11、レンズ12、プリズム13、回折格子14(波長分散素子)、レンズ15、PDA(PhotoDiode Array:フォトダイオードアレイ)モジュール16(光検出器)、及び演算回路17を備える。光ファイバ11は、外部から入力される測定対象の光信号を、光信号測定装置1内の所定の位置に導くものである。レンズ12は、光ファイバ11の射出端11aから射出された光信号を平行光に変換する。
プリズム13は、レンズ12から射出される平行光を所定の角度をもって回折格子14に入射させるとともに、回折格子14で回折された光をレンズ15に向かう方向に偏向させる。回折格子14は、紙面に交差する方向に延びる格子が配列形成された平面状の回折面14aを有しており、プリズム13を介して入射する光信号を、その波長に応じた角度で回折する。尚、回折格子14の回折方向(分散方向)は、回折格子14で回折された光の進行方向に交差する方向であって、紙面内に含まれる方向である。
レンズ15は、回折格子14で回折されてプリズム13により偏向された光を、PDAモジュール16の受光面16a上に集光する。PDAモジュール16は、複数のPD(Photo Diode:フォトダイオード)(受光素子)を配列してなるPDAを備えており、レンズ15で集光される光をPDAで受光して光電変換する。尚、PDAモジュール16が備えるPDAは、受光面16a上において、複数のPDが回折格子14の分散方向(回折格子14で回折された光の進行方向に交差する方向であって、紙面内に含まれる方向)に配列されるよう配置されている。
具体的には、PDAモジュール16が備えるPDAの個々のPDは、配列方向における幅が25μmであり、配列方向に交差する方向の長さが数百μm〜数mm程度である。かかる大きさのPDの各々が、25μmの間隔をもって配列方向に複数配列されている。尚、PDの配列数は任意で良いが、例えばPDが640個程度配列されたPDAを用いることができる。
演算回路17は、PDAモジュール16から出力される信号に対して所定の演算処理を施して外部から入力される測定対象の光信号の波長及びパワー又は光スペクトルを求める。演算回路17で求められた光信号の波長及びパワー又は光スペクトルは、ディジタル信号として外部に出力される。尚、光信号測定装置1に表示装置が設けられている場合には、演算回路17で求められた光信号の波長及びパワー又は光スペクトルを、その表示装置に表示させることもできる。
図2は、本発明の第1実施形態による光信号測定装置の要部構成を示す回路図である。図1に示す回路は、PDA21、切り替え部22(切替部)、選択スイッチ23(選択部)、及び増幅部24からなる回路である。PDA21は、図1に示したPDAモジュール16内に設けられ、切り替え部22、選択スイッチ23、及び増幅部24は、図1に示した演算部17内に設けられる。
図2に示すPD21a〜21dは、PDA21に設けられた複数のPDを示している。尚、ここでは、PD21a〜PD21dのみを図示しているが、これら以外にも複数のPDが設けられている。PDA21a〜21dは、カソード電極が接地されており、アノード電極が端子T1〜T4にそれぞれ接続されている。尚、ここではPD21a〜PD21dが図示の順で配列されているものとする。つまり、PD21aとPD21bとが隣接し、PD21bとPD21cとが隣接し、PD21cとPD21dとが隣接するものとする。
切り替え部22は、PDA21に設けられた複数のPD21a〜21dのうちの隣接する少なくとも2つのPDを1つのPDとするか否かを切り替えるものである。図2に示す例においては、切り替え部22は、PD21a,21bのアノード電極間に設けられたスイッチ22aと、PD21c,21dのアノード電極間に設けられたスイッチ22bとを備えている。
スイッチ22a,22bが開状態である場合には、PD21a〜21dは個別のPDとして用いることができる。これに対し、スイッチ22aを閉状態にすると、PD21a,21bのアノード電極が電気的に接続され、PD21a,21bを1つのPDとして用いることができる。また、スイッチ22bを閉状態にすると、PD21c,21dのアノード電極が電気的に接続され、PD21c,21dを1つのPDとして用いることができる。尚、ここでは、スイッチ22a,22bのみを図示しているが、これら以外にも、隣接する2つのPDを単位として上記のスイッチと同様のスイッチが設けられている。
選択スイッチ23は、PD21a〜21dで光電変換された信号を順次読み出す(取り出す)ために、PDA21に設けられた複数のPD21a〜21dの何れか1つを順次選択するものである。この選択スイッチ23は、切り替え部22の切り替え状況に応じてその選択方向を変える。具体的には、切り替え部22のスイッチ22a,22bが共に開状態である場合には、順次端子T1〜T4と電気的接続状態になることにより、PD21a〜21dを順次選択する。これに対し、切り替え部22のスイッチ22a,22bが共に閉状態である場合には、端子T1,T2の何れか一方と電気的接続状態になって1つのPDとされているPD21a,21bを選択し、その後端子T3,T4の何れか一方と電気的接続状態になって1つのPDとされているPD21c,21dを選択する。
増幅部24は、オペアンプ25と、オペアンプ25の出力端と反転入力端とに接続された抵抗26とを備えた反転増幅回路であり、PD21a〜21dから順次読み出された信号を所定の増幅率で増幅する。この増幅部24で増幅された信号は、演算回路17において所定の演算処理が施される。これにより、外部から入力される測定対象の光信号の波長及びパワー又は光スペクトルが求められる。
図3は、本発明の第1実施形態による光信号測定装置の要部構成の変形例を示す回路図である。図2に示す回路は隣接する2つのPDを1つのPDとする回路であったが、図3に示す回路は隣接する3つのPDを1つのPDとする回路である。尚、図3においては、図2に示す構成に相当する構成については同一の符号を付してある。図3に示す回路は、図2に示す回路と同様に、PDA21、切り替え部22、選択スイッチ23、及び増幅部24からなる回路であるが、切り替え部22の構成が相違する。
つまり、図3に示す回路に設けられた切り替え部22は、PD21a,21bのアノード電極間に設けられたスイッチ22a、PD21b,21cのアノード電極間に設けられたスイッチ22c、PD21d,21dのアノード電極間に設けられたスイッチ22d、及びPD21e,PD21f間に設けられたスイッチ22eを備える。尚、ここでは、PD21a〜PD21fのみを図示しているが、これら以外にも複数のPDが設けられており、隣接する3つのPDを単位として上記のスイッチと同様のスイッチが設けられている。
スイッチ22a,22c〜22eの全てが開状態である場合には、PD21a〜21fは個別のPDとして用いることができる。これに対し、スイッチ22a,22cを閉状態にすると、隣接する3つのPD21a〜21cのアノード電極が電気的に接続され、PD21a〜21cを1つのPDとして用いることができる。また、スイッチ22d,22eを閉状態にすると、隣接する3つのPD21d〜21fのアノード電極が電気的に接続され、PD21d〜21fを1つのPDとして用いることができる。
次に、本発明の一実施形態による光信号測定装置1の動作について説明する。尚、以下では、光信号測定装置1が図3に示す回路(隣接する3つのPDを1つのPDとする回路)を備えているものとする。外部から測定対象の光信号が入力されると、この光信号は図1に示す光ファイバ1を介して光信号測定装置1内の所定の位置に配置された射出端11aから射出される。射出端11aから射出された光信号は、レンズ12を介して平行光に変換された後にプリズム13に入射して所定の角度をもって回折格子14に入射し、その波長に応じた角度で回折される。回折格子14で回折された信号は、プリズム13によって偏向された後にレンズ15によってPDAモジュール16の受光面16a上に集光される。
PDAモジュール16の受光面16a上に集光した光は、PD21a〜21f,…の各々で光電変換される。ここで、図3に示す切り替え部22に設けられたスイッチ22a,22c〜22e等の全てが開状態である場合には、PD21a〜21f,…は個別のPDとして用いられる。かかる場合には、選択スイッチ23が端子T1〜T6,…を順次選択することよりPD21a〜21f,…が順次選択され、PD21a〜21f,…の各々で光電変換された信号が順次読み出されて増幅部24で増幅される。その後、図1に示す演算回路17において、PD21a〜21f,…から読み出された信号に対して所定の演算処理が施され、これにより外部から入力される測定対象の光信号の光スペクトルが求められる。
図4は、PD21a〜21f,…を個別のPDとして用いる場合の光信号の光スペクトルを求める方法を説明するための図である。図2に示すスイッチ22a,22c〜22e等の全てが開状態である場合には、図4(a)に示す通り、PD21a〜21f,…は、図中符号d1を付して示す方向(回折格子14の分散方向)に配列された個別のものと考えることができる。これらPD21a〜21f,…上にレンズ15によって集光された光L1が照射されたとすると、PD21a〜21f,…の各々からはPD21a〜21f,…の各々に照射された光L1の強度(パワー)に応じた信号が出力される。
ここで、PD21a〜21f,…は、回折格子14の分散方向である方向d1に沿って配列されているため、PD21a〜21f,…の各々の位置と波長とを対応付けることができる。このため、PD21a〜21f,…の各々の位置(波長)を横軸にとり、PD21a〜21f,…の各々から出力される信号(光L1のパワー)を縦軸にとると、図4(b)に示す波長とパワーとの関係を示すグラフが得られる。尚、図4(b)において、符号P11〜P15を付した点は、PD21c〜21gの各々から出力される信号によって求められる光L1のパワーを示している。このグラフ中における各点P11〜P15に対して最小自乗近似等の処理を施して近似曲線SP1を求めることにより、測定対象である光信号の光スペクトルを高精度に求めることができる。
これに対し、図3に示す切り替え部22に設けられたスイッチ22a,22c〜22e等の全てが閉状態である場合には、PD21a〜21f,…は隣接する3つのPDが1つのPDとして用いられる。かかる場合には、選択スイッチ23が端子T1〜T3のうちの何れか1つ、端子T4〜T6のうちの何れか1つ、…という具合に順次選択することより、PD21a〜21f,…が、1つのPDとされた隣接する3つのPDを単位として順次選択される。このように、隣接する3つのPDを1つのPDとして用いると、選択スイッチ23で選択されるPDの数が減るため、高速に読み出しを行うことができる。選択された信号は、PDで光電変換された信号が順次読み出されて増幅部24で増幅される。その後、図1に示す演算回路17において、読み出された信号に対して所定の演算処理が施され、これにより外部から入力される測定対象の光信号の波長及びパワーが求められる。
図5は、PD21a〜21f,…のうちの隣接する3つのPDを1つのPDとして用いる場合の光信号の波長及びパワーを求める方法を説明するための図である。図2に示すスイッチ22a,22c〜22e等の全てが閉状態である場合には、図5(a)に示す通り、隣接する3つのPDを1つとしたPD31a〜31c,…が図中符号d1を付して示す方向(回折格子14の分散方向)に配列されたものと考えることができる。尚、PD31aは図4(a)に示すPD21a〜21cを1つとし、PD31bは図4(a)に示すPD21d〜21fを1つとし、PD31cは図4(a)に示すPD21g〜21iを1つとしたものである。
PD21a〜21f,…上にレンズ15によって集光された光L1が照射されたとすると、1つとされたPD31a〜31c,…の各々からはPD21a〜21c、PD21d〜21f、PD21g〜21i,…の各々に照射された光L1の強度(パワー)に応じた信号がそれぞれ出力される。ここで、測定対象の光信号が波長分割多重光である場合には、波長分割多重光に含まれる各チャネルの光がそれぞれ異なるPD31a〜31c,…に照射されるようにすれば、PD31a〜31c,…の出力信号から各チャネルの光強度(パワー)を求めることが可能になる。
図5(b)は、PD31a〜31c,…の各々から出力される信号を用いて得られた波長とパワーとの関係を示すグラフである。尚、図5(b)において、符号P21〜P23を付した点は、PD31a〜31cの各々から出力される信号によって求められる光L1のパワーを示している。図4(b)の場合と同様に、図5(b)に示すグラフ中における各点P21〜P23に対して最小自乗近似等の処理を施せば、測定対象である光信号の光スペクトルを示す近似曲線SP2を求めることはできる。しかしながら、隣接する3つのPDを1つのPDとして用いているため、PD21a〜21f,…を個別のPDとして用いる場合に比べて精度は低下してしまう。
以上説明した通り、本実施形態の光信号測定装置1は、切り替え部22によってPD21a〜21f,…を個別のPDとして用いるよう切り替えた場合には、光信号の光スペクトルを高精度で測定する高精度光モニタとして使用することができる。これに対し、切り替え部22によってPD21a〜21f,…のうちの隣接する3つのPDを1つのPDとして用いるように切り替えた場合には、波長分割多重光の各チャネルの光強度を高速に測定する光チャネルモニタとして用いることができる。これにより、高精度光モニタと光チャネルモニタとを1台で実現することができる。
尚、図2に示す例では隣接する2つのPD(PD21a,21b、及びPD21c,21d)の間にスイッチを設け、図3に示す例では隣接する3つのPD(PD21a〜21c、及びPD21d〜21f)の間にスイッチを設けて、スイッチの全てを開状態とし、又は閉状態とする場合を例に挙げて説明した。しかしながら、隣接するPDの全ての間にスイッチを設けてスイッチ毎に開状態又は閉状態を制御しても良い。
〔第2実施形態〕
図6は、本発明の第2実施形態による光信号測定装置の要部構成を示す回路図である。尚、図6においては、図2に示す構成に相当する構成については同一の符号を付してある。図6に示す回路は、PDA21、選択スイッチ41a(第1選択部)、選択スイッチ41b(第2選択部)、増幅部42a(第1増幅部)、増幅部42b(第2増幅部)、及び加算部43からなる回路である。PDA21は、図1に示したPDAモジュール16内に設けられる。また、選択スイッチ41a,41b、増幅部42a,42b、及び加算部43からなる構成は、本発明の切替部に相当する構成であり、図1に示した演算部17内に設けられる。
選択スイッチ41aは、PD21a〜21dのうちの奇数番目のPD(21a,21c)で光電変換された信号を順次読み出す(取り出す)ために、PDA21に設けられた奇数番目のPDの何れか1つを順次選択するものである。選択スイッチ41bは、PD21a〜21dのうちの偶数番目のPD(21b,21d)で光電変換された信号を順次読み出す(取り出す)ために、PDA21に設けられた偶数番目のPDの何れか1つを上記の選択スイッチ41aに同期して順次選択するものである。
増幅部42a,42bは図2、図3に示す増幅部24と同様の反転増幅回路である。増幅部42aは奇数番目のPD(21a,21c)から順次読み出された信号を所定の増幅率で増幅し、増幅部42bは偶数番目のPD(21b,21d)から順次読み出された信号を所定の増幅率で増幅する。加算部43は、増幅部42aの出力と増幅部42bの出力とを加算する。
上記構成において、PD21a〜21dを個別のPDとして用いる場合には、まず選択スイッチ41aが端子T1を選択することによりPD21aを選択する。これによりPD21aで光電変換された信号が読み出されて増幅部42aで増幅されるが、増幅部42bからは信号が出力されない。よって、増幅部42aで増幅された信号は、加算部43を介してそのまま出力される。
次に、選択スイッチ41bが端子T2を選択することによりPD21bを選択する。これによりPD21bで光電変換された信号が読み出されて増幅部42bで増幅されるが、増幅部42aからは信号が出力されない。よって、増幅部42bで増幅された信号は、加算部43を介してそのまま出力される。以下同様に、選択スイッチ41aが端子T3を選択し、その後に選択スイッチ41bが端子T4を選択する。このようにして、PD21a〜21dで光線変換された信号が順次読み出される。
これに対し、PD21a〜21dのうちの隣接する2つのPDを1つのPDとして用いる場合には、まず選択スイッチ41aが端子T1を選択するとともに選択スイッチ41bが端子T2を選択する。これにより、PD21aで光電変換された信号は端子T1を介して増幅部42aで増幅され、PD21bで光電変換された信号は端子T2を介して増幅部42bで増幅される。増幅部42a,42bの各々で増幅された信号は加算部43で加算されて出力される。
次に、選択スイッチ41aが端子T3を選択するとともに選択スイッチ41bが端子T4を選択する。これにより、PD21cで光電変換された信号は端子T3を介して増幅部42aで増幅され、PD21dで光電変換された信号は端子T4を介して増幅部42bで増幅される。増幅部42a,42bの各々で増幅された信号は加算部43で加算されて出力される。
前述した第1実施形態では、隣接するPDをスイッチで電気的に接続することにより1つのPDとしていたが、本実施形態では、隣接するPDから出力される信号を加算することにより隣接するPDが1つのPDとされている。これにより、第1実施形態と同様に、高精度光モニタと光チャネルモニタとを1台で実現することができる。尚、以上の説明では、2つの増幅部42a,42bを備える場合を例に挙げたが、選択スイッチ及び増幅器を3個以上備えた構成であっても良い。
次に、以上説明した光信号測定装置の応用例について説明する。前述した第1,第2実施形態による光信号測定装置は、複数の隣接するPDを1つのPDとして用いることにより、例えば波長分割多重光の各チャネルの光強度を測定する光チャネルモニタとして用いることができるのは前述した通りである。しかしながら、光チャネルモニタとして使用する場合に、チャネル間のノイズを正確に測定することができない虞が考えられる。
図7は、波長分割多重光のチャネル間のノイズを測定する場合に生ずる不具合を説明するための図である。いま、図7(a)に示す通り、隣接する3つのPDを1つとしたPD31a〜31e上に波長分割多重光の隣接する2つのチャネルの光L11,L12が照射された場合を考える。図7(b)において、符号P31〜P35を付した点は、PD31a〜31eの各々から出力される信号によって求められる光L11,L12のパワーを示している。
図7(a)を参照すると、あるチャネルの光L11はPD31bを中心として照射されているため、PD31bから出力される信号を用いることにより光L11のパワー(P32)が求められる。同様に、そのチャネルに隣接するチャネルの光L12はPD31dを中心として照射されているため、PD31dから出力される信号を用いることにより光L11のパワー(P34)が求められる。しかしながら、その2つのチャネルの光L11,L12は、PD31b,31dのみにそれぞれ照射される訳ではく、図4(a)に示す通り、PD31a,31c,31eにも一部が照射される。
このため、PD31cから出力される信号を用いただけではチャネル間ノイズのパワーを正確に測定することができない。図7(b)を参照すると、PD31a〜31e上に照射される2つのチャネルの光L11,L12の光スペクトルを示す曲線SP11に対して、PD31cから出力される信号を用いることにより得られるパワー(P33)がずれてており、チャネル間のノイズを正確に測定することができないことが分かる。
図8は、波長分割多重光のチャネル間のノイズを測定する場合に生ずる不具合の解消方法を説明するための図である。図8(a)に示す通り、波長分割多重光の隣接する2つのチャネルの光L11,L12が照射される位置に配置されている数個のPDを1つのPD31b,31dとして用い、それ以外のPD(図8(a)に示す例では、PD51a〜51d)は個別のPDとして用いる。
図7(b)において、符号P42,P44を付した点は、PD31b,31dの各々から出力される信号によって求められる光L11,L12のパワーを示している。また、符号P41,P43,P45を付した点は、PD51a,51d,51gの各々から出力される信号によって求められるパワーを示している。図8(a)に示す通り、光L11,L12の照射位置の中間に位置するPD51dには光L11,L12の何れも照射されないため、図8(b)に示す通り、照射される2つのチャネルの光L11,L12の光スペクトルを示す曲線SP11に対して、PD51dから出力される信号を用いることにより得られるパワー(P43)がほぼ一致していることが分かる。これにより、PD51dから出力される信号を用いればチャネル間のノイズを正確に測定することができる。
以上、本発明の実施形態による光信号測定装置について説明したが、本発明は上記実施形態に制限されることなく、本発明の範囲内で自由に変更が可能である。例えば、上述した第1実施形態の光信号測定装置が備える切り替え部22のスイッチ22a〜22e及び選択スイッチ23、並びに第2実施形態の光信号測定装置が備える選択スイッチ41a,41bは、機械式のスイッチであっても電子式のスイッチであっても良い。但し、選択スイッチ23,41a,41bには高速の切り替えが要求されるため、電子式のスイッチを用いるのが望ましい。
本発明の第1実施形態による光信号測定装置の全体構成の概略を示す図である。 本発明の第1実施形態による光信号測定装置の要部構成を示す回路図である。 本発明の第1実施形態による光信号測定装置の要部構成の変形例を示す回路図である。 PD21a〜21f,…を個別のPDとして用いる場合の光信号の光スペクトルを求める方法を説明するための図である。 PD21a〜21f,…のうちの隣接する3つのPDを1つのPDとして用いる場合の光信号の波長及びパワーを求める方法を説明するための図である。 本発明の第2実施形態による光信号測定装置の要部構成を示す回路図である。 波長分割多重光のチャネル間のノイズを測定する場合に生ずる不具合を説明するための図である。 波長分割多重光のチャネル間のノイズを測定する場合に生ずる不具合の解消方法を説明するための図である。
符号の説明
1 光信号測定装置
14 回折格子
16 PDAモジュール
21 PDA
21a〜21f,31a〜31e,51a〜51g PD
22 切り替え部
22a〜22e スイッチ
23 選択スイッチ
24 増幅部
41a,41b 選択スイッチ
42a,42b 増幅部
43 加算部

Claims (5)

  1. 測定対象の光信号を波長毎に分散させる波長分散素子と、当該波長分散素子で分散された光を前記波長分散素子の分散方向に配列された複数の受光素子で受光する光検出器とを備える光信号測定装置において、
    前記光検出器に設けられた複数の受光素子のうちの隣接する少なくとも2つの受光素子を1つの受光素子とするか否かを切り替える切替部を備えることを特徴とする光信号測定装置。
  2. 前記切替部は、隣接する受光素子間に設けられ、当該隣接する受光素子を電気的に接続するか否かを切り替えるスイッチを備えることを特徴とする請求項1記載の光信号測定装置。
  3. 前記光検出器に設けられた複数の受光素子の何れか一つを順次選択する選択部と、
    前記選択部で選択された受光素子の出力信号を増幅する増幅部とを備え、
    前記選択部は、前記切替部の切り替え状況に応じて前記受光素子の選択方法を変えることを特徴とする請求項1又は請求項2記載の光信号測定装置。
  4. 前記切替部は、前記複数の受光素子のうちの奇数番目の受光素子の何れか一つを順次選択する第1選択部と、
    前記複数の受光素子のうちの偶数番目の受光素子の何れか一つを前記第1選択部に同期して順次選択する第2選択部と、
    前記第1選択部で選択された受光素子の出力信号と、前記第2選択部で選択された受光素子の出力信号とを加算する加算部と
    を備えることを特徴とする請求項1記載の光信号測定装置。
  5. 前記切替部は、前記第1選択部で選択された受光素子の出力信号を増幅する第1増幅部と、
    前記第2選択部で選択された受光素子の出力信号を増幅する第2増幅部と
    を備えることを特徴とする請求項4記載の光信号測定装置。
JP2007034608A 2007-02-15 2007-02-15 光信号測定装置 Withdrawn JP2008197043A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007034608A JP2008197043A (ja) 2007-02-15 2007-02-15 光信号測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007034608A JP2008197043A (ja) 2007-02-15 2007-02-15 光信号測定装置

Publications (1)

Publication Number Publication Date
JP2008197043A true JP2008197043A (ja) 2008-08-28

Family

ID=39756124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007034608A Withdrawn JP2008197043A (ja) 2007-02-15 2007-02-15 光信号測定装置

Country Status (1)

Country Link
JP (1) JP2008197043A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2027929A2 (en) 2007-08-20 2009-02-25 Olympus Corporation Cell separation device and cell separation method
WO2012061155A2 (en) 2010-10-25 2012-05-10 Accuri Cytometers, Inc. Systems and user interface for collecting a data set in a flow cytometer
JP2012133368A (ja) * 2010-12-22 2012-07-12 Carl Zeiss Microimaging Gmbh 共焦点レーザ走査顕微鏡のピンホール
US9154227B2 (en) 2013-04-16 2015-10-06 Fujitsu Limited Port monitoring device and port monitoring method
US9551600B2 (en) 2010-06-14 2017-01-24 Accuri Cytometers, Inc. System and method for creating a flow cytometer network
JP2020513216A (ja) * 2017-03-08 2020-05-07 ピレオス リミテッドPyreos Ltd. Atr分光計及びサンプルの化学組成を分析する方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63169761A (ja) * 1987-01-07 1988-07-13 Fujitsu Ltd 半導体装置
JPH10274562A (ja) * 1997-03-31 1998-10-13 Olympus Optical Co Ltd 光電変換装置
JP2000304614A (ja) * 1999-04-26 2000-11-02 Yokogawa Electric Corp 分光装置
JP2003161655A (ja) * 2001-11-28 2003-06-06 Yokogawa Electric Corp 分光測定装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63169761A (ja) * 1987-01-07 1988-07-13 Fujitsu Ltd 半導体装置
JPH10274562A (ja) * 1997-03-31 1998-10-13 Olympus Optical Co Ltd 光電変換装置
JP2000304614A (ja) * 1999-04-26 2000-11-02 Yokogawa Electric Corp 分光装置
JP2003161655A (ja) * 2001-11-28 2003-06-06 Yokogawa Electric Corp 分光測定装置

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2027929A2 (en) 2007-08-20 2009-02-25 Olympus Corporation Cell separation device and cell separation method
US9551600B2 (en) 2010-06-14 2017-01-24 Accuri Cytometers, Inc. System and method for creating a flow cytometer network
US9280635B2 (en) 2010-10-25 2016-03-08 Accuri Cytometers, Inc. Systems and user interface for collecting a data set in a flow cytometer
CN103168225A (zh) * 2010-10-25 2013-06-19 阿库里赛托梅特斯公司 用于收集流式细胞仪中的数据集的系统和用户接口
JP2013541717A (ja) * 2010-10-25 2013-11-14 アキュリ サイトメーターズ,インコーポレイテッド フローサイトメータのデータセットを収集するシステム及びユーザインターフェース
WO2012061155A2 (en) 2010-10-25 2012-05-10 Accuri Cytometers, Inc. Systems and user interface for collecting a data set in a flow cytometer
EP2633284A4 (en) * 2010-10-25 2018-02-28 Accuri Cytometers, Inc. Systems and user interface for collecting a data set in a flow cytometer
US10031064B2 (en) 2010-10-25 2018-07-24 Accuri Cytometers, Inc. Systems and user interface for collecting a data set in a flow cytometer
US10481074B2 (en) 2010-10-25 2019-11-19 Becton, Dickinson And Company Systems and user interface for collecting a data set in a flow cytometer
US11125674B2 (en) 2010-10-25 2021-09-21 Becton, Dickinson And Company Systems and user interface for collecting a data set in a flow cytometer
JP2012133368A (ja) * 2010-12-22 2012-07-12 Carl Zeiss Microimaging Gmbh 共焦点レーザ走査顕微鏡のピンホール
US9154227B2 (en) 2013-04-16 2015-10-06 Fujitsu Limited Port monitoring device and port monitoring method
JP2020513216A (ja) * 2017-03-08 2020-05-07 ピレオス リミテッドPyreos Ltd. Atr分光計及びサンプルの化学組成を分析する方法
US11248958B2 (en) 2017-03-08 2022-02-15 Pyreos Ltd. ATR spectrometer and method for analysing the chemical composition of a sample
JP7241021B2 (ja) 2017-03-08 2023-03-16 アバゴ・テクノロジーズ・インターナショナル・セールス・プライベート・リミテッド Atr分光計及びサンプルの化学組成を分析する方法

Similar Documents

Publication Publication Date Title
JP4930034B2 (ja) 物理量測定システム
US7852475B2 (en) Scanning spectrometer with multiple photodetectors
TW531988B (en) Photodetector array and optical communication monitor module using the same
JP2008197043A (ja) 光信号測定装置
KR100340203B1 (ko) 파장분할 다중화 방식 광전송 시스템의 광성능 감시장치
EP2454787B1 (en) Integrated photodiode wavelength monitor
US11815719B2 (en) Wavelength agile multiplexing
KR100322125B1 (ko) 배열격자도파로 모듈 및 이를 이용한 광신호 모니터링 장치
JP2007198938A (ja) 光スペクトラムアナライザ
US7212708B2 (en) Optical grating based multiplexer device with power tap capability
US7272276B2 (en) Optical performance monitor
JP4407282B2 (ja) 逆分散型二重分光器
EP2976666B1 (en) Integrated photonic component and method
JP4322717B2 (ja) 光ファイバ温度分布測定装置
JP2010226587A (ja) 光信号検出装置および光信号検出方法
JP2011249943A (ja) 波長分割多重伝送システム、光チャネルモニタ、光チャネルモニタ方法、及び波長分割多重伝送方法
JP5053980B2 (ja) 光波長多重信号監視装置および方法
KR102522885B1 (ko) 실리콘 포토닉스 인터로게이터를 구비한 반사 광파장 스캐닝 장치
JP2009198826A (ja) 光信号処理装置
US7305185B2 (en) Device for integrating demultiplexing and optical channel monitoring
JP3885933B2 (ja) 分光測定装置
US20230228945A1 (en) Architecture for wavelength multiplexers
KR100292809B1 (ko) 파장 분할 다중된 광신호의 파장과 광 세기와 광신호 대 잡음비를 측정하는 장치
JP2006201094A (ja) マルチチャンネル分光光度計
JP4916571B2 (ja) 光回路およびそれを用いた光信号処理装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20111115