JP2008194908A - Polyester film for thermosensitive stencil printing base paper - Google Patents

Polyester film for thermosensitive stencil printing base paper Download PDF

Info

Publication number
JP2008194908A
JP2008194908A JP2007031397A JP2007031397A JP2008194908A JP 2008194908 A JP2008194908 A JP 2008194908A JP 2007031397 A JP2007031397 A JP 2007031397A JP 2007031397 A JP2007031397 A JP 2007031397A JP 2008194908 A JP2008194908 A JP 2008194908A
Authority
JP
Japan
Prior art keywords
film
base paper
polyester
heat
printing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007031397A
Other languages
Japanese (ja)
Other versions
JP5242922B2 (en
Inventor
Katsuzo Mihashi
勝三 三橋
Takashi Suzuki
孝 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP2007031397A priority Critical patent/JP5242922B2/en
Publication of JP2008194908A publication Critical patent/JP2008194908A/en
Application granted granted Critical
Publication of JP5242922B2 publication Critical patent/JP5242922B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a film for a thermosensitive stencil printing base paper, which enables aimed boring of holes to be surely realized in response to the energy sent from a thermal head in proportion to broad image signals and, at the same time, the size of the bored hole to change in proportion to the energy, especially within higher energetic region, prevents the damage of film due to the repeated press-bonding and wear between printing paper edges and the thermosensitive stencil printing base paper from developing while independent boring of holes are maintained without keeping respective bored holes connected with each other, and realizes consequently excellent printing durability. <P>SOLUTION: This polyester film for the thermosensitive stencil printing base paper is made of a polyester composition including 0.1-1.5 pts.wt. of carbodiimide compound to 100 pts.wt. of polyester. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、感熱孔版印刷原紙用ポリエステルフィルムに関する。さらに詳しくは、本発明は、独立穿孔性および耐印刷性に優れた、感熱孔版印刷原紙用ポリエステルフィルムに関する。   The present invention relates to a polyester film for heat-sensitive stencil printing base paper. More specifically, the present invention relates to a polyester film for heat-sensitive stencil printing paper having excellent independent perforation properties and printing resistance.

従来、感熱孔版印刷用原紙としては、ポリエステル等の熱可塑性樹脂フィルムにインキ透過性多孔性薄葉紙を熱または接着剤によりラミネートしたもの、最近では多孔性樹脂膜と多孔性薄葉紙を併用した高画質な印刷物が知られており、孔版印刷物の品質に対しては、使用されるフィルム特性の寄与が大きくなっている。   Conventionally, as a heat-sensitive stencil printing base paper, a thermoplastic resin film such as polyester is laminated with an ink-permeable porous thin paper with heat or an adhesive, and recently, a high-quality image using a combination of a porous resin film and a porous thin paper is used. Printed materials are known, and the properties of the film used are greatly contributing to the quality of stencil printed materials.

印刷特性を改良するため、感熱孔版印刷用原紙の構成を配慮した幾つかの提案がなされている。例えば特許文献1には多孔性支持体として、繊度1デニール以下の合成繊維からなる薄葉紙を用いること、また特許文献2および3には熱可塑性フィルムの片面に多孔性樹脂膜を設けた感熱孔版印刷用原紙が提案されている。特許文献4および5には、インキ通過を阻害しない多孔性支持体を用いない実質的に熱可塑性フィルムからなる感熱孔版印刷用原紙が提案されている。   In order to improve printing characteristics, several proposals have been made in consideration of the structure of the heat-sensitive stencil sheet. For example, in Patent Document 1, thin paper made of synthetic fibers having a fineness of 1 denier or less is used as a porous support, and in Patent Documents 2 and 3, heat-sensitive stencil printing in which a porous resin film is provided on one side of a thermoplastic film. A base paper has been proposed. Patent Documents 4 and 5 propose a heat-sensitive stencil sheet that is substantially made of a thermoplastic film and does not use a porous support that does not inhibit ink passage.

一方、感熱孔版印刷用原紙を構成するフィルムの穿孔特性の改良、製膜時および孔版原紙作成時の取扱い性を改良した提案もされている。   On the other hand, there have also been proposals for improving the perforation characteristics of the film constituting the heat-sensitive stencil printing base paper, and improving the handleability during film formation and stencil paper preparation.

従来、かかる用途に用いるフィルムとして熱可塑性樹脂を対象とした二軸延伸フィルムであって、その熱的特性を規定することにより印刷特性を改善したフィルム(特許文献6)、平均粒子径とフィルム厚みを規定したフィルム(特許文献7)、表面の粗度および突起個数を規定したフィルム(特許文献8)、あるいは熱収縮特性を規定したフィルム(特許文献9)等が提案されている。   Conventionally, it is a biaxially stretched film for thermoplastic resin as a film used for such applications, and has improved printing characteristics by defining its thermal characteristics (Patent Document 6), average particle diameter and film thickness Have been proposed (Patent Document 7), a film that defines the surface roughness and the number of protrusions (Patent Document 8), a film that defines heat shrinkage characteristics (Patent Document 9), and the like.

ところが、近年、高解像度を得るために、個々のサーマルヘッドは小さく、単位面積当たりの穿孔数を増し、個々のヘッドに供給するエネルギーは低減させる方向にある。また、設定した印刷画像を得るため、画像信号に応じたエネルギーを供給し、穿孔サイズを調整している。従来のフィルムを用いた感熱孔版印刷用原紙では低いエネルギーでの穿孔には、フィルムの穿孔特性不足のため穿孔が十分でなく、また高エネルギーで穿孔した場合には穿孔サイズが大きく隣の穿孔が連なる連孔が発生する。そのため、文字印刷、ベタ印刷で印刷裏移りなどの印刷品質が低下する問題が生じる。また、作成された感熱孔版印刷用原紙において多部数の印刷ができる印刷耐久性が要求されている。具体的には、印刷紙エッジと感熱孔版印刷用原紙との繰り返し圧着、磨耗によってフィルムが損傷、破れが発生しないことが望ましい。   However, in recent years, in order to obtain high resolution, each thermal head is small, the number of perforations per unit area is increased, and the energy supplied to each head is in the direction of decreasing. Further, in order to obtain a set print image, energy corresponding to the image signal is supplied to adjust the perforation size. With conventional heat-sensitive stencil sheets using film, perforation with low energy is not sufficient due to insufficient film perforation characteristics, and when perforated with high energy, the perforation size is large and adjacent perforations are not possible. A continuous hole is generated. Therefore, there arises a problem that the print quality such as print offset is deteriorated in character printing and solid printing. In addition, printing durability is required so that a large number of copies can be printed on the prepared heat-sensitive stencil sheet. Specifically, it is desirable that the film is not damaged or torn by repeated pressing and abrasion between the printing paper edge and the heat-sensitive stencil sheet.

すなわち、幅広い画像信号に応じたサーマルヘッドからのエネルギーに対して目的の穿孔が確実に起こり、かつエネルギーに応じて穿孔サイズが変化し、特にエネルギーが高い領域では個々の穿孔が連なることなく独立穿孔を維持しながら、印刷紙エッジと感熱孔版印刷用原紙との繰り返し圧着、磨耗によるフィルムの損傷を防止し、優れた印刷耐久性を実現する感熱孔版印刷原紙用フィルムが望まれるようになっている。
特開平3−193445公報 特開平8-332785公報 特開2003−276355号公報 特開昭54-33117公報 特開2001−212925公報 特開昭62−149496号公報 特開昭63−286396号公報 特開昭63−227634号公報 特開平5−116215号公報
In other words, the target drilling surely occurs with respect to the energy from the thermal head corresponding to a wide range of image signals, and the drilling size changes according to the energy. A film for thermal stencil printing base paper that realizes excellent printing durability by preventing repeated damage between the printing paper edge and the thermal stencil printing base paper, and abrasion, while maintaining the print quality has been desired. .
Japanese Patent Laid-Open No. 3-193445 JP-A-8-332785 JP 2003-276355 A JP 54-33117 A JP 2001-212925 A JP-A-62-149496 JP-A 63-286396 JP-A 63-227634 Japanese Patent Laid-Open No. 5-116215

本発明は、上記実情に鑑みなされたものであり、その解決課題は、幅広い画像信号に応じたサーマルヘッドからのエネルギーに対して目的の穿孔が確実に起こり、かつエネルギーに応じて穿孔サイズが変化し、特にエネルギーが高い領域では個々の穿孔が連なることなく独立穿孔を維持しながら、印刷紙エッジと感熱孔版印刷用原紙との繰り返し圧着、摩耗によるフィルムの損傷を防止し、優れた印刷耐久性を実現する感熱孔版印刷原紙用フィルムを提供することにある。   The present invention has been made in view of the above circumstances, and the problem to be solved is that the target perforation surely occurs with respect to the energy from the thermal head corresponding to a wide range of image signals, and the perforation size changes according to the energy. In particular, in the high energy region, the individual perforations are maintained without being connected to each other, while the press edges of the printing paper and the heat sensitive stencil sheet are repeatedly pressed and the film is not damaged by abrasion, resulting in excellent printing durability. The object is to provide a film for a heat-sensitive stencil sheet that realizes the above.

本発明者らは、上記課題に鑑み鋭意検討した結果、特定のポリエステルフィルムにカルボジイミド化合物を特定量含有させることによれば、上記課題を容易に解決できることを見いだし、本発明を完成するに至った。   As a result of intensive studies in view of the above problems, the present inventors have found that the above problems can be easily solved by including a specific amount of a carbodiimide compound in a specific polyester film, and the present invention has been completed. .

すなわち、本発明の要旨は、ポリエステル100重量部に対してカルボジイミド化合物を0.1〜1.5重量部含有するポリエステル組成物からなることを特徴とする感熱孔版印刷原紙用ポリエステルフィルムに存する。   That is, the gist of the present invention resides in a polyester film for heat-sensitive stencil printing paper comprising a polyester composition containing 0.1 to 1.5 parts by weight of a carbodiimide compound with respect to 100 parts by weight of polyester.

以下、本発明を詳細に説明する。
本発明でいうポリエステルの二官能性酸成分は芳香族ジカルボン酸もしくは、そのエステル形成性誘導体を主とするものであり、具体的にはテレフタル酸、2,6−ナフタレンジカルボン酸、そのエステル形成性誘導体としてはテレフタル酸ジメチル、2,6−ナフタレンジカルボン酸ジメチル等が挙げられる。またグリコール成分としては、エチレングリコール、ブチレングリコール、プロピレングリコール、ポリエチレングリコール、1,4−シクロヘキサンジメタノール等が挙げられる。
Hereinafter, the present invention will be described in detail.
The bifunctional acid component of the polyester referred to in the present invention is mainly composed of an aromatic dicarboxylic acid or an ester-forming derivative thereof, specifically, terephthalic acid, 2,6-naphthalenedicarboxylic acid, or an ester-forming property thereof. Examples of the derivatives include dimethyl terephthalate and dimethyl 2,6-naphthalenedicarboxylate. Examples of the glycol component include ethylene glycol, butylene glycol, propylene glycol, polyethylene glycol, 1,4-cyclohexanedimethanol and the like.

かかるポリエステルは1種の芳香族ジカルボン酸もしくはそのエステル形成性誘導体と、1種のアルキレングリコールとを出発原料とするポリエステルでもよいが、2種以上の成分を含む共重合体であることが好ましい。共重合する成分として、上記のほかに例えば、ジエチレングリコール、ネオペンチルグリコール、ポリアルキレングリコール等のジオール成分、アジピン酸、セバシン酸、フタル酸、イソフタル酸などのジカルボン酸成分、トリメリット酸、ピロメリット酸などが挙げられる。またそれぞれ単一成分で構成されるホモポリマー同士、ホモポリマーと2種以上の成分を含む共重合体および該共重合体同士のブレンドポリエステルが好ましい。   Such a polyester may be a polyester starting from one aromatic dicarboxylic acid or an ester-forming derivative thereof and one alkylene glycol, but is preferably a copolymer containing two or more components. In addition to the above-mentioned components for copolymerization, for example, diol components such as diethylene glycol, neopentyl glycol, and polyalkylene glycol, dicarboxylic acid components such as adipic acid, sebacic acid, phthalic acid, and isophthalic acid, trimellitic acid, and pyromellitic acid Etc. Further, homopolymers each composed of a single component, a copolymer containing a homopolymer and two or more components, and a blend polyester of the copolymers are preferable.

本発明のポリエステルに配合するカルボジイミド化合物およびその製造方法は、例えば、特開平9−208649号公報、特開平9−296097号公報、特開昭52−123484号公報等に記載されている。まず、少なくとも2個のイソシアネートまたはポリイソシアネートとイソシアネ−ト反応性水素原子含有化合物とを反応させることにより、イソシアネートプレポリマー(少なくとも2個の遊離の末端イソシアネート基を有する重不可生成物)が生成し、次いでこのように製造したイソシアネートプレポリマーにカルボジイミド生成触媒、例えば1−フェニル−2−ホスフォレン−1−オキシドを加え、このプレポリマーを脱炭酸反応によって、対応するポリカルボイミドに転化することにより製造することができる。   The carbodiimide compound blended with the polyester of the present invention and the production method thereof are described, for example, in JP-A-9-208649, JP-A-9-296097, JP-A-52-123484, and the like. First, by reacting at least two isocyanates or polyisocyanates with an isocyanate-reactive hydrogen atom-containing compound, an isocyanate prepolymer (a non-recyclable product having at least two free terminal isocyanate groups) is formed. Then, a carbodiimide-forming catalyst such as 1-phenyl-2-phospholene-1-oxide is added to the isocyanate prepolymer thus prepared, and the prepolymer is converted to the corresponding polycarboimide by decarboxylation. can do.

カルボジイミド化合物の製造に出発原料として、用いられるイソシアネート反応性水素原子含有化合物は種々の化合物、例えば適当な末端基を有するポリオレフイン、ポリアセタ−ル、ポリアミド、ポリアミン、ポリテトラヒドロフラン、ポリエステル、ポリカーボネート、ポリシロキサン、ポリスルフィドなどの化合物およびそれらの混合物から選ぶことができる。   As starting materials for the production of carbodiimide compounds, the isocyanate-reactive hydrogen atom-containing compounds used are various compounds such as polyolefins, polyacetals, polyamides, polyamines, polytetrahydrofurans, polyesters, polycarbonates, polysiloxanes with suitable end groups. It can be selected from compounds such as polysulfides and mixtures thereof.

イソシアネートには、例えば脂肪族、芳香脂肪族、環式または芳香族イソシアネートさらには、イソシアネートプレポリマーまたはイソシアネート混合物が含まれる。   Isocyanates include, for example, aliphatic, araliphatic, cyclic or aromatic isocyanates, as well as isocyanate prepolymers or isocyanate mixtures.

カルボジイミド化合物の配合量は、ポリエステル100重量部に対して、0.1〜1.5重量部であり、好ましくは0.1〜1.0重量部、さらに好ましくは0.3〜0.7重量部である。配合量が1.5重量部以上の場合は樹脂を混練りし、シートを押出す工程において、熱によりカルボジイミド基が架橋するため、フィルムの粘度が増し穿孔特性を阻害する。カルボジイミド化合物の配合量が0.1部未満であると、穿孔温度域でのフィルム粘弾性特性変化がほとんど生じず、画像信号に応じたエネルギーを供給した場合に、目的の穿孔が確実に起こり、かつ目的の穿孔サイズを調整することができない。また、印刷耐久性も低下する。   The compounding quantity of a carbodiimide compound is 0.1-1.5 weight part with respect to 100 weight part of polyester, Preferably it is 0.1-1.0 weight part, More preferably, it is 0.3-0.7 weight. Part. When the blending amount is 1.5 parts by weight or more, the carbodiimide group is crosslinked by heat in the step of kneading the resin and extruding the sheet, so that the viscosity of the film increases and the perforation characteristics are impaired. When the blending amount of the carbodiimide compound is less than 0.1 part, almost no film viscoelastic property change occurs in the perforation temperature range, and when the energy corresponding to the image signal is supplied, the target perforation occurs reliably, And the target perforation size cannot be adjusted. Also, printing durability is reduced.

本発明のポリエステルフィルムの融点は、通常140℃〜240℃、好ましくは150℃〜230℃の範囲である。融点が240℃より高い場合には、穿孔特性、感度が低下し、融点140℃未満では、フィルムの耐熱寸法安定性が悪いため、原紙を製造する工程や、原紙の保存中に発生するカール、印刷画像の階調性のレベルが悪くなる傾向がある。   Melting | fusing point of the polyester film of this invention is 140 to 240 degreeC normally, Preferably it is the range of 150 to 230 degreeC. When the melting point is higher than 240 ° C., the perforation characteristics and sensitivity are lowered, and when the melting point is lower than 140 ° C., the heat-resistant dimensional stability of the film is poor. There is a tendency that the gradation level of the printed image is deteriorated.

本発明のフィルムは、140℃−3分間の熱収縮率が、30〜70%、さらには40〜70%、特に50〜70%の範囲が好ましい。140℃での熱収縮率が30%未満では、低エネルギーでの穿孔性の点から十分な穿孔径、穿孔確率を確保することができないことがあり、70%より大きいと原紙の保存中に発生するカール、印刷画像の階調性のレベルが悪くなる場合がある。   The film of the present invention preferably has a thermal shrinkage rate of 140 to 3 minutes at 30 to 70%, more preferably 40 to 70%, and particularly preferably 50 to 70%. If the heat shrinkage rate at 140 ° C. is less than 30%, sufficient drilling diameter and drilling probability may not be ensured from the viewpoint of low energy drilling, and if it exceeds 70%, it occurs during storage of the base paper. Curl and the gradation level of the printed image may deteriorate.

本発明のフィルムのガラス転移温度[Tg]は60℃以上が好ましい。Tgが60℃未満の場合は、サーマルヘッドの発熱によりベタ印刷周辺でのフィルム収縮などが原因となって製版歪が発生し印刷品質を悪化させることがある。また、マスターカールは60℃での長時間収縮率が寄与するが、Tgが60℃未満では、フィルム製膜時の張力変動が、残留歪として残存しやすく、マスター保存中に残存した歪の回復、寸法変化から高温、高湿下でカールが発生しやすくなる。カールが大きいと製版印刷機での通紙性および搬送性が悪化する。また、ラミ加工温度はフィルムのTgより低い温度でのラミ加工が好ましく、生産性面で不利になることもある。また、フィルムのTgが85℃を超える場合は低エネルギーでの穿孔が難しくなる傾向がある。   The glass transition temperature [Tg] of the film of the present invention is preferably 60 ° C. or higher. When Tg is less than 60 ° C., plate-making distortion may occur due to film shrinkage around the solid printing due to heat generated by the thermal head, which may deteriorate printing quality. Master curl contributes to a long-time shrinkage at 60 ° C., but if Tg is less than 60 ° C., tension fluctuation during film formation tends to remain as residual strain, and recovery of strain remaining during master storage. Because of dimensional changes, curling is likely to occur at high temperatures and high humidity. When the curl is large, the paper passing property and the conveyance property in the plate-making printing machine are deteriorated. Further, the laminating temperature is preferably laminating at a temperature lower than the Tg of the film, which may be disadvantageous in terms of productivity. Moreover, when Tg of a film exceeds 85 degreeC, there exists a tendency for the perforation by low energy to become difficult.

穿孔径の独立穿孔性および穿孔径に寄与するフィルム特性として、フィルムの固有粘度〔η〕は0.55dl/g以上、好ましくは0.60dl/g以上が良い。フィルム固有粘度〔η〕が0.55未満では、サーマルヘッド印字の温度で溶融粘度が低く、穿孔径の独立性が維持できず連孔を生じることがある。一方、0.80dl/g以上の場合は穿孔時の変形抵抗が大きく、穿孔径の不揃いが発生しやすく、未穿孔が発生しやすくなる傾向がある。   As a film characteristic that contributes to the perforation diameter independent perforation property and perforation diameter, the intrinsic viscosity [η] of the film is 0.55 dl / g or more, preferably 0.60 dl / g or more. If the film intrinsic viscosity [η] is less than 0.55, the melt viscosity is low at the temperature of thermal head printing, and the independence of the perforation diameter cannot be maintained, and continuous holes may occur. On the other hand, when it is 0.80 dl / g or more, deformation resistance at the time of drilling is large, unevenness of the drilling diameter tends to occur, and unperforated holes tend to occur.

本発明のフィルム厚みは、通常0.7〜3.0μm、好ましくは1.0〜2.0μmの範囲である。フィルム厚みが3.0μmより厚いと熱伝導距離が長くなり、穿孔性が低下して、印刷時の解像度や印字品位性が低下する傾向がある。フィルム厚みが0.7μm未満であると、低いエネルギーの穿孔性に優れているが、製膜の安定性および印刷枚数が多い用途にはフィルム強度が不足して印刷耐久性が低下することがある。   The film thickness of this invention is 0.7-3.0 micrometers normally, Preferably it is the range of 1.0-2.0 micrometers. When the film thickness is thicker than 3.0 μm, the heat conduction distance becomes long, the perforation property is lowered, and the resolution at the time of printing and the print quality tend to be lowered. When the film thickness is less than 0.7 μm, the low energy perforation property is excellent. However, the film durability is insufficient and the printing durability may be deteriorated in applications where the film formation stability and the number of printed sheets are large. .

また本発明のフィルムは、フィルム製造時の巻上げ工程、原紙作製時のコーティング、貼合せ工程および印刷時の作業性を向上させるため、あるいは、熱穿孔時のサーマルヘッドとフィルムとの融着を防止するため、表面を粗面化してフィルムに適度な滑り性が付与させることが好ましいが、そのためには微細な不活性粒子をフィルム中に添加すればよい。用いる微細な不活性粒子の平均粒径は、フィルム厚みの0.2〜1.0倍であることが好ましく、さらに好ましくは0.3〜0.7倍、特に好ましくは0.3〜0.5倍である。平均粒径がフィルム厚みの1.0倍を超えると、フィルム表面の平面性が損なわれて熱伝達にムラが生じることがあり、穿孔が不均一となったり、解像度が劣ったり、印字品位性を損なったりすることがある。また、平均粒径がフィルム厚みの0.2倍未満では、フィルムの巻き特性が劣るなどフィルム製造時および原紙製造時の作業性が悪化する傾向がある。   In addition, the film of the present invention is used to improve the workability during winding process during film production, coating during base paper production, laminating process and printing, or preventing thermal head and film from fusing during thermal drilling. Therefore, it is preferable to roughen the surface to give the film appropriate slipperiness, but for that purpose, fine inert particles may be added to the film. The average particle diameter of the fine inert particles used is preferably 0.2 to 1.0 times the film thickness, more preferably 0.3 to 0.7 times, and particularly preferably 0.3 to 0.00. 5 times. If the average particle diameter exceeds 1.0 times the film thickness, the flatness of the film surface may be impaired, resulting in uneven heat transfer, uneven perforation, poor resolution, and print quality. May be damaged. On the other hand, when the average particle size is less than 0.2 times the film thickness, workability during film production and base paper production tends to deteriorate, such as poor winding properties of the film.

粒子の添加量は、通常0.05〜3.0重量%、好ましくは0.1〜2.0重量%である。0.05重量%未満では巻き特性が劣る傾向がある。また3重量%を超えるとフィルム表面の粗面化の度合いが大き過ぎて熱伝達にムラが生じやすくなる傾向があり、穿孔が不均一となったり、解像度が劣ったり、印字品位性を損なったりすることがある。   The amount of particles added is usually 0.05 to 3.0% by weight, preferably 0.1 to 2.0% by weight. If it is less than 0.05% by weight, the winding properties tend to be inferior. On the other hand, if the content exceeds 3% by weight, the degree of roughening of the film surface tends to be too large and heat transfer tends to be uneven, resulting in uneven perforation, poor resolution, and impaired print quality. There are things to do.

本発明で用いる不活性粒子の例としては、酸化ケイ素、酸化チタン、ゼオライト、窒化ケイ素、窒化ホウ素、セライト、アルミナ、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、硫酸カルシウム、硫酸バリウム、リン酸カルシウム、リン酸リチウム、リン酸マグネシム、フッ化リチウム、カオリン、タルク、カーボンブラックおよび特公昭59−5216号公報に記載されたような架橋高分子微粉体などを挙げることができるが、これらに限定されるものではない。この際、配合する不活性粒子は単成分でもよく、また2成分以上を同時に用いてもよい。また、本発明においてポリエステルに不活性粒子を配合する方法としては、特に限定されないが、例えば不活性粒子をポリエステルの重合工程に添加する方法、またはフィルム化前に溶融混練りする方法が好ましく用いられる。   Examples of inert particles used in the present invention include silicon oxide, titanium oxide, zeolite, silicon nitride, boron nitride, celite, alumina, calcium carbonate, magnesium carbonate, barium carbonate, calcium sulfate, barium sulfate, calcium phosphate, lithium phosphate. , Magnesium phosphate, lithium fluoride, kaolin, talc, carbon black, and crosslinked polymer fine powder as described in JP-B-59-5216, but are not limited thereto. . At this time, the inert particles to be blended may be a single component, or two or more components may be used simultaneously. In the present invention, the method of blending the inert particles with the polyester is not particularly limited. For example, a method of adding the inert particles to the polyester polymerization step, or a method of melt-kneading before film formation is preferably used. .

本発明においては上記したような方法により表面を適度に粗面化したフィルムを得るが、作業性や印刷時の解像度、印字品位性をさらに高度に満足させるためには、フィルム表面の中心線平均粗さ(Ra)が0.02〜0.2μmであることが好ましく、さらに好ましくは0.05〜0.15μmの範囲であり、かかる範囲となるよう適宜、条件を選択することが望ましい。   In the present invention, a film whose surface is appropriately roughened by the method as described above is obtained, but in order to satisfy the workability, the resolution at the time of printing, and the print quality more highly, the center line average of the film surface is obtained. The roughness (Ra) is preferably 0.02 to 0.2 [mu] m, more preferably 0.05 to 0.15 [mu] m, and it is desirable to select conditions appropriately so as to be in this range.

次に本発明のポリエステルフィルムの製造方法について説明する。
本発明においては、ポリマーをエクストルーダーに代表される周知の押出装置に供給し、ポリマーの融点以上の温度に加熱し溶融する。次いで、溶融したポリマーをスリット状のダイから押し出し、回転冷却ドラム上でガラス転移温度以下の温度になるように急冷固化し、実質的に非晶状態の未配向シートを得る。この場合、シートの平面性を向上させるため、シートと回転冷却ドラムとの密着性を高めることが好ましく、通常、静電印加密着法を採用する。
Next, the manufacturing method of the polyester film of this invention is demonstrated.
In the present invention, the polymer is supplied to a well-known extruder represented by an extruder, heated to a temperature equal to or higher than the melting point of the polymer, and melted. Next, the molten polymer is extruded from a slit-shaped die and rapidly cooled and solidified on the rotary cooling drum so that the temperature is equal to or lower than the glass transition temperature, thereby obtaining a substantially amorphous unoriented sheet. In this case, in order to improve the flatness of the sheet, it is preferable to improve the adhesion between the sheet and the rotary cooling drum, and usually an electrostatic application adhesion method is employed.

このようにして得られたシートを2軸方向に延伸してフィルム化する。延伸条件について具体的に述べると、前記未延伸シートを好ましくは55〜95℃、さらに好ましくは60〜85℃の温度範囲で、まず一方向に3.0〜6.0倍、好ましくは3.5〜5.0倍に延伸する。次ぎに一段目と直交する方向に好ましくは70〜120℃さらに好ましくは75〜110℃の温度範囲で3.0〜6.0倍、好ましくは3.5〜5.0倍に延伸を行い、2軸に配向したフィルムを得る。   The sheet thus obtained is stretched in the biaxial direction to form a film. The stretching conditions will be specifically described. The unstretched sheet is preferably 55 to 95 ° C, more preferably 60 to 85 ° C, and 3.0 to 6.0 times in one direction, preferably 3. Stretch 5 to 5.0 times. Next, the film is stretched 3.0 to 6.0 times, preferably 3.5 to 5.0 times in a temperature range of 70 to 120 ° C, more preferably 75 to 110 ° C, in a direction orthogonal to the first stage, A biaxially oriented film is obtained.

なお、一方向の延伸を2段階以上で行う方法も用いることができるが、その場合も最終的な延伸倍率が上記した範囲に入ることが望ましい。また、前記未延伸シートを面積倍率が9〜30倍になるように同時二軸延伸することも可能である。   Note that a method of performing unidirectional stretching in two or more stages can also be used, but in this case as well, it is desirable that the final stretching ratio is in the above-described range. Further, the unstretched sheet can be simultaneously biaxially stretched so that the area magnification is 9 to 30 times.

かくして得られたフィルムを熱処理してもよく、また必要に応じ熱処理を行う前または後に再度縦または横方向に延伸してもよい。延伸後の熱処理は実質的に行わないか、行ったとしても120℃以下、さらには100℃以下とし、通常、熱処理時間は1秒〜20秒間でフィルムを弛緩状態や定長下で行う。   The film thus obtained may be heat-treated, and if necessary, may be stretched again in the longitudinal or transverse direction before or after the heat treatment. The heat treatment after stretching is not substantially carried out, or even if it is carried out, the heat treatment is performed at 120 ° C. or lower, further 100 ° C. or lower. Usually, the heat treatment is performed for 1 second to 20 seconds in a relaxed state or under a constant length.

また、感熱孔版印刷用原紙を製造する際、40〜70℃程度の乾燥工程および夏場を経る長期保存中にフィルムの収縮に起因すると考えられるカールが発生することがある。従って本発明においてはカール防止のため、得られたフィルムを30〜60℃で5時間から3日間、好ましくは35〜50℃で1日〜3日間エージング処理すると、当該環境下での耐カール性が良好となる。   Further, when producing a heat-sensitive stencil base paper, curling that may be caused by film shrinkage may occur during a drying process of about 40 to 70 ° C. and long-term storage through summer. Therefore, in order to prevent curling in the present invention, when the obtained film is aged at 30 to 60 ° C. for 5 hours to 3 days, preferably at 35 to 50 ° C. for 1 to 3 days, the curling resistance in the environment concerned Becomes better.

本発明の感熱孔版用原紙フィルムは、印刷耐久性に優れ、広範囲の穿孔エネルギーで目的サイズの穿孔径が確実に穿孔することが可能となり、サーマルヘッドの寿命延長や高速製版に寄与する。その工業的価値は高い。   The base paper film for heat-sensitive stencil of the present invention is excellent in printing durability and can surely perforate with a perforation diameter of a desired size with a wide range of perforation energies, contributing to the extension of the life of the thermal head and high-speed plate making. Its industrial value is high.

以下、実施例により本発明をさらに詳細に説明するが、本発明は、その要旨を越えない限り、以下の実施例に限定されるものではない。なお、本発明で用いた物性測定法は以下に示すとおりである。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to a following example, unless the summary is exceeded. In addition, the physical-property measuring method used by this invention is as showing below.

(1)試料成分含有量の測定
ポリマー試料を重水素トルフルオロ酢酸溶媒に濃度3重量%となるように溶解させた溶液を調整した。核磁気共鳴装置(ブルカ−バイオスピン製DRX−500)を用い、この溶液の1H−NMRスペクトルを得、各ピークを帰属し、ピークの積分値から各成分の含有量を算出した。
(1) Measurement of sample component content A solution in which a polymer sample was dissolved in a deuterium trifluoroacetic acid solvent to a concentration of 3% by weight was prepared. Using a nuclear magnetic resonance apparatus (DRX-500 manufactured by Bruker Biospin), a 1 H-NMR spectrum of this solution was obtained, each peak was assigned, and the content of each component was calculated from the integrated value of the peak.

(2)熱収縮率(%)
所定の温度(140℃)に保ったオーブン中、試料を無張力状態で3分間熱処理しその前後の試料長さを測定し次式にて熱収縮率を算出した。
フィルムの縦方向と横方向に5点ずつ測定し、平均値を求めた。
熱収縮率=(熱処理前サンプル長−熱処理後サンプル長)÷熱処理前サンプル長×100
(2) Thermal contraction rate (%)
In an oven maintained at a predetermined temperature (140 ° C.), the sample was heat-treated for 3 minutes in a non-tensioned state, the sample length before and after that was measured, and the thermal shrinkage rate was calculated by the following formula.
Five points were measured in the longitudinal and lateral directions of the film, and the average value was determined.
Thermal shrinkage = (sample length before heat treatment−sample length after heat treatment) ÷ sample length before heat treatment × 100

(3)固有粘度の測定
試料1gをフェノール/テトラクロロエタン=50/50(重量比)の混合溶媒100ml中に溶解し、30℃で測定した。
(3) Measurement of intrinsic viscosity 1 g of a sample was dissolved in 100 ml of a mixed solvent of phenol / tetrachloroethane = 50/50 (weight ratio) and measured at 30 ° C.

(4)融点およびガラス転移温度
示差走査熱量計(DSC)を用いる方法で、具体的にはテイー・エイ・インスルメント社製DSC−2920を使用して測定した。試料を温度0℃から昇温速度10℃/分で300℃まで昇温し結晶融解吸熱ピーク温度を融点[Tm]とした。ガラス転移温度[Tg]は300℃に加熱した試料を急冷した後、昇温速度10℃/分で昇温した時、比熱の変化によりDSC曲線が屈曲する温度範囲の中心値とした。
(4) Melting point and glass transition temperature The melting point and glass transition temperature were measured by using a differential scanning calorimeter (DSC), specifically, DSC-2920 manufactured by TAA Instruments. The sample was heated from 0 ° C. to 300 ° C. at a heating rate of 10 ° C./min, and the crystal melting endothermic peak temperature was defined as the melting point [Tm]. The glass transition temperature [Tg] was set to the center value of the temperature range in which the DSC curve bends due to a change in specific heat when the sample heated to 300 ° C. was rapidly cooled and then heated at a rate of temperature increase of 10 ° C./min.

(5)感熱孔版印刷原紙実用特性
フィルムに和紙を貼り合わせて原紙を作製した。得られた原紙をプリポートVT3950により、印刷した。印字エネルギーは通電コントロール調整−17%(標準)、−35%(エコノミ)、−50%にて文字画像および16段階の階調画像を製版した。製版された原紙のフィルム側から顕微鏡で階調画像部の穿孔状態を観察し、以下の項目について評価した。
(5) Practical characteristics of heat-sensitive stencil printing base paper Washi paper was bonded to a film to prepare a base paper. The obtained base paper was printed by Preport VT3950. Character images and 16-step gradation images were made at printing energies at energization control adjustments of -17% (standard), -35% (economy), and -50%. The perforated state of the gradation image portion was observed with a microscope from the film side of the plate-making base paper, and the following items were evaluated.

(a)穿孔感度
◎…所定の穿孔が確実に行われ、穿孔の大きさも十分である
○…所定の穿孔がほぼ確実に行われる、穿孔の大きさも十分である
△…所定の穿孔がほぼ確実に行われるが、穿孔の大きさに不十分なものがある
×…所定の穿孔が得られない部分が数多くあり、穿孔の大きさも不揃があり、実用上支障がある
(A) Perforation sensitivity ◎ ... Predetermined perforation is reliably performed and the size of the perforation is sufficient ○… Predetermined perforation is almost certainly performed, and the size of the perforation is sufficient Δ: Predetermined perforation is almost certain However, there are some cases where the size of the perforations is insufficient. × ... There are many portions where the predetermined perforations cannot be obtained, and the sizes of the perforations are not uniform.

(b)穿孔サイズ
印字エネルギー(−35%)でのベタ印刷部の穿孔サイズを写真観察で比較した。
◎…目標サイズの穿孔が確実に穿孔されている
○…目標サイズより若干小さいが穿孔は確実に穿孔されている
△…目標サイズより若干小さく、完全に穿孔されない不十分部分がある
×…目標サイズより小さく、穿孔されない部分がある
また、製版原紙を用い、リコー(株)製プリポートVT3950印刷機を用いて実際に印刷し、得られた文字、画像について、下記の特性を目視で判定した。
(B) Perforation size The perforation size of the solid print portion at printing energy (−35%) was compared by photographic observation.
◎… The target size is securely drilled ○… Slightly smaller than the target size, but the drill is securely drilled △… Slightly smaller than the target size, there is an insufficient part that is not completely drilled ×… Target size Also, there is a part that is smaller and is not perforated. Further, the following characteristics were visually determined for the characters and images obtained by actually printing using a stencil sheet and using a pre-port VT3950 printer manufactured by Ricoh Co., Ltd.

(c)印字品位性
◎…濃度のムラ、にじみが全くなく、鮮明に印字できる
○…濃度のムラ、にじみが殆どなく、鮮明に印字できる
△…濃度のムラ、にじみは殆どないが、わずかに鮮明さに欠ける
×…濃淡のムラ、にじみが認められ、鮮明さに欠ける
(C) Print quality ◎… There is no density unevenness and blurring, and it can be printed clearly ○… There is almost no density unevenness and blurring, and it can be printed clearly △… There is little density unevenness and blurring, Lack of clarity ×… Shading unevenness and blur are observed, and lack of clarity

(d)印刷耐久性
25mm直径の金属ドラムに180度接触させ10mm/秒の速度で繰り返し摩耗させた。摩耗長さは75mm、2時間繰り返し摩耗させた時のフィルム表面変化、あるいはフイルムダメージレベルを以下の三段階で評価した。
○…フィルム表面変化が少なくダメージが少ない
△…フィルム表面に薄い引掻きキズは観察されるが、著しいフィルム摩耗は観察されない
×…フィルム表面が穿孔された部分から一部破壊されている
(D) Printing durability A metal drum having a diameter of 25 mm was brought into contact with the metal drum at 180 degrees and repeatedly worn at a speed of 10 mm / second. The abrasion length was 75 mm, and the film surface change or film damage level when repeatedly worn for 2 hours was evaluated in the following three stages.
○: Little change in film surface and little damage Δ: Thin scratches are observed on the film surface, but no significant film wear is observed ×: The film surface is partially destroyed from the perforated part

実施例1:
テレフタル酸ジメチル80重量部、イソフタル酸ジメチル20重量部、エチレングリコール60重量部を出発原料とし、触媒として、酢酸マグネシウム・四水塩0.09重量部を反応器に取り、反応開始温度を150℃とし、メタノールの留去とともに徐々に反応温度を上昇させ、3時間後230℃とした。4時間後、実質的にエステル交換反応を終了させた。この反応混合物にエチルアシッドフォスフェ−ト0.04部を添加した後、平均粒子1.1μmの球状シリカ1.0部および三酸化アンチモン0.03部を加えて、4時間重縮合反応を行った。すなわち、温度230℃から徐々に昇温し280℃とした。一方、圧力は常圧より徐々に減じ、最終的には0.3mmHgとした。反応開始後、反応槽の攪拌動力の変化により固有粘度0.70dl/gに相当する時点で反応を停止し、窒素加圧下ポリマーを吐出させた。得られたポリエステル−Aの固有粘度は0.70dl/gであった。ポリエステル−A原料100重量部にカルボジイミド化合物(日清紡株式会社製商品名カルボジライトHMV−8CA)0.5重量部を加え、二軸押出機を用いて280℃で混練りし、シート状に押出し、表面温度40℃に設定した回転冷却ドラムで静電印加冷却法を使用して急冷固化させ厚み25μmの実質的に非晶質のシートを得た。得られたシートを縦方向に70℃で4.0倍、横方向に97℃で4.0倍に延伸し90℃のテンター内で熱処理を施し、厚み1.5μmの二軸配向フィルムを製造した。次いで得られたフィルムを多孔性薄葉紙に貼り合わせ、感熱孔版印刷用原紙を作製し謄写印刷および穿孔評価を行った。
Example 1:
Starting from 80 parts by weight of dimethyl terephthalate, 20 parts by weight of dimethyl isophthalate, and 60 parts by weight of ethylene glycol, 0.09 parts by weight of magnesium acetate tetrahydrate as a catalyst is placed in the reactor, and the reaction start temperature is 150 ° C. The reaction temperature was gradually increased as methanol was distilled off, and the temperature was increased to 230 ° C. after 3 hours. After 4 hours, the transesterification reaction was substantially terminated. After adding 0.04 part of ethyl acid phosphate to this reaction mixture, 1.0 part of spherical silica having an average particle size of 1.1 μm and 0.03 part of antimony trioxide were added to carry out a polycondensation reaction for 4 hours. It was. That is, the temperature was gradually raised from 230 ° C. to 280 ° C. On the other hand, the pressure was gradually reduced from normal pressure, and finally 0.3 mmHg. After the start of the reaction, the reaction was stopped at a time corresponding to an intrinsic viscosity of 0.70 dl / g due to a change in stirring power of the reaction vessel, and the polymer was discharged under nitrogen pressure. The obtained polyester-A had an intrinsic viscosity of 0.70 dl / g. Add 0.5 parts by weight of carbodiimide compound (trade name Carbodilite HMV-8CA, manufactured by Nisshinbo Co., Ltd.) to 100 parts by weight of the polyester-A raw material, knead at 280 ° C. using a twin screw extruder, and extrude into a sheet. A rotary cooling drum set at a temperature of 40 ° C. was rapidly cooled and solidified using an electrostatic application cooling method to obtain a substantially amorphous sheet having a thickness of 25 μm. The obtained sheet was stretched 4.0 times at 70 ° C in the longitudinal direction and 4.0 times at 97 ° C in the lateral direction, and heat-treated in a 90 ° C tenter to produce a biaxially oriented film having a thickness of 1.5 µm. did. Next, the obtained film was bonded to a porous thin paper to produce a heat-sensitive stencil printing base paper, which was subjected to copying printing and perforation evaluation.

実施例2〜4:
実施例1において、カルボジイミド化合物を下記表1に示すとおり変更し、実施例1と同様の方法で感熱孔版印刷用原紙を作製し、謄写印刷および穿孔評価を行った。
Examples 2-4:
In Example 1, the carbodiimide compound was changed as shown in Table 1 below, and a heat-sensitive stencil printing base paper was prepared by the same method as in Example 1, and transcribed printing and perforation evaluation were performed.

比較例1:
実施例1においてカルボジイミド化合物を配合しないポリエステル−Aを100重量部用いた以外は実施例1と同様の方法で感熱孔版印刷用原紙を作成し、謄写印刷を行った。
Comparative Example 1:
A base paper for heat-sensitive stencil printing was prepared in the same manner as in Example 1 except that 100 parts by weight of polyester-A containing no carbodiimide compound in Example 1 was used, and copying was performed.

比較例2:
実施例1においてカルボジイミド化合物を2.0重量部配合した以外は同様の方法で感熱孔版印刷用原紙を作成し、謄写印刷および穿孔評価を行った。
Comparative Example 2:
A base paper for heat-sensitive stencil printing was prepared in the same manner as in Example 1 except that 2.0 parts by weight of the carbodiimide compound was blended, and copying printing and perforation evaluation were performed.

実施例5:
テレフタル酸ジメチル70重量部、2,6−ナフタレンジカルボン酸ジメチル30重量部、エチレングリコール58重量部、1,4−ブタンジオール42重量部、テトラブチルチタネート0.005重量部を反応器にとり、反応開始温度を150℃とし、メタノールの留出とともに反応温度を除々に昇温させ、3時間後に210℃とした。4時間後、実質的にエステル交換反応を終了したこの反応混合物に平均粒径が1.2μmの球状シリカ粒子を分散させてエチレングリコールスラリとして0.5重量部添加し、テトラブチルチタネート0.005重量部を加えて、重縮合反応を行った。この時、温度は220℃から徐々に昇温して280℃とした。一方、圧力は常圧より徐々に減じ、最終的には0.3mmHgとした。反応開始後、5時間を経過した時点で反応を停止し、窒素加圧下ポリマーを吐出させ共重合ポリエステル−Bを得た。得られたポリエステル−Bの固有粘度は0.65dl/gであった。実施例1と同様に前記載のポリエステル−Bにカルボジイミド化合物を表1に示すとおり配合し、二軸押出機の温度255℃とし、回転冷却ドラムの表面温度を30℃として実質的に非晶質のシートを得た。得られたシートは縦方向に83℃で4.0倍に、横方向は84℃で4.0倍に延伸し、90℃のテンター内で熱処理を施し厚み1.5μmの二軸配向フィルムを製造した。実施例1と同様の方法で感熱孔版印刷用原紙を作製し、謄写印刷および穿孔評価を行った。
Example 5:
70 parts by weight of dimethyl terephthalate, 30 parts by weight of dimethyl 2,6-naphthalenedicarboxylate, 58 parts by weight of ethylene glycol, 42 parts by weight of 1,4-butanediol, and 0.005 part by weight of tetrabutyl titanate were added to the reactor to start the reaction. The temperature was set to 150 ° C., and the reaction temperature was gradually raised along with the distillation of methanol to 210 ° C. after 3 hours. After 4 hours, spherical silica particles having an average particle diameter of 1.2 μm were dispersed in this reaction mixture which had substantially completed the transesterification reaction, and 0.5 parts by weight of ethylene glycol slurry was added. Tetrabutyl titanate 0.005 A polycondensation reaction was performed by adding parts by weight. At this time, the temperature was gradually raised from 220 ° C. to 280 ° C. On the other hand, the pressure was gradually reduced from normal pressure, and finally 0.3 mmHg. The reaction was stopped when 5 hours had elapsed after the start of the reaction, and the polymer was discharged under nitrogen pressure to obtain copolymer polyester-B. The intrinsic viscosity of the obtained polyester-B was 0.65 dl / g. In the same manner as in Example 1, a carbodiimide compound was blended with the above-described polyester-B as shown in Table 1, the temperature of the twin-screw extruder was 255 ° C., and the surface temperature of the rotary cooling drum was 30 ° C. Got the sheet. The obtained sheet was stretched 4.0 times at 83 ° C. in the longitudinal direction and 4.0 times at 84 ° C. in the transverse direction, and heat treated in a 90 ° C. tenter to form a biaxially oriented film having a thickness of 1.5 μm. Manufactured. A heat-sensitive stencil sheet was prepared in the same manner as in Example 1, and transcribed printing and perforation evaluation were performed.

実施例6:
ポリエステル−Aの製造において、出発原料テレフタル酸ジメチル100重量としたこと以外はポリエステル−Aの製造方法と同様の方法を用いてポリエステル−Cを得た。得られたポリエステル−Cの固有粘度は0.60dl/gであった。ポリエステル−Cを用い、表1に示すとおり原料を配合して、実施例1における製膜条件をフィルムの縦方向の延伸温度を83℃、横方向を103℃に変更し、テンターでの熱処理温度を100℃とし、厚み1.5μmの二軸延伸フィルムを製造した。次いで、実施例1と同様の方法で感熱孔版印刷用原紙を作製し、謄写印刷および穿孔評価を行った。
Example 6:
In the production of polyester-A, polyester-C was obtained using the same method as the production method of polyester-A, except that the starting material was dimethyl terephthalate 100 weight. The intrinsic viscosity of the obtained polyester-C was 0.60 dl / g. Polyester-C was used, the raw materials were blended as shown in Table 1, and the film forming conditions in Example 1 were changed such that the longitudinal stretching temperature of the film was 83 ° C and the lateral direction was 103 ° C, and the heat treatment temperature in the tenter Was 100 ° C., and a biaxially stretched film having a thickness of 1.5 μm was produced. Next, a base paper for heat-sensitive stencil printing was prepared in the same manner as in Example 1, and transcribed printing and perforation evaluation were performed.

比較例3:
実施例6においてカルボジイミド化合物を配合しないポリエステル−Cを用いた以外は実施例6と同様の方法で感熱孔版印刷用原紙を作成し、謄写印刷および穿孔評価を行った。
以上得られたフィルムの物性および孔版原紙実用特性をまとめて下記表1および2に示す。
Comparative Example 3:
A base paper for heat-sensitive stencil printing was prepared in the same manner as in Example 6 except that Polyester-C containing no carbodiimide compound was used in Example 6, and transcribed printing and perforation evaluation were performed.
The physical properties and stencil paper practical properties of the films obtained above are summarized in Tables 1 and 2 below.

Figure 2008194908
Figure 2008194908

Figure 2008194908
Figure 2008194908

本発明のフィルムは、感熱孔版印刷原紙用として好適に利用することができる。   The film of the present invention can be suitably used as a heat-sensitive stencil sheet.

Claims (1)

ポリエステル100重量部に対してカルボジイミド化合物を0.1〜1.5重量部含有するポリエステル組成物からなることを特徴とする感熱孔版印刷原紙用ポリエステルフィルム。 A polyester film for heat-sensitive stencil printing paper comprising a polyester composition containing 0.1 to 1.5 parts by weight of a carbodiimide compound with respect to 100 parts by weight of polyester.
JP2007031397A 2007-02-12 2007-02-12 Polyester film for heat sensitive stencil printing paper Active JP5242922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007031397A JP5242922B2 (en) 2007-02-12 2007-02-12 Polyester film for heat sensitive stencil printing paper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007031397A JP5242922B2 (en) 2007-02-12 2007-02-12 Polyester film for heat sensitive stencil printing paper

Publications (2)

Publication Number Publication Date
JP2008194908A true JP2008194908A (en) 2008-08-28
JP5242922B2 JP5242922B2 (en) 2013-07-24

Family

ID=39754305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007031397A Active JP5242922B2 (en) 2007-02-12 2007-02-12 Polyester film for heat sensitive stencil printing paper

Country Status (1)

Country Link
JP (1) JP5242922B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010155419A (en) * 2008-12-30 2010-07-15 Mitsubishi Plastics Inc Polyester film for screen printing

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0687278A (en) * 1992-09-08 1994-03-29 Riso Kagaku Corp Manufacture of thermal stencil paper
JPH115854A (en) * 1997-06-17 1999-01-12 Toray Ind Inc Polyethylene-2,6-naphthalate film and its production
JP2003160718A (en) * 2001-11-27 2003-06-06 Toray Ind Inc Polyester composition and biaxially-oriented polyester film using the same
JP2006027191A (en) * 2004-07-20 2006-02-02 Unitika Ltd Adhesive for original paper for stencil printing, original paper for stencil printing and method for manufacturing the same
JP2006249439A (en) * 2006-04-26 2006-09-21 Toray Ind Inc Polyester film
JP2007044879A (en) * 2005-08-05 2007-02-22 Unitika Ltd Water-based adhesive for thermosensitive stencil printing base paper and thermosensitive stencil printing base paper

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0687278A (en) * 1992-09-08 1994-03-29 Riso Kagaku Corp Manufacture of thermal stencil paper
JPH115854A (en) * 1997-06-17 1999-01-12 Toray Ind Inc Polyethylene-2,6-naphthalate film and its production
JP2003160718A (en) * 2001-11-27 2003-06-06 Toray Ind Inc Polyester composition and biaxially-oriented polyester film using the same
JP2006027191A (en) * 2004-07-20 2006-02-02 Unitika Ltd Adhesive for original paper for stencil printing, original paper for stencil printing and method for manufacturing the same
JP2007044879A (en) * 2005-08-05 2007-02-22 Unitika Ltd Water-based adhesive for thermosensitive stencil printing base paper and thermosensitive stencil printing base paper
JP2006249439A (en) * 2006-04-26 2006-09-21 Toray Ind Inc Polyester film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010155419A (en) * 2008-12-30 2010-07-15 Mitsubishi Plastics Inc Polyester film for screen printing

Also Published As

Publication number Publication date
JP5242922B2 (en) 2013-07-24

Similar Documents

Publication Publication Date Title
US20060009617A1 (en) Polyester film for high sensitive thermal mimeorgraph stencil paper
JP3307716B2 (en) High-sensitivity heat-sensitive stencil film for base paper
JP5242922B2 (en) Polyester film for heat sensitive stencil printing paper
JP5242923B2 (en) Polyester film for heat sensitive stencil printing paper
JP2007168340A (en) Polyester film for original paper for highly sensitive thermal stencil printing
JP3806888B2 (en) Polyester film for heat-sensitive stencil sheet and heat-sensitive stencil sheet comprising the same
JP4587805B2 (en) High sensitivity heat sensitive stencil printing polyester film
JP5393143B2 (en) Polyester film for screen printing
JP3411633B2 (en) Polyester film for high-sensitivity thermosensitive stencil printing base paper
JP3235211B2 (en) High-sensitivity heat-sensitive stencil film for base paper
JP2015208944A (en) Film for heat-sensitive stencil printing base paper
JP4540276B2 (en) Method for producing polyester film for heat-sensitive stencil printing base paper
JPH11314473A (en) Film for heat sensitive stencil printing base paper, and support-less heat sensitive stencil printing base paper
JP3481995B2 (en) High-sensitivity heat-sensitive stencil film for base paper
JP2008207442A (en) Polyester film for paperless thermosensitive stencil printing base paper
JPH07276839A (en) Polyester film for high sensitivity thermal screen printing stencil paper
JPH07276844A (en) Polyester film for high sensitivity thermal screen printing stencil paper
JPH07156570A (en) Polyester film for high-speed heat-sensitive stencil printing paper
JP2010155420A (en) Polyester film for screen printing
JPH0752573A (en) Polyester film for high-sensitivity thermal stencil printing base paper
JPH09220867A (en) Polyester film for screen process printing
JPH10244573A (en) Production of polyester film for thermal stencil printing base paper
JP2000335136A (en) Film for heat-sensitive stencil printing and heat- sensitive stencil printing master
JP2011020404A (en) Polyester film for screen printing
JPH0577572A (en) Film for thermal stencil printing sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130404

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5242922

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350