JP2015208944A - Film for heat-sensitive stencil printing base paper - Google Patents

Film for heat-sensitive stencil printing base paper Download PDF

Info

Publication number
JP2015208944A
JP2015208944A JP2014092552A JP2014092552A JP2015208944A JP 2015208944 A JP2015208944 A JP 2015208944A JP 2014092552 A JP2014092552 A JP 2014092552A JP 2014092552 A JP2014092552 A JP 2014092552A JP 2015208944 A JP2015208944 A JP 2015208944A
Authority
JP
Japan
Prior art keywords
film
heat
polyester
base paper
stencil printing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014092552A
Other languages
Japanese (ja)
Inventor
弘二 久保田
Koji Kubota
弘二 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP2014092552A priority Critical patent/JP2015208944A/en
Publication of JP2015208944A publication Critical patent/JP2015208944A/en
Pending legal-status Critical Current

Links

Landscapes

  • Printing Plates And Materials Therefor (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a biaxially stretched polyester film which is excellent as a high-quality heat-sensitive stencil printing base paper in punching sensitivity, resolution in printing, printing quality, density and curling properties and usable as high-quality heat-sensitive stencil printing base paper.SOLUTION: A film for heat-sensitive stencil printing base paper is a biaxially stretched polyester film which has a melting point of 250°C or lower, a thickness of 1.0-3.5 μm, a shrinkage percentage, by TMA, in the film longitudinal direction at 50-150°C of 2% or lower and a shrinkage percentage in the film lateral direction of 2% or lower.

Description

本発明は、サーマルヘッド、あるいはハロゲンランプ、キセノンランプ、フラッシュランプ、レーザー光線等によって穿孔製版される感熱孔版印刷用原紙に用いられる感熱孔版印刷原紙用ポリエステルフィルムに関するものであり、さらに詳しくは、本発明は、穿孔感度、印刷時の解像度(階調性)、印字品位性、濃度、カール性に優れた感熱孔版印刷原紙用フィルムに関するものである。   The present invention relates to a polyester film for a thermal stencil printing base paper used for thermal stencil printing base paper that is perforated and made by a thermal head, a halogen lamp, a xenon lamp, a flash lamp, a laser beam, or the like. Relates to a film for heat-sensitive stencil printing paper excellent in perforation sensitivity, printing resolution (gradation), print quality, density, and curling properties.

従来、感熱孔版印刷用原紙としては、ポリエステル等の熱可塑性樹脂フィルムに、多孔性薄葉紙をラミネートしたものが知られている。   Conventionally, as a heat-sensitive stencil printing base paper, a laminate of porous thin paper on a thermoplastic resin film such as polyester is known.

かかる用途に用いられる熱可塑性樹脂フィルムが、サーマルヘッド、あるいはハロゲンランプ、キセノンランプ、フラッシュランプなどによる閃光照射や赤外線照射、さらにはレーザー光線等のパルス的照射によって穿孔され、多孔性薄葉紙がインキ保持および通過性を有して版として使用される。   The thermoplastic resin film used in such applications is perforated by flash irradiation or infrared irradiation using a thermal head, a halogen lamp, a xenon lamp, a flash lamp or the like, and further by pulsed irradiation such as a laser beam, and the porous thin paper is retained by ink. Used as a plate with passability.

サーマルヘッドを使用した製版方式は、原稿をセンサーで読み取り、サーマルヘッドで原稿に応じた画像を原紙のフィルム部分にドット状に穿孔して製版を行う方法である。このようなサーマルヘッドによる製版方式においては、サーマルヘッドのダメージを抑えて寿命を延長するために、ヘッドに供給するエネルギーを低減させる必要があり、フィルムが低エネルギーで感度良く穿孔して、多孔性薄葉紙に保持されたインキが穿孔された穴から確実に通過することによって印刷時の解像度、印字品位性および濃度が良好な感熱孔版印刷原紙用フィルムが望まれている。   The plate making method using a thermal head is a method of making a plate by reading an original with a sensor and punching an image corresponding to the original with a thermal head in the form of dots in a film portion of the base paper. In such a plate making system with a thermal head, it is necessary to reduce the energy supplied to the head in order to suppress the damage of the thermal head and extend the life, and the film is perforated with low energy and high sensitivity, and is porous. There has been a demand for a film for heat-sensitive stencil printing paper having good resolution, printing quality, and density at the time of printing by allowing the ink retained on the thin paper to pass through the perforated hole.

このような感度向上を目的として、二軸延伸ポリエステルフィルムの熱的特性を規定したフィルム(例えば、特許文献1参照)、熱収縮特性を規定したフィルム(例えば、特許文献2参照)、表面の粗度および突起個数を規定したフィルム(例えば、特許文献3参照)、構成成分と厚みむらを規定したフィルム(例えば、特許文献4参照)等が提案されているが、感度の向上は見られるものの不十分であり、さらなる向上が望まれている。   For the purpose of improving the sensitivity, a film defining the thermal characteristics of the biaxially stretched polyester film (for example, see Patent Document 1), a film defining the heat shrink characteristics (for example, see Patent Document 2), and a rough surface. A film that defines the degree and the number of protrusions (for example, see Patent Document 3), a film that defines constituent components and thickness unevenness (for example, see Patent Document 4), and the like have been proposed. It is sufficient and further improvement is desired.

特開昭62−149496号公報JP-A-62-149496 特開平3−30996号公報JP-A-3-30996 特開昭63−227634号公報JP-A 63-227634 特開平8−156440号公報JP-A-8-156440

本発明は、上記実情に鑑みなされたものであり、その解決課題は、感熱孔版印刷用原紙とした際に穿孔感度、印刷時の解像度、印字品位性、濃度、カール性に優れた感熱孔版印刷原紙用フィルムを提供することにある。   The present invention has been made in view of the above circumstances, and the problem to be solved is thermal stencil printing excellent in perforation sensitivity, printing resolution, print quality, density, and curling properties when used as a base paper for thermal stencil printing. It is to provide a film for base paper.

本発明者は、上記課題に鑑み、鋭意検討を重ねた結果、特定の構成を有するポリエステルフィルムによれば、上記課題を容易に解決できることを見いだし、本発明を完成するに至った。   As a result of intensive studies in view of the above problems, the present inventors have found that the above problems can be easily solved by a polyester film having a specific configuration, and have completed the present invention.

すなわち、本発明の要旨、融点が250℃以下、厚みが1.0〜3.5μmの2軸延伸ポリエステルフィルムであり、50〜150℃におけるTMAによるフィルム縦方向の収縮率が2%以下、フィルム横方向の収縮率が2%以下であることを特徴とする感熱孔版印刷原紙用フィルムに存する。   That is, the gist of the present invention is a biaxially stretched polyester film having a melting point of 250 ° C. or less and a thickness of 1.0 to 3.5 μm, and a film shrinkage in the longitudinal direction by TMA at 50 to 150 ° C. is 2% or less. It exists in the film for heat sensitive stencil printing base paper characterized by the shrinkage | contraction rate of a horizontal direction being 2% or less.

本発明のポリエステルフィルムは、カール性が非常に良好で、穿孔感度、印刷時の解像度、印字品位性、濃度に優れており、特にサーマルヘッドによる低エネルギー下においても優れた穿孔特性を有する感熱孔版印刷原紙用フィルムおよび感熱孔版印刷原紙を得ることができ、その工業的価値は高い。   The polyester film of the present invention has a very good curling property, excellent perforation sensitivity, printing resolution, print quality and density, and has excellent perforation characteristics even under low energy by a thermal head. A film for printing base paper and a heat-sensitive stencil printing base paper can be obtained, and its industrial value is high.

本発明で用いるポリエステルを構成する二官能性酸成分は、芳香族ジカルボン酸またはそのエステル形成性誘導体を主とするものであり、具体的にはテレフタル酸、2,6−ナフタレンジカルボン酸、そのエステル形成誘導体としてはテレフタル酸ジメチル、2,6−ナフタレンジカルボン酸ジメチルなどが挙げられ、これらの中でもテレフタル酸、テレフタル酸ジメチルが好ましい。また、ポリエステルを構成するグリコール成分としては、エチレングリコール、ブチレングリコール、プロピレングリコール、ポリエチレングリコール、1,4−シクロヘキサンジメタノールなどが挙げられ、これらの中でもエチレングリコール、ブチレングリコールが好ましい。   The bifunctional acid component constituting the polyester used in the present invention is mainly an aromatic dicarboxylic acid or an ester-forming derivative thereof, specifically, terephthalic acid, 2,6-naphthalenedicarboxylic acid, or an ester thereof. Examples of the forming derivative include dimethyl terephthalate and dimethyl 2,6-naphthalenedicarboxylate. Among these, terephthalic acid and dimethyl terephthalate are preferable. Examples of the glycol component constituting the polyester include ethylene glycol, butylene glycol, propylene glycol, polyethylene glycol, and 1,4-cyclohexanedimethanol. Among these, ethylene glycol and butylene glycol are preferable.

かかるポリエステルは、芳香族ジカルボン酸もしくはそのエステル形成性誘導体と、アルキレングリコールとを出発原料とするポリエステルで、2種以上の成分を含む共重合体であることが好ましい。共重合する成分として、上記のほかに、例えば、ジエチレングリコール、ネオペンチルグリコール、ポリアルキレングリコールなどのジオール成分、アジピン酸、セバシン酸、フタル酸、イソフタル酸などのジカルボン酸成分、トリメリット酸、ピロメリット酸などが挙げられる。また、それぞれ単一成分で構成されるホモポリマー同士、ホモポリマーと2種以上の成分を含む共重合体および当該共重合体同士のブレンドポリエステルが好ましく、それらの中でもポリブチレンテレフタレートとイソフタル酸を共重合成分とするポリエチレンテレフタレート共重合体とのブレンドポリエステルやポリブチレンテレフタレートとポリエチレンナフタレートとイソフタル酸を共重合成分とするポリエチレンテレフタレート共重合体とのブレンドポリエステルがさらに好ましい。   Such a polyester is a polyester starting from an aromatic dicarboxylic acid or an ester-forming derivative thereof and an alkylene glycol, and is preferably a copolymer containing two or more components. In addition to the above, the components to be copolymerized include, for example, diol components such as diethylene glycol, neopentyl glycol, and polyalkylene glycol, dicarboxylic acid components such as adipic acid, sebacic acid, phthalic acid, and isophthalic acid, trimellitic acid, and pyromellitic An acid etc. are mentioned. Further, homopolymers each composed of a single component, a copolymer containing a homopolymer and two or more components, and a blended polyester of the copolymers are preferred. Among them, polybutylene terephthalate and isophthalic acid are co-polymerized. A blend polyester with a polyethylene terephthalate copolymer as a polymerization component and a blend polyester with polybutylene terephthalate, polyethylene naphthalate and isophthalic acid as a copolymerization component are more preferable.

本発明の対象となるポリエステルフィルムの融点は250℃以下である。複数の融点を有する場合においても250℃以下である。融点が250℃より高い場合には、感熱孔版印刷用原紙とした際に低エネルギーでの穿孔性が低下し、本発明の目的とする高度な穿孔感度が得られなくなるので好ましくない。また、本発明において二つ以上の融点を有する場合は、最も高い融点(Tm2)と最も低い融点(Tm1)との差は通常50℃未満、好ましくは30℃未満であるがTm1とT m2が同一であってもよい。温度差が50℃以上では、短時間かつ低エネルギーにおいて確実な穿孔が起こらず、解像度が劣るようになることがある。   The melting point of the polyester film that is the subject of the present invention is 250 ° C. or lower. Even when it has a plurality of melting points, it is 250 ° C. or lower. When the melting point is higher than 250 ° C., it is not preferable because the perforating property at low energy is lowered when a heat sensitive stencil printing base paper is used, and the high perforation sensitivity intended by the present invention cannot be obtained. In the present invention, when two or more melting points are used, the difference between the highest melting point (Tm2) and the lowest melting point (Tm1) is usually less than 50 ° C., preferably less than 30 ° C., but Tm1 and Tm2 are It may be the same. When the temperature difference is 50 ° C. or more, reliable perforation does not occur in a short time and low energy, and the resolution may be deteriorated.

本発明のフィルムの厚みは、1.0〜3.5μm、好ましくは1.0〜2.5μm、さらに好ましくは1.5〜2.5μmである。フィルムの厚みが薄くなれば熱伝導距離が短縮され、穿孔時に必要な熱エネルギーも減少して穿孔性が向上し印刷時の解像度、印字品位性、濃度が向上するが、厚みが1μm未満では、フィルムの剛性が低下し、搬送性が悪化して印字時にシワ等が生じたり、フィルムが破断したりして耐刷性が低下するようになる。更には熱伝導距離が短縮しすぎ穿孔時に隣り合う孔同士が連結し所定の穿孔が得られず、解像度、印刷品位性が低下するため好ましくない。また、厚みが3.5μmを超える厚い領域では、低エネルギーによる穿孔性が悪化して印刷時にむらを生じることになるため好ましくない。   The thickness of the film of the present invention is 1.0 to 3.5 μm, preferably 1.0 to 2.5 μm, more preferably 1.5 to 2.5 μm. If the thickness of the film is reduced, the heat conduction distance is shortened, the thermal energy required for perforation is also reduced and the perforation is improved, and the resolution, print quality, and density at the time of printing are improved, but when the thickness is less than 1 μm, The rigidity of the film is lowered, the transportability is deteriorated, wrinkles are generated during printing, the film is broken, and the printing durability is lowered. Furthermore, since the heat conduction distance is too short and adjacent holes are connected at the time of drilling, a predetermined drilling cannot be obtained, and the resolution and print quality are deteriorated. In addition, a thick region having a thickness exceeding 3.5 μm is not preferable because punchability due to low energy deteriorates and unevenness occurs during printing.

本発明のフィルムのガラス転移温度(Tg)は、通常40〜85℃の範囲であり、好ましくは45〜80℃、さらに好ましくは50〜75℃の範囲である。ガラス転移温度が40℃未満では、耐熱寸法安定性が悪化してフィルムの搬送性が悪化したり、マスターフィルム保管中のカールが発生したりすることがある。   The glass transition temperature (Tg) of the film of the present invention is usually in the range of 40 to 85 ° C, preferably 45 to 80 ° C, more preferably 50 to 75 ° C. When the glass transition temperature is less than 40 ° C., the heat-resistant dimensional stability is deteriorated, the film transportability is deteriorated, and curling during storage of the master film may occur.

これらの特性に加え、本発明におけるフィルムの100℃で3分間処理後の収縮率は、5%以上であることが好ましく、さらに好ましくは10〜40%である。3%未満では穿孔感度が不足して印刷の画像濃度が低下する恐れがある。また40%を超えると、濃淡むらが生じやすくなる傾向がある。   In addition to these characteristics, the shrinkage after the film is treated at 100 ° C. for 3 minutes in the present invention is preferably 5% or more, more preferably 10 to 40%. If it is less than 3%, the perforation sensitivity is insufficient and the image density of printing may be lowered. On the other hand, if it exceeds 40%, uneven shading tends to occur.

本発明の50〜150℃におけるTMAによるフィルムの縦方向の収縮率は2%以下であり、フィルムの横方向の収縮率が2%以下である。縦方向の収縮率が2%を超えると、和紙と貼りあわされたフィルムが縦方向に収縮するため感熱孔版印刷用原紙は縦方向にフィルム側へカールする。同様に横方向の収縮率が2%を超えると、フィルムは横方向に収縮するため感熱孔版印刷用原紙は横方向、フィルム側へカールする。感熱孔版印刷用原紙がカールすると孔版印刷機内のガイドロールに巻きついたり、搬送の弊害となったりして、原紙つまりを発生させ、印刷機の故障の原因となる。   In the present invention, the shrinkage ratio in the longitudinal direction of the film by TMA at 50 to 150 ° C. is 2% or less, and the shrinkage ratio in the transverse direction of the film is 2% or less. When the shrinkage ratio in the machine direction exceeds 2%, the film laminated with the Japanese paper shrinks in the machine direction, and the heat-sensitive stencil sheet curls in the machine direction in the machine direction. Similarly, when the shrinkage rate in the horizontal direction exceeds 2%, the film shrinks in the horizontal direction, so that the heat-sensitive stencil sheet curls in the horizontal direction and the film side. When the heat-sensitive stencil sheet is curled, it may be wound around a guide roll in the stencil printing machine, or may be adversely affected by conveyance, generating clogging of the sheet and causing the printer to malfunction.

なお、本発明において、製膜に供するポリエステル全量に対し、10重量%程度以下の他のポリマー(例えばポリエチレン、ポリスチレン、ポリカーボネート、ポリスルホン、ポリフェニレンスルフィド、ポリアミド、ポリイミド等)を含有させることができる。また必要に応じ、酸化防止剤、熱安定剤、潤滑剤、帯電防止剤、染料、顔料等の添加剤を配合してもよい。   In the present invention, other polymers (for example, polyethylene, polystyrene, polycarbonate, polysulfone, polyphenylene sulfide, polyamide, polyimide, etc.) of about 10% by weight or less can be contained with respect to the total amount of polyester used for film formation. Moreover, you may mix | blend additives, such as antioxidant, a heat stabilizer, a lubricant, an antistatic agent, dye, and a pigment, as needed.

上記の添加剤の配合方法は、特に限定されず、例えば、添加剤とポリエステルチップとを直接ブレンドする方法、添加剤をあらかじめポリエステル中に高濃度に配合したマスターバッチチップを得、それを再度ポリエステルにブレンドする所謂マスターバッチ法などを採用することができる。   The method of blending the above additives is not particularly limited. For example, a method of directly blending the additive and the polyester chip, a master batch chip in which the additive is blended in a high concentration in the polyester in advance, and obtaining the polyester again A so-called master batch method for blending with the above can be employed.

本発明のフィルムは、フィルム製造時の巻き上げ工程、フィルムマスター作成時のコーティング、および印刷時の作業性を向上させたり、あるいは、サーマルヘッドとフィルムとの融着を防止したりするため、フィルムに適度な滑り性を付与する。具体的には、表面を適度に粗面化するために、例えば、平均粒径0.05〜2.0μmの微粒子を0.01〜2.0重量%、好ましくは0.1〜1.5重量%、フィルム中に含有させる。   The film of the present invention improves the workability during winding process during film production, coating during film master creation, and printing, or prevents fusion between the thermal head and the film. Gives moderate slipperiness. Specifically, in order to appropriately roughen the surface, for example, fine particles having an average particle size of 0.05 to 2.0 μm are 0.01 to 2.0% by weight, preferably 0.1 to 1.5%. Weight% is contained in the film.

かかる微粒子の例として、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、硫酸カルシウム、リン酸カルシウム、リン酸リチウム、リン酸マグネシウム、フッ化リチウム、酸化アルミニウム、酸化珪素、酸化チタン、カオリン、タルク、カーボンブラック、窒化ケイ素、窒化ホウ素、および特公昭59 −5216号公報に記載されているような架橋高分子微粉体を挙げることができるが、これらに限定されるものではない。この際、配合する微粒子は、単成分でもよく、また、2成分以上を同時に用いてもよい。2成分以上用いる場合は、それらの全体の平均粒径および含有量が上記した範囲内にあることが好ましい。   Examples of such fine particles include calcium carbonate, magnesium carbonate, barium carbonate, calcium sulfate, calcium phosphate, lithium phosphate, magnesium phosphate, lithium fluoride, aluminum oxide, silicon oxide, titanium oxide, kaolin, talc, carbon black, silicon nitride. , Boron nitride, and crosslinked polymer fine powders as described in JP-B-59-5216, but are not limited thereto. At this time, the fine particles to be blended may be a single component, or two or more components may be used simultaneously. When two or more components are used, it is preferable that the average particle diameter and content thereof are in the above-described range.

用いる微粒子の平均粒径が0.05μm未満、または微粒子の含有量が0.01重量%未満である場合は、フィルム表面の粗面化が不足し、十分に効果が得られないことがある。また、平均粒径が2.0μmを超える場合や含有量が2.0重量%を超える場合には、フィルム表面の粗面化の度合いが大きすぎて熱伝達にむらが生じ、穿孔が不均一となり、解像度が劣ったり、印字品位性が損なわれたりすることがある。   When the average particle size of the fine particles used is less than 0.05 μm or the content of the fine particles is less than 0.01% by weight, the film surface is insufficiently roughened, and the effect may not be obtained sufficiently. In addition, when the average particle size exceeds 2.0 μm or the content exceeds 2.0% by weight, the degree of roughening of the film surface is too large, resulting in uneven heat transfer and uneven perforation. Thus, the resolution may be inferior or the print quality may be impaired.

原料ポリエステルに対する前記各粒子の配合方法は、特に限定されないが、例えば、ポリエステルの重合工程に各粒子を添加する方法または原料ポリエステルと各粒子を溶融混練する方法などが好適である。本発明で得られるフィルムは、作業性、印刷時の解像度、印字品位性、濃度などの特性を高度に満足させるため、中心線平均粗さ(Ra)が0.01〜0.20μmの範囲であることが好ましく、0.02〜0.15μmの範囲であることがさらに好ましい。Raが0.01μm未満の場合は、フィルムの巻き取り時にフィルムにシワが入りやすくなる傾向があり、また、Raが0.20μmを超える場合は、フィルム表面の平面性が損なわれ、熱伝達にムラが生じ、穿孔が不均一となり、解像度が劣り、印字品位性、濃度が損なわれる傾向がある。   The method for blending the respective particles with the raw material polyester is not particularly limited. For example, a method of adding each particle to the polyester polymerization step or a method of melt-kneading the raw material polyester and each particle is suitable. The film obtained in the present invention has a centerline average roughness (Ra) in the range of 0.01 to 0.20 μm in order to satisfy the characteristics such as workability, printing resolution, print quality, and density at a high level. It is preferable that it is in the range of 0.02 to 0.15 μm. When Ra is less than 0.01 μm, the film tends to be wrinkled at the time of winding the film, and when Ra exceeds 0.20 μm, the flatness of the film surface is impaired and the heat transfer. Unevenness occurs, the perforation becomes uneven, the resolution is poor, and the print quality and density tend to be impaired.

次に、本発明のフィルムの製造方法について説明する。   Next, the manufacturing method of the film of this invention is demonstrated.

本発明の感熱孔版印刷用ポリエステルフィルムは、まず、エクストルーダーに代表される周知の溶融押し出し機に原料ポリマーを供給し、当該ポリマーの融点以上の温度に加熱して溶融する。次いで、溶融したポリマーをスリット状のダイから押し出し、回転冷却ドラム上で急冷固化し、実質的に非晶状態の未延伸シートを得る。この場合、シートの平面性を向上させるため、シートと回転冷却ドラムとの密着性を高める必要があり、本発明においては、静電印加密着法および/ または液体塗布密着法が好ましく採用される。   The polyester film for heat-sensitive stencil printing of the present invention is first melted by supplying a raw material polymer to a known melt extruder represented by an extruder and heating to a temperature equal to or higher than the melting point of the polymer. Next, the molten polymer is extruded from a slit-shaped die and rapidly cooled and solidified on a rotary cooling drum to obtain a substantially amorphous unstretched sheet. In this case, in order to improve the flatness of the sheet, it is necessary to improve the adhesion between the sheet and the rotary cooling drum. In the present invention, the electrostatic application adhesion method and / or the liquid application adhesion method are preferably employed.

本発明においては、上記のようにして得られた未延伸シートを2軸方向に延伸してフィルム化する。具体的には、まず、ロールまたはテンター方式の延伸機により、前記未延伸シートを一方向に延伸する。この一段目において、延伸温度は、通常40〜120℃、好ましくは50〜100℃、延伸倍率は、通常3〜7倍、好ましくは3.5〜7倍とする。次に、テンター方式の延伸機により、一段目と直交する方向に延伸する。この二段目において、延伸温度は、通常20〜100℃、好ましくは25〜90℃、延伸倍率は、通常3〜7倍、好ましくは3.5〜7倍、さらに好ましくは3.8〜7倍とする。   In the present invention, the unstretched sheet obtained as described above is stretched biaxially to form a film. Specifically, first, the unstretched sheet is stretched in one direction by a roll or tenter type stretching machine. In this first stage, the stretching temperature is usually 40 to 120 ° C., preferably 50 to 100 ° C., and the stretching ratio is usually 3 to 7 times, preferably 3.5 to 7 times. Next, the film is stretched in a direction orthogonal to the first stage by a tenter type stretching machine. In this second stage, the stretching temperature is usually 20-100 ° C., preferably 25-90 ° C., and the stretching ratio is usually 3-7 times, preferably 3.5-7 times, more preferably 3.8-7. Double.

一方向の延伸を2段階以上で行う方法も採用することができるが、その場合も最終的な延伸倍率が上記した範囲に入ることが好ましい。また、前記未延伸シートを面積倍率が10〜40倍になるように同時二軸延伸することも可能である。得られたフィルムの熱処理は、任意に行うことができ、また、必要に応じ、熱処理を行う前または後に再度縦および/ または横方向に延伸してもよい。本発明においては、延伸後の熱処理を実質的に行わないか、または、熱処理を行う場合は次の条件を採用するのが好ましい。すなわち、熱処理温度は、通常120℃以下とし、熱処理時間は1秒から5分間でフィルムを定長下または30%以内の伸長下のフィルムについて熱処理を施しロールに巻き取る。ロールに巻き取る際は必要に応じて所定の幅にスリットを行う。   A method of performing unidirectional stretching in two or more stages can also be employed, but in this case as well, it is preferable that the final stretching ratio falls within the above-described range. Further, the unstretched sheet can be simultaneously biaxially stretched so that the area magnification is 10 to 40 times. The obtained film can be arbitrarily heat-treated, and if necessary, it may be stretched again in the machine direction and / or the transverse direction before or after the heat treatment. In the present invention, it is preferable not to substantially perform the heat treatment after stretching, or to employ the following conditions when performing the heat treatment. That is, the heat treatment temperature is usually 120 ° C. or less, the heat treatment time is 1 second to 5 minutes, the film is heat treated on the film under a constant length or under 30% elongation, and wound on a roll. When winding on a roll, a slit is made to a predetermined width as necessary.

かくして得られた本発明のポリエステルフィルムは、多孔性支持体と接着して原紙とする。多孔性支持体とは、印刷インキの保持および透過が可能で、フィルムが穿孔される加熱条件では実質的に熱変形を起こさない天然繊維、合成繊維等を原料とした多孔質のものであり、不織布、織布またはその他の多孔体が用いられる。本発明のポリエステルフィルムは、サーマルヘッド等との融着防止のため、片面にシリコーンオイル、シリコーン系樹脂、フッ素系樹脂、界面活性剤、帯電防止剤、離型剤、有機粒子、無機粒子等を塗布することもできる。塗布方法は特に限定されないが、ロールコーター、グラビアコーター、リバースコーター、バーコーター等を用いて塗布するのが好ましい。また、塗布剤を設ける
前に必要に応じて、塗布面に空気中その他種々の雰囲気中でコロナ放電処理等の活性化処理を施してもよい。
The polyester film of the present invention thus obtained is bonded to a porous support to obtain a base paper. The porous support is a porous material made from natural fibers, synthetic fibers, etc. that can hold and permeate printing ink and does not substantially undergo thermal deformation under heating conditions where the film is perforated. Nonwoven fabrics, woven fabrics or other porous materials are used. The polyester film of the present invention has a silicone oil, a silicone resin, a fluorine resin, a surfactant, an antistatic agent, a release agent, organic particles, inorganic particles, etc. on one side in order to prevent fusion with a thermal head or the like. It can also be applied. The application method is not particularly limited, but it is preferable to apply using a roll coater, gravure coater, reverse coater, bar coater or the like. Moreover, you may perform activation processes, such as a corona discharge process, in the air and various other atmospheres as needed before providing a coating agent.

以下、実施例により本発明をさらに詳細に説明するが、本発明は、その要旨を越えない限り、以下の実施例に限定されるものではない。なお、本発明で用いた物性測定法は以下のとおりである。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to a following example, unless the summary is exceeded. In addition, the physical-property measuring method used by this invention is as follows.

(1)融点(Tm)、ガラス転移温度(Tg)
パーキンエルマー製示差走査カロリーメーターDSC7型を用いて測定した。DSC測定条件は以下のとおりである。すなわち、試料フィルム6mgをDSC装置にセットし、300℃の温度で5分間溶融保持した後、液体窒素にて急冷した。急冷試料を0℃より10℃/ 分の速度で昇温し、ガラス転移に相当する温度を読み取りガラス転移温度(Tg)、融解吸熱ピークの頂点を融点(Tm)として検知した。
(1) Melting point (Tm), glass transition temperature (Tg)
It measured using the Perkin-Elmer differential scanning calorimeter DSC7 type. The DSC measurement conditions are as follows. That is, 6 mg of the sample film was set in a DSC apparatus, melted and held at 300 ° C. for 5 minutes, and then rapidly cooled with liquid nitrogen. The rapidly cooled sample was heated from 0 ° C. at a rate of 10 ° C./min, the temperature corresponding to the glass transition was read, and the top of the melting endothermic peak was detected as the melting point (Tm).

(2)加熱収縮率(S)
試料を無張力状態で100℃に保ったオーブン中、3分間処理し、その前後の試料の長さを測定して次式にて加熱収縮率を算出した。
(2) Heat shrinkage (S)
The sample was treated for 3 minutes in an oven kept at 100 ° C. in a tensionless state, the length of the sample before and after that was measured, and the heat shrinkage rate was calculated by the following formula.

S(%)={(L0−L1)/L0}×100
(上記式中、L0は熱処理前の試料長、L1は熱処理後の試料長)フィルム縦方向と横方向に5点ずつ測定し、平均値を求めた。
S (%) = {(L0−L1) / L0} × 100
(In the above formula, L0 is the sample length before the heat treatment, L1 is the sample length after the heat treatment) Five points were measured in the film longitudinal direction and the transverse direction, and the average value was obtained.

(3)TMAによる収縮率(St)
SII製TMA/SS6100を用いて測定した。すなわちチャック間を20mm、試料幅を4mmとし、試料に24.5mNの一定張力下で昇温速度10℃/minにて各温度における収縮率を次式にて算出した。
St(%)={(Lt0−Ltn )/Lt0}×100
(上記式中、Lt0は熱処理前の試料長、Ltnは各温度での試料長)
(3) Shrinkage rate by TMA (St)
It measured using TMA / SS6100 made from SII. That is, the shrinkage rate at each temperature was calculated by the following equation with the chuck spacing of 20 mm, the sample width of 4 mm, and the sample under a constant tension of 24.5 mN and a temperature increase rate of 10 ° C./min.
St (%) = {(Lt0−Ltn) / Lt0} × 100
(In the above formula, Lt0 is the sample length before heat treatment, Ltn is the sample length at each temperature)

(4)感熱孔版印刷原紙実用特性(感度)
フィルムの片面に酢酸ビニル系接着剤を用いて和紙と貼り合わせ、さらにフィルムのもう一方の面にシリコーン系滑剤を、バーコーターを用いて塗布し、感熱孔版印刷用原紙を作成した。得られた原紙をサーマルヘッドにより、印加エネルギー0.09 mJ および0.12mJ にて文字画像および16階調画像を製版した。製版された原紙のフィルム側から顕微鏡で階調画像部の穿孔状態を観察して以下の3段階に分けて評価した。
○:所定の穿孔が確実に行われ、穿孔の大きさも十分であり良好
△:まれに所定の穿孔が得られない部分や穿孔の大きさが不十分な部分があるが、実用は可能
×:所定の穿孔が得られない部分が数多くあり、穿孔の大きさも不十分であり、実用上支障がある
(4) Practical characteristics of heat-sensitive stencil printing paper (sensitivity)
A film was bonded to Japanese paper using a vinyl acetate adhesive on one side of the film, and a silicone lubricant was applied to the other side of the film using a bar coater to prepare a heat-sensitive stencil printing base paper. A letter image and a 16-tone image were made on the obtained base paper with a thermal head at an applied energy of 0.09 mJ and 0.12 mJ. The perforation state of the gradation image portion was observed with a microscope from the film side of the plate-making base paper, and the evaluation was divided into the following three stages.
○: Predetermined perforation is reliably performed and the size of the perforation is sufficient and good. Δ: In rare cases, there are some portions where the predetermined perforation cannot be obtained, and there are portions where the size of the perforations is insufficient, but practical use is possible. There are many parts where the predetermined perforations cannot be obtained, the size of the perforations is insufficient, and there is a problem in practical use.

(5)感熱孔版印刷原紙実用特性(印字品位性)
感度測定で得た製版原紙を用い、理想科学工業(株)製リソグラフAP7200印刷機を用いて実際に印刷し、得られた文字、画像について、以下の3段階に分けて評価した。 ○:濃度斑、にじみがなく、鮮明に印字でき良好
△:僅かに濃淡のムラ、にじみが認められ、やや鮮明さに欠ける
×:濃淡のムラ、あるいはにじみ、かすれがはっきり出ている
(5) Practical characteristics of thermal stencil printing base paper (print quality)
Using the stencil paper obtained by sensitivity measurement, printing was actually performed using a lithographic AP7200 printer manufactured by Riso Kagaku Kogyo Co., Ltd., and the obtained characters and images were evaluated in the following three stages. ○: Clear and clear printing without density spots and blurring △: Slight shading unevenness and blurring are observed, slightly lacking in sharpness ×: Shading shading, blurring, blurring, and blurring are clearly visible

(6)感熱孔版印刷原紙実用性(カール性)
(4)で得られた感熱印刷用原紙を縦300mm、横300mmに切り出しフィルム面を上にした状態で静置し以下の3段階で評価した。
○:四辺がカールしない。
△:四辺のカールの最大が30mm未満
×:四辺のカールが30mm以上
(6) Thermal stencil printing base paper practicality (curling)
The base paper for thermal printing obtained in (4) was cut into a length of 300 mm and a width of 300 mm and left still with the film surface facing upward, and evaluated in the following three stages.
○: The four sides do not curl.
Δ: The curl of the four sides is less than 30 mm ×: The curl of the four sides is 30 mm or more

以下の実施例・比較例において用いたポリエステルは、以下の要領で調整したものである。
・ポリエステル−Aの製造
テレフタル酸ジメチル78重量部、イソフタル酸ジメチル22重量部とエチレングリコール60部とを出発原料とし、触媒として酢酸マグネシウム・四水塩0.09 重量部を反応器にとり、反応開始温度を150℃とし、メタノールの留去と共に徐々に反応温度を上昇させ、3時間後に230℃とした。4時間後、実質的にエステル交換反応の終了したこの反応混合物に平均粒径が1.1μmの球状架橋高分子粒子1.0重量部を含有するエチレングリコールスラリー10重量部を添加し、エチルアシッドフォスフェート0.04部、三酸化アンチモン0.04部を加えて、4時間重縮合反応を行った。すなわち、温度を230℃から徐々に昇温し280℃とした。一方、圧力は常圧より徐々に減じ、最終的には0.3mmH gとした。反応開始後、4時間を経た時点で反応を停止し、窒素加圧下ポリマーを吐出させた。得られたポリエステルの極限粘度は0.74dl/gであった。
The polyester used in the following examples and comparative examples was prepared in the following manner.
・ Production of polyester-A Starting from 78 parts by weight of dimethyl terephthalate, 22 parts by weight of dimethyl isophthalate and 60 parts of ethylene glycol, 0.09 parts by weight of magnesium acetate tetrahydrate as a catalyst was started in the reactor. The temperature was 150 ° C., and the reaction temperature was gradually increased as methanol was distilled off. After 4 hours, 10 parts by weight of an ethylene glycol slurry containing 1.0 part by weight of spherical crosslinked polymer particles having an average particle size of 1.1 μm was added to the reaction mixture after the transesterification reaction was substantially completed. 0.04 part of phosphate and 0.04 part of antimony trioxide were added and a polycondensation reaction was performed for 4 hours. That is, the temperature was gradually raised from 230 ° C. to 280 ° C. On the other hand, the pressure was gradually reduced from normal pressure, and finally 0.3 mmHg. After 4 hours from the start of the reaction, the reaction was stopped and the polymer was discharged under nitrogen pressure. The intrinsic viscosity of the obtained polyester was 0.74 dl / g.

・ポリエステル−Bの製造
テレフタル酸ジメチル100重量部、1,4−ブタンジオール56重量部、テトラブチルチタネート0.005重量部を反応機にとり、反応開始温度を150℃とし、メタノールの留出と共に反応温度を徐々に上昇させ、3時間後に210℃とした。4時間後実質的にエステル交換反応が終了したこの反応混合物にテトラブチルチタネート0.005重量部を加えて、4時間重縮合反応を行った。すなわち、温度を210℃から徐々に昇温し260℃とした。一方、圧力は常圧より徐々に減じ、最終的には0.3mmHg とした。反応開始後、4時間を経た時点で反応を停止し、窒素加圧下ポリマーを吐出させた。得られたポリエステルBの極限粘度は0.9 0dl/gであった。
・ Production of polyester-B 100 parts by weight of dimethyl terephthalate, 56 parts by weight of 1,4-butanediol and 0.005 parts by weight of tetrabutyl titanate are set in a reactor, the reaction start temperature is set to 150 ° C., and the reaction is performed together with distillation of methanol. The temperature was gradually raised to 210 ° C. after 3 hours. After 4 hours, 0.005 parts by weight of tetrabutyl titanate was added to the reaction mixture after the transesterification reaction was substantially completed, and a polycondensation reaction was performed for 4 hours. That is, the temperature was gradually raised from 210 ° C. to 260 ° C. On the other hand, the pressure was gradually reduced from the normal pressure, and finally 0.3 mmHg. After 4 hours from the start of the reaction, the reaction was stopped and the polymer was discharged under nitrogen pressure. The intrinsic viscosity of the obtained polyester B was 0.90 dl / g.

・ポリエステル−Cの製造
テレフタル酸ジメチル100重量部、エチレングリコール60重量部および酢酸カルシウム一水塩0.1重量部を反応容器に入れ、ポリエステル交換を行った。すなわち、ポリエステル交換反応開始温度を170℃とすると共に、メタノールの流出を伴って反応溶液を加熱しエステル交換反応を開始して、4時間後に230℃にまで加熱して、エステル交換反応を行った。エステル交換反応の終了したこの反応物に平均粒径が0.70μmの球状シリカ粒子0.5%重量部を含有するエチレングリコールスラリー5重量部を添加し、次いでリン酸0.04重量部を加えた後、テトラブチルチタネート0.005重量部を加えて重縮合反応を行った。すなわち、反応溶液を加熱すると共に系内の圧力を減少させ、重縮合を開始してから2時間後に280℃にまで加熱すると共に0.3mmHgにまで減圧した。さらに数時間経過した時点で重縮合反応を停止してポリエステルCを得た。このポリエステルCの極限粘度は0.70dl/gであった。
-Production of polyester-C 100 parts by weight of dimethyl terephthalate, 60 parts by weight of ethylene glycol and 0.1 part by weight of calcium acetate monohydrate were placed in a reaction vessel, and the polyester was exchanged. That is, the polyester exchange reaction start temperature was set to 170 ° C., the reaction solution was heated with methanol outflow to start the ester exchange reaction, and heated to 230 ° C. after 4 hours to conduct the ester exchange reaction. . 5 parts by weight of an ethylene glycol slurry containing 0.5% by weight of spherical silica particles having an average particle diameter of 0.70 μm was added to the reaction product after the transesterification reaction, and then 0.04 parts by weight of phosphoric acid was added. Thereafter, 0.005 parts by weight of tetrabutyl titanate was added to carry out a polycondensation reaction. That is, the reaction solution was heated and the pressure in the system was decreased, and after 2 hours from the start of polycondensation, the reaction solution was heated to 280 ° C. and depressurized to 0.3 mmHg. Furthermore, when several hours passed, the polycondensation reaction was stopped to obtain polyester C. This polyester C had an intrinsic viscosity of 0.70 dl / g.

実施例1:
ポリエステル−Aを30%と、ポリエステル−Bを30%と、フィルム製造時に発生する耳部およびフィルム端部からの再生品を40%、均一にブレンドし、260℃にて押出機よりシート状に押出し、表面温度を40℃に設定した回転冷却ドラムで静電印加冷却法を利用して急冷固化させ、厚み25μmの実質的に非晶質のシートを得た。得られたシートを縦方向に75℃で4.0倍、横方向に80℃で4.0倍に延伸し、さらに105℃で6秒間熱処理後、80℃で3%弛緩し、厚み1.6μmの二軸延伸ポリエステルフィルムを得た。得られたフィルムに酢酸ビニルを接着剤として和紙と貼り合わせ、さらにフィルムのもう一方の面にシリコーン系滑剤を、バーコーターを用いて塗布し感熱孔版印刷用原紙を作成、評価を実施した。
Example 1:
Polyester-A 30%, Polyester-B 30%, 40% recycled products from the ears and film edges generated during film production, and blended uniformly into a sheet from an extruder at 260 ° C Extrusion and rapid cooling and solidification using an electrostatic application cooling method with a rotary cooling drum set at a surface temperature of 40 ° C. gave a substantially amorphous sheet having a thickness of 25 μm. The obtained sheet was stretched 4.0 times at 75 ° C. in the machine direction and 4.0 times at 80 ° C. in the transverse direction, further heat treated at 105 ° C. for 6 seconds, relaxed by 3% at 80 ° C., and thickness 1. A 6 μm biaxially stretched polyester film was obtained. The obtained film was bonded to Japanese paper using vinyl acetate as an adhesive, and a silicone lubricant was applied to the other surface of the film using a bar coater to prepare a thermal stencil printing base paper, which was evaluated.

実施例2:
実施例1において、弛緩率を5%にした以外は実施例1と同様の方法で感熱孔版印刷用原紙を作成し評価を実施した。
Example 2:
In Example 1, a heat-sensitive stencil sheet was prepared and evaluated in the same manner as in Example 1 except that the relaxation rate was 5%.

実施例3:
実施例1において、弛緩率を9%にした以外は実施例1と同様の方法で感熱孔版印刷用原紙を作成し評価を実施した。
Example 3:
In Example 1, a heat-sensitive stencil sheet was prepared and evaluated in the same manner as in Example 1 except that the relaxation rate was 9%.

比較例1:
実施例1において、弛緩率を0%した以外は実施例1と同様の方法で感熱孔版印刷用原紙を作成し評価を実施した。
Comparative Example 1:
In Example 1, a heat-sensitive stencil sheet was prepared and evaluated in the same manner as in Example 1 except that the relaxation rate was 0%.

比較例2:
実施例1において、弛緩率を15%にして製膜を試みたが弛緩量が大きくフィルムが不安定となり破断が頻発して製膜できなかった。
Comparative Example 2:
In Example 1, an attempt was made to form a film with a relaxation rate of 15%. However, the amount of relaxation was large, the film became unstable, and breakage occurred frequently, resulting in failure to form a film.

比較例3:
実施例1において、ポリエステル−Aを15%とポリエステル−Bを15%と、ポリエステル−Cを30%と、ポリエステル−Aとポリエステル−Bとポリエステル−Cの組成からなる、フィルム製造時に発生する耳部およびフィルム端部からの再生品40%を均一にブレンドした以外は実施例1と同様の方法で感熱孔版印刷用原紙を作成し評価を実施した。
Comparative Example 3:
In Example 1, 15% polyester-A, 15% polyester-B, 30% polyester-C, and an ear generated during film production comprising the composition of polyester-A, polyester-B, and polyester-C. A base sheet for heat-sensitive stencil printing was prepared and evaluated in the same manner as in Example 1 except that 40% of the recycled product from the film and the film edge was uniformly blended.

比較例4:
ポリエステル−Aを30%と、ポリエステル−Bを30%と、フィルム製造時に発生する耳部およびフィルム端部からの再生品を40%、均一にブレンドし、260℃にて押出機よりシート状に押出し、表面温度を40℃に設定した回転冷却ドラムで静電印加冷却法を利用して急冷固化させ、厚み25μmの実質的に非晶質のシートを得た。得られたシートを縦方向に75℃で4.0倍、横方向に80℃で4.0倍に延伸し、さらに105℃で6秒間熱処理後、80℃で5%弛緩し、厚み0.9 μmの二軸延伸ポリエステルフィルムを得た。得られたフィルムに酢酸ビニルを接着剤として和紙と貼り合わせ、さらにフィルムのもう一方の面にシリコーン系滑剤を、バーコーターを用いて塗布し感熱孔版印刷用原紙を作成、評価を実施した。
Comparative Example 4:
Polyester-A 30%, Polyester-B 30%, 40% recycled products from the ears and film edges generated during film production, and blended uniformly into a sheet from an extruder at 260 ° C Extrusion and rapid cooling and solidification using an electrostatic application cooling method with a rotary cooling drum set at a surface temperature of 40 ° C. gave a substantially amorphous sheet having a thickness of 25 μm. The obtained sheet was stretched 4.0 times at 75 ° C. in the longitudinal direction and 4.0 times at 80 ° C. in the transverse direction, further heat treated at 105 ° C. for 6 seconds, relaxed by 5% at 80 ° C., and thickness 0. A 9 μm biaxially stretched polyester film was obtained. The obtained film was bonded to Japanese paper using vinyl acetate as an adhesive, and a silicone lubricant was applied to the other surface of the film using a bar coater to prepare a thermal stencil printing base paper, which was evaluated.

比較例5:
ポリエステル−Aを30%と、ポリエステル−Bを30%と、フィルム製造時に発生する耳部およびフィルム端部からの再生品を40%、均一にブレンドし、260℃にて押出機よりシート状に押出し、表面温度を40℃に設定した回転冷却ドラムで静電印加冷却法を利用して急冷固化させ、厚み65μmの実質的に非晶質のシートを得た。得られたシートを縦方向に75℃で4.0倍、横方向に80℃で4.0倍に延伸し、さらに105℃で6秒間熱処理後、80℃で5%弛緩し、厚み4.0μmの二軸延伸ポリエステルフィルムを得た。得られたフィルムに酢酸ビニルを接着剤として和紙と貼り合わせ、さらにフィルムのもう一方の面にシリコーン系滑剤を、バーコーターを用いて塗布し感熱孔版印刷用原紙を作成、評価を実施した。
Comparative Example 5:
Polyester-A 30%, Polyester-B 30%, 40% recycled products from the ears and film edges generated during film production, and blended uniformly into a sheet from an extruder at 260 ° C Extrusion and rapid cooling and solidification using an electrostatic application cooling method with a rotary cooling drum set at a surface temperature of 40 ° C. gave a substantially amorphous sheet having a thickness of 65 μm. The obtained sheet was stretched 4.0 times at 75 ° C. in the machine direction and 4.0 times at 80 ° C. in the transverse direction, further heat treated at 105 ° C. for 6 seconds, relaxed 5% at 80 ° C., and thickness 4. A 0 μm biaxially stretched polyester film was obtained. The obtained film was bonded to Japanese paper using vinyl acetate as an adhesive, and a silicone lubricant was applied to the other surface of the film using a bar coater to prepare a thermal stencil printing base paper, which was evaluated.

以上、得られた結果をまとめて下記表1に示す。   The obtained results are summarized in Table 1 below.

Figure 2015208944
Figure 2015208944

表1中のTmはフィルムの融点を示す。   Tm in Table 1 indicates the melting point of the film.

本発明のフィルムは、例えば、高度な品質を有する感熱孔版印刷原紙用フィルムとして好適に利用することができる。   The film of the present invention can be suitably used, for example, as a film for heat-sensitive stencil printing paper having high quality.

Claims (1)

融点が250℃以下、厚みが1.0〜3.5μmの2軸延伸ポリエステルフィルムであり、50〜150℃におけるTMAによるフィルム縦方向の収縮率が2%以下、フィルム横方向の収縮率が2%以下であることを特徴とする感熱孔版印刷原紙用フィルム。 It is a biaxially stretched polyester film having a melting point of 250 ° C. or less and a thickness of 1.0 to 3.5 μm. The shrinkage in the film longitudinal direction by TMA at 50 to 150 ° C. is 2% or less, and the shrinkage in the film transverse direction is 2. % Or less for heat-sensitive stencil sheet.
JP2014092552A 2014-04-28 2014-04-28 Film for heat-sensitive stencil printing base paper Pending JP2015208944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014092552A JP2015208944A (en) 2014-04-28 2014-04-28 Film for heat-sensitive stencil printing base paper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014092552A JP2015208944A (en) 2014-04-28 2014-04-28 Film for heat-sensitive stencil printing base paper

Publications (1)

Publication Number Publication Date
JP2015208944A true JP2015208944A (en) 2015-11-24

Family

ID=54611557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014092552A Pending JP2015208944A (en) 2014-04-28 2014-04-28 Film for heat-sensitive stencil printing base paper

Country Status (1)

Country Link
JP (1) JP2015208944A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112016004845T5 (en) 2015-10-23 2018-07-05 Mitsubishi Hitachi Power Systems, Ltd. Gas turbine rotor, gas turbine and gas turbine equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112016004845T5 (en) 2015-10-23 2018-07-05 Mitsubishi Hitachi Power Systems, Ltd. Gas turbine rotor, gas turbine and gas turbine equipment

Similar Documents

Publication Publication Date Title
JP2015208944A (en) Film for heat-sensitive stencil printing base paper
KR101108092B1 (en) Highly sensitive thermosensitive porous printing base paper
JP3806888B2 (en) Polyester film for heat-sensitive stencil sheet and heat-sensitive stencil sheet comprising the same
JP2007168340A (en) Polyester film for original paper for highly sensitive thermal stencil printing
JP3581617B2 (en) Film for heat sensitive stencil printing base paper
JP2013202961A (en) Film for heat-sensitive stencil printing base paper
JP2013223969A (en) Film for heat-sensitive stencil printing base paper
JP2008207442A (en) Polyester film for paperless thermosensitive stencil printing base paper
JP7501207B2 (en) Polyester film for thermal stencil printing base paper
JP5242923B2 (en) Polyester film for heat sensitive stencil printing paper
JP4540276B2 (en) Method for producing polyester film for heat-sensitive stencil printing base paper
JP3499950B2 (en) Film for paperless thermosensitive stencil printing base paper
JP4587805B2 (en) High sensitivity heat sensitive stencil printing polyester film
JP2006175763A (en) High-sensitivity polyester film for thermal stencil printing
JP2007152797A (en) Film for heat-sensitive stencil sheet
JP3235211B2 (en) High-sensitivity heat-sensitive stencil film for base paper
JP2007069432A (en) Polyester film for base paper for printing of thermal stencil printing plate without porous thin sheet substrate
JP2010155420A (en) Polyester film for screen printing
JPH0948181A (en) Film for high sensitivity thermal stencil printing base sheet
JPH07156570A (en) Polyester film for high-speed heat-sensitive stencil printing paper
JPH11348449A (en) Polyester film for thermosensitive stencil printing base sheet
JPH07276844A (en) Polyester film for high sensitivity thermal screen printing stencil paper
JPH09300843A (en) Biaxially oriented polyester film for high sensitivity heat-sensitive stencil printing base paper
JPH09300845A (en) Film for heat-sensitive stencil printing base paper
JP2001213947A (en) Polyester film for thermal stencil printing base paper