JP4587805B2 - High sensitivity heat sensitive stencil printing polyester film - Google Patents

High sensitivity heat sensitive stencil printing polyester film Download PDF

Info

Publication number
JP4587805B2
JP4587805B2 JP2004375238A JP2004375238A JP4587805B2 JP 4587805 B2 JP4587805 B2 JP 4587805B2 JP 2004375238 A JP2004375238 A JP 2004375238A JP 2004375238 A JP2004375238 A JP 2004375238A JP 4587805 B2 JP4587805 B2 JP 4587805B2
Authority
JP
Japan
Prior art keywords
film
polyester
temperature
weight
sensitive stencil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004375238A
Other languages
Japanese (ja)
Other versions
JP2006181747A (en
Inventor
勝三 三橋
秀孝 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP2004375238A priority Critical patent/JP4587805B2/en
Publication of JP2006181747A publication Critical patent/JP2006181747A/en
Application granted granted Critical
Publication of JP4587805B2 publication Critical patent/JP4587805B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Printing Plates And Materials Therefor (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

本発明は、感熱孔版印刷原紙用およびこれに用いるフィルムに関する。さらに詳しくは、本発明は、サーマルヘッドによる低いエネルギーでの穿孔独立性に優れ、印刷時の解像度(階調性)に優れ、マスターの保存安定性、カール性、多数枚の印刷に耐える印刷耐久性(耐刷性)にも優れた高感度感熱孔版印刷原紙用フィルムに関する。   The present invention relates to a heat-sensitive stencil sheet and a film used therefor. More specifically, the present invention is excellent in independence of punching at low energy by a thermal head, excellent in resolution (gradation) at the time of printing, storage stability of the master, curling properties, and printing durability that can withstand printing of a large number of sheets. The present invention relates to a film for a high-sensitivity heat-sensitive stencil printing paper excellent in durability (printing durability).

従来、感熱孔版印刷用原紙としては、ポリエステル等の熱可塑性樹脂フィルムにインキ透過性多孔性薄葉紙を接着剤で貼り合わせた感熱孔版原紙が知られている。感熱孔版印刷用原紙に使用される上記フィルムの要求特性としては、穿孔感度、耐カール性、印刷耐久性、印刷時の画像の解像度および濃度などが挙げられる。こうした従来の感熱孔版原紙では繊維の重なった部分とフィルムが接する部分に接着剤が溜まりやすく、その部分はサーマルヘッドによる穿孔が不十分となり、未穿孔部分が、印刷時の白抜け原因となる。そのため、インキの通過を妨げない新しい構成のマスターが提案されている(特許文献1)。   Conventionally, as a heat-sensitive stencil sheet, a heat-sensitive stencil sheet in which an ink-permeable porous thin paper is bonded to a thermoplastic resin film such as polyester with an adhesive is known. The required properties of the film used for the heat-sensitive stencil sheet include perforation sensitivity, curl resistance, printing durability, image resolution and density during printing, and the like. In such a conventional heat-sensitive stencil sheet, the adhesive easily accumulates in the portion where the fiber overlaps the film and the portion where the film comes into contact. The portion is not sufficiently perforated by the thermal head, and the unperforated portion causes white spots during printing. Therefore, a master having a new configuration that does not obstruct the passage of ink has been proposed (Patent Document 1).

また昨今では、印刷物に対して高い解像度が要求されており、サーマルヘッドによる穿孔では高い解像度を得るため個々のヘッドを小さく、単位面積あたりの穿孔数を増やす試みがされている。またサーマルヘッドの負荷を抑え寿命を延長するため、個々のヘッドに供給するエネルギーを低減させることが必要であり、そのため、フィルムは低いエネルギーで均一にかつ、確実に穿孔されるフィルムが要求されている。すなわち、少量の熱量で溶融し、適度な大きさの穿孔が得られるようにフィルムは低温度域から高収縮特性を付与している。そのため、穿孔された周辺のフィルムが熱変形したり、穿孔された形状が不均一となったりして、写真画像のように繊細で鮮明性を要求される用途には画像を悪化させる原因となっている。 In recent years, high resolution is required for printed materials, and attempts are being made to reduce the size of individual heads and increase the number of perforations per unit area in order to obtain high resolution in perforation with a thermal head. In addition, in order to reduce the load on the thermal head and extend its life, it is necessary to reduce the energy supplied to each head. Therefore, there is a demand for a film that can be punched uniformly and reliably with low energy. Yes. That is, the film imparts a high shrinkage characteristic from a low temperature range so that it can be melted with a small amount of heat and perforated with an appropriate size can be obtained. For this reason, the perforated peripheral film is thermally deformed or the perforated shape becomes non-uniform, which causes the image to deteriorate in applications that require delicate and sharpness such as photographic images. ing.

また、低いエネルギーでの穿孔性を発現させるため、フィルム厚みは薄いフィルムが重点的に使用されるため、フィルム残留応力によるマスターのカールあるいはマスターの剛性不足による印刷機内での搬送ミス、マスター詰まりのトラブル原因になっている。孔版印刷は多数枚印刷が特徴となっているが、使用されるフィルム特性によって、印刷用紙エッジと孔版フィルム接触部での圧迫、耐摩耗性が悪く、印刷枚数が限定される要因にもなっている。   In addition, in order to achieve low energy perforation, a thin film is preferentially used. Therefore, a master curl due to film residual stress or a misfeed of the master due to insufficient rigidity of the master or a master clogging. It is a cause of trouble. Stencil printing is characterized by the printing of a large number of sheets, but depending on the characteristics of the film used, the pressure and abrasion resistance at the printing paper edge and the contact area of the stencil film are poor, and it is a factor that limits the number of printed sheets. Yes.

上記のような問題点を解決するため、マスター構成から印刷特性、耐刷性を改良したフィルムが提案されている(特許文献1)。また、フィルムの高度化を目的にポリマー特性、組成を規定したフィルム等が提案されている(特許文献2〜4)。しかし、これらの方法では不十分であり、穿孔独立性、穿孔径の均一性およびマスターの基本特性であるカール性、耐刷性を同時に満足する感熱孔版印刷原紙用ポリエステルフィルムが求められている。
特開平10−24667号公報 特公平7−64128号公報 特開平3−39294号公報 特開平2−307788号公報
In order to solve the above problems, a film having improved printing characteristics and printing durability from a master structure has been proposed (Patent Document 1). Moreover, the film etc. which prescribed | regulated the polymer characteristic and the composition for the purpose of the advancement of a film are proposed (patent documents 2-4). However, these methods are insufficient, and there is a demand for a polyester film for heat-sensitive stencil printing paper that satisfies the independence of perforation, uniformity of perforation diameter, curl properties and printing durability, which are basic properties of the master at the same time.
Japanese Patent Laid-Open No. 10-24667 Japanese Patent Publication No. 7-64128 JP-A-3-39294 JP-A-2-307788

本発明は、上記実情に鑑みなされたものであって、その解決課題は、従来の技術では実現しなかった低いエネルギーでの穿孔性、穿孔独立性を確保し、穿孔径の均一性、穿孔された周辺フィルムの収縮歪み発生が少ない写真画像の鮮明性向上に優れかつ、カール性、耐刷性に優れ、印刷可能枚数を増やせるフィルムを提供することにある。   The present invention has been made in view of the above circumstances, and the problem to be solved is to ensure piercing performance and piercing independence at a low energy, which has not been realized by the prior art, and to ensure uniform piercing diameter and piercing. Another object of the present invention is to provide a film that is excellent in improving the sharpness of a photographic image with little shrinkage distortion in the peripheral film, excellent in curling properties and printing durability, and capable of increasing the number of printable sheets.

本発明者らは、上記課題に鑑み鋭意検討した結果、特定の構成を有するフィルムによれば、上記課題を容易に解決できることを見いだし、本発明を完成するに至った。   As a result of intensive studies in view of the above problems, the present inventors have found that the above problems can be easily solved by a film having a specific configuration, and have completed the present invention.

すなわち、本発明の要旨は、2,6-ナフタレンジカルボン酸成分を10〜40モル%、1,4-ブタンジオール成分を5〜70モル%含有する共重合ポリエステルを80重量%以上含有するフィルムであり、フィルムの融点が130℃〜230℃であり、ガラス転移温度が50℃〜80℃であり、融点温度から300℃の温度範囲で損失弾性率(G”)が100Pa以上であり、フィルム厚みが0.5〜7.0μmであることを特徴とする高感度感熱孔版印刷原紙用ポリエステルフィルムに存する。 That is, the gist of the present invention is a film containing 80% by weight or more of a copolyester containing 10 to 40 mol% of 2,6-naphthalenedicarboxylic acid component and 5 to 70 mol% of 1,4-butanediol component. The melting point of the film is 130 ° C. to 230 ° C., the glass transition temperature is 50 ° C. to 80 ° C., the loss elastic modulus (G ″) is 100 Pa or more in the temperature range from the melting point temperature to 300 ° C., and the film thickness Is a polyester film for high-sensitivity heat-sensitive stencil printing base paper, characterized in that it is 0.5 to 7.0 μm.

以下、本発明を詳細に説明する。
本発明のポリエステルとは、芳香族ジカルボン酸を主たる酸成分とし、アルキレングリコールを主たるグリコール成分とするポリエステルを指す。芳香族ジカルボン酸としては、テレフタル酸、イソフタル酸、2,6−ナフタレンジカルボン酸等が挙げられる。また、アルキレングリコールとしては、エチレングリコール、1,4ブタンジオ−ル、トリエチレングリコール、テトラメチレングリコール、ネオペンチルグリコール、1,4−シクロヘキサンジメタノール等が挙げられる。かかるポリエステルは1種類の芳香族ジカルボン酸と、1種類のアルキレングリコールとを出発原料とするポリエステルでもよいが、3種類以上の成分を含む共重合体であることが好ましい。
Hereinafter, the present invention will be described in detail.
The polyester of the present invention refers to a polyester having aromatic dicarboxylic acid as the main acid component and alkylene glycol as the main glycol component. Examples of the aromatic dicarboxylic acid include terephthalic acid, isophthalic acid, and 2,6-naphthalenedicarboxylic acid. Examples of the alkylene glycol include ethylene glycol, 1,4 butanediol, triethylene glycol, tetramethylene glycol, neopentyl glycol, 1,4-cyclohexanedimethanol and the like. Such a polyester may be a polyester starting from one kind of aromatic dicarboxylic acid and one kind of alkylene glycol, but is preferably a copolymer containing three or more kinds of components.

いずれにしても、フィルムとしては、融点が130〜230℃、ガラス転移温度が50〜80℃となるように適宜組成を選択する。融点が230℃を超えるものは、穿孔に必要な熱エネルギーが多量になり、穿孔特性が劣るため好ましくない。またガラス転移温度が50℃未満は室温近傍でのフィルム寸法変化が大きくなり、マスターのカール発生原因となり、好ましくない。   In any case, the composition of the film is appropriately selected so that the melting point is 130 to 230 ° C and the glass transition temperature is 50 to 80 ° C. A material having a melting point exceeding 230 ° C. is not preferable because a large amount of heat energy is required for perforation and the perforation characteristics are poor. Further, if the glass transition temperature is less than 50 ° C., the film dimensional change near room temperature increases, which causes the curling of the master, which is not preferable.

本発明で用いるポリエステルの極限粘度は、通常0.5以上、好ましくは0.6〜1.0である。極限粘度が0.5未満ではフィルムの生産性が劣ったり、フィルムの機械強度が不足したりする以外に、穿孔径に関係する損失弾性率が小さく、かつ温度変化も大きく好ましくない。使用するポリエステル系原料の粘度は高温域での損失弾性率を調整するのに効果的である。   The intrinsic viscosity of the polyester used in the present invention is usually 0.5 or more, preferably 0.6 to 1.0. When the intrinsic viscosity is less than 0.5, the film productivity is inferior and the mechanical strength of the film is insufficient. In addition, the loss elastic modulus related to the perforated diameter is small, and the temperature change is large. The viscosity of the polyester raw material used is effective in adjusting the loss elastic modulus in the high temperature range.

本発明のフィルム厚みは0.5〜7.0μmの範囲であり、好ましくは0.5〜2.5μmの範囲である。フィルムの厚みが薄くなれば、熱伝達距離が短縮され、穿孔時に必要な熱エネルギーも減少するため、穿孔性が向上し、印刷時の解像度が向上する。0.5μm未満はフィルム生産時の生産性、巻き上げ作業性が悪化する。厚みが7μmを越えるフィルムでは穿孔エネルギーを大きくしても、穿孔性が悪く、印刷時にムラが生じるようになり、好ましくない。   The film thickness of the present invention is in the range of 0.5 to 7.0 μm, preferably in the range of 0.5 to 2.5 μm. If the thickness of the film is reduced, the heat transfer distance is shortened and the thermal energy required for punching is also reduced, so that the punchability is improved and the resolution at the time of printing is improved. If it is less than 0.5 μm, the productivity during film production and the winding workability deteriorate. A film having a thickness exceeding 7 μm is not preferable because even if the perforation energy is increased, the perforation property is poor and unevenness occurs during printing.

本発明のフィルムにおいて、融点から300℃の温度範囲での損失弾性率が100Pa未満は穿孔時にポリマーが流動し、独立した穿孔が相互に融合、連孔が発生し独立した均一な穿孔が得られなくなる。損失弾性率は、150Pa以上が好ましい。また、損失弾性率の温度変化が−100%以上は穿孔時の変形ムラ、穿孔径形が不均一となり、好ましくは−70%以下で穿孔される温度域で損失弾性率の温度変化が少ない箱型形状分布が穿孔径の均一性を確保するのに好ましい。   In the film of the present invention, when the loss elastic modulus in the temperature range from the melting point to 300 ° C. is less than 100 Pa, the polymer flows at the time of perforation, the independent perforations are fused together, and continuous uniform perforations are obtained. Disappear. The loss elastic modulus is preferably 150 Pa or more. Further, when the temperature change of the loss elastic modulus is −100% or more, the deformation unevenness at the time of drilling and the diameter of the drill hole are non-uniform, and preferably the box where the temperature change of the loss elastic modulus is small in the temperature range where the hole is drilled at −70% or less The mold shape distribution is preferable to ensure the uniformity of the bore diameter.

本発明のフィルムは極めて薄いフィルムであるので、フィルムの長手方向と幅方向の引張弾性率がともに3000MPa以上であると、フィルム取り扱い作業性、搬送性が良好となる。2種類以上のポリエステル系原料の使用は、融点、ガラス転移温度および穿孔径に作用する損失弾性率の調整に有効に働く。使用するポリエステル系原料のうち、2,6−ナフタレンジカルボン酸成分を10〜40%モル%含まれる原料系の使用はより有効に作用する。配合量が40%越えると温度依存性が大きく穿孔径が不揃いの原因となることがある。   Since the film of the present invention is an extremely thin film, when the tensile elastic modulus in the longitudinal direction and the width direction of the film are both 3000 MPa or more, the film handling workability and transportability are good. The use of two or more kinds of polyester-based raw materials works effectively for adjusting the loss elastic modulus acting on the melting point, glass transition temperature and perforation diameter. Among the polyester-based raw materials to be used, the use of a raw material-based material containing 10 to 40% mol% of a 2,6-naphthalenedicarboxylic acid component works more effectively. If the blending amount exceeds 40%, the temperature dependency is large and the perforation diameters may be uneven.

本発明でいうポリエチレンナフタレートとは、その構成単位が実質的にポリエチレン−2、6−ナフタレート単位から構成されているポリマーを指すが25モル%以下第三成分によって、変性されたエチレン−2、6−ナフタレートポリマーを含まれる。ポリエチレンナフタレートは一般にナフタレーン−2、6−ジカルボン酸またはその機能的誘導体例えばナフタレーン−2、6−ジカルボン酸ジメチルとエチレングリコールとを触媒の存在下で、適当な反応条件の下に縮合せしめることによって製造される。この場合第三成分として、例えばアジピン酸、セバシン酸、フタル酸、イソフタル酸、テレフタル酸、ナフタレーレン−2、7−ジカルボン酸等のジカルボン酸またはその低級アルキルエステル、P−オキシ安息香酸のごときオキシカルボン酸またはその低級アルキルエステル、あるいは、プロピレングリコール、トリメチレングリコール、テトラメチレングリコール、ペンタメチレングリコール、ヘキサメチレングリコール等の2価アルコール等を挙げることができる。   Polyethylene naphthalate as used in the present invention refers to a polymer whose structural units are substantially composed of polyethylene-2, 6-naphthalate units, but 25 mol% or less, ethylene-2 modified with a third component, 6-Naphthalate polymer is included. Polyethylene naphthalate is generally obtained by condensing naphthalene-2,6-dicarboxylic acid or a functional derivative thereof such as dimethyl naphthalene-2,6-dicarboxylate and ethylene glycol in the presence of a catalyst under suitable reaction conditions. Manufactured. In this case, as the third component, for example, dicarboxylic acid such as adipic acid, sebacic acid, phthalic acid, isophthalic acid, terephthalic acid, naphthalene-2,7-dicarboxylic acid, or a lower alkyl ester thereof, oxycarboxylic acid such as P-oxybenzoic acid Examples thereof include acids or lower alkyl esters thereof, or dihydric alcohols such as propylene glycol, trimethylene glycol, tetramethylene glycol, pentamethylene glycol, and hexamethylene glycol.

またポリエチレンテレフタレートとは、テレフタル酸またはそのエステルとエチレングリコールを主たる出発原料として得られるポリエステルを示すが他の第三成分を含有していても構わない。本発明のポリエステルは繰り返し構造単位の80%以上単位のポリエステルを指す。またポリエチレンテレフタレートイソフタレートとはジカルボン酸成分の65モル%以上がテレフタル酸で10モル%以上がイソフタル酸でジオール成分の70%以上がエチレングリコールである共重合ポリエステルを指す。   Polyethylene terephthalate refers to polyester obtained using terephthalic acid or its ester and ethylene glycol as main starting materials, but may contain other third component. The polyester of the present invention refers to a polyester having 80% or more of repeating structural units. Polyethylene terephthalate isophthalate refers to a copolyester in which 65 mol% or more of the dicarboxylic acid component is terephthalic acid, 10 mol% or more is isophthalic acid, and 70% or more of the diol component is ethylene glycol.

ここでいうポリブチレンテレフタレートとは、ジカルボン酸成分の70モル%以上、好ましくは80モル%以上がテレフタル酸、ジオール成分の75モル%以上好ましくは80%モル%以上が1、4−ブタンジオールであるポリエステルを指す。   The polybutylene terephthalate here is 70 mol% or more of the dicarboxylic acid component, preferably 80 mol% or more is terephthalic acid, 75 mol% or more, preferably 80% mol% or more of the diol component is 1,4-butanediol. It refers to a certain polyester.

また2,6ナフタレーン共重合として、酸成分のうち、3〜50モル%が2,6−ナフタレーンカルボン酸成分、グリコ−ル成分のうち、5〜70モル%が1,4ブタンジオールで構成されるポリエステルを指す。   As 2,6 naphthalene copolymer, 3 to 50 mol% of the acid component is composed of 2,6-naphthalenecarboxylic acid component, and 5 to 70 mol% of the glycol component is composed of 1,4 butanediol. Refers to polyester.

本発明のポリエステルフィルムは、前記した成分のPEN系ポリエステルおよびPET系ポリエステル、PBT系ポリエステルを溶融混練して得ることができる。この混練は通常フィルムを製膜時に行うかフィルム製膜前の段階で予め混練してもよい。この溶融混練は均一に分散するように混練する。   The polyester film of the present invention can be obtained by melt-kneading the PEN polyester, PET polyester, and PBT polyester as the components described above. This kneading is usually performed at the time of film formation or may be previously kneaded at a stage before film formation. This melt-kneading is carried out so as to disperse uniformly.

また本発明のフィルムは、フィルム製造時の巻上げ工程、原紙作製時のコーティング、貼合せ工程および印刷時の作業性を向上させるため、あるいは、熱穿孔時のサーマルヘッドとフィルムとの融着を防止するため、表面を粗面化してフィルムに適度な滑り性が付与させることが好ましいが、そのためには微細な不活性粒子をフィルム中に添加すればよい。用いる微細な不活性粒子の平均粒径は、フィルム厚みの0.2〜1.0倍であることが好ましく、さらに好ましくは0.3〜0.7倍、特に好ましくは0.3〜0.5倍である。平均粒径がフィルム厚みの1.0倍以上では、フィルム表面の平面性が損なわれて熱伝達にムラが生じることがあり、穿孔が不均一となったり、解像度が劣ったり、印字品位性を損なったりすることがある。また、平均粒径がフィルム厚みの0.2倍未満では、フィルムの巻き特性が劣るなどフィルム製造時および原紙製造時の作業性が悪化する傾向がある。   In addition, the film of the present invention is used to improve the workability during winding process during film production, coating during base paper production, laminating process and printing, or preventing thermal head and film from fusing during thermal drilling. Therefore, it is preferable to roughen the surface to give the film appropriate slipperiness, but for that purpose, fine inert particles may be added to the film. The average particle diameter of the fine inert particles used is preferably 0.2 to 1.0 times the film thickness, more preferably 0.3 to 0.7 times, and particularly preferably 0.3 to 0.00. 5 times. If the average particle size is 1.0 times or more of the film thickness, the flatness of the film surface may be impaired, resulting in uneven heat transfer, uneven perforation, poor resolution, and print quality. May be damaged. On the other hand, when the average particle size is less than 0.2 times the film thickness, workability during film production and base paper production tends to deteriorate, such as poor winding properties of the film.

粒子の添加量は、通常0.05〜3.0重量%、好ましくは0.1〜2.0重量%である。0.05重量%未満では、巻き特性が劣る傾向がある。また、3重量%を超えるとフィルム表面の粗面化の度合いが大き過ぎて熱伝達にムラが生じやすくなる傾向があり、穿孔が不均一となったり、解像度が劣ったり、印字品位性を損なったりすることがある。   The amount of particles added is usually 0.05 to 3.0% by weight, preferably 0.1 to 2.0% by weight. If it is less than 0.05% by weight, the winding properties tend to be inferior. On the other hand, if the amount exceeds 3% by weight, the degree of roughening of the film surface tends to be too large and uneven heat transfer tends to occur, resulting in uneven perforation, poor resolution, and impaired print quality. Sometimes.

本発明で用いる不活性粒子の例としては、酸化ケイ素、酸化チタン、ゼオライト、窒化ケイ素、窒化ホウ素、セライト、アルミナ、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、硫酸カルシウム、硫酸バリウム、リン酸カルシウム、リン酸リチウム、リン酸マグネシム、フッ化リチウム、カオリン、タルク、カーボンブラックおよび特公昭59−5216号公報に記載されたような架橋高分子微粉体などを挙げることができるが、これらに限定されるものではない。この際、配合する不活性粒子は単成分でもよく、また2成分以上を同時に用いてもよい。また本発明においてポリエステルに不活性粒子を配合する方法としては、特に限定されないが、例えば不活性粒子をポリエステルの重合工程に添加する方法、またはフィルム化前に溶融混練りする方法が好ましく用いられる。   Examples of inert particles used in the present invention include silicon oxide, titanium oxide, zeolite, silicon nitride, boron nitride, celite, alumina, calcium carbonate, magnesium carbonate, barium carbonate, calcium sulfate, barium sulfate, calcium phosphate, lithium phosphate. , Magnesium phosphate, lithium fluoride, kaolin, talc, carbon black, and crosslinked polymer fine powder as described in JP-B-59-5216, but are not limited thereto. . At this time, the inert particles to be blended may be a single component, or two or more components may be used simultaneously. In the present invention, the method of blending the inert particles with the polyester is not particularly limited. For example, a method of adding the inert particles to the polyester polymerization step or a method of melt-kneading before film formation is preferably used.

本発明においては上記したような方法により表面を適度に粗面化したフィルムを得るが、作業性や印刷時の解像度、印字品位性をさらに高度に満足させるためには、フィルム表面の中心線平均粗さ(Ra)が0.02〜0.2μmであることが好ましく、さらに好ましくは0.05〜0.15μmの範囲であり、かかる範囲となるよう適宜、条件を選択することが望ましい。   In the present invention, a film whose surface is appropriately roughened by the method as described above is obtained, but in order to satisfy the workability, the resolution at the time of printing, and the print quality more highly, the center line average of the film surface is obtained. The roughness (Ra) is preferably 0.02 to 0.2 [mu] m, more preferably 0.05 to 0.15 [mu] m, and it is desirable to select conditions appropriately so as to be in this range.

次に本発明のポリエステルフィルムの製造方法について説明する。
本発明においては、ポリマーをエクストルーダーに代表される周知の溶融押出装置に供給し、ポリマーの融点以上の温度に加熱し溶融する。次いで、溶融したポリマーをスリット状のダイから押し出し、回転冷却ドラム上でガラス転移温度以下の温度になるように急冷固化し、実質的に非晶状態の未配向シートを得る。この場合、シートの平面性を向上させるため、シートと回転冷却ドラムとの密着性を高めることが好ましく、通常、静電印加密着法を採用する。
Next, the manufacturing method of the polyester film of this invention is demonstrated.
In the present invention, the polymer is supplied to a well-known melt extrusion apparatus typified by an extruder, and heated to a temperature equal to or higher than the melting point of the polymer to melt. Next, the molten polymer is extruded from a slit-shaped die and rapidly cooled and solidified on the rotary cooling drum so that the temperature is equal to or lower than the glass transition temperature, thereby obtaining a substantially amorphous unoriented sheet. In this case, in order to improve the flatness of the sheet, it is preferable to improve the adhesion between the sheet and the rotary cooling drum, and usually an electrostatic application adhesion method is employed.

このようにして得られたシートを2軸方向に延伸してフィルム化する。延伸条件について具体的に述べると、前記未延伸シートを好ましくは75〜100℃、さらに好ましくは75〜90℃の温度範囲で、まず一方向に2.5〜7.0倍、好ましくは3.0〜5.0倍に延伸する。次ぎに一段目と直交する方向に好ましくは70〜100℃更に好ましくは75〜95℃の温度範囲で2.5〜7.0倍、好ましくは3.0〜5.0倍に延伸を行い、2軸に配向したフィルムを得る。   The sheet thus obtained is stretched in the biaxial direction to form a film. The stretching conditions will be specifically described. The unstretched sheet is preferably 75 to 100 ° C., more preferably 75 to 90 ° C., and 2.5 to 7.0 times in one direction, preferably 3. Stretch from 0 to 5.0 times. Next, stretching is preferably performed at a temperature range of 70 to 100 ° C., more preferably 75 to 95 ° C. in a direction orthogonal to the first stage, 2.5 to 7.0 times, preferably 3.0 to 5.0 times. A biaxially oriented film is obtained.

なお、一方向の延伸を2段階以上で行う方法も用いることができるが、その場合も最終的な延伸倍率が上記した範囲に入ることが望ましい。また、前記未延伸シートを面積倍率が6〜40倍になるように同時二軸延伸することも可能である。かくして得られたフィルムを熱処理してもよく、必要に応じ熱処理を行う。   Note that a method of performing unidirectional stretching in two or more stages can also be used, but in this case as well, it is desirable that the final stretching ratio is in the above-described range. Further, the unstretched sheet can be simultaneously biaxially stretched so that the area magnification is 6 to 40 times. The film thus obtained may be heat-treated, and heat-treated as necessary.

また、感熱孔版印刷用原紙を製造する際、40〜70℃程度の乾燥工程および夏場を経る長期保存中にフィルムの収縮に起因すると考えられるカールが発生することがある。従って本発明においてはカール防止のため、得られたフィルムを30〜50℃で5時間から5日間、好ましくは40℃前後で12時間〜3日間エージング処理すると該環境下での耐カール性が良好となる。   Further, when producing a heat-sensitive stencil base paper, curling that may be caused by film shrinkage may occur during a drying process of about 40 to 70 ° C. and long-term storage through summer. Therefore, in order to prevent curling in the present invention, when the obtained film is aged at 30 to 50 ° C. for 5 hours to 5 days, preferably at about 40 ° C. for 12 hours to 3 days, the curl resistance in the environment is good. It becomes.

本発明の感熱孔版用フィルムは、サーマルヘッドで穿孔される温度付近の溶融粘弾性の温度特性を調整することにより、穿孔径サイズおよび穿孔独立性、穿孔周辺のフィルム変形が調整可能となり、写真画像のように、穿孔確率と穿孔サイズが問題になる高画質用途で鮮明画像を得ることができ、その工業的価値は高い。   The film for heat-sensitive stencil of the present invention can adjust the hole diameter size and the hole independence, and the film deformation around the hole by adjusting the temperature characteristics of the melt viscoelasticity near the temperature punched by the thermal head. As described above, a clear image can be obtained for high image quality applications in which the perforation probability and the perforation size are problems, and its industrial value is high.

以下、実施例により本発明をさらに詳細に説明するが、本発明は、その要旨を越えない限り、以下の実施例に限定されるものではない。なお、本発明で用いた物性測定法は以下に示すとおりである。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to a following example, unless the summary is exceeded. In addition, the physical-property measuring method used by this invention is as showing below.

(1)融点およびガラス転移温度
TA instruments DSC−2920型を用いて測定した。DSC測定条件は以下のとおりである。すなわち、試料フィルム10mgをDSC装置にセットし、300℃の温度で5分間溶融保存した後、液体窒素にて、急冷した。急冷試料を0℃より10℃/分で昇温し、ガラス転移温度(Tg)および融点(Tm)を測定した。Tgは比熱の変化によりDSC曲線が屈曲し、ベースラインが平行移動する形で感知される。かかる屈曲点以下の温度でのベースラインの接線と屈曲した部分で傾きが最大となる点の接線との交点を屈曲の開始点とし、この温度をTgとした。また、Tmは融解による吸熱ピーク温度として測定した。
(1) Melting point and glass transition temperature Measured using TA instruments DSC-2920 type. The DSC measurement conditions are as follows. That is, 10 mg of a sample film was set in a DSC apparatus, melted and stored at a temperature of 300 ° C. for 5 minutes, and then rapidly cooled with liquid nitrogen. The rapidly cooled sample was heated from 0 ° C. at a rate of 10 ° C./min, and the glass transition temperature (Tg) and the melting point (Tm) were measured. Tg is sensed in such a way that the DSC curve bends due to the change in specific heat and the baseline moves in parallel. The intersection point between the tangent line of the base line at a temperature equal to or lower than the bending point and the tangent line of the point where the inclination is maximum at the bent portion is defined as a bending start point, and this temperature is defined as Tg. Tm was measured as an endothermic peak temperature due to melting.

(2)損失弾性率温度特性G”(Pa)
日本シイベルヘグナー(株)製の粘弾性測定装置MCR30を用いて測定した。70℃以上300℃までの損失弾性率温度変化を測定した。測定は直径20mmの試験片を重ねたフィルムより打ち抜き高温槽内で溶融、測定プレートで圧縮、70℃まで冷却、その後、2℃/分の速度で300℃まで昇温し測定した。損失弾性率 G“(Pa)の温度変化は下記式で算出した。
変化率(%)=(230℃の損失弾性率−270℃損失弾性率)×100/230℃損失弾性率
(2) Loss elastic modulus temperature characteristic G ″ (Pa)
The measurement was performed using a viscoelasticity measuring device MCR30 manufactured by Nippon Shibel Hegner. The loss elastic modulus temperature change from 70 ° C. to 300 ° C. was measured. The measurement was carried out by punching from a film in which test pieces having a diameter of 20 mm were stacked, melting in a high-temperature bath, compressing with a measuring plate, cooling to 70 ° C., and then raising the temperature to 300 ° C. at a rate of 2 ° C./min. The temperature change of the loss elastic modulus G "(Pa) was calculated by the following formula.
Rate of change (%) = (loss elastic modulus at 230 ° C.-270 ° C. loss elastic modulus) × 100/230 ° C. loss elastic modulus

(5)耐カール性
1.5μmのポリエステルフィルムに支持体としてマニラ麻の繊維からなる和紙を用い、接着剤としてビニル系樹脂をトルエンに溶解したものを用い、該フィルムと和紙をラミネートし、50℃のエアーオーブンで10秒間乾燥し、感熱孔版原紙を得た。得られた原紙を50℃−湿度90%の恒温恒湿中で1週間処理した。カール試験は前述したサンプルから50mm幅試験片を切り取り、25℃、65%RHで放置し、カール量は試験片の両端カールの高さを測定した。カール性が悪く円筒状にカールするときは直径を測定した。試験片の両端の高さが10mm以下は実用上問題にはならない。カール量は長手方向と直角方向のニ方向で測定を行いカール量の大きい値をフィルムのカール量とした。
(5) Curling resistance Using a Japanese paper made of Manila hemp fibers as a support on a 1.5 μm polyester film, using a vinyl resin dissolved in toluene as an adhesive, laminating the film and Japanese paper, 50 ° C. Was dried in an air oven for 10 seconds to obtain a heat-sensitive stencil sheet. The obtained base paper was treated for 1 week in a constant temperature and humidity of 50 ° C. and 90% humidity. In the curl test, a 50 mm wide test piece was cut out from the above-mentioned sample and left at 25 ° C. and 65% RH, and the curl amount was measured by measuring the curl height at both ends of the test piece. The diameter was measured when curling into a cylindrical shape because of poor curl properties. A height of 10 mm or less at both ends of the test piece is not a practical problem. The curl amount was measured in two directions perpendicular to the longitudinal direction, and a value with a large curl amount was defined as the curl amount of the film.

(6)感熱孔版印刷原紙実用特性
フィルムに和紙を貼り合わせて原紙を作製した。得られた原紙をサーマルヘッドにより、印加エネルギーを標準印字エネルギーと標準エネルギーの−50%エネルギーにて文字画像および16段階の階調画像を製版した。製版された原紙のフィルム側から顕微鏡で階調画像部の穿孔状態を観察し、以下の項目について評価した。
(6) Practical characteristics of heat-sensitive stencil printing base paper Washi paper was bonded to a film to prepare a base paper. The obtained base paper was subjected to plate making of a character image and a 16-step gradation image with a thermal head at an applied energy of -50% of standard printing energy and standard energy. The perforated state of the gradation image portion was observed with a microscope from the film side of the plate-making base paper, and the following items were evaluated.

(a)穿孔独立性、均一性
◎…所定の穿孔が確実に行われ、穿孔径が均一で連孔が観察されない
○…所定の穿孔がほぼ確実に行われ、穿孔径がほぼ均一で連孔が観察されない
△…まれに所定の穿孔が得られない部分や穿孔の大きさが不十分な部分がある
×…所定の穿孔が得られない部分が数多くあり、穿孔の大きさも不十分であり、実用上支障がある
また、製版原紙を用い、リコー(株)Priport VT3950印刷機を用いて実際に印刷し、得られた文字、画像について、下記の特性を目視で判定した。
(A) Perforation independence and uniformity ◎ ... Predetermined perforation is reliably performed, the perforation diameter is uniform, and no continuous hole is observed ○ ... Predetermined perforation is almost certainly performed, and the perforation diameter is almost uniform △… There are rarely the part where the predetermined perforation cannot be obtained and there are parts where the perforation size is insufficient. ×… There are many parts where the predetermined perforation cannot be obtained, and the size of the perforation is insufficient. In addition, there is a problem in practical use. Further, the following characteristics were visually determined for the characters and images obtained by actually printing using a stencil paper and using a Ricoh Priport VT3950 printer.

(b)印字画質
◎…濃度のムラ、にじみが全くなく、鮮明に印字できる
○…濃度のムラ、にじみがなく、鮮明に印字できる
△…わずかに濃淡のムラ、にじみが認められ、やや鮮明さに欠ける
×…濃淡のムラ、あるいはにじみ、かすれがはっきり出ている
(B) Print image quality ◎ ... There is no uneven density or blurring, and it can be printed clearly. ○ ... There is no uneven density or blurring, and it can be printed clearly. △ ... Slight unevenness or blurring is observed, and it is slightly clear. ×… Shading unevenness, blurring, or faintness

(c)穿孔周辺のしわ、製版歪み
◎…べタ印刷部の連続穿孔された穿孔部の周辺にフィルムしわ観察されない
○…べタ印刷部の連続穿孔された穿孔部の周辺にフィルムしわが僅かに観察される
×…べタ印刷部の連続穿孔された穿孔部の周辺にフィルムしわが広い範囲に観察される
(C) Wrinkles around the perforations and distortion of plate making ◎… No film wrinkles are observed around the continuously perforated portion of the solid printing portion ○ ○ Slight film wrinkles are found around the perforated portion of the continuously printed portion X: Film wrinkles are observed in a wide range around the perforated part of the solid printed part.

(d)耐刷性
25mm直径の金属ドラムにフィルムを180度接触させて、10mm/分の速度で繰り返し摩耗させた。摩耗長さは75mm、24時間繰り返し摩耗させた。評価はフィルム表面の変化とフイルムダメージレベルを三段階で評価した。
○…フィルム表面変化が少なくダメージが少ない
△…フィルム表面に薄い引掻きキズは観察されるが、著しいフィルム摩耗は観察されない
×…フィルム表面が穿孔された部分から一部破壊されている
(D) Printing durability The film was brought into contact with a metal drum having a diameter of 25 mm at 180 degrees and repeatedly worn at a speed of 10 mm / min. The abrasion length was 75 mm, and abrasion was repeated for 24 hours. The evaluation was based on three stages of film surface change and film damage level.
○: Little change in film surface and little damage Δ: Thin scratches are observed on the film surface, but no significant film wear is observed ×: The film surface is partially destroyed from the perforated part

次いで、各例で用いられる各ポリエステル製造を説明する。
(ポリエステルA)
テレフタレート酸ジメチル75モル%、2,6−ナフタレンジカルボン酸ジメチル25モル%、エチレングリコール50重量部、1,4ブタンジオール50%、テトラブチルチタネート0.005重量%を反応器にとり、反応開始温度を150℃とし、メタノールの留出とともに反応温度を徐々に上昇させ、3時間後に210度とした。4時間後、実質的にエステル交換反応を終了したこの反応混合物に、平均粒径が1.2μmの球状シリカ粒子を分散させたエチレングリコールスラリーとして0.5重量部添加し、テトラブチルチタネート0.005重量%を加えて4時間後重縮合反応を行った。この時、温度は220℃から徐々に昇温して、280℃とした。一方 圧力は常圧より徐々に減じ、最終的には0.3mmHgとした。反応開始後、5時間を得た時点で反応を停止し、窒素加圧下ポリマーを吹出させ共重合ポリエステルを得た。ポリマーの〔η〕は高粘度〔η〕=0.74、中粘度〔η〕=0.65、低粘度〔η〕=0.54の三種類を得た。
Next, production of each polyester used in each example will be described.
(Polyester A)
75 mol% of dimethyl terephthalate, 25 mol% of dimethyl 2,6-naphthalenedicarboxylate, 50 parts by weight of ethylene glycol, 50% of 1,4 butanediol, 0.005% by weight of tetrabutyl titanate are put in a reactor, and the reaction start temperature is set. The reaction temperature was gradually raised with the distillation of methanol at 150 ° C., and the temperature was adjusted to 210 degrees after 3 hours. After 4 hours, 0.5 parts by weight of an ethylene glycol slurry in which spherical silica particles having an average particle diameter of 1.2 μm were dispersed was added to the reaction mixture in which the transesterification reaction was substantially completed. After adding 005% by weight, the polycondensation reaction was carried out 4 hours later. At this time, the temperature was gradually raised from 220 ° C. to 280 ° C. On the other hand, the pressure was gradually reduced from the normal pressure, and finally 0.3 mmHg. The reaction was stopped when 5 hours were obtained after the start of the reaction, and the polymer was blown out under nitrogen pressure to obtain a copolyester. Three types of polymer [η] were obtained: high viscosity [η] = 0.74, medium viscosity [η] = 0.65, and low viscosity [η] = 0.54.

(ポリエステルB)
2、6−ナフタレンジカルボン酸ジメチル100重量部、エチレングリコール60重量部および酢酸カルシウム−水塩0.1重量部を反応器にとりエステル交換反応を行った。すなわち反応開始温度を180℃とし、メタノールの流出と共に徐々に反応温度を上昇せしめ、4時間後230℃に達せしめ実質的エステル交換反応を終了せしめた。次いでリン酸0.04重量部を添加した後、平均粒径1.5μの炭酸カルシウム0.30重量部および三酸化アンチモン0.04重量部を添加し常法により重縮合反応を行った。すなわち温度を除々にと共に圧力を常圧より除々に減じ2時間後温度を290℃、圧力を0.3mmHgとした。反応開始後4時間を得た時間時点で反応を停止し窒素加圧下ポリエチレンナフタレートを吐出せしめた。得られたポリエチレンナフタレートの〔η]は0.65であった。
(Polyester B)
Transesterification was carried out using 100 parts by weight of dimethyl 2,6-naphthalenedicarboxylate, 60 parts by weight of ethylene glycol and 0.1 part by weight of calcium acetate-hydrate as a reactor. That is, the reaction start temperature was set to 180 ° C., and the reaction temperature was gradually raised with the outflow of methanol, and after 4 hours, reached 230 ° C. to complete the substantial transesterification reaction. Next, 0.04 part by weight of phosphoric acid was added, 0.30 part by weight of calcium carbonate having an average particle diameter of 1.5 μm and 0.04 part by weight of antimony trioxide were added, and a polycondensation reaction was carried out by a conventional method. That is, the temperature was gradually decreased and the pressure was gradually decreased from the normal pressure, and after 2 hours, the temperature was 290 ° C. and the pressure was 0.3 mmHg. The reaction was stopped at the time when 4 hours were obtained after the start of the reaction, and polyethylene naphthalate was discharged under nitrogen pressure. [Η] of the obtained polyethylene naphthalate was 0.65.

(ポリエステルC)
テレフタル酸ジメチル100重量部、エチレングリコール60重量部および酢酸カルシウム−水塩0.1重量部を反応容器に入れポリエステル交換をおこなった。すなわちポリエステル交換反応開始温度を170℃とすると共に、メタノールの流出を伴って反応溶液を加熱しエステル交換反応を開始して、4時間後に230℃にまで加熱して、エステル交換反応を行った。エステル交換反応の終了したこの反応物に平均粒径が0.70μmの球状シリカ粒子0.5%重量部を含有するエチレングリコールスラリー5重量部を添加し次いでリン酸0.04重量部を加えた後、テトラブチルチタネート0.005重量部を加えて重縮合反応を行った。すなわち反応溶液を加熱すると共に系内の圧力を減少させ重縮合を開始してから2時間後に280℃にまで加熱すると共に0.3mmHgにまで減圧した。さらに数時間経過した時点で重縮合反応を停止してポリエステルAを得た。このポリエステルAの〔η]=0.70であった。
(Polyester C)
100 parts by weight of dimethyl terephthalate, 60 parts by weight of ethylene glycol and 0.1 part by weight of calcium acetate-hydrate were placed in a reaction vessel, and the polyester was exchanged. That is, the polyester exchange reaction start temperature was set to 170 ° C., the reaction solution was heated with methanol flowing out to start the ester exchange reaction, and heated to 230 ° C. after 4 hours to carry out the ester exchange reaction. 5 parts by weight of an ethylene glycol slurry containing 0.5% by weight of spherical silica particles having an average particle diameter of 0.70 μm was added to the reaction product after the transesterification reaction, and 0.04 part by weight of phosphoric acid was then added. Thereafter, 0.005 part by weight of tetrabutyl titanate was added to carry out a polycondensation reaction. That is, the reaction solution was heated, the pressure in the system was decreased, and polycondensation was started. After 2 hours, the reaction solution was heated to 280 ° C. and depressurized to 0.3 mmHg. Furthermore, when several hours passed, the polycondensation reaction was stopped to obtain polyester A. [Η] of this polyester A was 0.70.

(ポリエステルD)
ポリエステルDにおいては、テレフタル酸ジメチル100重量部をテレフタル酸ジメチル78重量部とイソフタル酸ジメチル22重量部とに変更した以外は、上述のポリエステルCと同様にしてポリエステルDを得た。このポリエステルDの〔η]=0.70であった。
(Polyester D)
In polyester D, polyester D was obtained in the same manner as polyester C described above except that 100 parts by weight of dimethyl terephthalate was changed to 78 parts by weight of dimethyl terephthalate and 22 parts by weight of dimethyl isophthalate. [Η] of this polyester D was 0.70.

(ポリエステルE)
ポリステルEにおいては、テレフタル酸ジメチル100重量部。1,4−ブタンジオール56重量部としい、上述のポリエステルCと同様にして、ポリエステルEを得た。このポリエステルの〔η]=1.05であった
(Polyester E)
In Polyster E, 100 parts by weight of dimethyl terephthalate. Polyester E was obtained in the same manner as polyester C described above, which was 56 parts by weight of 1,4-butanediol. [Η] of this polyester was 1.05 .

(実施例1)
ポリエステルAの原料:[η]=0.74を100重量部、265℃の二軸押出機でシート状に押出し表面温度を30℃に設定した回転冷却ドラムに静電印加冷却法で急冷固化させ厚み25μmの実質的に非晶質のシートを得た。得られたシートを縦方向に83℃4.0倍に延伸した後、横方向に90℃で4.2倍に延伸した後、95℃で2.0%弛緩しながら5秒間熱処理を施し、厚み1.5μmの二軸配向フィルムを製造した。次いで得られたフィルムを常法に従い、多孔性薄葉紙に貼り合わせ感熱孔版印刷用原紙を作製し謄写印刷を行った
Example 1
Raw material of polyester A: [η] = 0.74 is extruded into 100 parts by weight with a twin-screw extruder at 265 ° C., and is rapidly cooled and solidified by an electrostatic application cooling method on a rotary cooling drum whose surface temperature is set at 30 ° C. A substantially amorphous sheet having a thickness of 25 μm was obtained. The resulting sheet was stretched 4.0 times in the longitudinal direction at 83 ° C, then stretched 4.2 times in the transverse direction at 90 ° C, and then subjected to heat treatment for 5 seconds while relaxing 2.0% at 95 ° C. A biaxially oriented film having a thickness of 1.5 μm was produced. Then, the obtained film was bonded to a porous thin paper in accordance with a conventional method to prepare a heat-sensitive stencil printing base paper, which was subjected to copying printing .

(実施例2)
実施例1において、ポリエステル原料:ポリエステルA[η]=0.64を90重量部、ポリエステルC:10重量部を二軸押出機により、溶融混練する以外は実施例1と同様の方法で製膜し、感熱孔版印刷用原紙を作製、謄写印刷を行った
(Example 2)
In Example 1, film formation was performed in the same manner as in Example 1 except that 90 parts by weight of polyester raw material: polyester A [η] = 0.64 and 10 parts by weight of polyester C were melt kneaded by a twin screw extruder. A base paper for heat-sensitive stencil printing was prepared and copied .

(実施例3)
ポリエステル原料はポリエステルA[η]=0.65を80重量部、ポリエステルC:10重量部、ポリエステルE:5重量部、ポリエステルD:5重量部を二軸押出機により、溶融混練する以外は実施例1と同様の方法で製膜し、感熱孔版印刷用原紙を作製、謄写印刷を行った
(Example 3)
The polyester raw material was implemented except that 80 parts by weight of polyester A [η] = 0.65, 10 parts by weight of polyester C, 5 parts by weight of polyester E, and 5 parts by weight of polyester D were melt kneaded by a twin screw extruder. A film was formed in the same manner as in Example 1 to prepare a heat-sensitive stencil printing base paper, and copying was performed .

(比較例1)
ポリエステル原料はポリエステルB:15重量部、ポリエステルD:35重量部、ポリエステルE:50重量部を二軸押出機により溶融混練し実施例1と同様の方法で製膜し、感熱孔版印刷用原紙を作製し謄写印刷を行った。
(Comparative Example 1)
Polyester raw materials were polyester B: 15 parts by weight, polyester D: 35 parts by weight, polyester E: 50 parts by weight by a twin-screw extruder, and formed into a film by the same method as in Example 1. Fabricated and printed.

(比較例
ポリエステル原料はポリエステルA[η]=0.54を100重量部、二軸押出機で実施例1と同じ条件で押出、製膜し、感熱孔版印刷用原紙を作製、謄写印刷を行った。
(Comparative Example 2 )
The polyester raw material was 100 parts by weight of polyester A [η] = 0.54 and extruded and formed into a film using a twin-screw extruder under the same conditions as in Example 1 to produce a heat-sensitive stencil base paper and copy-printed.

(比較例
ポリエステルD:100重量部を二軸押出機で押出し横延伸温度を96℃、熱処理温度を102℃に変更した以外は実施例1と同様の方法で製膜し、感熱孔版印刷用原紙を作製、謄写印刷を行った。
(Comparative Example 3 )
Polyester D: Extruded 100 parts by weight with a twin-screw extruder and formed a film in the same manner as in Example 1 except that the transverse stretching temperature was changed to 96 ° C. and the heat treatment temperature was changed to 102 ° C. to produce a heat-sensitive stencil printing base paper, Copied printing was performed.

(比較例
実施例4のポリエステルB、ポリエステルDおよびポリエステルEの3種類配合の代わりにポリエステル原料D:50重量部とポリエステルE:50重量部を二軸押出機で溶融混練し、実施例1と同様の方法で製膜した。縦延伸温度を75℃、横延伸温度を80℃、熱処理温度を105℃に変更した以外は実施例1と同様の方法で製膜し、感熱孔版印刷用原紙を作製、謄写印刷を行った。
(Comparative Example 4 )
A method similar to Example 1 except that 50 parts by weight of polyester raw material D and 50 parts by weight of polyester E are melt-kneaded with a twin screw extruder instead of the three types of blends of polyester B, polyester D and polyester E in Example 4. To form a film. Except that the longitudinal stretching temperature was changed to 75 ° C., the lateral stretching temperature was changed to 80 ° C., and the heat treatment temperature was changed to 105 ° C., a film was formed in the same manner as in Example 1 to prepare a heat-sensitive stencil printing paper and copy-printed.

Figure 0004587805
上記表中、Aは、DMT/NDCE/EG/1,4B系、BはPEN系、CはPET系、DはIPA系、EはPBT系である。
Figure 0004587805
In the above table, A is DMT / NDCE / EG / 1, 4B system, B is PEN system, C is PET system, D is IPA system, and E is PBT system.

Figure 0004587805
Figure 0004587805

本発明のフィルムは、例えば、高感度の感熱孔版印刷原紙用のフィルムとして好適に利用することができる。


The film of the present invention can be suitably used, for example, as a film for a highly sensitive heat-sensitive stencil sheet.


Claims (1)

2,6-ナフタレンジカルボン酸成分を10〜40モル%、1,4-ブタンジオール成分を5〜70モル%含有する共重合ポリエステルを80重量%以上含有するフィルムであり、フィルムの融点が130℃〜230℃であり、ガラス転移温度が50℃〜80℃であり、融点温度から300℃の温度範囲で損失弾性率(G”)が100Pa以上であり、フィルム厚みが0.5〜7.0μmであることを特徴とする高感度感熱孔版印刷原紙用ポリエステルフィルム。 It is a film containing 80% by weight or more of a copolymerized polyester containing 10 to 40 mol% of 2,6-naphthalenedicarboxylic acid component and 5 to 70 mol% of 1,4-butanediol component, and the melting point of the film is 130 ° C. ˜230 ° C., glass transition temperature is 50 ° C. to 80 ° C., loss elastic modulus (G ″) is 100 Pa or more in the temperature range from melting point temperature to 300 ° C., and film thickness is 0.5 to 7.0 μm. A polyester film for a high-sensitivity heat-sensitive stencil sheet.
JP2004375238A 2004-12-27 2004-12-27 High sensitivity heat sensitive stencil printing polyester film Active JP4587805B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004375238A JP4587805B2 (en) 2004-12-27 2004-12-27 High sensitivity heat sensitive stencil printing polyester film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004375238A JP4587805B2 (en) 2004-12-27 2004-12-27 High sensitivity heat sensitive stencil printing polyester film

Publications (2)

Publication Number Publication Date
JP2006181747A JP2006181747A (en) 2006-07-13
JP4587805B2 true JP4587805B2 (en) 2010-11-24

Family

ID=36735210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004375238A Active JP4587805B2 (en) 2004-12-27 2004-12-27 High sensitivity heat sensitive stencil printing polyester film

Country Status (1)

Country Link
JP (1) JP4587805B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008207442A (en) * 2007-02-26 2008-09-11 Mitsubishi Plastics Ind Ltd Polyester film for paperless thermosensitive stencil printing base paper

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09200845A (en) * 1996-01-18 1997-07-31 Matsushita Electric Ind Co Ltd Radio communication equipment
JPH11348449A (en) * 1998-06-10 1999-12-21 Teijin Ltd Polyester film for thermosensitive stencil printing base sheet
JP2003082126A (en) * 2001-09-07 2003-03-19 Mitsubishi Polyester Film Copp Biaxially oriented polyester film
JP2004202904A (en) * 2002-12-26 2004-07-22 Mitsubishi Polyester Film Copp Polyester film for highly sensitive heat-sensitive stencil printing original paper

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09200845A (en) * 1996-01-18 1997-07-31 Matsushita Electric Ind Co Ltd Radio communication equipment
JPH11348449A (en) * 1998-06-10 1999-12-21 Teijin Ltd Polyester film for thermosensitive stencil printing base sheet
JP2003082126A (en) * 2001-09-07 2003-03-19 Mitsubishi Polyester Film Copp Biaxially oriented polyester film
JP2004202904A (en) * 2002-12-26 2004-07-22 Mitsubishi Polyester Film Copp Polyester film for highly sensitive heat-sensitive stencil printing original paper

Also Published As

Publication number Publication date
JP2006181747A (en) 2006-07-13

Similar Documents

Publication Publication Date Title
US20060009617A1 (en) Polyester film for high sensitive thermal mimeorgraph stencil paper
JP4587805B2 (en) High sensitivity heat sensitive stencil printing polyester film
JP2007168340A (en) Polyester film for original paper for highly sensitive thermal stencil printing
JP5242923B2 (en) Polyester film for heat sensitive stencil printing paper
JP5242922B2 (en) Polyester film for heat sensitive stencil printing paper
JP3035935B2 (en) Polyester film for heat-sensitive stencil printing base paper
JP3411633B2 (en) Polyester film for high-sensitivity thermosensitive stencil printing base paper
JP2015208944A (en) Film for heat-sensitive stencil printing base paper
JP5393143B2 (en) Polyester film for screen printing
JP2008207442A (en) Polyester film for paperless thermosensitive stencil printing base paper
JPH0764131B2 (en) Film for heat-sensitive stencil printing base paper
JP3361152B2 (en) Polyester film for high-sensitivity thermosensitive stencil printing base paper
JP2005171124A (en) Polyester film for use in insert molding
JPH07276844A (en) Polyester film for high sensitivity thermal screen printing stencil paper
JPH07276839A (en) Polyester film for high sensitivity thermal screen printing stencil paper
JPH0577572A (en) Film for thermal stencil printing sheet
JPH0752573A (en) Polyester film for high-sensitivity thermal stencil printing base paper
JP2003191427A (en) Production method for polyester film for heat sensitive stencil printing base paper
JPH08244374A (en) Polyester film for high sensitivity thermal stencil printing base sheet
JP2001213947A (en) Polyester film for thermal stencil printing base paper
JPH07242075A (en) Polyester film for high-speed heat-sensitive screen process printing base paper
JPH06135173A (en) Film for highly sensitive thermal printing stencil paper
JPH07156570A (en) Polyester film for high-speed heat-sensitive stencil printing paper
JP2007069432A (en) Polyester film for base paper for printing of thermal stencil printing plate without porous thin sheet substrate
JPH09164782A (en) Film for high sensitive heat-sensitive screen process printing base paper

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071222

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100907

R150 Certificate of patent or registration of utility model

Ref document number: 4587805

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350