JP5393143B2 - Polyester film for screen printing - Google Patents

Polyester film for screen printing Download PDF

Info

Publication number
JP5393143B2
JP5393143B2 JP2008335828A JP2008335828A JP5393143B2 JP 5393143 B2 JP5393143 B2 JP 5393143B2 JP 2008335828 A JP2008335828 A JP 2008335828A JP 2008335828 A JP2008335828 A JP 2008335828A JP 5393143 B2 JP5393143 B2 JP 5393143B2
Authority
JP
Japan
Prior art keywords
film
polyester
weight
heat
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008335828A
Other languages
Japanese (ja)
Other versions
JP2010155419A (en
Inventor
孝 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP2008335828A priority Critical patent/JP5393143B2/en
Publication of JP2010155419A publication Critical patent/JP2010155419A/en
Application granted granted Critical
Publication of JP5393143B2 publication Critical patent/JP5393143B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Printing Plates And Materials Therefor (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Polyesters Or Polycarbonates (AREA)

Description

本発明は、スクリーン印刷用二軸配向ポリエステルフィルムに関する。さらに詳しくは、本発明は、シルク、ナイロン、ポリエステル等の繊維で織ったスクリーンに貼り合せて用いる、サーマルヘッド、キセノン製版方式、フラッシュバック方式等の感熱穿孔性、耐刷性に優れたスクリーン印刷用二軸配向ポリエステルフィルムに関するものである。   The present invention relates to a biaxially oriented polyester film for screen printing. More specifically, the present invention is a screen printing excellent in thermal perforation and printing durability such as a thermal head, a xenon plate making method, and a flashback method, which is used by being bonded to a screen woven with fibers of silk, nylon, polyester, etc. The present invention relates to a biaxially oriented polyester film.

従来、感熱孔版フィルムを用いたスクリーン製版は、感光性油脂を用いないため、製版の工程数が少なく簡便な方法であり、コスト的にも有利な方法であるが、耐刷力、画線精度が劣る欠点がある。スクリーン製版に用いる感熱孔版フィルムに必要な特性としては、耐刷力、フィルムの巻き特性、穿孔感度、印刷時の画像の解像度などが挙げられるが、従来、スクリーン印刷の感熱孔版フィルムとして用いられている塩化ビニリレンは、機械的強度が弱く耐刷力が劣ったり、穿孔感度が悪いために、フィルムを穿孔する際の熱エネルギーが高かったりする等、上記の必要特性を全て満足するものではなかった。この問題を解決するために、特定の融点、収縮率、引張弾性率、厚みの二軸配向ポリエステルフィルムが提案されているが(特許文献1)、この方法では、デジタル孔版印刷等で使用する上質紙やプラスチックなどの表面が均一な薄い素材への印刷には支障は生じないが、Tシャツなどの布地や段ボール等の厚紙、表面の凹凸が比較的大きい素材への印刷に対しては、十分な耐刷力が得られていないという問題が残っている。
特開平9−220867公報
Conventionally, screen plate making using a heat-sensitive stencil film is a simple method with less number of plate making steps because it does not use photosensitive oil and fat, and is an advantageous method in terms of cost. Has the disadvantage of being inferior. Properties required for the heat-sensitive stencil film used for screen plate making include printing durability, film winding properties, perforation sensitivity, image resolution during printing, etc., but conventionally used as a heat-sensitive stencil film for screen printing. However, vinylene chloride, which has weak mechanical strength and poor printing durability, and poor perforation sensitivity, did not satisfy all of the above required characteristics such as high thermal energy when perforating the film. . In order to solve this problem, a biaxially oriented polyester film having a specific melting point, shrinkage rate, tensile elastic modulus, and thickness has been proposed (Patent Document 1). In this method, a high quality used in digital stencil printing or the like is proposed. Printing on thin materials with a uniform surface, such as paper or plastic, will not interfere, but it is sufficient for printing on fabrics such as T-shirts, cardboard, and other materials with relatively large surface irregularities. The problem remains that sufficient printing durability is not obtained.
JP 9-220867 A

本発明の課題は、印刷物の表面形状によらず、耐刷力、穿孔感度、印刷時の解像度に優れたスクリーン印刷用感熱孔版フィルムを提供することにある。   An object of the present invention is to provide a heat-sensitive stencil film for screen printing that is excellent in printing durability, perforation sensitivity, and resolution at the time of printing regardless of the surface shape of the printed matter.

本発明者は、上記課題に鑑み鋭意検討した結果、特定の二軸配向ポリエステルフィルムがスクリーン印刷用フィルムに好適であることを見いだし、本発明を完成するに至った。   As a result of intensive studies in view of the above problems, the present inventors have found that a specific biaxially oriented polyester film is suitable for a screen printing film, and have completed the present invention.

すなわち、本発明の要旨は、イソフタル酸共重合ポリエチレンテレフタレートおよびポリブチレンテレフタレートと、ポリエチレンテレフタレートまたはポリエチレンナフタレートとを混合してなる、酸性分のうち50〜97モル%がテレフタル酸成分、グリコール成分のうち5〜70モル%が1,4−ブタンジオール成分で構成されるポリエステルからなり、フィルムの融点が245℃以下であり、固有粘度が0.55dl/g以上であり、150℃における熱収縮率が30〜70%、厚さが2.5〜7μmであることを特徴とするスクリーン印刷用ポリエステルフィルムに存する。 That is, the gist of the present invention is that isophthalic acid copolymerized polyethylene terephthalate and polybutylene terephthalate are mixed with polyethylene terephthalate or polyethylene naphthalate, and 50 to 97 mol % of the acidic component is composed of terephthalic acid component and glycol component. Of these, 5-70 mol% is made of polyester composed of a 1,4-butanediol component, the film has a melting point of 245 ° C. or lower, an intrinsic viscosity of 0.55 dl / g or higher, and a heat shrinkage rate at 150 ° C. 30 to 70%, and the thickness is 2.5 to 7 μm.

以下、本発明を詳細に説明する。
本発明でいうスクリーン印刷とは、シルク、ナイロン、ポリエステルなどの繊維で織ったスクリーンを枠に固定し、その上に各種の方法で開口部と非開口部を任意の形状に形成した後、船状になったスクリーン枠内にインキを入れ、スクイジー(Squeegee)と称するゴムのヘラで版内を加圧・摺動することにより、インキを画線部よりスクリーン目を通過して版裏面に押し出し印刷する方法である。一般に、スクリーン製版方法としては手工的方法によるスクリーン、フォトレジストスクリーン、感光性樹脂の変わりに感熱孔版フィルムを用いた本願発明の属する特殊スクリーンなどが挙げられる。
Hereinafter, the present invention will be described in detail.
Screen printing as used in the present invention means that a screen woven with fibers of silk, nylon, polyester, etc. is fixed to a frame, and an opening and a non-opening are formed in an arbitrary shape by various methods on the screen. Ink is put into the shaped screen frame, and the ink is pushed through the screen with a rubber spatula called a squeegee to push the ink through the screen area to the back of the plate. It is a method of printing. In general, the screen plate making method includes a screen by a manual method, a photoresist screen, and a special screen to which the present invention belongs using a heat sensitive stencil film instead of a photosensitive resin.

特殊スクリーン製版も、原稿からの反射光を電気信号に変換し、増幅し、記録針からの放電により塩化ビニル、塩酢ビ共重合体など熱可塑性樹脂フィルムの中にカーボンを分散させ、導電性をもたせたシートを穿孔してスクリーン版とする放電式と、各種のスクリーンメッシュに、熱により穿孔される塩化ビニリデンなどの熱可塑性フィルムを貼り合わせたものを原稿に密着させ、サーマルヘッド、キセノン製版方式、フラッシュバルブ等の熱エネルギーにより孔をあけて版としたりする感熱方式があり、本願発明の二軸配向ポリエステルフィルムは、スクリーン印刷の中でも、特殊スクリーン製版の感熱孔版方法に用いる。   Special screen plate making also converts the reflected light from the original into an electrical signal, amplifies it, disperses the carbon in a thermoplastic resin film such as vinyl chloride or vinyl chloride copolymer by discharge from the recording needle, and makes it conductive The discharge type to perforate the sheet with stencil to make the screen plate, and various screen meshes and the thermoplastic film such as vinylidene chloride which is perforated by heat are adhered to the original, and the thermal head, xenon plate making There is a heat-sensitive method, such as a method, a heat-sensitive method such as making a plate with heat energy such as a flash bulb, and the biaxially oriented polyester film of the present invention is used in a heat-sensitive stencil method for special screen plate making, among screen printing.

本発明のポリエステルフィルムは、スクリーン印刷用感熱孔版原紙として、シルク、ナイロン、ポリエステル等の繊維で織ったスクリーンに貼り合わせた後、サーマルヘッド、キセノン製版方式、フラッシュバルブ等の熱エネルギーにより穿孔され、スクリーン印刷用製版となる。   The polyester film of the present invention, as a heat-sensitive stencil sheet for screen printing, after being bonded to a screen woven with silk, nylon, polyester or other fibers, and then perforated by thermal energy such as a thermal head, a xenon plate making system, a flash valve, It becomes the plate making for screen printing.

本発明でいうポリエステルとは、酸性分のうち50〜97%、好ましくは、70〜97%がテレフタル酸成分、グリコール成分のうち5〜70モル%、好ましくは10〜60モル%、さらに好ましくは10〜50モル%が1,4−ブタンジオール成分で構成されるポリエステル上記したジカルボン酸成分、およびグリコール成分からなるポリエステルを指すが、融点を245℃以下にするために、それ以外の成分を含む共重合体であってもよい。かかる共重合可能成分としては、2,6−ナフタレンジカルボン酸、イソフタル酸、セバシン酸、アジピン酸等のジカルボン酸、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ネオペンチルグリコール、1,4−シクロヘキサンジメタノール等のグリコール成分等が挙げられ、酸性分のうち3〜30モル%をイソフタル酸成分で構成するのが好ましい。   The polyester referred to in the present invention is 50 to 97% of the acid content, preferably 70 to 97% is the terephthalic acid component and the glycol component is 5 to 70 mol%, preferably 10 to 60 mol%, more preferably. Polyester comprising 10 to 50 mol% of 1,4-butanediol component refers to a polyester composed of the dicarboxylic acid component described above and a glycol component, but includes other components in order to bring the melting point to 245 ° C or lower. A copolymer may also be used. Such copolymerizable components include 2,6-naphthalenedicarboxylic acid, isophthalic acid, sebacic acid, adipic acid and other dicarboxylic acids, ethylene glycol, diethylene glycol, triethylene glycol, neopentyl glycol, 1,4-cyclohexanedimethanol, etc. It is preferable that 3-30 mol% of the acidic component is composed of an isophthalic acid component.

かかるポリエステルを得る方法としては、重合時に所定量のジカルボン酸成分とグリコール成分とを仕込み、共重合により目的のポリエステルを得る方法、あるいは、異なる成分比の共重合ポリエステルの2種類以上をブレンドして溶融混練りにより所定の成分量になるように調節する方法が挙げられる。   As a method of obtaining such a polyester, a predetermined amount of a dicarboxylic acid component and a glycol component are charged at the time of polymerization, and a target polyester is obtained by copolymerization, or two or more kinds of copolymer polyesters having different component ratios are blended. The method of adjusting so that it may become a predetermined component amount by melt-kneading is mentioned.

本発明のフィルムを構成するポリエステルは、上述のとおり、酸性分およびグリコール成分が特定の範囲であるが、1,4−ブタンジオール成分が5モル%未満では、高感度のフィルムが得られず、70モル%を超えた場合は、フィルムの耐熱寸法安定性が悪化して、マスターフィルム保管中やマスターフィルム搬送時にカール、局部タルミが発生し、印刷画像の階調性が劣るようになるので好ましくない。   As described above, the polyester constituting the film of the present invention has a specific range of acidic components and glycol components. However, when the 1,4-butanediol component is less than 5 mol%, a highly sensitive film cannot be obtained. If it exceeds 70 mol%, the heat-resistant dimensional stability of the film deteriorates, curling and local tarmi occur during storage of the master film and when the master film is transported, and the gradation of the printed image becomes inferior. Absent.

さらに、1,4−ブタンジオール以外のグリコール成分として、エチレングリコールを30〜95モル%、好ましくは40〜90モル%、さらに好ましくは50〜90モル%構成するのが好ましい。   Furthermore, as glycol components other than 1,4-butanediol, ethylene glycol is preferably constituted in an amount of 30 to 95 mol%, preferably 40 to 90 mol%, more preferably 50 to 90 mol%.

本発明のフィルムの厚さは2.5〜7μm、好ましくは3〜5μmの範囲である。フィルムの厚さが薄いほど熱伝導距離が短縮され、その結果、穿孔時に必要な熱エネルギーが減少して穿孔性が向上し、印刷時の解像度や印字品位性が向上する。しかしながら、フィルムの厚さが2.5μm未満の場合は、フィルムの腰が低下するため、繊維や段ボール等の厚紙、表面の凹凸が比較的大きい素材への印刷では濃淡むらが生じやすく、耐刷性も著しく低下する傾向がある。逆に、フィルムの厚さが7μmを超える場合は、十分な穿孔径、穿孔確率を確保することができず未穿孔が発生する。   The film of the present invention has a thickness of 2.5 to 7 μm, preferably 3 to 5 μm. The thinner the film is, the shorter the heat conduction distance is. As a result, the thermal energy required for perforation is reduced, the perforation is improved, and the resolution and quality of printing are improved. However, if the thickness of the film is less than 2.5 μm, the stiffness of the film is lowered. Therefore, when printing on thick paper such as fibers and corrugated cardboard and materials with relatively large surface irregularities, uneven shading is likely to occur, and printing durability There is also a tendency for the properties to decrease significantly. On the contrary, when the thickness of the film exceeds 7 μm, sufficient perforation diameter and perforation probability cannot be ensured and unperforation occurs.

なお、本発明において、製膜に供するポリエステル全量に対し、10重量%程度以下の他のポリマー(例えばポリエチレン、ポリスチレン、ポリカーボネート、ポリスルホン、ポリフェニレンスルフィド、ポリアミド、ポリイミド等)を含有させることができる。また必要に応じ、酸化防止剤、熱安定剤、潤滑剤、帯電防止剤、染料、顔料等の添加剤を配合してもよい。   In the present invention, other polymers (for example, polyethylene, polystyrene, polycarbonate, polysulfone, polyphenylene sulfide, polyamide, polyimide, etc.) of about 10% by weight or less can be contained with respect to the total amount of polyester used for film formation. Moreover, you may mix | blend additives, such as antioxidant, a heat stabilizer, a lubricant, an antistatic agent, dye, and a pigment, as needed.

上記の添加剤の配合方法は、特に限定されず、例えば、添加剤とポリエステルチップとを直接ブレンドする方法、添加剤を予めポリエステル中に高濃度に配合したマスターバッチチップを得、それを再度ポリエステルにブレンドする所謂マスターバッチ法などを採用することができる。   The method of blending the above additive is not particularly limited. For example, a method of directly blending the additive and the polyester chip, a master batch chip in which the additive is blended in a high concentration in the polyester in advance, and obtaining the polyester again A so-called master batch method for blending with the above can be employed.

本発明におけるフィルムの融点は245℃以下、好ましくは170〜245℃、さらに好ましくは170〜230℃の範囲である。さらにより好ましくは170℃〜230℃である。フィルムの融点が245℃より高い場合は、本発明の目的とする高度な穿孔感度が得られ難く、フィルムの融点が低すぎる場合は、フィルムの耐熱寸法安定性の悪化により、マスターフィルムを製造する工程やマスターフィルムの保存中にカールが発生したり、印刷画像の階調性が劣ったりする。   The melting point of the film in the present invention is 245 ° C. or lower, preferably 170 to 245 ° C., more preferably 170 to 230 ° C. Even more preferably, it is 170 ° C to 230 ° C. When the melting point of the film is higher than 245 ° C., it is difficult to obtain the high perforation sensitivity intended by the present invention, and when the melting point of the film is too low, a master film is produced due to deterioration of the heat-resistant dimensional stability of the film. Curling occurs during the process and storage of the master film, and the gradation of the printed image is inferior.

また、本発明においては最も高い融点(Tm2)と最も低い融点(Tm1)との差は50℃未満、さらには30℃未満であることが好ましいが、Tm1とTm2が同一であってもよい。かかる温度差が50℃以上では、短時間で均一な穿孔が起こらず、印刷画像の階調性が劣るようになる傾向がある。   In the present invention, the difference between the highest melting point (Tm2) and the lowest melting point (Tm1) is preferably less than 50 ° C., more preferably less than 30 ° C., but Tm1 and Tm2 may be the same. When the temperature difference is 50 ° C. or more, uniform perforation does not occur in a short time, and the gradation of the printed image tends to be inferior.

本発明のフィルムのガラス転移温度は40〜85℃が好ましく、さらに好ましくは50〜74℃である。ガラス転移温度が40℃未満では、耐熱寸法安定性が悪化して、マスターフィルム保管中や、マスターフィルム搬送時にカール、局部タルミが発生しやすく、印刷画像の階調性が劣ることがある。ガラス転移温度が85℃より高い場合は、穿孔感度が悪くなり好ましくない。   The glass transition temperature of the film of the present invention is preferably 40 to 85 ° C, more preferably 50 to 74 ° C. When the glass transition temperature is less than 40 ° C., the heat-resistant dimensional stability is deteriorated, curling and local tarmi are likely to occur during storage of the master film or during conveyance of the master film, and the gradation of the printed image may be inferior. When the glass transition temperature is higher than 85 ° C., the perforation sensitivity is deteriorated.

本発明のフィルムの固有粘度[η]は0.55dl/g以上、好ましくは0.60dl/g以上である。固有粘度[η]が0.55dl/gより低い場合は、マスターフィルム保管中や、マスターフィルム搬送時にカールしたり、十分な耐刷力が得られなくなったりする。また、穿孔感度が悪くなり、好ましくない。   The intrinsic viscosity [η] of the film of the present invention is 0.55 dl / g or more, preferably 0.60 dl / g or more. When the intrinsic viscosity [η] is lower than 0.55 dl / g, curling may occur during storage of the master film or during conveyance of the master film, or sufficient printing durability may not be obtained. Further, the perforation sensitivity is deteriorated, which is not preferable.

本発明のフィルムは、フィルム製造時の巻き上げ工程、フィルムマスター作成時のコーテング、および印刷時の作業性を向上させるため、あるいは、サーマルヘッドとフィルムとの融着を防止するため、フィルムに適度な滑り性を付与する。   The film of the present invention is suitable for a film in order to improve the winding process during film production, the coating during film master creation, and the workability during printing, or to prevent the thermal head and the film from being fused. Gives slipperiness.

具体的には、表面を適度に粗面化するためにフィルムに、例えば平均粒径0.05〜5.0μmの微粒子を0.01〜3.0重量%、好ましくは0.1〜1.5重量%含有させる。   Specifically, in order to moderately roughen the surface, for example, 0.01 to 3.0% by weight, preferably 0.1 to 1.% by weight of fine particles having an average particle diameter of 0.05 to 5.0 μm are added to the film. 5% by weight is contained.

かかる微粒子の例として、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、硫酸カルシウム、リン酸カルシウム、リン酸リチウム、リン酸マグネシウム、フッ化リチウム、酸化アルミニウム、酸化珪素、酸化チタン、カオリン、タルク、カーボンブラック、窒化ケイ素、窒化ホウ素、および特公昭59−5216号公報に記載されているような架橋高分子微粉体を挙げることができるが、これらに限定されるものではない。   Examples of such fine particles include calcium carbonate, magnesium carbonate, barium carbonate, calcium sulfate, calcium phosphate, lithium phosphate, magnesium phosphate, lithium fluoride, aluminum oxide, silicon oxide, titanium oxide, kaolin, talc, carbon black, silicon nitride. , Boron nitride, and crosslinked polymer fine powders as described in JP-B-59-5216, but are not limited thereto.

この際、配合する微粒子は、単成分でもよく、また、2成分以上を同時に用いてもよい。2成分以上用いる場合は、それらの全体の平均粒径および含有量が上記した範囲内にあることが好ましい。   At this time, the fine particles to be blended may be a single component, or two or more components may be used simultaneously. When two or more components are used, it is preferable that the average particle diameter and content thereof are in the above-described range.

平均粒径が0.05μm未満、または微粒子の含有量が0.01重量%未満である場合は、フィルム表面の粗面化が不足し、十分に効果が得られないことがある。また平均粒径が5.0μmを超える場合や含有量が3.0重量%を超える場合には、フィルム表面の粗面化の度合いが大き過ぎて熱伝達にムラが生じ、穿孔が不均一となり、解像度が劣ったり、印字品位性が損なったりすることがある。   When the average particle size is less than 0.05 μm or the content of fine particles is less than 0.01% by weight, the film surface is insufficiently roughened and the effect may not be obtained sufficiently. When the average particle size exceeds 5.0 μm or the content exceeds 3.0% by weight, the degree of roughening of the film surface is too large, resulting in uneven heat transfer and uneven perforation. , The resolution may be inferior or the print quality may be impaired.

原料ポリエステルに対する前記各粒子の配合方法は、特に限定されないが、例えば、ポリエステルの重合工程に各粒子を添加する方法または原料ポリエステルと各粒子を溶融混練する方法などが好適である。   The method for blending the respective particles with the raw material polyester is not particularly limited. For example, a method of adding each particle to the polyester polymerization step or a method of melt-kneading the raw material polyester and each particle is suitable.

本発明のフィルムは、作業性、印刷時の解像度、印字品位性などの特性を高度に満足させるため、中心線平均粗さ(Ra)が0.01〜0.20μmの範囲であることが好ましく、0.02〜0.15μmの範囲であることがさらに好ましい。Raが0.01μm未満の場合は、フィルムの巻き取り時にフィルムにシワが入りやすくなる傾向があり、また、Raが0.20μmを超える場合は、フィルム表面の平面性が損なわれ、熱伝達にムラが生じ、穿孔が不均一となり、解像度が劣り、印字品位性が損なわれる傾向がある。   The film of the present invention preferably has a center line average roughness (Ra) in the range of 0.01 to 0.20 μm in order to highly satisfy properties such as workability, printing resolution, and print quality. The range of 0.02 to 0.15 μm is more preferable. When Ra is less than 0.01 μm, the film tends to be wrinkled at the time of winding the film, and when Ra exceeds 0.20 μm, the flatness of the film surface is impaired and the heat transfer. Unevenness occurs, the perforations become uneven, the resolution is poor, and the print quality tends to be impaired.

本発明のフィルム熱収縮率は、150℃3分間で30〜70%、好ましくは35〜65%である。150℃での熱収縮率が30%未満では、低エネルギーでの穿孔性の点から十分な穿孔径、穿孔確率を確保することができず、未穿孔が発生し、70%より大きいと原紙の保存中に発生するカール、印刷画像の階調性のレベルが悪く、実用上、好ましくない。   The film heat shrinkage rate of the present invention is 30 to 70%, preferably 35 to 65% at 150 ° C. for 3 minutes. If the heat shrinkage rate at 150 ° C. is less than 30%, sufficient drilling diameter and punching probability cannot be secured from the viewpoint of low energy drilling, and unperforation occurs. Curling that occurs during storage and the level of gradation of the printed image are poor, which is not preferable for practical use.

次に本発明のポリエステルフィルムの製造方法について説明する。
本発明においては、ポリマーをエクストルーダーに代表される周知の押出装置に供給し、ポリマーの融点以上の温度に加熱し溶融する。次いで、溶融したポリマーをスリット状のダイから押し出し、回転冷却ドラム上でガラス転移温度以下の温度になるように急冷固化し、実質的に非晶状態の未配向シートを得る。この場合、シートの平面性を向上させるため、シートと回転冷却ドラムとの密着性を高めることが好ましく、通常、静電印加密着法を採用する。
Next, the manufacturing method of the polyester film of this invention is demonstrated.
In the present invention, the polymer is supplied to a well-known extruder represented by an extruder, heated to a temperature equal to or higher than the melting point of the polymer, and melted. Next, the molten polymer is extruded from a slit-shaped die and rapidly cooled and solidified on the rotary cooling drum so that the temperature is equal to or lower than the glass transition temperature, thereby obtaining a substantially amorphous unoriented sheet. In this case, in order to improve the flatness of the sheet, it is preferable to improve the adhesion between the sheet and the rotary cooling drum, and usually an electrostatic application adhesion method is employed.

本発明においては、上記のようにして得られた未延伸シートを2軸方向に延伸してフィルム化する。具体的には、まず、ロールまたはテンター方式の延伸機により、前記未延伸シートを一方向に延伸する。この一段目において、延伸温度は、通常40〜120℃、好ましくは50〜100℃、延伸倍率は、通常3.0〜7倍、好ましくは3.5〜7倍とする。次に、テンター方式の延伸機により、一段目と直交する方向に延伸する。この二段目において、延伸温度は、通常20〜100℃、好ましくは25〜90℃、延伸倍率は、通常3.0〜7倍、好ましくは3.5〜7倍、さらに好ましくは4.0〜7倍とする。
一方向の延伸を2段階以上で行う方法も採用することができるが、その場合も最終的な延伸倍率が上記した範囲に入ることが好ましい。また、前記未延伸シートを面積倍率が10〜40倍になるように同時二軸延伸することも可能である。得られたフィルムの熱処理は、任意に行うことができ、また、必要に応じ、熱処理を行う前または後に再度縦および/または横方向に延伸してもよい。
In the present invention, the unstretched sheet obtained as described above is stretched biaxially to form a film. Specifically, first, the unstretched sheet is stretched in one direction by a roll or tenter type stretching machine. In this first stage, the stretching temperature is usually 40 to 120 ° C., preferably 50 to 100 ° C., and the stretching ratio is usually 3.0 to 7 times, preferably 3.5 to 7 times. Next, the film is stretched in a direction orthogonal to the first stage by a tenter type stretching machine. In this second stage, the stretching temperature is usually 20 to 100 ° C., preferably 25 to 90 ° C., and the stretching ratio is usually 3.0 to 7 times, preferably 3.5 to 7 times, more preferably 4.0. ~ 7 times.
A method of performing unidirectional stretching in two or more stages can also be employed, but in this case as well, it is preferable that the final stretching ratio falls within the above-described range. Further, the unstretched sheet can be simultaneously biaxially stretched so that the area magnification is 10 to 40 times. The obtained film can be optionally heat-treated, and if necessary, it may be stretched again in the longitudinal and / or transverse directions before or after the heat treatment.

本発明においては、前記した熱収縮特性を有するフィルムを得るため、延伸倍率を面積倍率として15倍以上とし、熱処理温度を次の条件を採用するのが好ましい。すなわち、熱処理温度は、通常130℃以下、好ましくは110℃以下とし、熱処理時間は1秒から5分間とする。そして、定長下または30%以内の伸長下のフィルムについて熱処理を施す。   In the present invention, in order to obtain a film having the above-described heat shrinkage characteristics, it is preferable that the draw ratio is 15 times or more as the area ratio and the heat treatment temperature is as follows. That is, the heat treatment temperature is usually 130 ° C. or lower, preferably 110 ° C. or lower, and the heat treatment time is 1 second to 5 minutes. And heat processing is performed about the film under fixed length or the expansion | extension within 30%.

かくして得られた本発明のスクリーン印刷用度感熱孔版フィルムは、シルク、ナイロン、ポリエステルなどの繊維で織ったスクリーンに貼り合わせた後、熱エネルギーにより高感度に穿孔され、耐刷力の優れたスクリーン製版となる。   The screen-sensitive heat-sensitive stencil film of the present invention thus obtained is bonded to a screen woven with fibers of silk, nylon, polyester, etc., and then perforated with high sensitivity by thermal energy, and has excellent printing durability. It becomes plate making.

本発明によれば、印刷物の表面形状によらず、耐刷力、穿孔感度、印刷時の解像度に優れたスクリーン印刷用感熱孔版フィルムを提供することができ、本発明の工業的価値は高い。   According to the present invention, a thermal stencil film for screen printing excellent in printing durability, perforation sensitivity, and resolution at the time of printing can be provided regardless of the surface shape of the printed matter, and the industrial value of the present invention is high.

以下、実施例により本発明をさらに詳細に説明するが、本発明は、その要旨を越えない限り、以下の実施例に限定されるものではない。なお、本発明で用いた物性測定法は以下に示すとおりである。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to a following example, unless the summary is exceeded. In addition, the physical-property measuring method used by this invention is as showing below.

(1)試料成分含有量の測定
ポリマー試料を重水素トルフルオロ酢酸溶媒に濃度3重量%となるように溶解させた溶液を調整した。核磁気共鳴装置(ブルカ−バイオスピン製DRX−500)を用い、この溶液の1H−NMRスペクトルを得、各ピークを帰属し、ピークの積分値から各成分の含有量を算出した。
(1) Measurement of sample component content A solution in which a polymer sample was dissolved in a deuterium trifluoroacetic acid solvent to a concentration of 3% by weight was prepared. Using a nuclear magnetic resonance apparatus (DRX-500 manufactured by Bruker Biospin), a 1 H-NMR spectrum of this solution was obtained, each peak was assigned, and the content of each component was calculated from the integrated value of the peak.

(2)融点およびガラス転移温度
示差走査熱量計(DSC)を用いる方法で、具体的にはテイー・エイ・インスルメント社製DSC−2920を使用して測定した。すなわち、試料を温度0℃から昇温速度10℃/分で300℃まで昇温し、結晶融解吸熱ピーク温度を融点[Tm]とした。ガラス転移温度[Tg]は、300℃に加熱した試料を急冷した後、昇温速度10℃/分で昇温した時、比熱の変化によりDSC曲線が屈曲する温度範囲の中心値とした。
(2) Melting point and glass transition temperature The melting point and glass transition temperature were measured by using a differential scanning calorimeter (DSC), specifically, DSC-2920 manufactured by TAA Instruments. That is, the sample was heated from a temperature of 0 ° C. to 300 ° C. at a heating rate of 10 ° C./min, and the crystal melting endothermic peak temperature was defined as the melting point [Tm]. The glass transition temperature [Tg] was set to the center value of the temperature range in which the DSC curve bends due to the change in specific heat when the sample heated to 300 ° C. was rapidly cooled and then heated at a rate of temperature increase of 10 ° C./min.

(3)厚さ
試料の重量、長さ、幅、密度より次式にて測定した。
厚さ=(試料の重量)÷(試料の長さ×試料の幅×試料の密度)
(3) Thickness The thickness was measured by the following formula from the weight, length, width and density of the sample.
Thickness = (sample weight) ÷ (sample length x sample width x sample density)

(4)固有粘度の測定
試料1gをフェノール/テトラクロロエタン=50/50(重量比)の混合溶媒100ml中に溶解し、30℃で測定した。
(4) Measurement of intrinsic viscosity 1 g of a sample was dissolved in 100 ml of a mixed solvent of phenol / tetrachloroethane = 50/50 (weight ratio) and measured at 30 ° C.

(5)熱収縮率(%)
所定の温度(150℃)に保ったオーブン中、試料を無張力状態で3分間熱処理しその前後の試料長さを測定し次式にて熱収縮率を算出した。フィルムの縦方向と横方向に5点ずつ測定し、平均値を求めた。
熱収縮率=((熱処理前のサンプル長 )−(熱処理後のサンプル長))÷(熱処理前のサンプル長)×100
(5) Thermal shrinkage (%)
In an oven maintained at a predetermined temperature (150 ° C.), the sample was heat-treated for 3 minutes in a non-tensioned state, the sample length before and after that was measured, and the thermal shrinkage rate was calculated by the following formula. Five points were measured in the longitudinal and lateral directions of the film, and the average value was determined.
Thermal shrinkage = ((sample length before heat treatment) − (sample length after heat treatment)) ÷ (sample length before heat treatment) × 100

(6)感熱孔版印刷原紙実用特性
フィルムにポリエステル性のスクリーンを貼り合わせて原紙を作製した。得られた原紙をサーマルヘッドにより、印字エネルギー0.12mJおよび0.18mJにて文字画像および16段階の階調画像を製版した。製版された原紙のフィルム側から顕微鏡で階調画像部の穿孔状態を観察し、以下の項目について評価した。
(a)穿孔感度
◎…所定の穿孔が確実に行われ、穿孔の大きさも十分である
○…所定の穿孔がほぼ確実に行われる、穿孔の大きさも十分である
×…所定の穿孔が得られない部分が数多くあり、穿孔の大きさも不揃があり、実用上支障がある
(6) Practical characteristics of heat-sensitive stencil printing base paper A base paper was prepared by laminating a polyester screen to the film. A letter image and a 16-step gradation image were made on the obtained base paper with a thermal head at a printing energy of 0.12 mJ and 0.18 mJ. The perforated state of the gradation image portion was observed with a microscope from the film side of the plate-making base paper, and the following items were evaluated.
(A) Perforation sensitivity ◎ ... The predetermined perforation is surely performed and the size of the perforation is sufficient. ○ ... The predetermined perforation is almost certainly performed, and the size of the perforation is sufficient. × ... The predetermined perforation is obtained. There are many parts that do not exist, the size of the perforations is uneven, and there is a problem in practical use.

(b)印刷耐久性
印刷機でTシャツをフィルムが破損するまでに刷れる枚数で評価した。
◎…2000枚以上印刷可能
○…1000枚以上印刷可能
△…500枚以上印刷可能
×…500枚以上でフィルムが破損
(B) Printing durability The T-shirt was evaluated by the number of sheets that could be printed before the film was damaged by a printing machine.
◎ ... Can print 2000 sheets or more ○ ... Can print 1000 sheets or more △ ... Can print 500 sheets or more

・ポリエステル−Aの製造
テレフタル酸ジメチル100重量部、エチレングリコール60重量部を出発原料とし、触媒として、酢酸マグネシウム・四水塩0.09重量部を反応器に取り、反応開始温度を150℃とし、メタノールの留去とともに徐々に反応温度を上昇させ、3時間後230℃とした。4時間後、実質的にエステル交換反応を終了させた。この反応混合物にエチルアシッドフォスフェ−ト0.04部を添加した後、平均粒子1.1μmの球状有機架橋粒子1.0重量部及び三酸化アンチモン0.03部を加えて、4時間重縮合反応を行った。すなわち、温度230℃から徐々に昇温し280℃とした。一方、圧力は常圧より徐々に減じ、最終的には0.3mmHgとした。反応開始後、反応槽の攪拌動力の変化により固有粘度0.70dl/gに相当する時点で反応を停止し、窒素加圧下ポリマーを吐出させた。得られたポリエステルの固有粘度は0.75dl/gであった。
-Manufacture of polyester-A 100 parts by weight of dimethyl terephthalate and 60 parts by weight of ethylene glycol are used as starting materials. As a catalyst, 0.09 part by weight of magnesium acetate tetrahydrate is placed in a reactor, and the reaction start temperature is 150 ° C. The reaction temperature was gradually increased as methanol was distilled off, and after 3 hours, the temperature was increased to 230 ° C. After 4 hours, the transesterification reaction was substantially terminated. After adding 0.04 part of ethyl acid phosphate to the reaction mixture, 1.0 part by weight of spherical organic crosslinked particles having an average particle size of 1.1 μm and 0.03 part of antimony trioxide were added, and polycondensation for 4 hours. Reaction was performed. That is, the temperature was gradually raised from 230 ° C. to 280 ° C. On the other hand, the pressure was gradually reduced from normal pressure, and finally 0.3 mmHg. After the start of the reaction, the reaction was stopped at a time corresponding to an intrinsic viscosity of 0.70 dl / g due to a change in stirring power of the reaction vessel, and the polymer was discharged under nitrogen pressure. The obtained polyester had an intrinsic viscosity of 0.75 dl / g.

・ポリエステル−Bの製造
ポリエステル−Aの製造において、イソフタル酸ジメチル100重量部をテレフタル産ジメチル80重量部、イソフタル酸ジメチル20重量部に変えた以外はポリエステル−Aと同様の方法でポリエステル−Bを得た。得られたポリエステルの固有粘度は0.75dl/gであった。
・ Production of polyester-B In the production of polyester-A, polyester-B was prepared in the same manner as polyester-A, except that 100 parts by weight of dimethyl isophthalate was changed to 80 parts by weight of dimethyl terephthalate and 20 parts by weight of dimethyl isophthalate. Obtained. The obtained polyester had an intrinsic viscosity of 0.75 dl / g.

・ポリエステル−Cの製造
テレフタル酸ジメチル100重量部、1,4ブタンジオール56重量部、およびテトラブチルチタネート0.005重量部を反応器に取り、反応開始温度を150℃とし、メタノールの留去とともに徐々に反応温度を上昇させ、3時間後210℃とした。4時間後、実質的にエステル交換反応を終了させた。この反応混合物に、平均粒子1.1μmの球状有機架橋粒子1.0重量部添加し、重合触媒としてテトラブチルチタネート0.005部を加えて、4時間重縮合反応を行った。すなわち、温度210℃から徐々に昇温し260℃とした。一方、圧力は常圧より徐々に減じ、最終的には0.3mmHgとした。反応開始後、反応槽の攪拌動力の変化により固有粘度1.10dl/gに相当する時点で反応を停止し、窒素加圧下ポリマーを吐出させた。得られたポリエステルの固有粘度は1.10dl/gであった。
-Production of Polyester-C 100 parts by weight of dimethyl terephthalate, 56 parts by weight of 1,4 butanediol, and 0.005 parts by weight of tetrabutyl titanate are placed in a reactor, the reaction start temperature is 150 ° C., and methanol is distilled off. The reaction temperature was gradually raised to 210 ° C. after 3 hours. After 4 hours, the transesterification reaction was substantially terminated. To this reaction mixture, 1.0 part by weight of spherical organic crosslinked particles having an average particle size of 1.1 μm was added, 0.005 part of tetrabutyl titanate was added as a polymerization catalyst, and a polycondensation reaction was performed for 4 hours. That is, the temperature was gradually raised from 210 ° C. to 260 ° C. On the other hand, the pressure was gradually reduced from normal pressure, and finally 0.3 mmHg. After the start of the reaction, the reaction was stopped at a time corresponding to an intrinsic viscosity of 1.10 dl / g due to a change in stirring power of the reaction vessel, and the polymer was discharged under nitrogen pressure. The intrinsic viscosity of the obtained polyester was 1.10 dl / g.

・ポリエステル−Dの製造
ナフタレン−2,6−ジカルボン酸ジメチル100重量部、エチレングリコール65重量部、および重合触媒として酢酸マグネシウム0.09部を添加し、常法にしたがって重縮合反応を行い固有粘度0.55dl/gのポリマーを得、次いで窒素気流中で固相重合を行った。得られたポリエステルの固有粘度は0.63dl/gであった。
・ Production of polyester-D 100 parts by weight of dimethyl naphthalene-2,6-dicarboxylate, 65 parts by weight of ethylene glycol, and 0.09 part of magnesium acetate as a polymerization catalyst were added, and a polycondensation reaction was performed according to a conventional method to perform intrinsic viscosity. 0.55 dl / g of polymer was obtained, followed by solid state polymerization in a nitrogen stream. The intrinsic viscosity of the obtained polyester was 0.63 dl / g.

実施例1:
ポリエステル−A原料17重量部、ポリエステル−B原料50重量部、およびポリエステル−C原料33重量部をブレンドし、ベンド付きの二軸押出機を用いて285℃で混練りし、固有粘度0.70dl/gのポリエステルチップを作成した。このポリエステルチップを270℃にて押出機によりシート状に押出し、表面温度40℃に設定した回転冷却ドラムで静電印加冷却法を使用して急冷固化させ厚み50μmの実質的に非晶質のシートを得た。得られたシートを縦方向に70℃で4.0倍、横方向に97℃で4.0倍に延伸し95℃のテンター内で熱処理を施し、厚み3.0μmの二軸配向フィルムを製造した。得られたフィルムの物性を下記表1に示す。次いで得られたフィルムを常法に従い、ポリエステル製のスクリーンに貼り合わせ、感熱孔版印刷用原紙を作成し、綿100%の市販の無地Tシャツにスクリーン印刷を行った。
Example 1:
17 parts by weight of the polyester-A raw material, 50 parts by weight of the polyester-B raw material, and 33 parts by weight of the polyester-C raw material were blended and kneaded at 285 ° C. using a bend twin screw extruder, and the intrinsic viscosity was 0.70 dl. A polyester chip of / g was prepared. This polyester chip is extruded into a sheet by an extruder at 270 ° C., and rapidly cooled and solidified using an electrostatic application cooling method with a rotary cooling drum set at a surface temperature of 40 ° C., and a substantially amorphous sheet having a thickness of 50 μm. Got. The obtained sheet was stretched 4.0 times at 70 ° C in the longitudinal direction and 4.0 times at 97 ° C in the transverse direction, and heat-treated in a 95 ° C tenter to produce a biaxially oriented film having a thickness of 3.0 µm. did. The physical properties of the obtained film are shown in Table 1 below. Next, the obtained film was bonded to a polyester screen according to a conventional method to prepare a heat-sensitive stencil printing base paper, and screen printing was performed on a commercially available plain T-shirt made of 100% cotton.

実施例2:
実施例1において、ポリエステル−A原料17重量部、ポリエステル−B原料50重量部、およびポリエステル−C原料33重量部をブレンドした代わりにポリエステル−B原料90重量部、ポリエステル−C原料10重量部をブレンドした以外は、実施例1と同じ方法で感熱孔版印刷用原紙を作成し、スクリーン印刷を行った。
Example 2:
In Example 1, instead of blending 17 parts by weight of the polyester-A raw material, 50 parts by weight of the polyester-B raw material, and 33 parts by weight of the polyester-C raw material, 90 parts by weight of the polyester-B raw material and 10 parts by weight of the polyester-C raw material Except for blending, a heat-sensitive stencil sheet was prepared in the same manner as in Example 1, and screen printing was performed.

実施例3:
実施例1において、ポリエステル−A原料17重量部、ポリエステル−B原料50重量部、およびポリエステル−C原料33重量部をブレンドした代わりにポリエステル−A原料10重量部、ポリエステル−B原料25重量部、およびポリエステル−C原料65重量部をブレンドした以外は、実施例1と同じ方法で感熱孔版印刷用原紙を作成し、スクリーン印刷を行った。
Example 3:
In Example 1, instead of blending 17 parts by weight of polyester-A raw material, 50 parts by weight of polyester-B raw material, and 33 parts by weight of polyester-C raw material, 10 parts by weight of polyester-A raw material, 25 parts by weight of polyester-B raw material, A base sheet for heat-sensitive stencil printing was prepared in the same manner as in Example 1 except that 65 parts by weight of the polyester-C raw material was blended and screen-printed.

実施例4:
実施例1において、ポリエステル−A原料17重量部、ポリエステル−B原料50重量部、およびポリエステル−C原料33重量部をブレンドした代わりにポリエステル−B原料50重量部、ポリエステル−C原料33重量部、およびポリエステル−D原料17重量部をブレンドした以外は、実施例1と同じ方法で感熱孔版印刷用原紙を作成し、スクリーン印刷を行った。
Example 4:
In Example 1, instead of blending 17 parts by weight of polyester-A raw material, 50 parts by weight of polyester-B raw material, and 33 parts by weight of polyester-C raw material, 50 parts by weight of polyester-B raw material, 33 parts by weight of polyester-C raw material, A base paper for heat-sensitive stencil printing was prepared by the same method as in Example 1 except that 17 parts by weight of polyester-D raw material was blended, and screen printing was performed.

実施例5:
ポリエステル−B原料50重量部、およびポリエステル−C原料50重量部をブレンドし、ベンド付きの二軸押出機を用いて285℃で混練りして、ポリエステルE原料を作成し、ポリエステル−A原料50重量部とポリエステルE原料50重量部を均一にブレンドし、280℃にて押出機によりシート状に押出し、表面温度40℃に設定した回転冷却ドラムで静電印加冷却法を使用して急冷固化させ厚み50μmの実質的に非晶質のシートを得た。得られたシートを縦方向に90℃で4.0倍、横方向に100℃で4.0倍に延伸し95℃のテンター内で熱処理を施し、厚み3.0μmの二軸配向フィルムを製造した。得られたフィルムの物性を表1に示す。次いで得られたフィルムを常法に従い、ポリエステル製のスクリーンに貼り合わせ、感熱孔版印刷用原紙を作成し、綿100%の市販の無地Tシャツにスクリーン印刷を行った。
Example 5:
50 parts by weight of the polyester-B raw material and 50 parts by weight of the polyester-C raw material are blended and kneaded at 285 ° C. using a bend-equipped twin screw extruder to prepare a polyester E raw material. Part by weight and 50 parts by weight of polyester E raw material are uniformly blended, extruded into a sheet by an extruder at 280 ° C., and rapidly cooled and solidified using a static cooling method with a rotating cooling drum set at a surface temperature of 40 ° C. A substantially amorphous sheet having a thickness of 50 μm was obtained. The obtained sheet was stretched 4.0 times at 90 ° C in the longitudinal direction and 4.0 times at 100 ° C in the transverse direction, and heat treated in a 95 ° C tenter to produce a biaxially oriented film with a thickness of 3.0 µm. did. Table 1 shows the physical properties of the obtained film. Next, the obtained film was bonded to a polyester screen according to a conventional method to prepare a heat-sensitive stencil printing base paper, and screen printing was performed on a commercially available plain T-shirt made of 100% cotton.

実施例6:
実施例1において、フィルムの厚みを6.0μmにした以外は実施例1と同じ方法で感熱孔版印刷用原紙を作成し、スクリーン印刷を行った。
Example 6:
In Example 1, a heat-sensitive stencil sheet was prepared by the same method as in Example 1 except that the film thickness was 6.0 μm, and screen printing was performed.

実施例7:
実施例1において、テンターでの熱処理温度を105℃とした以外は実施例1と同じ方法で感熱孔版印刷用原紙を作成し、スクリーン印刷を行った。
Example 7:
In Example 1, a heat-sensitive stencil sheet was prepared by the same method as Example 1 except that the heat treatment temperature in the tenter was 105 ° C., and screen printing was performed.

比較例1:
ポリエステル−B原料100重量部を280℃にて押出機によりシート状に押出し、表面温度40℃に設定した回転冷却ドラムで静電印加冷却法を使用して急冷固化させ厚み50μmの実質的に非晶質のシートを得た。得られたシートを縦方向に90℃で4.0倍、横方向に100℃で4.0倍に延伸し95℃のテンター内で熱処理を施し、厚み3.0μmの二軸配向フィルムを製造した。得られたフィルムの物性を表1に示す。次いで得られたフィルムを常法に従い、ポリエステル製のスクリーンに貼り合わせ、感熱孔版印刷用原紙を作成し、綿100%の市販の無地Tシャツにスクリーン印刷を行った。
Comparative Example 1:
100 parts by weight of the polyester-B raw material was extruded into a sheet by an extruder at 280 ° C. and rapidly cooled and solidified using an electrostatic cooling method with a rotary cooling drum set at a surface temperature of 40 ° C. A crystalline sheet was obtained. The obtained sheet was stretched 4.0 times at 90 ° C in the longitudinal direction and 4.0 times at 100 ° C in the transverse direction, and heat treated in a 95 ° C tenter to produce a biaxially oriented film with a thickness of 3.0 µm. did. Table 1 shows the physical properties of the obtained film. Next, the obtained film was bonded to a polyester screen according to a conventional method to prepare a heat-sensitive stencil printing base paper, and screen printing was performed on a commercially available plain T-shirt made of 100% cotton.

比較例2:
実施例1において、ポリエステル−A原料17重量部、ポリエステル−B原料50重量部、およびポリエステル−C原料33重量部をブレンドした代わりにポリエステル−B原料20重量部、ポリエステル−C原料80重量部をブレンドした以外は、実施例1と同じ方法で感熱孔版印刷用原紙を作成し、スクリーン印刷を行った。
Comparative Example 2:
In Example 1, instead of blending 17 parts by weight of the polyester-A raw material, 50 parts by weight of the polyester-B raw material, and 33 parts by weight of the polyester-C raw material, 20 parts by weight of the polyester-B raw material and 80 parts by weight of the polyester-C raw material Except for blending, a heat-sensitive stencil sheet was prepared in the same manner as in Example 1, and screen printing was performed.

比較例3:
実施例1において、フィルムの厚みを2.0μmにした以外は実施例1と同じ方法で感熱孔版印刷用原紙を作成し、スクリーン印刷を行った。
Comparative Example 3:
In Example 1, a heat-sensitive stencil sheet was prepared by the same method as in Example 1 except that the film thickness was 2.0 μm, and screen printing was performed.

比較例4:
実施例1において、フィルムの厚みを8.0μmにした以外は実施例1と同じ方法で感熱孔版印刷用原紙を作成し、スクリーン印刷を行った。
Comparative Example 4:
In Example 1, a heat-sensitive stencil sheet was prepared by the same method as in Example 1 except that the thickness of the film was 8.0 μm, and screen printing was performed.

比較例5:
実施例1において、ポリエステル−A原料17重量部、ポリエステル−B原料50重量部、およびポリエステル−C原料33重量部をブレンドし、ベンド付きの二軸押出機を用いて285℃で混練りを2回繰り返し、固有粘度0.60dl/gのポリエステルチップを作成した以外は実施例1と同じ方法で感熱孔版印刷用原紙を作成し、スクリーン印刷を行った。
Comparative Example 5:
In Example 1, 17 parts by weight of the polyester-A raw material, 50 parts by weight of the polyester-B raw material, and 33 parts by weight of the polyester-C raw material were blended and kneaded at 285 ° C. using a twin screw extruder with a bend. A heat-sensitive stencil sheet was prepared in the same manner as in Example 1 except that a polyester chip having an intrinsic viscosity of 0.60 dl / g was prepared, and screen printing was performed.

比較例6:
実施例1において、テンターでの熱処理温度を135℃とした以外は実施例1と同じ方法で感熱孔版印刷用原紙を作成し、スクリーン印刷を行った。
以上得られたフィルムの物性および孔版原紙実用特性を下記の表に示す。
Comparative Example 6:
In Example 1, a heat-sensitive stencil sheet was prepared by the same method as in Example 1 except that the heat treatment temperature in the tenter was 135 ° C., and screen printing was performed.
The physical properties of the film thus obtained and the stencil paper practical properties are shown in the following table.

Figure 0005393143
Figure 0005393143

Figure 0005393143
Figure 0005393143

本発明のフィルムは、スクリーン印刷用として好適に利用することができる。   The film of the present invention can be suitably used for screen printing.

Claims (1)

イソフタル酸共重合ポリエチレンテレフタレートおよびポリブチレンテレフタレートと、ポリエチレンテレフタレートまたはポリエチレンナフタレートとを混合してなる、酸性分のうち50〜97モル%がテレフタル酸成分、グリコール成分のうち5〜70モル%が1,4−ブタンジオール成分で構成されるポリエステルからなり、フィルムの融点が245℃以下であり、固有粘度が0.55dl/g以上であり、150℃における熱収縮率が30〜70%、厚さが2.5〜7μmであることを特徴とするスクリーン印刷用ポリエステルフィルム。 Isophthalic acid copolymerized polyethylene terephthalate and polybutylene terephthalate are mixed with polyethylene terephthalate or polyethylene naphthalate, 50 to 97 mol % of the acidic component is terephthalic acid component, and 5 to 70 mol% of glycol component is 1 , 4-butanediol component, the film has a melting point of 245 ° C. or less, an intrinsic viscosity of 0.55 dl / g or more, a heat shrinkage at 150 ° C. of 30 to 70%, a thickness Is a polyester film for screen printing, characterized by being 2.5 to 7 μm.
JP2008335828A 2008-12-30 2008-12-30 Polyester film for screen printing Active JP5393143B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008335828A JP5393143B2 (en) 2008-12-30 2008-12-30 Polyester film for screen printing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008335828A JP5393143B2 (en) 2008-12-30 2008-12-30 Polyester film for screen printing

Publications (2)

Publication Number Publication Date
JP2010155419A JP2010155419A (en) 2010-07-15
JP5393143B2 true JP5393143B2 (en) 2014-01-22

Family

ID=42573685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008335828A Active JP5393143B2 (en) 2008-12-30 2008-12-30 Polyester film for screen printing

Country Status (1)

Country Link
JP (1) JP5393143B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09123633A (en) * 1995-10-26 1997-05-13 Teijin Ltd Thermosensitive stencil printing stencil paper and film therefore
JP2001121836A (en) * 1999-10-29 2001-05-08 Teijin Ltd Film for thermosensitive stencil printing base paper
JP2007168340A (en) * 2005-12-25 2007-07-05 Mitsubishi Polyester Film Copp Polyester film for original paper for highly sensitive thermal stencil printing
JP5242922B2 (en) * 2007-02-12 2013-07-24 三菱樹脂株式会社 Polyester film for heat sensitive stencil printing paper
JP5242923B2 (en) * 2007-02-12 2013-07-24 三菱樹脂株式会社 Polyester film for heat sensitive stencil printing paper

Also Published As

Publication number Publication date
JP2010155419A (en) 2010-07-15

Similar Documents

Publication Publication Date Title
JP3307716B2 (en) High-sensitivity heat-sensitive stencil film for base paper
JP5393143B2 (en) Polyester film for screen printing
JP3806888B2 (en) Polyester film for heat-sensitive stencil sheet and heat-sensitive stencil sheet comprising the same
JP4248869B2 (en) High sensitivity heat sensitive stencil printing polyester film
JP2010155420A (en) Polyester film for screen printing
JP2007168340A (en) Polyester film for original paper for highly sensitive thermal stencil printing
JP2011020404A (en) Polyester film for screen printing
JP5242923B2 (en) Polyester film for heat sensitive stencil printing paper
JP5242922B2 (en) Polyester film for heat sensitive stencil printing paper
JP4587805B2 (en) High sensitivity heat sensitive stencil printing polyester film
JPH09220867A (en) Polyester film for screen process printing
JP4540276B2 (en) Method for producing polyester film for heat-sensitive stencil printing base paper
JP3411633B2 (en) Polyester film for high-sensitivity thermosensitive stencil printing base paper
JP2015208944A (en) Film for heat-sensitive stencil printing base paper
JPH11314473A (en) Film for heat sensitive stencil printing base paper, and support-less heat sensitive stencil printing base paper
JP2001315461A (en) Master for thermal stencil printing
JPH0999666A (en) Film for heat-sensitive stencil printing master
JP2008207442A (en) Polyester film for paperless thermosensitive stencil printing base paper
JP2599459B2 (en) Film for heat-sensitive stencil printing base paper
JPH10244573A (en) Production of polyester film for thermal stencil printing base paper
JP2013202961A (en) Film for heat-sensitive stencil printing base paper
JP2013223969A (en) Film for heat-sensitive stencil printing base paper
JPH07276839A (en) Polyester film for high sensitivity thermal screen printing stencil paper
JP2001213947A (en) Polyester film for thermal stencil printing base paper
JP2006175763A (en) High-sensitivity polyester film for thermal stencil printing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131015

R150 Certificate of patent or registration of utility model

Ref document number: 5393143

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350