JPH09220867A - Polyester film for screen process printing - Google Patents

Polyester film for screen process printing

Info

Publication number
JPH09220867A
JPH09220867A JP3221096A JP3221096A JPH09220867A JP H09220867 A JPH09220867 A JP H09220867A JP 3221096 A JP3221096 A JP 3221096A JP 3221096 A JP3221096 A JP 3221096A JP H09220867 A JPH09220867 A JP H09220867A
Authority
JP
Japan
Prior art keywords
film
polyester
printing
polyester film
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3221096A
Other languages
Japanese (ja)
Inventor
Kazuhiro Kunugihara
一弘 椚原
Katsuzo Mihashi
勝三 三橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diafoil Co Ltd
Original Assignee
Diafoil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diafoil Co Ltd filed Critical Diafoil Co Ltd
Priority to JP3221096A priority Critical patent/JPH09220867A/en
Publication of JPH09220867A publication Critical patent/JPH09220867A/en
Pending legal-status Critical Current

Links

Landscapes

  • Printing Plates And Materials Therefor (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve plate wear, film rolling properties, perforation sensitivity and resolving degree at the time of printing by using a biaxially oriented polyester film which shows specific values in terms of melting point, coefficient of thermal contraction and modulus of tensile elasticity. SOLUTION: In a biaxially oriented polyester film for screen process printing employed for a thermal stenciling method, a biaxially oriented polyester film is used which has a coefficient of thermal contraction 8 times or more the coefficient of thermal contraction at 65 deg.C, at a melting point of 170-240 deg.C, a modulus of tensile elasticity of at least, 200kg/mm<2> in both longitudinal and width directions and a thickness of 0.5-7μm. When manufacturing this kind of polyester film, first a polymer is supplied to a known melt extrusion device, then is heated at temperatures or higher than the melting point of this polymer, and this molten polymer is extruded from a slit-like die. Further, this molten polymer is quenched and solidified so that its temperatures are below the glass transition temperature level on a rotary cooling drum to obtain substantially amorphous unoriented sheet. Finally this sheet is biaxially stretched into a film.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はスクリーン印刷用二
軸配向ポリエステルフィルムに関し、さらに詳しくはシ
ルク、ナイロン、ポリエステル等の繊維で織ったスクリ
ーンに貼り合わせて用いる、サーマルヘッド、キセノン
製版方式、フラッシュバルブ方式等の感熱穿孔性に優れ
たスクリーン印刷用二軸配向ポリエステルフィルムに関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a biaxially oriented polyester film for screen printing, and more specifically, a thermal head, a xenon plate-making system, a flash valve, which is used by laminating it on a screen woven with fibers of silk, nylon, polyester or the like. TECHNICAL FIELD The present invention relates to a biaxially oriented polyester film for screen printing, which has excellent heat-sensitive perforation properties such as a method.

【0002】[0002]

【従来の技術】感熱孔版フィルムを用いたスクリーン製
版は、感光性樹脂を用いないため製版の工程数が少なく
簡便な方法であり、コスト的にも有利な方法であるが、
耐刷力、画線精度が劣る等の欠点がある。スクリーン製
版に用いる感熱孔版フィルムに必要な特性としては、耐
刷力、フィルムの巻き特性、穿孔感度、印刷時の画像の
解像度などが挙げられるが、従来、スクリーン印刷の感
熱孔版フィルムとして用いられている塩化ビニリレン
は、機械的強度が弱く耐刷力が劣ったり、穿孔感度が悪
いため、フィルムを穿孔する際の熱エネルギーが高い
等、上記の必要特性を全て満足するものではなかった。
従来、スクリーン印刷用の装置、穿孔方法などに関して
は種々の提案がなされているが、スクリーン印刷用の感
熱孔版フィルムに関しての提案はほとんどされておら
ず、スクリーン印刷用の感熱孔版フィルムとして、新た
な熱可塑性樹脂の出現が待たれている状況である。
2. Description of the Related Art Screen plate making using a heat-sensitive stencil film is a simple method with a small number of steps for making a plate because it does not use a photosensitive resin, and is a cost-effective method.
There are drawbacks such as poor printing durability and drawing accuracy. The necessary properties of the heat-sensitive stencil film used for screen plate making include printing durability, film winding properties, perforation sensitivity, image resolution during printing, etc., but conventionally it has been used as a heat-sensitive stencil film for screen printing. Vinylidene chloride is insufficient in mechanical strength and inferior in printing durability, and has poor perforation sensitivity. Therefore, the thermal energy required for perforating a film is high, and the above-mentioned necessary properties are not satisfied.
Conventionally, various proposals have been made regarding a device for screen printing, a perforation method, etc., but few proposals have been made regarding a heat-sensitive stencil film for screen printing, and as a heat-sensitive stencil film for screen printing, a new The appearance of thermoplastic resins is awaited.

【0003】[0003]

【発明が解決しようとする課題】本発明は、耐刷力、フ
ィルムの巻き特性、穿孔感度、印刷時の解像度に優れた
スクリーン印刷用感熱孔版フィルムを提供することを解
決課題とするものである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a heat sensitive stencil film for screen printing which is excellent in printing durability, film winding characteristics, perforation sensitivity and resolution during printing. .

【0004】[0004]

【課題を解決するための手段】本発明者らは、上記課題
に鑑み、鋭意検討した結果、特定の二軸配向ポリエステ
ルフィルムが、スクリーン印刷用フィルムとして好適で
あることを見いだし、本発明を完成するに至った。すな
わち、本発明の要旨は、融点が170〜240℃、10
0℃における熱収縮率が65℃における熱収縮率の8倍
以上、長手方向と幅方向の引張弾性率がともに200k
g/mm2 以上、厚みが0.5〜7μmであること特徴
とするスクリーン印刷用二軸配向ポリエステルフィルム
に存する。
Means for Solving the Problems The inventors of the present invention have made extensive studies in view of the above problems, and as a result, found that a specific biaxially oriented polyester film is suitable as a film for screen printing, and completed the present invention. Came to do. That is, the gist of the present invention is that the melting point is 170 to 240 ° C., 10
The thermal shrinkage at 0 ° C is 8 times or more of the thermal shrinkage at 65 ° C, and the tensile elastic modulus in both the longitudinal direction and the width direction is 200k.
The present invention resides in a biaxially oriented polyester film for screen printing, which has a g / mm 2 or more and a thickness of 0.5 to 7 μm.

【0005】[0005]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明のスクリーン印刷とは、シルク、ナイロン、ポリ
エステルなどの繊維で織ったスクリーンを枠に固定し、
その上に各種の方法で開口部と非開口部を任意の形状に
形成した後、船状になったスクリーン枠内にインキを入
れ、スクイジー(Squeegee)と称するゴムのヘ
ラで版内を加圧・摺動することにより、インキを画線部
よりスクリーン目を通過して版裏面に押し出し印刷する
方法である。一般に、スクリーン製版方法としては、手
工的方法によるスクリーン、フォトレジストスクリー
ン、メタルスクリーン、感光性樹脂の変わりに感熱孔版
フィルムを用いた本願発明の属する特殊スクリーンなど
が挙げられる。特殊スクリーン製版も、原稿からの反射
光を電気信号に変換し、増幅し、記録針からの放電によ
り塩化ビニル、塩酢ビ共重合体など熱可塑性樹脂フィル
ムの中にカーボンを分散させ、導電性をもたせたシート
を穿孔してスクリーン版とする放電式と、各種のスクリ
ーンメッシュに、熱により穿孔される塩化ビニリデンな
どの熱可塑性フィルムを貼り合わせたものを原稿に密着
させ、サーマルヘッド、キセノン製版方式、フラッシュ
バルブ等の熱エネルギーにより孔をあけて版としたりす
る感熱方式があり、本願発明の二軸配向ポリエステルフ
ィルムは、スクリーン印刷の中でも、特殊スクリーン製
版の感熱孔版方法に用いる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below.
With the screen printing of the present invention, silk, nylon, a screen woven with fibers such as polyester is fixed to a frame,
After forming the opening and non-opening in any shape by various methods on top of it, ink is put into the boat-shaped screen frame, and the inside of the plate is pressed with a rubber spatula called Squeegee.・ By sliding, the ink is pushed out from the image area through the screen to the back surface of the plate for printing. In general, the screen plate making method includes a screen by a manual method, a photoresist screen, a metal screen, a special screen to which the invention of the present application uses a heat sensitive stencil film instead of a photosensitive resin, and the like. Even in special screen plate making, the reflected light from the original is converted into an electric signal, amplified, and discharged from the recording needle to disperse carbon in a thermoplastic resin film such as vinyl chloride or vinyl chloride / acetic acid vinyl chloride copolymer. Discharge type that perforates a sheet with a perforated sheet to make a screen plate, and various screen meshes that are laminated with a thermoplastic film such as vinylidene chloride that is perforated by heat are brought into close contact with the original and the thermal head, xenon plate There is a heat-sensitive method in which holes are formed by heat energy of a method such as a flash valve and a flash valve, and the biaxially oriented polyester film of the present invention is used for a heat-sensitive stencil method of special screen making among screen printing.

【0006】本発明の二軸配向ポリエステルフィルム
は、スクリーン印刷用感熱孔版原紙として、シルク、ナ
イロン、ポリエステル等の繊維で織ったスクリーンに貼
り合わせた後、サーマルヘッド、キセノン製版方式、フ
ラッシュバルブ等の熱エネルギーにより穿孔され、スク
リーン印刷用製版となる。本発明でいうポリエステルの
二官能性酸成分とは、芳香族ジカルボン酸もしくはその
エステル形成性誘導体を主とするものであり、具体的に
はテレフタル酸、2,6−ナフタレンジカルボン酸、そ
のエステル形成誘導体としてはテレフタル酸ジメチル、
2,6−ナフタレンジカルボン酸ジメチルなどが挙げら
れ、これらの中でもテレフタル酸、テレフタル酸ジメチ
ルが好ましい。またグリコール成分としてはエチレング
リコール、ブチレングリコール、プロピレングリコー
ル、ポリエチレングリコール、1,4−シクロヘキサン
ジメタノールなどが挙げられ、これらの中でもエチレン
グリコール、ブチレングリコールが好ましい。
The biaxially oriented polyester film of the present invention is used as a heat-sensitive stencil sheet for screen printing, and is laminated on a screen woven with fibers of silk, nylon, polyester, etc., and then a thermal head, a xenon plate-making system, a flash valve, etc. It is perforated by heat energy to form a screen printing plate. The difunctional acid component of the polyester in the present invention is mainly an aromatic dicarboxylic acid or its ester-forming derivative, and specifically, terephthalic acid, 2,6-naphthalenedicarboxylic acid, its ester-forming derivative. Dimethyl terephthalate as a derivative,
Examples thereof include dimethyl 2,6-naphthalenedicarboxylate, and among these, terephthalic acid and dimethyl terephthalate are preferable. Examples of the glycol component include ethylene glycol, butylene glycol, propylene glycol, polyethylene glycol and 1,4-cyclohexanedimethanol, and among them, ethylene glycol and butylene glycol are preferable.

【0007】かかるポリエステルは、1種の芳香族ジカ
ルボン酸もしくはそのエステル形成性誘導体と、1種の
アルキレングリコールとを出発原料とするポリエステル
でもよいが、2種以上の成分を含む共重体であることが
好ましい。共重合する成分として上記のほかに、例え
ば、ジエチレングリコール、ネオペンチルグリコール、
ポリアルキレングリコールなどのジオール成分、アジピ
ン酸、セバシン酸、フタル酸、イソフタル酸、シクロヘ
キサンジカルボン酸などのジカルボン酸成分、トリメリ
ット酸、ピロメリット酸などが挙げられる。またそれぞ
れ単一成分で構成されるホモポリマーどうし、ホモポリ
マーと2種以上の成分とを含む共重合体および当該共重
合体どうしのブレンドポリエステルでも構わない。いず
れにしても、本発明の要旨を満たすものであれば、共重
合により得られたポリエステルでも、ブレンドにより得
られたポリエステルでも構わない。
The polyester may be a polyester having one kind of aromatic dicarboxylic acid or its ester-forming derivative and one kind of alkylene glycol as a starting material, but it is a copolymer containing two or more kinds of components. Is preferred. In addition to the above as a component to be copolymerized, for example, diethylene glycol, neopentyl glycol,
Examples thereof include diol components such as polyalkylene glycol, dicarboxylic acid components such as adipic acid, sebacic acid, phthalic acid, isophthalic acid and cyclohexanedicarboxylic acid, trimellitic acid and pyromellitic acid. Further, homopolymers each composed of a single component, a copolymer containing a homopolymer and two or more components, and a blended polyester of the copolymers may be used. In any case, a polyester obtained by copolymerization or a polyester obtained by blending may be used as long as it satisfies the gist of the present invention.

【0008】さらに、本発明は再生品、すなわち、フィ
ルム製造時に発生する耳部などのスクラップを有効に利
用することができる。本発明のフィルムは、フィルム製
造時の巻き上げ工程、スクリーンとの貼り合わせ工程等
の作業性を向上させるために、フィルムの表面を粗面化
してフィルムに適度な滑り性を付与することが好まし
く、そのためには、例えばフィルムに微細な不活性粒子
を添加すればよい。かかる方法の中の一つにポリエステ
ル製造時に反応系内に溶存している金属化合物、例えば
エステル交換反応後系内に溶存している金属化合物にリ
ン化合物等を作用させて微細な粒子を析出させる方法、
いわゆる析出粒子法がある。この方法は簡便で工業的に
容易に採用し得る。もう一つの方法として、ポリエステ
ル製造工程から製膜前の押出工程のいずれかの工程で、
ポリエステルに微粒子を配合する方法、いわゆる添加粒
子法があるが、どちらの方法を採用してもかまわない。
本発明の添加粒子法で用いる微細粒子の例としては、酸
化ケイ素、酸化チタン、ゼオライト、窒化ケイ素、窒化
ホウ素、セライト、アルミナ、炭酸カルシウム、炭酸マ
グネシウム、炭酸バリウム、硫酸カルシウム、硫酸バリ
ウム、リン酸カルシウム、リン酸リチウム、リン酸マグ
ネシム、フッ化リチウム、酸化アルミニウム、酸化ケイ
素、酸化チタン、カオリン、タルク、カーボンブラッ
ク、窒化ケイ素、窒化ホウ素および特公昭59−521
6号公報に記載されたような架橋高分子微粒子を挙げる
ことができるが、勿論これらに限定されるものではな
い。
Further, according to the present invention, recycled products, that is, scraps such as ears generated during film production can be effectively used. The film of the present invention, in order to improve the workability of the winding step during film production, the step of laminating with a screen, etc., it is preferable to roughen the surface of the film to impart appropriate slipperiness to the film, For that purpose, for example, fine inert particles may be added to the film. In one of such methods, a metal compound dissolved in the reaction system at the time of polyester production, for example, a phosphorus compound or the like is caused to act on a metal compound dissolved in the system after transesterification to deposit fine particles. Method,
There is a so-called precipitated particle method. This method is simple and can be industrially easily adopted. As another method, in any step from the polyester production step to the extrusion step before film formation,
There is a method of blending fine particles with polyester, a so-called added particle method, but either method may be adopted.
Examples of fine particles used in the additive particle method of the present invention, silicon oxide, titanium oxide, zeolite, silicon nitride, boron nitride, celite, alumina, calcium carbonate, magnesium carbonate, barium carbonate, calcium sulfate, barium sulfate, calcium phosphate, Lithium phosphate, magnesium phosphate, lithium fluoride, aluminum oxide, silicon oxide, titanium oxide, kaolin, talc, carbon black, silicon nitride, boron nitride and JP-B-59-521.
The crosslinked polymer fine particles as described in JP-A-6 can be mentioned, but of course the invention is not limited thereto.

【0009】この微細粒子の形状は球状、塊状あるいは
偏平状のいずれであってもよく、またその硬度、比重、
色等についても特に制限はない。微細粒子の平均粒径は
特に限定されるわけではないが、通常、等価球直径で
0.01〜10μm、好ましくは0.05〜8μmの範
囲から選ばれる。また、配合する微細粒子は単成分でも
よく、また2成分以上を同時に用いてもよい。微細粒子
の添加量は0.05〜3重量%、さらには0.1〜2重
量%が好ましい。微細粒子の添加量が0.05重量%未
満では、フィルムの滑り性が悪く巻き特性が劣る傾向が
ある。また微細粒子の添加量が3重量%を超えるとフィ
ルム表面の粗面化の度合いが大き過ぎて穿孔が不均一と
なることがある。本発明においては上記したような方法
により表面を適度に粗面化したフィルムを得るが、作業
性や印刷時の解像度、印字品位性をさらに高度に満足さ
せるためには、フィルム表面の中心線平均粗さ(Ra)
が0.01〜0.20μmであることが好ましく、さら
に好ましくは0.02〜0.15μmの範囲である。R
aが0.01μm未満では、巻き取りが困難となる傾向
があり、フィルムにシワが入り製品とならないことがあ
る。またRaが0.20μmを超えるとフィルム表面の
平面性が損なわれて、穿孔が不均一となり、解像度が劣
ったり、印字品位性を損なったりする傾向がある。
The fine particles may be spherical, lumpy or flat, and their hardness, specific gravity,
There is no particular limitation on the color and the like. The average particle size of the fine particles is not particularly limited, but is usually selected from a range of 0.01 to 10 μm, preferably 0.05 to 8 μm in equivalent sphere diameter. The fine particles to be blended may be a single component, or two or more components may be used simultaneously. The amount of fine particles added is preferably 0.05 to 3% by weight, more preferably 0.1 to 2% by weight. If the amount of the fine particles is less than 0.05% by weight, the film tends to have poor slipperiness and poor winding characteristics. On the other hand, if the amount of the fine particles added exceeds 3% by weight, the degree of roughening of the film surface may be so large that the perforations may become uneven. In the present invention, a film whose surface is appropriately roughened by the method as described above is obtained, but in order to further satisfy workability, resolution during printing, and print quality, the center line average of the film surface is required. Roughness (Ra)
Is preferably 0.01 to 0.20 μm, more preferably 0.02 to 0.15 μm. R
If a is less than 0.01 μm, it tends to be difficult to wind the film, and the film may be wrinkled and the product may not be obtained. On the other hand, when Ra exceeds 0.20 μm, the flatness of the film surface is impaired, the perforations become uneven, and the resolution tends to be poor, and the print quality tends to be impaired.

【0010】本発明のフィルムの厚さは0.5〜7μ
m、好ましくは0.5〜6μm、さらに好ましくは0.
5〜5μmの範囲である。フィルムの厚さが薄いほど熱
伝導距離が短縮され、その結果、穿孔時に必要な熱エネ
ルギーが減少して穿孔性が向上し、印刷時の解像度や印
字品位性が向上する。しかしながら、フィルムの厚さが
0.5μm未満の場合は、印字が不鮮明で濃淡むらが生
じやすく、耐刷性も著しく低下する傾向がある。逆に、
フィルムの厚さが9μmを超える場合は、穿孔性が悪化
するため、印刷時にむらが生じるようになる傾向があ
る。本発明のフィルムの融点は、170〜240℃、好
ましくは180〜230℃の範囲である。融点が240
℃より高い場合には、本発明の目的とする高度な穿孔感
度が得られなくなり、170℃未満では、印刷画像の階
調性が劣るようになるので好ましくない。また、本発明
においては最も高い融点(Tm2 )と最も低い融点(T
m1 )との差は50℃未満、さらには30℃未満である
ことが好ましいが、Tm1 とTm2 が同一であってもよ
い。かかる温度差が50℃以上では、短時間で均一な穿
孔が起こらず印刷画像の階調性が劣るようになる傾向が
ある。$本発明は印刷画像の階調性を優れたものとする
ために、65℃における熱収縮率に対し、100℃にお
ける熱収縮率8倍以上、好ましくは10倍以上とする。
孔版印刷で穿孔径の大きさで階調性を表現する場合、1
00℃における熱収縮率と65℃における熱収縮率の比
が8倍未満では、熱エネルギー差で穿孔径の大きさをコ
ントロールできなくなる結果、印刷画像で階調性の表現
ができなくなり好ましくない。本発明のフィルムは、フ
ィルムの長手方向と幅方向の引張弾性率をともに200
kg/mm2 以上、好ましくは220kg/mm2 以上
とする。引っ張り弾性率が200kg/mm2 未満で
は、スクイジーにて加圧・摺動される際にフィルムが破
れるなど、耐刷力が劣るばかりではなく、取り扱い作業
性等も悪くなる。また、取り扱い作業性を良くしたり、
印刷に必要な強度を出すために、フィルム厚みを厚くし
た場合は、高度な穿孔感度が得られず好ましくない。
The film of the present invention has a thickness of 0.5 to 7 μm.
m, preferably 0.5 to 6 μm, more preferably 0.
The range is 5 to 5 μm. The thinner the film is, the shorter the heat conduction distance is. As a result, the heat energy required at the time of perforation is reduced, the perforation is improved, and the resolution and print quality at the time of printing are improved. However, when the thickness of the film is less than 0.5 μm, the printing tends to be unclear, uneven shading tends to occur, and the printing durability tends to be significantly reduced. vice versa,
When the thickness of the film exceeds 9 μm, the perforation property is deteriorated, and thus unevenness tends to occur during printing. The melting point of the film of the present invention is in the range of 170 to 240 ° C, preferably 180 to 230 ° C. Melting point 240
If the temperature is higher than 0 ° C, the high perforation sensitivity, which is the object of the present invention, cannot be obtained, and if it is lower than 170 ° C, the gradation of the printed image becomes poor, which is not preferable. In the present invention, the highest melting point (Tm2) and the lowest melting point (Tm2)
The difference from m1) is preferably less than 50 ° C., more preferably less than 30 ° C., but Tm1 and Tm2 may be the same. When the temperature difference is 50 ° C. or more, uniform perforation does not occur in a short time, and the gradation of the printed image tends to deteriorate. In the present invention, in order to make the gradation of the printed image excellent, the heat shrinkage ratio at 100 ° C. is 8 times or more, preferably 10 times or more, with respect to the heat shrinkage ratio at 65 ° C.
When expressing gradation by the size of perforation diameter in stencil printing, 1
If the ratio of the heat shrinkage ratio at 00 ° C. to the heat shrinkage ratio at 65 ° C. is less than 8 times, the size of the perforation diameter cannot be controlled by the difference in thermal energy, and as a result, gradation cannot be expressed in the printed image, which is not preferable. The film of the present invention has a tensile modulus of 200 in both the longitudinal and width directions of the film.
kg / mm 2 or more, preferably 220 kg / mm 2 or more. When the tensile elastic modulus is less than 200 kg / mm 2 , not only the printing durability is inferior such as the film breaking when being pressed and slid by the squeegee, but also the handling workability is deteriorated. Also, it improves the handling workability,
When the film thickness is increased in order to obtain the strength required for printing, a high perforation sensitivity cannot be obtained, which is not preferable.

【0011】次に本発明のポリエステルフィルムの製造
方法について説明する。本発明においては、ポリマーを
エクストルーダーに代表される周知の溶融押出装置に供
給し、当該ポリマーの融点以上の温度に加熱し溶融す
る。次いで、溶融したポリマーをスリット状のダイから
押し出し、回転冷却ドラム上でガラス転移温度以下の温
度になるように急冷固化し、実質的に非晶状態の未配向
シートを得る。この場合、シートの平面性を向上させる
ため、シートと回転冷却ドラムとの密着性を高めること
が好ましく、本発明においては静電印加密着法および/
または液体塗布密着法が好ましく採用される。本発明に
おいては、このようにして得られたシートを2軸方向に
延伸してフィルム化する。延伸条件について具体的に述
べると、前記未延伸シートを好ましくは20〜100
℃、さらに好ましくは25〜80℃の温度範囲で、まず
一方向にロールもしくはテンター方式の延伸機により
3.0〜7倍、好ましくは3.5〜7倍に延伸する。次
に一段目と直交する方向に、好ましくは20〜100
℃、さらに好ましくは25〜90℃の温度範囲で3.0
〜7倍、好ましくは3.5〜7倍、さらに好ましくは
4.0〜7倍に延伸を行い、2軸に配向したフィルムを
得る。
Next, the method for producing the polyester film of the present invention will be described. In the present invention, the polymer is supplied to a well-known melt extrusion apparatus typified by an extruder, and heated to a temperature equal to or higher than the melting point of the polymer to melt it. Next, the melted polymer is extruded from a slit die and rapidly cooled and solidified on a rotating cooling drum to a temperature not higher than the glass transition temperature to obtain a substantially amorphous unoriented sheet. In this case, in order to improve the flatness of the sheet, it is preferable to increase the adhesion between the sheet and the rotary cooling drum.
Alternatively, a liquid application adhesion method is preferably employed. In the present invention, the sheet thus obtained is biaxially stretched to form a film. Describing the stretching conditions specifically, the unstretched sheet is preferably 20 to 100.
C., more preferably in the temperature range of 25 to 80.degree. C., and first stretched in one direction by a roll or tenter type stretching machine to 3.0 to 7 times, preferably 3.5 to 7 times. Next, in a direction orthogonal to the first stage, preferably 20 to 100
℃, more preferably 3.0 in the temperature range of 25 ~ 90 ℃
To 7 times, preferably 3.5 to 7 times, and more preferably 4.0 to 7 times to obtain a biaxially oriented film.

【0012】なお、一方向の延伸を2段階以上で行う方
法も用いることができるが、その場合も最終的な延伸倍
率が上記した範囲に入ることが望ましい。また、前記未
延伸シートを面積倍率が10〜40倍になるように同時
二軸延伸することも可能である。かくして得られたフィ
ルムを熱処理してもよく、また必要に応じ熱処理を行う
前または後に再度縦および/または横方向に延伸しても
よい。本発明においては、上記した熱収縮特性を有する
フィルムを得るために、延伸倍率を面積倍率として15
倍以上、延伸後の熱処理を実質的に行わないか、行った
としても110℃以下、さらには90℃以下とし、熱処
理時間は1秒〜5分間でフィルムを30%以内の伸長ま
たは定長下で行うことが好ましい。なお、本発明におい
ては、製膜に供するポリエステル全量に対し、10重量
%程度以下の他のポリマー(例えばポリエチレン、ポリ
スチレン、ポリカーボネート、ポリスルホン、ポリフェ
ニレンスルフィド、ポリアミド、ポリイミド等)を含有
させることができる。また、必要に応じ、酸化防止剤、
熱安定剤、潤滑剤、帯電防止剤、染料、顔料等の添加剤
を配合してもよい。かくして得られた本発明のスクリー
ン印刷用度感熱孔版フィルムは、シルク、ナイロン、ポ
リエステルなどの繊維で織ったスクリーンに貼り合わせ
た後、熱エネルギーにより高感度に穿孔され、耐刷力の
優れたスクリーン製版となる。
A method in which unidirectional stretching is performed in two or more stages can be used, but in that case as well, it is desirable that the final stretching ratio falls within the above range. It is also possible to simultaneously biaxially stretch the unstretched sheet so that the area magnification becomes 10 to 40 times. The film thus obtained may be heat-treated, and if necessary, may be stretched in the machine direction and / or the transverse direction before or after the heat treatment. In the present invention, in order to obtain a film having the above-mentioned heat shrinkage property, the stretching ratio is 15 as the area ratio.
After heat treatment, the heat treatment after stretching is substantially not performed, or even if it is performed, 110 ° C. or less, further 90 ° C. or less, and the heat treatment time is 1 second to 5 minutes, and the film is stretched within 30% or under a fixed length. It is preferable to carry out. In the present invention, other polymers (for example, polyethylene, polystyrene, polycarbonate, polysulfone, polyphenylene sulfide, polyamide, polyimide, etc.) can be contained in an amount of about 10% by weight or less based on the total amount of polyester used for film formation. In addition, if necessary, an antioxidant,
You may mix | blend additives, such as a heat stabilizer, a lubricant, an antistatic agent, a dye, and a pigment. The thus obtained heat-sensitive stencil film for screen printing of the present invention is a screen excellent in printing durability after being bonded to a screen woven with fibers such as silk, nylon and polyester, which is perforated with high sensitivity by heat energy. It will be plate making.

【0013】[0013]

【実施例】以下、実施例により本発明をさらに詳細に説
明するが、本発明は、その要旨を越えない限り、以下の
実施例に限定されるものではない。なお、本発明で用い
た物性測定法を以下に示す。 (1)微粒子の平均粒径 (株)島津製作所製遠心沈降式粒度分布測定装置SA−
CP3型を用いてストークスの抵抗則に基づく沈降法に
よって粒子の大きさを測定した。測定により得られた粒
子の等価球形分布における積算(体積基準)50%の値
を用いて平均粒径とした。なお粒度分布値(r)は下記
式から算出した。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, which should not be construed as limiting the scope of the invention. The physical property measuring methods used in the present invention are shown below. (1) Average particle size of fine particles Centrifugal sedimentation type particle size distribution analyzer SA- manufactured by Shimadzu Corporation
The particle size was measured using a CP3 type by the sedimentation method based on Stokes' resistance law. The average particle size was determined using a value of 50% of the integrated (volume basis) in the equivalent spherical distribution of the particles obtained by the measurement. The particle size distribution value (r) was calculated from the following equation.

【数1】粒度分布値(r)=d25/d75 (上記式中、d25、d75は粒子群の積算体積を大粒子側
から計測し、それぞれの総体積の25%、75%に相当
する粒径(μm)を示す)
## EQU1 ## Particle size distribution value (r) = d 25 / d 75 (In the above formula, d 25 and d 75 are the cumulative volumes of particle groups measured from the large particle side, and 25% and 75% of the total volume of each is measured. Particle size (μm) corresponding to

【0014】(2)熱収縮率の比 無張力状態で100℃雰囲気で10分間、熱処理しその
前後のサンプルの長さ(mm)を測定することにより次
式にて100℃における熱収縮率を計算する。
(2) Ratio of heat shrinkage ratio The heat shrinkage ratio at 100 ° C. is calculated by the following equation by measuring the length (mm) of the sample before and after heat treatment for 10 minutes in an atmosphere of 100 ° C. without tension. calculate.

【数2】 雰囲気を100℃から65℃に変え、同様の方法で65
℃における熱収縮率を計算し、次式にて、100℃にお
ける加熱収縮率と65℃における熱収縮率の比を計算す
る。
[Equation 2] The atmosphere is changed from 100 ° C to 65 ° C, and 65
The heat shrinkage at 0 ° C is calculated, and the ratio of the heat shrinkage at 100 ° C to the heat shrinkage at 65 ° C is calculated by the following formula.

【数3】収縮率の比=(100℃における収縮率)÷
(65℃における熱収縮率)
## EQU00003 ## Shrinkage ratio = (shrinkage at 100.degree. C.) ÷
(Heat shrinkage rate at 65 ° C)

【0015】(3)引張弾性率 (株)インテスコ製 引張試験機インテスコモデル20
01型を用いて、温度23℃ 湿度50%RHに調節さ
れた室内において、長さ300mm 幅20mmの試料
フィルムを、10%/分のひずみ速度で引張り、引張応
力−ひずみ曲線の初めの直線部分を用いて次の式によっ
て計算する。
(3) Tensile Modulus Tensile Testing Machine Intesco Model 20 manufactured by Intesco Co., Ltd.
Using a type 01, a sample film having a length of 300 mm and a width of 20 mm is pulled at a strain rate of 10% / min in a room adjusted to a temperature of 23 ° C. and a humidity of 50% RH. Is calculated by the following equation.

【数4】E=Δσ/Δε (上記式中、Eは引張弾性率(kg/mm2 )、Δσは
直線上の2点間の元の平均断面積による応力差、Δεは
同じ2点間のひずみ差を表す) (4)融点 パーキンエルマー社(株)製差動熱量計DSC7型を用
いて測定した。DSC測定条件は以下のとおりである。
すなわち、試料フィルム6mgをDSC装置にセット
し、10℃/分の速度で昇温し、0〜300℃の範囲で
測定し、融点を融解吸熱ピークの頂点として測定した。
[Equation 4] E = Δσ / Δε (E in the above formula, E is the tensile elastic modulus (kg / mm 2 ), Δσ is the stress difference due to the original average cross-sectional area between two points on the straight line, and Δε is between the same two points. (4) Melting point It was measured using a differential calorimeter DSC7 type manufactured by Perkin Elmer Co., Ltd. The DSC measurement conditions are as follows.
That is, 6 mg of a sample film was set in a DSC device, heated at a rate of 10 ° C./min, measured in the range of 0 to 300 ° C., and the melting point was measured as the top of the melting endothermic peak.

【0016】(5)感熱孔版印刷原紙実用特性 フィルムにポリエステル製のスクリーンを貼り合わせて
原紙を作製した。得られた原紙をサーマルヘッドによ
り、印加エネルギー0.09mJおよび0.12mJに
て文字画像および16段階の階調画像を製版した。製版
された原紙のフィルム側から顕微鏡で階調画像部の穿孔
状態を観察し、以下の項目について評価した。 (i)穿孔感度 ◎:所定の穿孔が確実に行われ、穿孔の大きさも十分で
あり非常に良好 ○:所定の穿孔がほぼ確実に行われ、穿孔の大きさも十
分であり良好 △:稀に所定の穿孔が得られない部分や穿孔の大きさが
不十分な部分がある ×:所定の穿孔が得られない部分が数多くあり、穿孔の
大きさも不十分であり、実用上支障がある。 (ii)耐刷性 印刷機でフィルムが破損するまでに刷れる枚数で評価し
た。1000枚以上であれば実用上問題ない。 ◎:5000枚以上印刷可能 ○:1000枚以上印刷可能 △:500枚以上印刷可能 ×:500枚未満でフィルムが破損
(5) Practical characteristics of heat-sensitive stencil printing base paper A polyester screen was attached to the film to prepare a base paper. The obtained base paper was used to make a character image and a 16-step gradation image with a thermal head at applied energies of 0.09 mJ and 0.12 mJ. The perforated state of the gradation image portion was observed with a microscope from the film side of the perforated base paper, and the following items were evaluated. (I) Perforation sensitivity ◎: Predetermined perforation is surely performed and the size of perforation is sufficient and very good ○: Predetermined perforation is almost certainly performed and the size of perforation is sufficient, and Δ: rarely There is a portion where the predetermined perforation cannot be obtained or a portion where the size of the perforation is insufficient. X: There are many portions where the predetermined perforation cannot be obtained, and the size of the perforation is insufficient, which is a practical problem. (Ii) Printing durability Evaluation was made by the number of sheets that can be printed before the film is damaged by a printing machine. If it is 1000 or more, there is no problem in practical use. ◎: 5000 sheets or more can be printed ○: 1000 sheets or more can be printed △: 500 sheets or more can be printed ×: Film is damaged when less than 500 sheets

【0017】(ポリエステル−1の製造)テレフタル酸
ジメチル100重量部、とエチレングリコール60重量
部とを出発原料とし、触媒として酢酸マグネシウム・四
水塩0.09重量部を反応器にとり、反応開始温度を1
50℃とし、メタノールの留去とともに徐々に反応温度
を上昇させ、3時間後に230℃とした。4時間後、実
質的にエステル交換反応の終了したこの反応混合物に、
平均粒子径1.1μm、粒度分布値(r)1.2の球状
有機架橋粒子を1.0重量部と、平均粒子径1.2μ
m、粒度分布値(r)1.2の球状シリカを0.04重
量部添加し、エチルアシッドフォスフェート0.04
部、三酸化アンチモン0.04部を加えて、4時間重縮
合反応を行った。すなわち、温度を230℃から徐々に
昇温し280℃とした。一方、圧力は常圧より徐々に減
じ、最終的には0.3mmHgとした。反応開始後、4
時間を経た時点で反応を停止し、窒素加圧下ポリマーを
吐出させた。得られたポリエステルの極限粘度は0.7
5であった。
(Production of Polyester-1) 100 parts by weight of dimethyl terephthalate and 60 parts by weight of ethylene glycol were used as starting materials, and 0.09 parts by weight of magnesium acetate / tetrahydrate as a catalyst was placed in a reactor and the reaction starting temperature was reached. 1
The temperature was set to 50 ° C., and the reaction temperature was gradually raised as methanol was distilled off, and the temperature was set to 230 ° C. after 3 hours. After 4 hours, the reaction mixture, which had been substantially transesterified,
1.0 part by weight of spherical organic crosslinked particles having an average particle diameter of 1.1 μm and a particle size distribution value (r) of 1.2, and an average particle diameter of 1.2 μ
0.04 part by weight of spherical silica having a particle size distribution value (r) of 1.2 and ethyl acid phosphate 0.04
And 0.04 part of antimony trioxide, and a polycondensation reaction was carried out for 4 hours. That is, the temperature was gradually raised from 230 ° C to 280 ° C. On the other hand, the pressure was gradually reduced from the normal pressure, and finally was 0.3 mmHg. After the reaction starts, 4
After a lapse of time, the reaction was stopped, and the polymer was discharged under nitrogen pressure. The intrinsic viscosity of the obtained polyester is 0.7.
It was 5.

【0018】(ポリエステル−2の製造)ポリエステル
−1の製造において、イソフタル酸100重量部をテレ
フタル酸ジメチル80重量部、イソフタル酸ジメチル2
0重量部に変えた以外はポリエステル−1の製造と同様
の方法でポリエステル−2を得た。得られたポリエステ
ルの極限粘度は0.75であった。 (ポリエステル−3の製造)テレフタル酸ジメチル10
0重量部、1,4−ブタンジオール56重量部、および
テトラブチルチタネート0.005重量部を反応器にと
り、反応開始温度を150℃とし、メタノールの留去と
ともに徐々に反応温度を上昇させ、3時間後に210℃
とした。4時間後、実質的にエステル交換反応の終了し
たこの反応混合物に平均粒子径1.1μm、粒度分布値
(r)1.2の球状有機架橋粒子を1.0重量部と、平
均粒子径1.2μm、粒度分布値(r)1.2の球状シ
リカを0.04重量部添加し、重合触媒としてテトラブ
チルチタネート0.005重量部を加え、常法により重
縮合反応を行った。すなわち、温度を210℃から徐々
に昇温し260℃とした。一方、圧力は常圧より徐々に
減じ、最終的には0.3mmHgとした。反応開始後、
4時間を経た時点で反応を停止し、窒素加圧下ポリマー
を吐出させた。得られたポリエステルの極限粘度は0.
90であった。
(Production of Polyester-2) In the production of polyester-1, 100 parts by weight of isophthalic acid, 80 parts by weight of dimethyl terephthalate and 2 parts of dimethyl isophthalate are used.
Polyester-2 was obtained in the same manner as in the production of polyester-1 except that the amount was changed to 0 part by weight. The intrinsic viscosity of the obtained polyester was 0.75. (Production of Polyester-3) Dimethyl terephthalate 10
0 parts by weight, 56 parts by weight of 1,4-butanediol, and 0.005 parts by weight of tetrabutyl titanate were placed in a reactor, the reaction starting temperature was set to 150 ° C., and the reaction temperature was gradually raised as methanol was distilled off. 210 ° C after hours
And After 4 hours, 1.0 part by weight of spherical organic crosslinked particles having an average particle diameter of 1.1 μm and a particle size distribution value (r) of 1.2 was added to the reaction mixture which had undergone the transesterification reaction, and an average particle diameter of 1 0.04 parts by weight of spherical silica having a particle size distribution value (r) of 1.2 μm was added, and tetrabutyl titanate was added as a polymerization catalyst in an amount of 0.005 parts by weight, and polycondensation reaction was carried out by a conventional method. That is, the temperature was gradually raised from 210 ° C. to 260 ° C. On the other hand, the pressure was gradually reduced from the normal pressure, and finally was 0.3 mmHg. After starting the reaction
After 4 hours, the reaction was stopped and the polymer was discharged under nitrogen pressure. The intrinsic viscosity of the obtained polyester is 0.
It was 90.

【0019】(ポリエステル−4の製造)ポリエステル
−2 50重量部とポリエステル−3 50重量部とを
均一にブレンドし、平均粒子径1.1μm、粒度分布値
(r)1.2の球状有機架橋粒子を1.0重量部と、平
均粒子径1.2μm、粒度分布値(r)1.2の球状シ
リカを0.04重量部配合して、ベント付き2軸押出機
で温度285℃の条件下でポリエステル−4を製造し
た。得られたポリエステル−4の極限粘度は0.75で
あった。 (ポリエステル−5の製造)ポリエステル−1の製造に
おいて、イソフタル酸100重量部をテレフタル酸ジメ
チル65重量部、イソフタル酸ジメチル35重量部に変
えた以外はポリエステル−1の製造と同様の方法でポリ
エステル−5を得た。得られたポリエステルの極限粘度
は0.75であった。
(Production of Polyester-4) 50 parts by weight of Polyester-2 and 50 parts by weight of Polyester-3 are uniformly blended to obtain a spherical organic cross-link having an average particle size of 1.1 μm and a particle size distribution value (r) of 1.2. 1.0 part by weight of particles and 0.04 parts by weight of spherical silica having an average particle size of 1.2 μm and a particle size distribution value (r) of 1.2 were compounded, and the temperature was 285 ° C. in a twin-screw extruder with a vent. Polyester-4 was produced below. The intrinsic viscosity of the obtained polyester-4 was 0.75. (Production of Polyester-5) Polyester-1 was produced in the same manner as in the production of Polyester-1, except that 100 parts by weight of isophthalic acid was changed to 65 parts by weight of dimethyl terephthalate and 35 parts by weight of dimethyl isophthalate. Got 5. The intrinsic viscosity of the obtained polyester was 0.75.

【0020】実施例1 ポリエステル−2を265℃にて押出機よりシート状に
押出し、表面温度を30℃に設定した回転冷却ドラムで
静電印加冷却法を利用して急冷固化させ、厚み21μm
の実質的に非晶質のシートを得た。得られたシートを縦
方向に75℃で3.5倍延伸し、次いで横方向に80℃
で4.0倍に延伸した後、90℃で6秒間熱処理を施
し、厚み1.5μmの二軸配向フィルムを製造した。次
いで得られたフィルムを常法に従い、ポリエステル製の
スクリーンに貼り合わせ感熱孔版印刷用原紙を作成し、
スクリーン印刷を行った。 実施例2 実施例1において、ポリエステル−2をポリエステル−
4に変えた以外は実施例1と同様の方法で感熱孔版印刷
用原紙を作成し、スクリーン印刷を行った。
Example 1 Polyester-2 was extruded in a sheet form from an extruder at 265 ° C. and rapidly cooled and solidified by using an electrostatic applied cooling method in a rotary cooling drum whose surface temperature was set to 30 ° C. to have a thickness of 21 μm.
A substantially amorphous sheet was obtained. The resulting sheet is stretched 3.5 times in the machine direction at 75 ° C and then in the transverse direction at 80 ° C.
After being stretched to 4.0 times, the film was heat-treated at 90 ° C. for 6 seconds to produce a biaxially oriented film having a thickness of 1.5 μm. Then, the obtained film was adhered to a polyester screen to prepare a heat-sensitive stencil printing base paper,
Screen printing was performed. Example 2 In Example 1, polyester-2 was replaced with polyester-
A heat-sensitive stencil printing base paper was prepared and screen-printed in the same manner as in Example 1 except that the number was changed to 4.

【0021】比較例1 実施例1において、ポリエステル−2をポリエステル−
1に変えた以外は実施例1と同様の方法で感熱孔版印刷
用原紙を作成し、スクリーン印刷を行った。 比較例2 実施例1において、ポリエステル−2をポリエステル−
5に変えた以外は実施例1と同様の方法で感熱孔版印刷
用原紙を作成し、スクリーン印刷を行った。 比較例3 ポリエステル−2を265℃にて押出機よりシート状に
押出し、表面温度を30℃に設定した回転冷却ドラムで
静電印加冷却法を利用して急冷固化させ、厚み10μm
の実質的に非晶質のシートを得た。得られたシートを縦
方向に75℃で2.0倍延伸し、次いで横方向に80℃
で2.0倍に延伸した後、90℃で6秒間熱処理を施
し、厚み2.5μmの二軸配向フィルムを製造した。
Comparative Example 1 In Example 1, polyester-2 was replaced with polyester-
A heat-sensitive stencil printing base paper was prepared in the same manner as in Example 1 except that the number was changed to 1, and screen printing was performed. Comparative Example 2 In Example 1, polyester-2 was replaced with polyester-
A heat-sensitive stencil printing base paper was prepared in the same manner as in Example 1 except that the number was changed to 5, and screen printing was performed. Comparative Example 3 Polyester-2 was extruded in a sheet form from an extruder at 265 ° C., rapidly cooled and solidified by using an electrostatic cooling method with a rotary cooling drum having a surface temperature set to 30 ° C., and a thickness of 10 μm.
A substantially amorphous sheet was obtained. The resulting sheet is stretched 2.0 times in the machine direction at 75 ° C and then in the transverse direction at 80 ° C.
The film was stretched 2.0 times by heating at 90 ° C. and heat-treated at 90 ° C. for 6 seconds to produce a biaxially oriented film having a thickness of 2.5 μm.

【0022】比較例4 実施例1において、延伸後の熱処理を90℃で6秒間
を、165℃で6秒間に変えた以外は実施例1と同様の
方法で感熱孔版印刷用原紙を作成し、スクリーン印刷を
行った。 比較例5 厚み2μmの塩化ビニルフィルムを常法に従い、ポリエ
ステル製のスクリーンに貼り合わせ感熱孔版印刷用原紙
を作成し、スクリーン印刷を行ったが、フィルムが穿孔
されず印刷不可能であった。 比較例6 厚み2μmのポリプロピレンフィルムを常法に従い、ポ
リエステル製のスクリーンに貼り合わせ感熱孔版印刷用
原紙を作成し、スクリーン印刷を行ったが、フィルムが
穿孔されず印刷不可能であった。以上、得られたポリエ
ステルおよびスクリーン印刷用感熱孔版の実用特性を下
記表1に示す。
Comparative Example 4 A heat sensitive stencil sheet was prepared in the same manner as in Example 1 except that the heat treatment after stretching was changed from 90 ° C. for 6 seconds to 165 ° C. for 6 seconds. Screen printing was performed. Comparative Example 5 A vinyl chloride film having a thickness of 2 μm was attached to a polyester screen in accordance with a conventional method to prepare a base paper for heat-sensitive stencil printing, and screen printing was performed, but the film was not perforated and printing was impossible. Comparative Example 6 A polypropylene film having a thickness of 2 μm was attached to a polyester screen in accordance with a conventional method to prepare a base paper for heat-sensitive stencil printing, and screen printing was carried out, but the film was not perforated and printing was impossible. The practical properties of the polyester and the heat-sensitive stencil for screen printing thus obtained are shown in Table 1 below.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【発明の効果】本発明のフィルムによれば、穿孔感度、
印字解像度、耐刷性に優れたスクリーン印刷用高感度感
熱孔版ポリエステルフィルムが提供でき、その工業的価
値は高い。
According to the film of the present invention, the perforation sensitivity,
It is possible to provide a high-sensitivity heat-sensitive stencil polyester film for screen printing, which has excellent printing resolution and printing durability, and its industrial value is high.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 融点が170〜240℃、100℃にお
ける熱収縮率が65℃における熱収縮率の8倍以上、長
手方向と幅方向の引張弾性率がともに200kg/mm
2 以上、厚みが0.5〜7μmであること特徴とするス
クリーン印刷用二軸配向ポリエステルフィルム。
1. A melting point of 170 to 240 ° C., a heat shrinkage ratio at 100 ° C. is 8 times or more of a heat shrinkage ratio at 65 ° C., and a tensile elastic modulus in both the longitudinal direction and the width direction is 200 kg / mm.
A biaxially oriented polyester film for screen printing, which has a thickness of 2 or more and a thickness of 0.5 to 7 μm.
JP3221096A 1996-02-20 1996-02-20 Polyester film for screen process printing Pending JPH09220867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3221096A JPH09220867A (en) 1996-02-20 1996-02-20 Polyester film for screen process printing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3221096A JPH09220867A (en) 1996-02-20 1996-02-20 Polyester film for screen process printing

Publications (1)

Publication Number Publication Date
JPH09220867A true JPH09220867A (en) 1997-08-26

Family

ID=12352562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3221096A Pending JPH09220867A (en) 1996-02-20 1996-02-20 Polyester film for screen process printing

Country Status (1)

Country Link
JP (1) JPH09220867A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000020490A1 (en) * 1998-10-01 2000-04-13 Teijin Limited Biaxially oriented polyester film for use as stencil paper for thermal stencil printing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000020490A1 (en) * 1998-10-01 2000-04-13 Teijin Limited Biaxially oriented polyester film for use as stencil paper for thermal stencil printing
US6316096B1 (en) 1998-10-01 2001-11-13 Teijin Limited Biaxially oriented polyester film for use in thermosensitive stencil printing base sheet

Similar Documents

Publication Publication Date Title
JP3307716B2 (en) High-sensitivity heat-sensitive stencil film for base paper
JP4248869B2 (en) High sensitivity heat sensitive stencil printing polyester film
JP3806888B2 (en) Polyester film for heat-sensitive stencil sheet and heat-sensitive stencil sheet comprising the same
JPH09220867A (en) Polyester film for screen process printing
JPH02158391A (en) Polyester film for thermal stencil printing base paper
JP3035935B2 (en) Polyester film for heat-sensitive stencil printing base paper
JP5242922B2 (en) Polyester film for heat sensitive stencil printing paper
JP5393143B2 (en) Polyester film for screen printing
JP3235211B2 (en) High-sensitivity heat-sensitive stencil film for base paper
JP5242923B2 (en) Polyester film for heat sensitive stencil printing paper
JP3411633B2 (en) Polyester film for high-sensitivity thermosensitive stencil printing base paper
JP2010155420A (en) Polyester film for screen printing
JP4540276B2 (en) Method for producing polyester film for heat-sensitive stencil printing base paper
JP3481995B2 (en) High-sensitivity heat-sensitive stencil film for base paper
JPH0764131B2 (en) Film for heat-sensitive stencil printing base paper
JP3491267B2 (en) Polyester film for high sensitivity thermosensitive stencil printing paper
JP3047441B2 (en) Film for heat-sensitive stencil printing base paper
JPH07276839A (en) Polyester film for high sensitivity thermal screen printing stencil paper
JPH07276844A (en) Polyester film for high sensitivity thermal screen printing stencil paper
JPH0948181A (en) Film for high sensitivity thermal stencil printing base sheet
JPH0752573A (en) Polyester film for high-sensitivity thermal stencil printing base paper
JPH11314473A (en) Film for heat sensitive stencil printing base paper, and support-less heat sensitive stencil printing base paper
JPH0999666A (en) Film for heat-sensitive stencil printing master
JPH10244573A (en) Production of polyester film for thermal stencil printing base paper
JPH04224925A (en) Film for heat-sensitive mimeotype stencil paper

Legal Events

Date Code Title Description
A02 Decision of refusal

Effective date: 20040224

Free format text: JAPANESE INTERMEDIATE CODE: A02