JP2008190653A - Fluid sealing type compliance bush for suspension - Google Patents

Fluid sealing type compliance bush for suspension Download PDF

Info

Publication number
JP2008190653A
JP2008190653A JP2007026758A JP2007026758A JP2008190653A JP 2008190653 A JP2008190653 A JP 2008190653A JP 2007026758 A JP2007026758 A JP 2007026758A JP 2007026758 A JP2007026758 A JP 2007026758A JP 2008190653 A JP2008190653 A JP 2008190653A
Authority
JP
Japan
Prior art keywords
fluid chamber
fluid
short
orifice
suspension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007026758A
Other languages
Japanese (ja)
Inventor
Yukio Hayashi
幸男 林
Takashi Kume
廷志 久米
Takashi Shiomi
隆 汐見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Toyota Motor Corp
Original Assignee
Sumitomo Riko Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd, Toyota Motor Corp filed Critical Sumitomo Riko Co Ltd
Priority to JP2007026758A priority Critical patent/JP2008190653A/en
Publication of JP2008190653A publication Critical patent/JP2008190653A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Vehicle Body Suspensions (AREA)
  • Combined Devices Of Dampers And Springs (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluid sealing type compliance bush for a suspension capable of advantageously improving riding comfortableness since a predetermined damping effect can be stably provided by high damping characteristics when vibrations such as flatters and brake vibrations of normal magnitudes are input therein and low spring characteristics can be provided at the initial stage when the bush starts to be deflected by the input of an impact load into a wheel. <P>SOLUTION: One-way valve means 56, 74 are installed in a short-circuit flow passage 84 allowing a first fluid chamber 78 to communicate with a second fluid chamber 80. When an impact load from one to the other direction in the longitudinal direction is input into a wheel, a larger flow resistance is developed by the one-way valve means 56, 74 in the fluid flow direction from the second fluid chamber 80 to the first fluid chamber 78 than in the fluid flow direction from the first fluid chamber 78 to the second fluid chamber 80 which is produced in the short-circuit flow passage 84. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、車両のサスペンションアームをボデー側に防振連結して、車輪からの車両前後方向の入力荷重が軸直角方向に及ぼされるサスペンション用のコンプライアンスブッシュに係り、特に、内部に封入された非圧縮性流体の流動作用に基づいて防振効果を得るようにした流体封入式コンプライアンスブッシュに関するものである。   The present invention relates to a compliance bush for a suspension in which a vehicle suspension arm is connected to the body side in a vibration-proof manner so that an input load in the vehicle front-rear direction from a wheel is exerted in a direction perpendicular to the axis. The present invention relates to a fluid-filled compliance bushing that obtains an anti-vibration effect based on the flow action of a compressive fluid.

一般に、自動車等の車両のサスペンション機構は、車輪を回転可能に支持するキャリアを、車両ボデーに対して、サスペンションアームで連結せしめた構造とされている。かかるサスペンション機構の一つとして、サスペンションアームのボデー側への取付部位に装着されて、車輪からの車両前後方向の入力荷重が軸直角方向に及ぼされるコンプライアンスブッシュを備えたサスペンション機構が知られている。例えば、特許文献1(特開2002−337527号公報)や特許文献2(特開2004−203143号公報)に示されているものが、それである。   In general, a suspension mechanism of a vehicle such as an automobile has a structure in which a carrier that rotatably supports a wheel is connected to a vehicle body by a suspension arm. As one of such suspension mechanisms, there is known a suspension mechanism that includes a compliance bush that is attached to a portion of the suspension arm that is attached to the body side so that an input load in the vehicle front-rear direction from the wheels is exerted in a direction perpendicular to the axis. . For example, those disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 2002-337527) and Patent Document 2 (Japanese Patent Laid-Open No. 2004-203143) are examples thereof.

このコンプライアンスブッシュは、インナ軸部材とその外周側に離隔配置されたアウタ筒部材が本体ゴム弾性体で相互に弾性連結された構造を呈しており、サスペンションアームの車両ボデー側への取付部位において、車両前後方向から車輪に入力される荷重がブッシュの中心軸と略直交する方向に及ぼされるように装着されて、そのコンプライアンスによって、車輪からボデーに伝わる荷重を低減するようになっている。   The compliance bush has a structure in which an inner shaft member and an outer cylindrical member spaced apart on the outer peripheral side thereof are elastically connected to each other by a main rubber elastic body, and at a mounting portion of the suspension arm on the vehicle body side, The load applied to the wheel from the longitudinal direction of the vehicle is mounted so as to be exerted in a direction substantially orthogonal to the central axis of the bush, and the load transmitted from the wheel to the body is reduced by the compliance.

ところで、路面状態や車両特性等の走行条件に応じて、車両前後方向から車輪に及ぼされる荷重は各種存在するため、上述のコンプライアンスブッシュには、複数の防振特性が要求される場合が多い。そのなかで、特に要求される防振特性としては、以下の三つがある。
(1)フラッタ、ブレーキ振動等の通常走行時に問題となる振動の低減
(2)路面凹凸によって及ぼされるノイズや振動の低減
(3)突起の乗り越え等に際して及ぼされる衝撃的荷重に対して問題となるハーシュネス等の大きな振動伝達の抑制と操縦安定性の確保
By the way, there are various loads applied to the wheels from the front-rear direction of the vehicle in accordance with traveling conditions such as road surface conditions and vehicle characteristics. Therefore, the above-mentioned compliance bush often requires a plurality of vibration isolation characteristics. Among them, the following three anti-vibration characteristics are particularly required.
(1) Reduction of vibrations that cause problems during normal travel such as flutter and brake vibrations (2) Reduction of noise and vibrations caused by road surface unevenness (3) Problems with impact loads applied when overcoming protrusions, etc. Suppressing large vibration transmissions such as harshness and ensuring steering stability

ここにおいて、上記(1)の振動低減には、コンプライアンスブッシュに対して高減衰特性を付与することが有効である。そのために、従来では、高減衰特性のゴムを採用する他、より高度な減衰特性を得るために、液封構造の適用も検討されている。例えば、特許文献3(特開平05−240293号公報)や特許文献4(特開2006−2857号公報)に示されているものがあり、本体ゴム弾性体を除くインナ軸部材とアウタ筒部材の対向面間において、それぞれ非圧縮性流体が封入されて、振動入力時に相対的な圧力変動が生ぜしめられる一対の流体室がインナ軸部材を挟んだ軸直角方向一方向で対向位置せしめられるように形成されていると共に、それら一対の流体室間にオリフィス通路が形成されて、両室がオリフィス通路を通じて相互に連通せしめられている。このような構造によれば、振動入力に伴う一対の流体室間での相対的な圧力変動に基づいて、オリフィス通路を通じての流体流動が生ぜしめられることとなり、かかる流体の共振作用等の流動作用に基づいて高減衰効果を得ることが出来る。   Here, in order to reduce the vibration (1), it is effective to impart a high damping characteristic to the compliance bush. Therefore, conventionally, in addition to adopting a rubber having a high damping characteristic, application of a liquid seal structure has also been studied in order to obtain a higher damping characteristic. For example, there are those shown in Patent Document 3 (Japanese Patent Laid-Open No. 05-240293) and Patent Document 4 (Japanese Patent Laid-Open No. 2006-2857), and the inner shaft member and the outer cylindrical member excluding the main rubber elastic body. A pair of fluid chambers in which incompressible fluid is sealed between the opposing surfaces and relative pressure fluctuations are generated when vibration is input are positioned opposite to each other in a direction perpendicular to the axis across the inner shaft member. In addition, an orifice passage is formed between the pair of fluid chambers, and both chambers communicate with each other through the orifice passage. According to such a structure, the fluid flow through the orifice passage is generated based on the relative pressure fluctuation between the pair of fluid chambers accompanying the vibration input, and the fluid action such as the resonance action of the fluid. Based on this, a high attenuation effect can be obtained.

ところが、本発明者が検討したところ、液封構造のコンプライアンスブッシュを採用した場合には、上記(2)の路面凹凸に起因する振動の防振が十分に得られ難いことに加えて、上記(3)のハーシュネス等に対する防振性能も十分に得られ難く、操縦安定性にも悪影響が及ぼされるおそれのあることが明らかとなった。   However, as a result of investigation by the present inventors, in the case where a compliance bush having a liquid seal structure is adopted, in addition to the fact that vibration prevention due to the road surface unevenness of (2) is not sufficiently obtained, the above ( It has become clear that the vibration-proof performance against the harshness of 3) is not sufficiently obtained, and the steering stability may be adversely affected.

すなわち、路面凹凸に起因する振動やハーシュネス等の衝撃的荷重に対しては、特に路面凹凸による微振動やハーシュネスによる荷重入力初期の段階において、低ばね特性に基づく衝撃吸収による振動絶縁効果が有効であるが、上述の如き、上記(1)の振動低減を目的とした高減衰化は、低ばね特性の実現に反するものであって、高減衰ゴムの採用や流体封入構造の採用は、上記(2)の路面凹凸振動や上記(3)のハーシュネス等に対する防振特性に反することとなるのである。   In other words, for shock loads such as vibration and harshness caused by road surface unevenness, vibration insulation effect due to shock absorption based on low spring characteristics is effective especially in the initial stage of load input due to fine vibration due to road surface unevenness and harshness. However, as described above, the high damping for the purpose of reducing the vibration in the above (1) is contrary to the realization of the low spring characteristics, and the adoption of the high damping rubber or the fluid sealing structure is the above ( This is contrary to the anti-vibration characteristics against the road surface uneven vibration of 2) and the harshness of the above (3).

それだけでなく、本発明者の検討結果によれば、上記(3)のハーシュネス等に対する防振特性の向上には、単に、低ばね特性を付与するだけでは操縦安定性が低下するおそれがあり、有効でないことが明らかとなったのである。即ち、路面の大きな段差などによって車輪に対して例えば前方から後方に向かう衝撃荷重が入力されると、車輪が、前後方向の外的荷重が及ぼされていないセンターの位置から後方に大きく変位するが、その後には、コンプライアンスブッシュのゴム弾性体が大きく撓むことに起因して、かかるゴム弾性体の弾性に基づいて、サスペンションアームを介して車輪に反作用的な大きな荷重が後方から前方に向かって及ぼされる。その結果、一旦後方に変位した車輪が、その後、センターの位置を超えて前方に変位する、所謂揺れ戻しという現象が起こりやすく、この現象が、走行に悪影響を及ぼすおそれがあるのである。   In addition, according to the results of the study by the present inventor, in order to improve the anti-vibration property against the harshness of (3) above, there is a risk that the steering stability may be lowered simply by providing a low spring property. It became clear that it was not effective. That is, if an impact load from the front to the rear is input to the wheel due to a large step on the road surface, the wheel is greatly displaced backward from the center position where no external load in the front-rear direction is applied. Thereafter, due to the elastic elastic body of the compliance bush being greatly bent, a large reaction force is applied from the rear to the front through the suspension arm based on the elasticity of the elastic rubber body. Affected. As a result, the wheel once displaced rearward is likely to be displaced forward beyond the center position, so-called a swinging phenomenon, which may adversely affect the traveling.

このように、コンプライアンスブッシュには、上記(1)と上記(2)、(3)との防振特性を両立して達成するためには、高減衰特性と低動ばね特性という相反する特性を実現するだけでなく、ハーシュネスに起因する揺れ戻しを抑えることも重要であり、非常に高度且つ複雑な特性が要求されているのである。ここにおいて、従来の、単に高減衰効果を実現するための流体封入式のコンプライアンスブッシュでは、これらの要求特性を、未だ、十分に実現し得るものではなかったのである。   As described above, in order to achieve both the vibration damping characteristics of (1) and (2) and (3), the compliance bush has contradictory characteristics such as a high damping characteristic and a low dynamic spring characteristic. In addition to the realization, it is also important to suppress shaking back caused by harshness, and very high and complex characteristics are required. Here, in the conventional fluid-filled type compliance bush for simply realizing a high damping effect, these required characteristics have not been sufficiently realized.

特開2002−337527号公報JP 2002-337527 A 特開2004−203143号公報JP 2004-203143 A 特開平05−240293号公報Japanese Patent Laid-Open No. 05-240293 特開2006−2857号公報JP 2006-2857 A

ここにおいて、本発明は上述の如き事情を背景として為されたものであり、その解決課題とするところは、車輪からの通常の振動入力時に、高減衰特性が得られることで所期の防振効果が有利に発揮され得ると共に、車輪への衝撃荷重の入力に伴いブッシュが撓み始める初期の段階で、低ばね特性が得られることによって、問題となる路面振動が抑えられて、乗り心地が有利に向上され得る、新規な構造のサスペンション用の流体封入式コンプライアンスブッシュを提供することにある。   Here, the present invention has been made in the background as described above, and the problem to be solved is that a high damping characteristic can be obtained at the time of normal vibration input from the wheel, thereby achieving the desired vibration isolation. The effect can be exerted advantageously, and at the initial stage where the bush begins to bend as the impact load is applied to the wheels, the low spring characteristics are obtained, so that problematic road surface vibrations are suppressed and riding comfort is advantageous. It is an object of the present invention to provide a fluid-filled compliance bushing for a suspension having a novel structure that can be improved.

以下、前述の課題を解決するために為された本発明の態様を記載する。なお、以下に記載の各態様において採用される構成要素は、可能な限り任意の組み合わせで採用可能である。また、本発明の態様乃至は技術的特徴は、以下に記載のものに限定されることなく、明細書全体および図面に記載されたもの、或いはそれらの記載から当業者が把握することの出来る発明思想に基づいて認識されるものであることが理解されるべきである。   Hereinafter, the aspect of this invention made in order to solve the above-mentioned subject is described. In addition, the component employ | adopted in each aspect as described below is employable by arbitrary combinations as much as possible. Further, aspects or technical features of the present invention are not limited to those described below, but are described in the entire specification and drawings, or an invention that can be understood by those skilled in the art from those descriptions. It should be understood that it is recognized based on thought.

すなわち、本発明の特徴とするところは、軸部材と軸部材の外周側に所定距離を隔てて配された外筒部材が本体ゴム弾性体で相互に弾性連結されており、サスペンション機構におけるサスペンションアームの車両ボデー側への取付部位に装着されて、車輪からの車両前後方向の入力荷重が軸直角方向に及ぼされるサスペンション用の流体封入式コンプライアンスブッシュにおいて、軸部材を挟んだ軸直角方向一方向で対向位置して、振動入力時に相対的な圧力変動が生ぜしめられる第一の流体室と第二の流体室が形成されており、それら第一の流体室と第二の流体室に非圧縮性流体が封入されていると共に、第一の流体室と第二の流体室を相互に連通するオリフィス通路が形成されている一方、第一の流体室と第二の流体室の間に短絡流路が設けられていると共に、短絡流路には片方向弁手段が設けられており、車輪への車両前後方向の一方から他方に向かう衝撃荷重の入力時において該短絡流路に生ぜしめられる第一の流体室から第二の流体室に向かう流体流動方向に比して第二の流体室から第一の流体室に向かう流体流動方向でより大きな流動抵抗が片方向弁手段によって発揮されるようにしたサスペンション用の流体封入式コンプライアンスブッシュにある。   That is, a feature of the present invention is that the shaft member and the outer cylindrical member arranged at a predetermined distance on the outer peripheral side of the shaft member are elastically connected to each other by the main rubber elastic body, and the suspension arm in the suspension mechanism In a fluid-filled compliance bushing for suspension that is mounted on the vehicle body side of the vehicle body and receives an input load in the vehicle front-rear direction from the wheel in a direction perpendicular to the axis, in a direction perpendicular to the axis across the shaft member A first fluid chamber and a second fluid chamber are formed at opposite positions to generate a relative pressure fluctuation when vibration is input. The first fluid chamber and the second fluid chamber are incompressible. While the fluid is sealed and an orifice passage is formed to communicate the first fluid chamber and the second fluid chamber with each other, a short-circuit channel is formed between the first fluid chamber and the second fluid chamber. But In addition, a one-way valve means is provided in the short-circuit channel, and the first short-circuit channel is generated when an impact load is applied to the wheel from one side to the other in the vehicle front-rear direction. The one-way valve means exerts a larger flow resistance in the fluid flow direction from the second fluid chamber toward the first fluid chamber as compared to the fluid flow direction from the fluid chamber toward the second fluid chamber. The fluid-filled compliance bushing for suspension.

このような本発明に従う構造とされたサスペンション用の流体封入式コンプライアンスブッシュにおいては、車輪への車両前後方向の一方から他方に向かう衝撃荷重の入力時に、短絡流路を通じての第二の流体室から第一の流体室に向かう流体の流動抵抗が、片方向弁手段によって、第一の流体室から第二の流体室に向かう流体の流動抵抗に比して大きくされていることから、短絡流路を通じての第一の流体室から第二の流体室に向かう流体の流動が、比較的容易に許容される。これにより、衝撃的な荷重入力による第一の流体室の高圧状態に起因する高ばね化が抑えられて、ブッシュが撓み始める初期の段階で、衝撃荷重が低ばね特性に基づき低減されて、車輪からボデーに伝わる路面振動が有利に抑えられる。   In such a fluid-filled compliance bush for a suspension having a structure according to the present invention, when an impact load is applied to the wheel from one side to the other in the vehicle longitudinal direction, the second fluid chamber through the short-circuit channel is used. Since the flow resistance of the fluid directed to the first fluid chamber is increased by the one-way valve means as compared with the flow resistance of the fluid directed from the first fluid chamber to the second fluid chamber, The flow of fluid through the first fluid chamber through the second fluid chamber is relatively easily permitted. As a result, the increase in the spring due to the high pressure state of the first fluid chamber due to the impact load input is suppressed, and the impact load is reduced based on the low spring characteristics at the initial stage when the bush begins to bend. The road surface vibration transmitted to the body is advantageously suppressed.

一方、車輪への車両前後方向の他方から一方に向かう荷重の入力時には、短絡流路に生ぜしめられる第一の流体室から第二の流体室に向かう流体の流動抵抗および第二の流体室から第一の流体室に向かう流体の流動抵抗が、片方向弁手段で大きくされることから、比較的に高い減衰性能が得られる。即ち、前述の車輪への車両前後方向の一方から他方に向かう衝撃荷重がブッシュに入力されることで車輪に反作用的に及ぼされる他方から一方に向かう荷重に起因する変位が、高減衰特性に基づき抑えられることから、車輪が中央位置から他方に変位して再び中央位置に戻った後に該中央位置を超えて一方に変位する、所謂車輪の揺れ戻しが有利に抑制される。   On the other hand, when a load is applied to the wheel from the other side in the vehicle front-rear direction, the flow resistance of the fluid from the first fluid chamber to the second fluid chamber generated in the short-circuit flow path and the second fluid chamber Since the flow resistance of the fluid toward the first fluid chamber is increased by the one-way valve means, a relatively high damping performance can be obtained. That is, the displacement caused by the load from one side to the other that is exerted on the wheel by reaction when the impact load from one side to the other side of the vehicle in the longitudinal direction of the vehicle is input to the bush is based on the high damping characteristic. Therefore, the so-called swaying back of the wheel, in which the wheel is displaced from the central position to the other position and then returned to the central position and then moved to the other position beyond the central position, is advantageously suppressed.

しかも、例えばフラッタやブレーキ振動等の通常の大きさの振動入力時では、第一の流体室から第二の流体室に向かう圧力や第二の流体室から第一の流体室に向かう圧力が、衝撃荷重の入力時のそれらに比して小さい。しかも、第一の流体室と第二の流体室を連通するオリフィス通路は、常時連通状態にあることから、このオリフィス通路を防振すべきフラッタ等の振動にチューニングしておくことにより、振動入力に際してオリフィス通路を流動せしめられる流体の共振作用などの流動作用に基づいて、高減衰特性に基づく有効な防振効果を得ることができるのである。   Moreover, at the time of vibration input of a normal magnitude such as flutter or brake vibration, the pressure from the first fluid chamber to the second fluid chamber or the pressure from the second fluid chamber to the first fluid chamber is Smaller than those when inputting impact load. In addition, since the orifice passage that communicates the first fluid chamber and the second fluid chamber is always in a communicating state, tuning the orifice passage to vibration of a flutter or the like that should be vibration-isolated makes it possible to input vibration. On the other hand, based on the fluid action such as the resonance action of the fluid that can flow through the orifice passage, it is possible to obtain an effective vibration isolation effect based on the high damping characteristics.

それ故、本構造の流体封入式コンプライアンスブッシュによれば、前記(1)に記載のフラッタやブレーキ振動などに対しては、オリフィス通路に基づく高減衰特性による防振効果が有効に発揮されると共に、前記(2)に記載の路面凹凸振動や前記(3)に記載のハーシュネスなどに対しては、連通状態とされた短絡流路に基づく低動ばね特性による防振効果(衝撃吸収効果)が有効に発揮され、且つその後の揺れ戻しも、遮断状態とされた短絡流路に基づく高減衰特性によって抑えられることで、良好な操縦安定性も確保され得るのである。   Therefore, according to the fluid-filled compliance bushing of this structure, the anti-vibration effect due to the high damping characteristics based on the orifice passage is effectively exhibited against the flutter and brake vibration described in (1) above. For the road surface uneven vibration described in the above (2) and the harshness described in the above (3), an anti-vibration effect (impact absorbing effect) is provided by a low dynamic spring characteristic based on a short-circuit flow path that is in a communicating state. It is possible to ensure good maneuvering stability by effectively exhibiting and suppressing the subsequent shaking back by the high damping characteristic based on the short-circuited channel which is in the cut-off state.

なお、本発明において、短絡流路に生ぜしめられる第一の流体室から第二の流体室に向かう流体の流動抵抗や第二の流体室から第一の流体室に向かう流体の流動抵抗が片方向弁手段によって調節される際に、短絡流路が閉塞状態であるか否かは、特に限定されるものでない。この片方向弁手段は、例えば、後述のように短絡流路を閉塞せしめる弾性弁体と当接弁座を含んで構成されたり、或いは短絡流路を閉塞せずに、短絡流路上乃至は流路の延長線上に設けられる障壁のようなものを含んで構成されても良い。また、短絡流路は、後述するようにオリフィス通路と独立して形成されたり、或いはオリフィス通路によって形成されたり、オリフィス通路を部分的に利用して形成されたりすることも可能である。   In the present invention, the flow resistance of the fluid from the first fluid chamber to the second fluid chamber and the flow resistance of the fluid from the second fluid chamber to the first fluid chamber generated in the short circuit channel It is not particularly limited whether or not the short-circuit channel is in a closed state when adjusted by the direction valve means. This one-way valve means includes, for example, an elastic valve element that closes the short-circuit channel and an abutment valve seat as described later, or does not block the short-circuit channel and flows on or through the short-circuit channel. You may comprise including the thing like the barrier provided on the extension line of a path | route. Further, as will be described later, the short-circuit channel can be formed independently of the orifice passage, can be formed by the orifice passage, or can be formed by partially using the orifice passage.

また、本発明に係るサスペンション用の流体封入式コンプライアンスブッシュにおいては、片方向弁手段が、短絡流路における第一の流体室への開口縁部に設けられた当接弁座と当接弁座に対して予圧縮をもって当接される弾性弁体とを含んで構成されており、車輪への車両前後方向の一方から他方に向かう衝撃荷重の入力時に弾性弁体が弾性変形して短絡流路を開口せしめて、第一の流体室と第二の流体室が短絡流路を通じて相互に連通せしめられる一方、車輪への車両前後方向の他方から一方に向かう衝撃荷重の入力時や通常の振動入力の状態では弾性弁体が短絡流路の第一の流体室への開口縁部に予圧縮をもって当接されていることで短絡流路が閉塞状態とされている構造が、好適に採用される。このような構造によれば、短絡流路が閉塞状態とされることによって、第一の流体室から第二の流体室に乃至は第二の流体室から第一の流体室に向かう流体の流動抵抗がより確実に発揮されて、目的とする高減衰特性が一層有利に得られる。   In the fluid-filled compliance bushing for suspension according to the present invention, the one-way valve means includes a contact valve seat and a contact valve seat provided at an opening edge to the first fluid chamber in the short-circuit channel. The elastic valve body is configured to include an elastic valve body that is brought into contact with the pre-compression, and the elastic valve body is elastically deformed when an impact load directed from one side to the other side of the vehicle is applied to the wheel. The first fluid chamber and the second fluid chamber are communicated with each other through a short-circuit flow path, while an impact load is applied to the wheel from the other side of the vehicle in the longitudinal direction of the vehicle or normal vibration input. In this state, a structure in which the short-circuit channel is closed by the elastic valve body being brought into contact with the opening edge of the short-circuit channel to the first fluid chamber with pre-compression is preferably employed. . According to such a structure, the flow of the fluid from the first fluid chamber to the second fluid chamber or from the second fluid chamber to the first fluid chamber is caused by closing the short-circuit channel. The resistance is more reliably exhibited, and the desired high attenuation characteristic can be obtained more advantageously.

また、本発明に係るサスペンション用の流体封入式コンプライアンスブッシュにおいては、短絡流路がオリフィス通路と独立して形成されている構造が、採用されても良い。このような構造によれば、オリフィス通路や短絡流路の各設計自由度が大きくされて、より望ましい防振効果や異音抑制効果等が期待され得る。   In the fluid-filled compliance bush for suspension according to the present invention, a structure in which the short-circuit channel is formed independently of the orifice channel may be employed. According to such a structure, the degree of freedom in designing the orifice passage and the short-circuit passage is increased, and a more desirable vibration-proofing effect, noise suppression effect, and the like can be expected.

さらに、上述の本発明に係るサスペンション用の流体封入式コンプライアンスブッシュにおいては、第一の流体室と第二の流体室の周方向一方の端部間に跨がってオリフィス通路が形成されている一方、第一の流体室と第二の流体室の周方向他方の端部間に跨がって短絡流路が形成されている構造が、好適に採用される。このような構造によれば、スペースの効率的な利用が図られて、各流路の設計自由度の更なる向上に加えて、コンプライアンスブッシュのコンパクト化が有利に図られ得る。   Furthermore, in the above-described fluid-filled compliance bush for suspension according to the present invention, an orifice passage is formed across one end in the circumferential direction of the first fluid chamber and the second fluid chamber. On the other hand, a structure in which a short-circuit channel is formed between the other ends in the circumferential direction of the first fluid chamber and the second fluid chamber is suitably employed. According to such a structure, space can be efficiently used, and in addition to further improving the degree of freedom in designing each flow path, the compliance bush can be advantageously made compact.

また、本発明に係るサスペンション用の流体封入式コンプライアンスブッシュにおいては、軸部材の外周側に中間スリーブが所定距離を隔てて配されて、軸部材と中間スリーブが本体ゴム弾性体で相互に連結されていると共に、中間スリーブに外筒部材が外嵌固定されて、中間スリーブに設けられた第一の窓部と第二の窓部を通じて外周面に開口するように形成された第一のポケット部と第二のポケット部が流体密に覆蓋されることにより、第一の流体室と第二の流体室が形成されている一方、中間スリーブの軸方向中間部分には第一の流体室と第二の流体室の間を周方向に延びる支持溝が形成されて、支持溝に対して周方向に延びるオリフィス部材が嵌め込まれると共に、外筒部材がオリフィス部材の外周面に外嵌装着されて、オリフィス部材の外周面に設けられたオリフィス溝が外筒部材で覆蓋されることでオリフィス通路が形成されている構造が、採用されても良い。このような構造によれば、第一の流体室や第二の流体室、オリフィス通路等を備えてなる流体封入式のコンプライアンスブッシュが、比較的に簡単な構造で実現され得る。   In the fluid-filled compliance bush for suspension according to the present invention, an intermediate sleeve is arranged at a predetermined distance on the outer peripheral side of the shaft member, and the shaft member and the intermediate sleeve are connected to each other by a main rubber elastic body. And the first pocket portion formed so that the outer cylinder member is fitted and fixed to the intermediate sleeve, and is opened to the outer peripheral surface through the first window portion and the second window portion provided in the intermediate sleeve. And the second pocket portion are fluid-tightly covered to form a first fluid chamber and a second fluid chamber, while an intermediate portion in the axial direction of the intermediate sleeve has a first fluid chamber and a second fluid chamber. A support groove extending in the circumferential direction is formed between the two fluid chambers, an orifice member extending in the circumferential direction is fitted into the support groove, and an outer cylinder member is fitted on the outer peripheral surface of the orifice member. Orifice Structure orifice groove provided on the outer peripheral surface of the wood has an orifice passage is formed by being covering with the outer tube member, may be employed. According to such a structure, the fluid-filled compliance bushing including the first fluid chamber, the second fluid chamber, the orifice passage, and the like can be realized with a relatively simple structure.

さらに、上述の本発明に係るサスペンション用の流体封入式コンプライアンスブッシュにおいては、オリフィス部材の内周面に短絡溝が形成されており、オリフィス部材が中間スリーブの支持溝に嵌合固定されて短絡溝が支持溝の底部で覆蓋せしめられることで短絡流路が形成されていると共に、短絡流路の一方の端部が開口するオリフィス部材の周方向端縁部に当接弁座が設けられていると共に、中間スリーブにおける支持溝の底部には本体ゴム弾性体と一体形成された弾性弁体が突設されて、オリフィス部材の支持溝への固定に基づき、弾性弁体が弾性変形しつつオリフィス部材における当接弁座に密着状に当接されることによって、弾性弁体が短絡流路の一方の流体室への開口縁部に対して予圧縮をもって当接されている構造が、好適に採用される。このような構造によれば、片方向弁手段を構成する当接弁座がオリフィス部材に設けられていると共に、弾性弁体が本体ゴム弾性体と一体形成されていることによって、片方向弁手段を構成するための特別な部品の増加が抑えられるのであり、しかもオリフィス部材を中間スリーブに組み付けることで、特別な工程を伴うことなく弾性弁体に予圧縮を及ぼして、片方向弁手段による短絡流路の閉塞状態が実現されることから、製造工程の短縮化および低コスト化が有利に図られ得る。   Furthermore, in the fluid-filled compliance bushing for suspension according to the present invention described above, a short-circuit groove is formed on the inner peripheral surface of the orifice member, and the orifice member is fitted and fixed to the support groove of the intermediate sleeve, so that the short-circuit groove. Is covered with the bottom of the support groove to form a short circuit channel, and a contact valve seat is provided at the circumferential edge of the orifice member where one end of the short circuit channel opens. In addition, an elastic valve body integrally formed with the rubber elastic body of the main body protrudes from the bottom of the support groove in the intermediate sleeve, and the orifice member is elastically deformed based on the fixing of the orifice member to the support groove. The structure in which the elastic valve body is brought into contact with the opening edge to the one fluid chamber of the short-circuit channel with pre-compression by being brought into close contact with the contact valve seat in FIG. It is adopted. According to such a structure, the contact valve seat constituting the one-way valve means is provided in the orifice member, and the elastic valve body is integrally formed with the main rubber elastic body, whereby the one-way valve means. An increase in the number of special parts for constituting the valve can be suppressed, and by attaching the orifice member to the intermediate sleeve, the elastic valve body is pre-compressed without any special process, and the one-way valve means is short-circuited. Since the closed state of the flow path is realized, the manufacturing process can be advantageously shortened and the cost can be reduced.

なお、本構造において、弾性弁体が当接弁座に密着状に当接されるとは、弾性弁体と当接弁座の間に流体密性を損なう程度の大きな隙間が形成されることなく、ぴったりとくっつくことをいう。また、かかる当接状態では、車輪への前後方向の一方向から他方向に向かう衝撃荷重の入力時に第一の流体室から第二の流体室に向かう流体流動量が大きくされて弾性弁体が弾性変形することに基づき、弾性弁体が当接弁座から離隔することが可能とされている。   In this structure, when the elastic valve body is in close contact with the contact valve seat, a large gap is formed between the elastic valve body and the contact valve seat so as to impair the fluid tightness. It means not sticking exactly. Further, in such a contact state, the amount of fluid flow from the first fluid chamber to the second fluid chamber is increased when an impact load is applied to the wheel from one direction to the other in the front-rear direction, and the elastic valve body Based on the elastic deformation, the elastic valve body can be separated from the contact valve seat.

また、本発明に係るサスペンション用の流体封入式コンプライアンスブッシュにおいては、サスペンション機構を構成するサスペンションアームが、車輪側から車体側に向かって車両横方向に延びる横腕部と車両前後方向に延びる縦腕部を有しており、縦腕部の車体側への取付部分において、第一の流体室と第二の流体室が車両横方向で対向位置するようにして装着される構造が、採用されても良い。このような構造によれば、サスペンションアームの変位に伴い車輪からの車両前後方向の入力荷重が第一の流体室と第二の流体室の対向方向に効率良く及ぼされて、第一の流体室と第二の流体室の間の流体の流動作用が片方向弁手段により積極的に許容乃至は制限されることとなり、目的とする低ばね特性と高減衰特性の両立が一層高度に実現される。それ故、例えば自動車のフロントサスペンションのロアアーム等に好適に採用されて、問題となるフラッタやブレーキ振動等の抑制と衝撃荷重入力時の路面凹凸振動の抑制が、両立して高度に達成され得るのである。   In the fluid-filled compliance bush for suspension according to the present invention, the suspension arm constituting the suspension mechanism includes a lateral arm portion extending in the lateral direction of the vehicle from the wheel side toward the vehicle body side and a longitudinal arm extending in the longitudinal direction of the vehicle. And a structure in which the first fluid chamber and the second fluid chamber are mounted so as to be opposed to each other in the lateral direction of the vehicle at the mounting portion of the vertical arm portion on the vehicle body side is employed. Also good. According to such a structure, the input load in the vehicle front-rear direction from the wheels is efficiently exerted in the opposing direction of the first fluid chamber and the second fluid chamber with the displacement of the suspension arm, so that the first fluid chamber The fluid flow action between the first fluid chamber and the second fluid chamber is positively permitted or restricted by the one-way valve means, so that both the desired low spring characteristic and high damping characteristic can be achieved to a higher degree. . Therefore, for example, it can be suitably used for the lower arm of the front suspension of automobiles, etc., and it can achieve both the suppression of problematic flutter and brake vibration, etc. and the suppression of road surface unevenness vibration at the time of impact load input at a high level. is there.

以下、本発明を更に具体的に明らかにするために、本発明の実施形態について説明する。先ず、図1,2には、本発明の一実施形態としての自動車のサスペンション用の流体封入式コンプライアンスブッシュ10が示されている。流体封入式コンプライアンスブッシュ10は、軸部材としての内筒金具12と外筒部材としての外筒金具14が、互いに径方向に所定距離を隔てて位置せしめられていると共に、それらの間に介装された本体ゴム弾性体16で相互に弾性連結された構造とされている。   Hereinafter, in order to clarify the present invention more specifically, embodiments of the present invention will be described. First, FIGS. 1 and 2 show a fluid filled compliance bushing 10 for an automobile suspension as an embodiment of the present invention. The fluid-filled compliance bushing 10 includes an inner cylinder fitting 12 as a shaft member and an outer cylinder fitting 14 as an outer cylinder member that are positioned at a predetermined distance in the radial direction and interposed between them. The main rubber elastic bodies 16 are elastically connected to each other.

より詳細には、内筒金具12は、小径の円筒形状を有しており、例えばアルミニウム合金等で形成された剛性材とされている。内筒金具12の軸方向一方(図2中、左)の端部には、外フランジ状のフランジ状部18が一体形成されている。   More specifically, the inner cylinder fitting 12 has a small-diameter cylindrical shape and is a rigid material formed of, for example, an aluminum alloy. An outer flange-like flange-like portion 18 is integrally formed at one end (left in FIG. 2) in the axial direction of the inner cylinder fitting 12.

また、内筒金具12には、ストッパ部材20が設けられている。ストッパ部材20は、略矩形ブロック形状を呈しており、硬質の合成樹脂材や金属材等を用いて形成されている。ストッパ部材20が、その中央が内筒金具12に挿通されるようにして内筒金具12の軸方向中央部分にインサート成形されて、該中央部分の外周面から径方向に突出するようにして、内筒金具12に固着されている。特に、ストッパ部材20の長手方向の一対の端部が内筒金具12から径方向一方向(図1中、上下)に大きく突出していると共に、かかる突出先端面が周方向に湾曲する湾曲面とされている。   Further, a stopper member 20 is provided on the inner cylinder fitting 12. The stopper member 20 has a substantially rectangular block shape, and is formed using a hard synthetic resin material, a metal material, or the like. The stopper member 20 is insert-molded in the central portion in the axial direction of the inner cylindrical fitting 12 so that the center thereof is inserted into the inner cylindrical fitting 12, and protrudes in the radial direction from the outer peripheral surface of the central portion. It is fixed to the inner cylinder fitting 12. In particular, the pair of end portions in the longitudinal direction of the stopper member 20 project greatly from the inner cylindrical metal member 12 in one radial direction (up and down in FIG. 1), and the projecting tip surface is curved in the circumferential direction. Has been.

ストッパ部材20を備えた内筒金具12の外周側には、径方向に所定距離を隔てて中間スリーブとしての金属スリーブ22が配設されている。金属スリーブ22は、大径の円筒形状を有しており、内筒金具12を全周に亘って取り囲むように配されている。また、金属スリーブ22の軸方向寸法が内筒金具12の軸方向寸法よりも小さくされており、内筒金具12の軸方向両端部が金属スリーブ22のそれよりも軸方向外方に突出せしめられている。   A metal sleeve 22 serving as an intermediate sleeve is disposed on the outer peripheral side of the inner cylindrical metal member 12 provided with the stopper member 20 at a predetermined distance in the radial direction. The metal sleeve 22 has a large-diameter cylindrical shape, and is disposed so as to surround the inner cylinder fitting 12 over the entire circumference. Further, the axial dimension of the metal sleeve 22 is made smaller than the axial dimension of the inner cylindrical metal member 12, and both axial ends of the inner cylindrical metal member 12 are protruded outward in the axial direction from that of the metal sleeve 22. ing.

金属スリーブ22の軸直角方向一方向で対向位置せしめられた軸方向中央部分には、軸直角方向に矩形状に開口する第一窓部24と第二窓部26が貫通, 形成されている。本実施形態では、第一窓部24と第二窓部26の周方向長さが互いに略同じとされていて、それぞれ、金属スリーブ22の全周に対して所定の長さ(例えば、略1/6〜2/5の周方向長さ)で周方向に広がるように形成されている。これら第一窓部24と第二窓部26の対向方向が、ストッパ部材20の内筒金具12から軸直角方向両側に大きく突出する先端部分の突出方向と同じとされている。   A first window portion 24 and a second window portion 26 that open in a rectangular shape in the direction perpendicular to the axis are formed through the central portion of the metal sleeve 22 that is opposed to the metal sleeve 22 in the direction perpendicular to the axis. In the present embodiment, the circumferential lengths of the first window portion 24 and the second window portion 26 are substantially the same, and each has a predetermined length (for example, approximately 1) with respect to the entire circumference of the metal sleeve 22. (A circumferential length of / 6 to 2/5)). The opposing direction of the first window portion 24 and the second window portion 26 is the same as the protruding direction of the tip portion that largely protrudes from the inner cylindrical fitting 12 of the stopper member 20 to both sides in the direction perpendicular to the axis.

金属スリーブ22における第一窓部24と第二窓部26の周方向間には、第一連結板部28と第二連結板部30が設けられている。第一連結板部28や第二連結板部30は、径方向外方に向かって凹状に開口する断面で周方向に所定の長さで延びており、それらの周方向長さが互いに略同じとされている。換言すると、金属スリーブ22では、互いに軸方向に所定距離を隔てて同一軸上に配された大径の円筒形状を有する一対のリング部32,32が、それらの軸方向対向面間に跨って延びる第一連結板部28と第二連結板部30によって一体的に連結された構造を呈しており、リング部32,32の軸方向対向面間の開口が第一及び第二連結板部28,30で仕切られることによって、リング部32,32の軸方向対向面間における第一及び第二連結板部28,30の一対の周方向間に、それぞれ第一窓部24と第二窓部26が形成されているのである。また、第一連結板部28や第二連結板部30の外周面には、金属スリーブ22の径方向外方に凹状に開口する断面形状をもって周方向に延びる、支持溝としての第一支持溝34および第二支持溝36が形成されている。   A first connecting plate portion 28 and a second connecting plate portion 30 are provided between the first window portion 24 and the second window portion 26 in the metal sleeve 22 in the circumferential direction. The first connecting plate portion 28 and the second connecting plate portion 30 have a predetermined length in the circumferential direction in a cross section that opens in a concave shape outward in the radial direction, and their circumferential lengths are substantially the same. It is said that. In other words, in the metal sleeve 22, a pair of ring portions 32, 32 having a large-diameter cylindrical shape arranged on the same axis at a predetermined distance in the axial direction straddle between those axially opposed surfaces. The first connecting plate portion 28 and the second connecting plate portion 30 are integrally connected to each other, and the openings between the axially opposed surfaces of the ring portions 32 and 32 are the first and second connecting plate portions 28. , 30, the first window portion 24 and the second window portion are respectively provided between the pair of circumferential directions of the first and second connecting plate portions 28, 30 between the axially facing surfaces of the ring portions 32, 32. 26 is formed. Further, on the outer peripheral surface of the first connecting plate portion 28 or the second connecting plate portion 30, a first support groove as a support groove extending in the circumferential direction with a cross-sectional shape opening in a concave shape radially outward of the metal sleeve 22. 34 and a second support groove 36 are formed.

これら内筒金具12と金属スリーブ22の間には、本体ゴム弾性体16が配設されている。本体ゴム弾性体16は、厚肉の略円筒形状を有しており、外周面が金属スリーブ22の内周面、即ち一対のリング部32,32の内周面や第一及び第二連結板部28,30の内周面に加硫接着されていると共に、その内周面が内筒金具12の外周面およびストッパ部材20の外周面に加硫接着されている。その結果、内筒金具12と金属スリーブ22が本体ゴム弾性体16で弾性連結されて、図3,4にも示されているように、本体ゴム弾性体16が内筒金具12やストッパ部材20、金属スリーブ22を備えた一体加硫成形品38として形成されている。   A main rubber elastic body 16 is disposed between the inner cylinder fitting 12 and the metal sleeve 22. The main rubber elastic body 16 has a thick, substantially cylindrical shape, and its outer peripheral surface is the inner peripheral surface of the metal sleeve 22, that is, the inner peripheral surface of the pair of ring portions 32, 32, and the first and second connecting plates. The inner peripheral surfaces of the portions 28 and 30 are vulcanized and bonded, and the inner peripheral surfaces thereof are vulcanized and bonded to the outer peripheral surface of the inner cylinder fitting 12 and the outer peripheral surface of the stopper member 20. As a result, the inner cylindrical metal member 12 and the metal sleeve 22 are elastically connected by the main rubber elastic body 16, and the main rubber elastic body 16 is connected to the inner cylindrical metal member 12 and the stopper member 20 as shown in FIGS. , Formed as an integrally vulcanized molded product 38 provided with a metal sleeve 22.

また、金属スリーブ22における第一及び第二連結板部28,30の外周面等には、本体ゴム弾性体16と一体形成された薄肉のシールゴム層40が被着されている。更に、ストッパ部材20の径方向外方に大きく突出する先端面には、本体ゴム弾性体16と一体形成された緩衝ゴム層42が被着されている。   A thin seal rubber layer 40 formed integrally with the main rubber elastic body 16 is attached to the outer peripheral surfaces of the first and second connecting plate portions 28 and 30 in the metal sleeve 22. Further, a shock-absorbing rubber layer 42 that is integrally formed with the main rubber elastic body 16 is attached to the front end surface of the stopper member 20 that protrudes greatly outward in the radial direction.

本体ゴム弾性体16の内筒金具12を挟んだ径方向一方向(図1中、上下)には、径方向外方に略矩形状に開口する第一ポケット部44と第二ポケット部46がそれぞれ形成されており、各ポケット部44,46の開口部分が金属スリーブ22の第一窓部24および第二窓部26を通じて外周面に開口している。また、緩衝ゴム層42を備えたストッパ部材20の各突出先端部分が、各ポケット部44,46の底部から開口部分に至らない寸法で、径方向外方に向かって突設されている。   In one radial direction (up and down in FIG. 1) sandwiching the inner cylindrical metal fitting 12 of the main rubber elastic body 16, there are a first pocket portion 44 and a second pocket portion 46 that open in a substantially rectangular shape radially outward. Each of the pocket portions 44 and 46 is open to the outer peripheral surface through the first window portion 24 and the second window portion 26 of the metal sleeve 22. In addition, each protruding tip portion of the stopper member 20 including the buffer rubber layer 42 is projected outward in the radial direction so as not to reach the opening portion from the bottom of each pocket portion 44, 46.

本体ゴム弾性体16において、ストッパ部材20の内筒金具12から突出する一対の先端部分の該突出方向に直交する径方向一方向で内筒金具12を挟んだ側には、すぐり部48が形成されている。すぐり部48は、本体ゴム弾性体16を軸方向に貫通して周方向に所定の長さで延びている。   In the main rubber elastic body 16, a straight portion 48 is formed on the side of the pair of tip portions protruding from the inner cylinder fitting 12 of the stopper member 20 with the inner cylinder fitting 12 sandwiched in one radial direction orthogonal to the protruding direction. Has been. The straight portion 48 extends through the main rubber elastic body 16 in the axial direction and has a predetermined length in the circumferential direction.

また、金属スリーブ22の第一連結板部28と第二連結板部30の外周面、即ち第一支持溝34と第二支持溝36上には、それぞれ一対の支持ゴム層50,50が突設されている。支持ゴム層50は、本体ゴム弾性体16と一体形成されていると共に、各支持溝34,36の幅方向両側の壁部から幅方向内方に向かって突出しており、全体として略矩形ブロック形状を呈している。   Further, a pair of support rubber layers 50 and 50 protrude on the outer peripheral surfaces of the first connecting plate portion 28 and the second connecting plate portion 30 of the metal sleeve 22, that is, on the first support groove 34 and the second support groove 36. It is installed. The support rubber layer 50 is integrally formed with the main rubber elastic body 16 and protrudes inward in the width direction from the wall portions on both sides in the width direction of the support grooves 34 and 36, and has a substantially rectangular block shape as a whole. Presents.

特に、第一連結板部28に突設された一対の支持ゴム層50,50において、周方向一方の第二窓部26の側(図1中、上方に示される周方向右回りの側)に偏倚した位置には、矩形状を呈する一対の当接突部52,52が、幅方向内側に突出するようにして一体形成されている。即ち、一対の当接突部52,52は支持ゴム層50よりも幅方向内側に突出せしめられていると共に、幅方向に所定距離を隔てて対向位置せしめられている。また、当接突部52の周方向一方の端部(図4中、上方に示される端部)が、第二窓部26の開口縁部と接する第一連結板部28の周方向一方の端部よりも周方向内側に位置せしめられていると共に、当接突部52の周方向他方の端部(図4中、下方に示される端部)が、第一連結板部28の周方向の略中央部分に位置せしめられている。また、各支持ゴム層50の周方向中央部分には、幅方向内側に向かって矩形凹状に開口する凹所が設けられており、各凹所の周方向一方の端部が各当接突部52の周方向他方の端部と接している。これら一対の凹所と一対の当接突部52,52の周方向他方の端部が協働して、第一支持溝34の底部から径方向外方に向かって矩形凹状に開口する嵌合凹所54が形成されている。   In particular, in the pair of support rubber layers 50, 50 projecting from the first connecting plate portion 28, one circumferential side of the second window portion 26 side (the circumferentially clockwise side shown in the upper part in FIG. 1). A pair of abutting protrusions 52, 52 having a rectangular shape are integrally formed at the position biased to protrude inward in the width direction. That is, the pair of contact protrusions 52 and 52 are protruded inward in the width direction from the support rubber layer 50 and are opposed to each other with a predetermined distance in the width direction. In addition, one end in the circumferential direction of the abutment protrusion 52 (the end shown in the upper part in FIG. 4) is one of the circumferential directions of the first connecting plate portion 28 in contact with the opening edge of the second window 26. The other end in the circumferential direction of the contact protrusion 52 (the end shown below in FIG. 4) is positioned on the inner side in the circumferential direction from the end, and the circumferential direction of the first connecting plate portion 28. It is located at the approximate center part of. In addition, a recess that opens in a rectangular concave shape toward the inner side in the width direction is provided in the center portion in the circumferential direction of each support rubber layer 50, and one end in the circumferential direction of each recess has each contact protrusion. 52 is in contact with the other end portion in the circumferential direction. The pair of recesses and the other end in the circumferential direction of the pair of contact protrusions 52, 52 cooperate to open from the bottom of the first support groove 34 in a rectangular concave shape outward in the radial direction. A recess 54 is formed.

さらに、第一連結板部28における一対の当接突部52,52の対向面間には、弾性弁体としてのゴム弁56が突設されている。ゴム弁56は、第一連結板部28の底部の外周面、即ち第一支持溝34の底面から径方向外方に突出する略矩形ブロック形状を呈していて、本体ゴム弾性体16と一体形成されている。ゴム弁56は、一対の当接突部52,52の対向面間の略中央部分に位置せしめられており、各当接突部52と幅方向に所定の距離を隔てて対向位置せしめられている。また、ゴム弁56の周方向一方(図4中、上方)の端面が、第一連結板部28に突設される基端側から突出方向の先端側に行くに従って周方向他方の側に傾斜する傾斜面とされている。かかるゴム弁56の周方向一方の端部が、第二窓部26の開口縁部と接する第一連結板部28の周方向一方の端部よりも周方向内側に位置せしめられている。   Further, a rubber valve 56 as an elastic valve body protrudes between the opposing surfaces of the pair of contact protrusions 52, 52 in the first connecting plate portion 28. The rubber valve 56 has a substantially rectangular block shape projecting radially outward from the outer peripheral surface of the bottom portion of the first connecting plate portion 28, that is, the bottom surface of the first support groove 34, and is integrally formed with the main rubber elastic body 16. Has been. The rubber valve 56 is positioned at a substantially central portion between the opposed surfaces of the pair of contact projections 52, 52, and is opposed to each contact projection 52 with a predetermined distance in the width direction. Yes. Further, one end surface of the rubber valve 56 in the circumferential direction (upward in FIG. 4) is inclined toward the other side in the circumferential direction from the proximal end side protruding from the first connecting plate portion 28 toward the distal end side in the protruding direction. It is supposed to be an inclined surface. One end portion in the circumferential direction of the rubber valve 56 is positioned on the inner side in the circumferential direction with respect to one end portion in the circumferential direction of the first connecting plate portion 28 in contact with the opening edge portion of the second window portion 26.

特に本実施形態では、ゴム弁56の周方向他方(図4中、下方)の端部が、各支持ゴム層50に突設された当接突部52の周方向他方の端部よりも周方向他方の側に僅かに延び出していて、嵌合凹所54内に位置せしめられている。   In particular, in this embodiment, the other end in the circumferential direction of rubber valve 56 (downward in FIG. 4) is more circumferential than the other circumferential end of abutment projection 52 projecting from each support rubber layer 50. It extends slightly to the other side in the direction and is positioned in the fitting recess 54.

このような内筒金具12と金属スリーブ22を備えた本体ゴム弾性体16の一体加硫成形品38に対して、第一ポケット部44と第二ポケット部46の周方向間を跨ぐようにしてオリフィス部材58が組み付けられている。本実施形態に係るオリフィス部材58は、第一のオリフィス形成部材60と第二のオリフィス形成部材62が周方向で相互に組み合わされることにより構成されて、全体として周方向に一周弱の長さで延びている。   With respect to the integrally vulcanized molded product 38 of the main rubber elastic body 16 provided with the inner cylindrical metal member 12 and the metal sleeve 22, the circumferential direction between the first pocket portion 44 and the second pocket portion 46 is straddled. An orifice member 58 is assembled. The orifice member 58 according to the present embodiment is configured by combining the first orifice forming member 60 and the second orifice forming member 62 in the circumferential direction, and as a whole, has a length of slightly less than one round in the circumferential direction. It extends.

これら第一のオリフィス形成部材60や第二のオリフィス形成部材62は、図5,6にも示されているように、周方向に半周弱の長さで延びる円弧板形状を呈しており、合成樹脂材や金属材等の硬質材を用いて形成されている。オリフィス形成部材60,62の周方向中間部分の幅寸法が、周方向両側部分の幅寸法に比して大きくされている。また、第一のオリフィス形成部材60と第二のオリフィス形成部材62の各幅方向中央部分の外周面には、略一定の谷状断面で周方向に所定の長さで連続して延びる第一のオリフィス溝64と第二のオリフィス溝66が、それぞれ形成されている。各オリフィス溝64,66の周方向一方の端部(図5,6中、上方に示される周方向右回りの端部)が、各オリフィス形成部材60,62の周方向一方の端面に開口している。   As shown in FIGS. 5 and 6, the first orifice forming member 60 and the second orifice forming member 62 have a circular arc plate shape extending in the circumferential direction with a length of a little less than a half circumference. It is formed using a hard material such as a resin material or a metal material. The width dimension of the circumferential intermediate part of the orifice forming members 60 and 62 is made larger than the width dimension of both circumferential part. Further, the first orifice forming member 60 and the second orifice forming member 62 have first and second outer circumferential surfaces that are continuously extended with a predetermined length in the circumferential direction in a substantially constant valley-like cross section. The orifice groove 64 and the second orifice groove 66 are respectively formed. One end in the circumferential direction of each orifice groove 64, 66 (the end in the clockwise direction shown in the upper direction in FIGS. 5 and 6) opens to one end face in the circumferential direction of each orifice forming member 60, 62. ing.

第一のオリフィス形成部材60と第二のオリフィス形成部材62の各周方向他方(図5,6中、下方)の側に偏倚した部位には、軸方向視略矩形状の断面で厚さ方向に貫通する第一連通窓68と第二連通窓70が形成されている。これら第一連通窓68と第二連通窓70に対して第一のオリフィス溝64と第二のオリフィス溝66の各周方向他方の端部が接続されている。特に本実施形態では、第二連通窓70の周方向他方の端縁部が第二のオリフィス形成部材62の周方向他方の端部に開口していることによって、第二連通窓70が切り欠き窓状を呈している。   The portions of the first orifice forming member 60 and the second orifice forming member 62 that are biased toward the other circumferential side (downward in FIGS. 5 and 6) have a substantially rectangular cross section in the thickness direction in the axial direction. A first continuous window 68 and a second communication window 70 penetrating therethrough are formed. The other end portions in the circumferential direction of the first orifice groove 64 and the second orifice groove 66 are connected to the first continuous window 68 and the second communication window 70. In particular, in the present embodiment, the second communication window 70 is notched by opening the other circumferential edge of the second communication window 70 at the other circumferential edge of the second orifice forming member 62. It has a window shape.

さらに、第一のオリフィス形成部材60の内周面において、周方向他方の端部と第一連通窓68の周方向他方の端縁部の間を周方向に延びて両端に開口する、短絡溝72が形成されている。また、第一のオリフィス形成部材60では、短絡溝72を備えた部位の幅寸法が、第一連通窓68を備えた部位の幅寸法等に比して大きくされている。   Further, on the inner peripheral surface of the first orifice forming member 60, a short circuit that extends in the circumferential direction between the other end in the circumferential direction and the other end edge in the circumferential direction of the first series passage window 68 and opens at both ends. A groove 72 is formed. Further, in the first orifice forming member 60, the width dimension of the part provided with the short-circuit groove 72 is made larger than the width dimension or the like of the part provided with the first series of through windows 68.

図7,8にも示されているように、第一及び第二のオリフィス形成部材60,62の各周方向中間部分が、径方向外方から本体ゴム弾性体16の一体加硫成形品38における第一及び第二ポケット部44,46に嵌め込まれて、ストッパ部材20の各突出先端部分と径方向に所定距離を隔てて対向位置せしめられている。   As shown in FIGS. 7 and 8, the circumferential intermediate portions of the first and second orifice forming members 60 and 62 are integrally vulcanized molded products 38 of the main rubber elastic body 16 from the radially outer side. Are fitted in the first and second pocket portions 44 and 46, and are opposed to each protruding tip portion of the stopper member 20 at a predetermined distance in the radial direction.

また、第一のオリフィス形成部材60の周方向一方の端部(図1中、周方向左回りの端部)と第二のオリフィス形成部材62の周方向一方の端部(図1中、周方向右回りの端部)が周方向で互いに重ね合わせられていると共に、金属スリーブ22における第二連結板部30の第二支持溝36に嵌め込まれて、該第二支持溝36に突設された一対の支持ゴム層50,50により幅方向に弾性的に挟持せしめられている。また、第一のオリフィス溝64と第二のオリフィス溝66の各周方向一方の端部が相互に接続されている。   Further, one end portion in the circumferential direction of the first orifice forming member 60 (end portion in the counterclockwise direction in FIG. 1) and one end portion in the circumferential direction of the second orifice forming member 62 (in FIG. (Clockwise ends) are overlapped with each other in the circumferential direction, and are fitted into the second support groove 36 of the second connecting plate portion 30 in the metal sleeve 22 so as to protrude from the second support groove 36. The pair of supporting rubber layers 50 and 50 are elastically sandwiched in the width direction. In addition, one end in each circumferential direction of the first orifice groove 64 and the second orifice groove 66 is connected to each other.

さらに、第一のオリフィス形成部材60の周方向他方の端部(図1中、周方向右回りの端部)が、金属スリーブ22における第一連結板部28の第一支持溝34に嵌め込まれて、第一連結板部28に突設された一対の支持ゴム層50,50の各当接突部52の周方向他方(図8中、下方)の端部に当接されていると共に、ゴム弁56を挟んで周方向一方の側に位置せしめられた嵌合凹所54に嵌め込まれて、該嵌合凹所54を構成する一対の支持ゴム層50,50によって幅方向に弾性的に挟持せしめられている。また、第二のオリフィス形成部材62の周方向他方の端部(図1中、周方向左回りの端部)が、第一支持溝34に嵌め込まれて、一対の支持ゴム層50,50における各当接突部52の周方向一方(図8中、上方)の端部に当接されていると共に、ゴム弁56を挟んで周方向他方の側に位置せしめられた一対の支持ゴム層50,50により幅方向に弾性的に挟持せしめられている。これにより、第一及び第二のオリフィス形成部材60,62からなるオリフィス部材58が、本体ゴム弾性体16の一体加硫成形品38に対して固定的に組み付けられている。   Further, the other end portion in the circumferential direction of the first orifice forming member 60 (the end portion in the clockwise direction in FIG. 1) is fitted into the first support groove 34 of the first connecting plate portion 28 in the metal sleeve 22. The pair of support rubber layers 50 and 50 projecting from the first connecting plate portion 28 are in contact with the other circumferential end (downward in FIG. 8) of each contact protrusion 52, It is fitted into a fitting recess 54 positioned on one side in the circumferential direction across the rubber valve 56, and elastically in the width direction by a pair of support rubber layers 50, 50 constituting the fitting recess 54. It is pinched. Further, the other end portion in the circumferential direction of the second orifice forming member 62 (the end portion in the counterclockwise direction in FIG. 1) is fitted into the first support groove 34, so that the pair of support rubber layers 50, 50 A pair of support rubber layers 50 that are in contact with one end (upward in FIG. 8) of each contact protrusion 52 and positioned on the other side in the circumferential direction with the rubber valve 56 interposed therebetween. , 50 are elastically sandwiched in the width direction. Thereby, the orifice member 58 composed of the first and second orifice forming members 60 and 62 is fixedly assembled to the integrally vulcanized molded product 38 of the main rubber elastic body 16.

特に本実施形態では、第一のオリフィス形成部材60の周方向他方の端部が金属スリーブ22の嵌合凹所54に嵌め込まれることに伴い、嵌合凹所54内に突出せしめられたゴム弁56の周方向他方の端部が、第一のオリフィス形成部材60の短絡溝72の開口縁部の周りの周方向端部に当接されて、該ゴム弁56が、第一連結板部28において第一窓部24から第二窓部26に向かって押し上げられるようにして弾性変形せしめられる。これにより、ゴム弁56に対して第一窓部24から第二窓部26に向かう方向に予圧縮が及ぼされつつ、ゴム弁56が、その弾性変形作用に基づき第一のオリフィス形成部材60の短絡溝72の開口縁部の周りの周方向端部に密着状に当接されている。このことからも明らかなように、本実施形態では、ゴム弁56に予圧縮が及ぼされつつ、第一のオリフィス形成部材60の短絡溝72の開口縁部の周りの周方向端部が当接されることによって、短絡溝72の一方の開口部分が流体密に覆蓋されていると共に、かかる周方向端部によってゴム弁56を当接する当接弁座74が構成されている。   Particularly in the present embodiment, the rubber valve protruded into the fitting recess 54 when the other end in the circumferential direction of the first orifice forming member 60 is fitted into the fitting recess 54 of the metal sleeve 22. The other circumferential end of 56 is brought into contact with a circumferential end around the opening edge of the short-circuit groove 72 of the first orifice forming member 60, and the rubber valve 56 is connected to the first connecting plate portion 28. In FIG. 2, the elastic member is elastically deformed by being pushed up from the first window portion 24 toward the second window portion 26. Thereby, the pre-compression is exerted on the rubber valve 56 in the direction from the first window portion 24 toward the second window portion 26, and the rubber valve 56 is formed on the first orifice forming member 60 based on its elastic deformation action. The short-circuit groove 72 is in close contact with the circumferential end around the opening edge. As is clear from this, in this embodiment, the circumferential end around the opening edge of the short-circuit groove 72 of the first orifice forming member 60 abuts while the rubber valve 56 is pre-compressed. Thus, one opening portion of the short-circuit groove 72 is fluid-tightly covered and a contact valve seat 74 that contacts the rubber valve 56 by the circumferential end portion is configured.

オリフィス部材58が組み付けられた本体ゴム弾性体16の一体加硫成形品38には、外筒金具14が組み付けられている。外筒金具14は、大径の略円筒形状を呈しており、例えばアルミニウム合金等で形成された剛性材とされている。外筒金具14の軸方向寸法は、金属スリーブ22の軸方向寸法と略同じとされている。外筒金具14の内周面には、略全体に亘って略一定の厚さ寸法で広がる薄肉のシールゴム層76が被着形成されている。而して、本体ゴム弾性体16の一体加硫成形品38に対して外筒金具14が外挿されて、外筒金具14に八方絞り等の縮径加工が施されている。   The outer cylinder fitting 14 is assembled to the integrally vulcanized molded product 38 of the main rubber elastic body 16 to which the orifice member 58 is assembled. The outer cylinder fitting 14 has a large-diameter, generally cylindrical shape, and is a rigid material formed of, for example, an aluminum alloy. The axial dimension of the outer cylinder fitting 14 is substantially the same as the axial dimension of the metal sleeve 22. On the inner peripheral surface of the outer cylindrical metal member 14, a thin seal rubber layer 76 that is spread over the entire surface with a substantially constant thickness is formed. Thus, the outer cylinder fitting 14 is extrapolated to the integrally vulcanized molded product 38 of the main rubber elastic body 16, and the outer cylinder fitting 14 is subjected to diameter reduction processing such as eight-way drawing.

これにより、外筒金具14が、シールゴム層76を介して金属スリーブ22に外嵌固定され、内筒金具12の径方向外方において略同心円状に位置せしめられている。特に、シールゴム層76に一体形成された複数条のシールリップが外筒金具14と金属スリーブ22の各リング部32の間に圧縮変形して介装されていることに基づき、外筒金具14が一対のリング部32,32に流体密に固着されていると共に、第一ポケット部44の開口部分と第二ポケット部46の開口部分が、外筒金具14により流体密に覆蓋されている。   Thus, the outer cylinder fitting 14 is fitted and fixed to the metal sleeve 22 via the seal rubber layer 76, and is positioned substantially concentrically outwardly in the radial direction of the inner cylinder fitting 12. In particular, based on the fact that a plurality of seal lips formed integrally with the seal rubber layer 76 are interposed between the outer cylinder fitting 14 and the ring portions 32 of the metal sleeve 22 while being compressed and deformed, the outer cylinder fitting 14 is While being fixed to the pair of ring portions 32 and 32 in a fluid-tight manner, the opening portion of the first pocket portion 44 and the opening portion of the second pocket portion 46 are covered with a fluid-tight cover by the outer cylindrical fitting 14.

第一ポケット部44と外筒金具14で流体密に画設された空間と第二ポケット部46と外筒金具14で流体密に画設された空間には、それぞれ壁部の一部が本体ゴム弾性体16で構成されて、本体ゴム弾性体16の弾性変形に基づいて圧力変動が生ぜしめられる第一の流体室78と第二の流体室80が形成されている。これら第一及び第二の流体室78,80には、非圧縮性流体が封入されている。かかる非圧縮性流体としては、水やアルキレングリコール,ポリアルキレングリコール,シリコーン油等が採用されるが、後述する流体の共振作用等の流動作用に基づく防振効果を有利に得るために、粘度が0.1Pa・s以下の低粘性流体が好適に採用される。要するに、本実施形態に係るコンプライアンスブッシュ10の内部には、非圧縮性流体が充填された第一の流体室78と第二の流体室80が形成されており、それら流体室78,80が内筒金具12を挟んだ径方向一方向で相互に対向位置せしめられるように形成されている。なお、第一及び第二の流体室78,80への非圧縮性流体の封入は、例えば非圧縮性流体中で、オリフィス部材58が組付けられた本体ゴム弾性体16の一体加硫成形品38の組付け体に外筒金具14が組み付けられることによって、有利に実現される。   In a space fluid-tightly defined by the first pocket portion 44 and the outer cylindrical fitting 14 and a space fluid-tightly defined by the second pocket portion 46 and the outer cylindrical fitting 14, a part of the wall portion is the main body. A first fluid chamber 78 and a second fluid chamber 80 are formed which are constituted by the rubber elastic body 16 and cause pressure fluctuations based on the elastic deformation of the main rubber elastic body 16. These first and second fluid chambers 78 and 80 are filled with an incompressible fluid. As such an incompressible fluid, water, alkylene glycol, polyalkylene glycol, silicone oil or the like is adopted. However, in order to advantageously obtain a vibration isolation effect based on a fluid action such as a resonance action of the fluid described later, the viscosity is A low viscosity fluid of 0.1 Pa · s or less is suitably employed. In short, a first fluid chamber 78 and a second fluid chamber 80 filled with an incompressible fluid are formed inside the compliance bushing 10 according to the present embodiment, and the fluid chambers 78 and 80 are inside. They are formed so as to be opposed to each other in one radial direction across the cylindrical fitting 12. The first and second fluid chambers 78 and 80 are filled with the incompressible fluid, for example, in an incompressible fluid, an integrally vulcanized molded product of the main rubber elastic body 16 in which the orifice member 58 is assembled. This is advantageously realized by assembling the outer cylindrical fitting 14 to the 38 assembled bodies.

また、オリフィス部材58の外周面に外筒金具14が外嵌装着されて、オリフィス部材58の外周面と外筒金具14の内周面がシールゴム層76を挟んで流体密に重ね合わせられていることによって、周方向で互いに接続された第一及び第二のオリフィス溝64,66の開口がシールゴム層76を挟んで外筒金具14により流体密に覆蓋されている。これに基づいて、金属スリーブ22と外筒金具14の間には、周方向に所定の長さ(本実施形態では一周弱の長さ)でトンネル状に延びるオリフィス通路82が形成されている。オリフィス通路82の一方の端部が、第一のオリフィス形成部材60に形成された第一連通窓68を通じて第一の流体室78に接続されていると共に、オリフィス通路82の他方の端部が、第二のオリフィス形成部材62に形成された第二連通窓70を通じて第二の流体室80に接続されている。それによって、第一の流体室78と第二の流体室80がオリフィス通路82を通じて相互に連通せしめられており、振動入力時の両室78,80の相対的な圧力変動に基づいて、オリフィス通路82を通じての流体の流動量が確保されて、該流体の共振作用等の流動作用に基づいて防振効果が発揮されるようになっている。   Further, the outer cylinder fitting 14 is fitted on the outer peripheral surface of the orifice member 58, and the outer peripheral surface of the orifice member 58 and the inner peripheral surface of the outer cylinder fitting 14 are fluid-tightly overlapped with the seal rubber layer 76 interposed therebetween. Thus, the openings of the first and second orifice grooves 64 and 66 connected to each other in the circumferential direction are covered fluid-tightly by the outer cylinder fitting 14 with the seal rubber layer 76 interposed therebetween. Based on this, an orifice passage 82 extending in a tunnel shape is formed between the metal sleeve 22 and the outer cylindrical fitting 14 in a circumferential direction with a predetermined length (a length of a little less than one round in the present embodiment). One end of the orifice passage 82 is connected to the first fluid chamber 78 through a first series of windows 68 formed in the first orifice forming member 60, and the other end of the orifice passage 82 is connected to the first fluid chamber 78. The second orifice forming member 62 is connected to the second fluid chamber 80 through the second communication window 70. Thereby, the first fluid chamber 78 and the second fluid chamber 80 are communicated with each other through the orifice passage 82, and the orifice passage is based on the relative pressure fluctuations of the two chambers 78, 80 at the time of vibration input. The amount of fluid flow through 82 is ensured, and the anti-vibration effect is exhibited based on the fluid action such as the resonance action of the fluid.

振動入力時に第一の流体室78と第二の流体室80の間に生ぜしめられる相対的な圧力変動の差に基づきオリフィス通路82を通じて流動せしめられる流体の共振周波数が、例えば10〜20Hz程度のフラッタやブレーキ振動等の防振すべき振動に対して流体の共振作用等に基づく防振効果(高減衰特性)が有利に発揮されるようにチューニングされている。オリフィス通路82のチューニングは、例えば、第一の流体室78や第二の流体室80の各壁ばね剛性(単位容積だけ変化させるのに必要な圧力変化量に対応する特性値)等を考慮しつつ、オリフィス通路82の通路長さと通路断面積を調節することによって行うことが可能であり、一般に、オリフィス通路82を通じて伝達される圧力変動の位相が変化して略共振状態となる周波数を、当該オリフィス通路82のチューニング周波数として把握することが出来る。   The resonance frequency of the fluid that flows through the orifice passage 82 based on the difference in relative pressure fluctuation generated between the first fluid chamber 78 and the second fluid chamber 80 when vibration is input is, for example, about 10 to 20 Hz. It is tuned so as to advantageously exhibit an anti-vibration effect (high damping characteristic) based on the resonance action of the fluid against vibrations to be anti-vibrated such as flutter and brake vibration. The tuning of the orifice passage 82 takes into account, for example, the rigidity of the wall springs of the first fluid chamber 78 and the second fluid chamber 80 (characteristic values corresponding to the amount of pressure change necessary for changing the unit volume). However, it can be performed by adjusting the passage length and the passage cross-sectional area of the orifice passage 82. Generally, the frequency at which the phase of the pressure fluctuation transmitted through the orifice passage 82 is changed to be in a substantially resonant state is This can be grasped as the tuning frequency of the orifice passage 82.

また、第一のオリフィス形成部材60が金属スリーブ22と外筒金具14の径方向間に挟圧配置されて、第一のオリフィス形成部材60の周方向他方の端部の内周面が第一連結板部28に被着されたシールゴム層40を介して第一連結板部28の外周面に流体密に重ね合わせられていることによって、第一のオリフィス形成部材60の内周面に形成された短絡溝72が第一連結板部28で流体密に覆蓋されて、短絡流路84が形成されている。短絡流路84の一方の端部が、第一連通窓68を通じて第一の流体室78に接続されている。また、短絡流路84の他方の端部が、ゴム弁56により流体密に閉塞されていると共に、該ゴム弁56を挟んで第二連通窓70を通じて第二の流体室80に接続されている。即ち、本実施形態では、第一の流体室78と第二の流体室80の一方の周方向間にオリフィス通路82が形成されていると共に、第一の流体室78と第二の流体室80の他方の周方向間に短絡流路84が形成されており、オリフィス通路82と短絡流路84が互いに独立して形成されている。なお、短絡流路84とオリフィス通路82の通路断面積が略同じとされていると共に、短絡流路84の通路長さがオリフィス通路82の通路長さに比して十分に短くされていることによって、第一の流体室78と第二の流体室80間の流体の流通抵抗に関して、短絡流路84がオリフィス通路82よりも十分に小さくされている。   Further, the first orifice forming member 60 is sandwiched between the metal sleeve 22 and the outer cylindrical metal member 14 in the radial direction, and the inner peripheral surface of the other end in the circumferential direction of the first orifice forming member 60 is the first. It is formed on the inner peripheral surface of the first orifice forming member 60 by being fluid-tightly superimposed on the outer peripheral surface of the first connecting plate portion 28 via the seal rubber layer 40 attached to the connecting plate portion 28. The short-circuit groove 72 is covered fluid-tightly by the first connecting plate portion 28 to form a short-circuit channel 84. One end of the short-circuit channel 84 is connected to the first fluid chamber 78 through the first series of windows 68. The other end of the short-circuit channel 84 is fluid-tightly closed by the rubber valve 56 and is connected to the second fluid chamber 80 through the second communication window 70 with the rubber valve 56 interposed therebetween. . That is, in the present embodiment, an orifice passage 82 is formed between one circumferential direction of the first fluid chamber 78 and the second fluid chamber 80, and the first fluid chamber 78 and the second fluid chamber 80. A short-circuit channel 84 is formed between the other circumferential directions of the two, and the orifice channel 82 and the short-circuit channel 84 are formed independently of each other. In addition, the passage cross-sectional areas of the short-circuit channel 84 and the orifice channel 82 are substantially the same, and the channel length of the short-circuit channel 84 is sufficiently shorter than the channel length of the orifice channel 82. Therefore, the short-circuit channel 84 is made sufficiently smaller than the orifice channel 82 with respect to the flow resistance of the fluid between the first fluid chamber 78 and the second fluid chamber 80.

そこにおいて、ゴム弁56には第一の流体室78から第二の流体室80に向かう方向に予圧縮力が及ぼされて、第二の流体室80から第一の流体室78に向かう方向に弾性変形作用が及ぼされることで、ゴム弁56が第一のオリフィス形成部材60の当接弁座74に密着状に当接されている。特に、オリフィス通路82のチューニング周波数の通常の大きさの振動入力時における第一の流体室78と第二の流体室80の間の相対的な圧力差がゴム弁56に及ぼされても、ゴム弁56の弾性に基づきゴム弁56が第一のオリフィス形成部材60の当接弁座74に当接されるように、予圧縮力が設定されている。これにより、短絡流路84が閉塞状態となる。また、第二の流体室80から第一の流体室78に向かう流体の圧力がゴム弁56に及ぼされることで、ゴム弁56がより大きな変形作用をもって当接弁座74に当接されることとなり、短絡流路84の閉塞状態が一層確実になる。   The pre-compression force is applied to the rubber valve 56 in the direction from the first fluid chamber 78 to the second fluid chamber 80, and in the direction from the second fluid chamber 80 to the first fluid chamber 78. Due to the elastic deformation action, the rubber valve 56 is in close contact with the contact valve seat 74 of the first orifice forming member 60. In particular, even when a relative pressure difference between the first fluid chamber 78 and the second fluid chamber 80 is exerted on the rubber valve 56 at the time of vibration input having a normal magnitude of the tuning frequency of the orifice passage 82, the rubber The precompression force is set so that the rubber valve 56 is brought into contact with the contact valve seat 74 of the first orifice forming member 60 based on the elasticity of the valve 56. As a result, the short-circuit channel 84 is closed. Further, the pressure of the fluid from the second fluid chamber 80 toward the first fluid chamber 78 is exerted on the rubber valve 56, so that the rubber valve 56 is brought into contact with the contact valve seat 74 with a larger deformation action. Thus, the closed state of the short-circuit channel 84 is further ensured.

一方、問題となるハーシュネス等の衝撃荷重が第二の流体室80から第一の流体室78に向かって入力されて、短絡流路84を通じて第一の流体室78から第二の流体室80に向かう方向に大きな流体流動が生ぜしめられる際には、予圧縮によるゴム弁56の弾性変形力に抗して、ゴム弁56が第一の流体室78から第二の流体室80に向かって弾性変形して、短絡流路84の閉塞状態が解除され、第一の流体室78と第二の流体室80が短絡流路84を通じて相互に連通せしめられるように、予圧縮力が設定されている。   On the other hand, an impact load such as harshness which is a problem is input from the second fluid chamber 80 toward the first fluid chamber 78 and is passed from the first fluid chamber 78 to the second fluid chamber 80 through the short-circuit channel 84. When a large fluid flow is generated in the direction of the direction, the rubber valve 56 is elastic from the first fluid chamber 78 toward the second fluid chamber 80 against the elastic deformation force of the rubber valve 56 due to pre-compression. The pre-compression force is set so that the closed state of the short-circuit channel 84 is released by deformation and the first fluid chamber 78 and the second fluid chamber 80 are communicated with each other through the short-circuit channel 84. .

すなわち、コンプライアンスブッシュ10の後述する自動車への装着状態下、車輪への車両前後方向の一方から他方に向かう衝撃荷重の入力時に、ゴム弁56が弾性変形して当接弁座74から離隔する程に第一の流体室78の圧力が大きくなって、ゴム弁56と当接弁座74が離隔した状態では、短絡流路84に生ぜしめられる第二の流体室80から第一の流体室78に向かう流体流動の抵抗が第一の流体室78から第二の流体室80に向かう流体流動の抵抗に比して大きくされる。その結果、短絡流路84を通じての第一の流体室78から第二の流体室80に向かう流体の流動が、これらゴム弁56と当接弁座74の離隔状態により有利に許容されて、第一の流体室78の圧力上昇が抑えられる。   In other words, the rubber valve 56 is elastically deformed and separated from the contact valve seat 74 when an impact load directed from one to the other in the vehicle front-rear direction is input to the wheel while the compliance bush 10 is mounted on an automobile described later. When the pressure of the first fluid chamber 78 is increased and the rubber valve 56 and the contact valve seat 74 are separated from each other, the second fluid chamber 80 generated in the short-circuit channel 84 is changed from the first fluid chamber 78. The resistance of the fluid flow toward the first fluid chamber 78 is made larger than the resistance of the fluid flow toward the second fluid chamber 80 from the first fluid chamber 78. As a result, the flow of fluid from the first fluid chamber 78 to the second fluid chamber 80 through the short-circuit channel 84 is advantageously allowed by the separated state of the rubber valve 56 and the contact valve seat 74, and An increase in pressure in one fluid chamber 78 is suppressed.

また、車輪への車両前後方向の他方から一方に向かう衝撃荷重の入力時に、第二の流体室80の圧力が大きくなっても、予圧縮が及ぼされたゴム弁56が当接弁座74に対して第二の流体室80から第一の流体室78に向かう方向に弾性変形して当接されていることによって、短絡流路84の閉塞状態が維持されており、それに加えて第二の流体室80の大きな圧力(正圧)がゴム弁56に及ぼされることで、短絡流路84がより確実に閉塞されている。その結果、短絡流路84に生ぜしめられる第一の流体室78から第二の流体室80に向かう流体の流動抵抗と第二の流体室80から第一の流体室78に向かう流体の流動抵抗が、短絡流路84を閉塞せしめるゴム弁56と当接弁座74の当接状態によって、何れも大きくされて、第一及び第二の流体室78,80間における短絡流路84を通じての圧力漏れが抑えられる。   In addition, when an impact load is applied to the wheel from the other side in the vehicle longitudinal direction to the other side, the pre-compressed rubber valve 56 is applied to the contact valve seat 74 even if the pressure in the second fluid chamber 80 increases. On the other hand, the closed state of the short-circuit channel 84 is maintained by being elastically deformed and abutting in the direction from the second fluid chamber 80 toward the first fluid chamber 78, in addition to the second fluid chamber 80. Since the large pressure (positive pressure) in the fluid chamber 80 is exerted on the rubber valve 56, the short-circuit channel 84 is more reliably closed. As a result, the flow resistance of the fluid from the first fluid chamber 78 to the second fluid chamber 80 and the flow resistance of the fluid from the second fluid chamber 80 to the first fluid chamber 78 generated in the short-circuit channel 84. However, both are increased by the contact state of the rubber valve 56 and the contact valve seat 74 that close the short circuit channel 84, and the pressure through the short circuit channel 84 between the first and second fluid chambers 78 and 80 is increased. Leakage is suppressed.

本実施形態に係る片方向弁手段がゴム弁56や当接弁座74を含んで構成されており、特に本構造の片方向弁手段によれば、第一の流体室78と第二の流体室80の間に生ぜしめられる相対的な圧力差がゴム弁56に及ぼされることで、ゴム弁56の当接弁座74への離隔又は当接による短絡流路84の開閉がより確実にされるのである。   The one-way valve means according to this embodiment includes a rubber valve 56 and a contact valve seat 74, and in particular, according to the one-way valve means of this structure, the first fluid chamber 78 and the second fluid Since the relative pressure difference generated between the chambers 80 is exerted on the rubber valve 56, the short-circuit channel 84 is more reliably opened and closed due to the separation or contact of the rubber valve 56 with the contact valve seat 74. It is.

上述の如き構造とされた自動車のサスペンション用の流体封入式コンプライアンスブッシュ10においては、例えば図9に示される如き自動車のフロントサスペンションに用いられるサスペンションアームとしてのL型のロアアーム86と車両ボデー88の間に装着されるようになっている。   In the fluid-filled compliance bushing 10 for an automobile suspension structured as described above, for example, between an L-shaped lower arm 86 and a vehicle body 88 as a suspension arm used for an automobile front suspension as shown in FIG. It comes to be attached to.

ロアアーム86は、良く知られているように、平面視略L字状のアームとされており、車両外側(図9中、右側)に位置する外側端部90に図示しないボールジョイントが配設されて、キャリアを介して車輪に取り付けられるようになっている。また、車両内側(図9中、左側)において、車両前後方向(図9中、上下)に離隔して設けられた内側前方端部92と内側後方端部94には、それぞれロアアーム86を車両ボデー88に防振連結する防振ブッシュが取り付けられるようになっている。ロアアーム86において、外側端部90の中心と内側前方端部92の中心を通って車両の略左右方向(図9中、左右)に延びる横軸:l1上に延びる部位が、横腕部96とされていると共に、内側前方端部92の中心と内側後方端部94の中心を通って車両前後方向に延びる縦軸:l2上に延びる部位が、縦腕部98とされている。   As is well known, the lower arm 86 is a substantially L-shaped arm in plan view, and a ball joint (not shown) is disposed on the outer end 90 located on the vehicle outer side (right side in FIG. 9). And can be attached to the wheel via a carrier. Further, on the inner side of the vehicle (left side in FIG. 9), an inner front end portion 92 and an inner rear end portion 94 that are provided apart from each other in the longitudinal direction of the vehicle (up and down in FIG. 9) are respectively provided with a lower arm 86. An anti-vibration bushing for anti-vibration connection to 88 is attached. In the lower arm 86, a portion extending on the horizontal axis: l1 extending in the substantially left-right direction (left and right in FIG. 9) of the vehicle through the center of the outer end portion 90 and the center of the inner front end portion 92 is the horizontal arm portion 96. In addition, a portion extending on the longitudinal axis l2 extending in the vehicle front-rear direction through the center of the inner front end portion 92 and the center of the inner rear end portion 94 is a vertical arm portion 98.

ロアアーム86の内側前方端部92に配される防振ブッシュ100は、例えば、特許文献1(特開2002−337527号公報)に示されるロアアームの内側前方端部に配されるゴムブッシュと同様な構造とされており、インナ軸部材とその外周側に配されたアウタ筒部材が本体ゴム弾性体で相互に弾性連結された構造を呈している。防振ブッシュ100は、アウタ筒部材が内側前方端部92において車両前後方向に延びるアームアイに圧入等で固定されると共に、インナ軸部材が車両ボデーに固定されることによって、ブッシュ中心軸が車両前後方向に延びるようにして、ロアアーム86と車両ボデー88の間に配されて、ロアアーム86を車両ボデー88に防振連結するようになっている。   The anti-vibration bush 100 disposed at the inner front end 92 of the lower arm 86 is similar to, for example, a rubber bush disposed at the inner front end of the lower arm disclosed in Patent Document 1 (Japanese Patent Application Laid-Open No. 2002-337527). The inner shaft member and the outer cylinder member arranged on the outer peripheral side thereof are elastically connected to each other by a main rubber elastic body. The anti-vibration bush 100 has an outer cylinder member fixed to an arm eye extending in the vehicle front-rear direction at the inner front end portion 92 by press-fitting or the like, and an inner shaft member is fixed to the vehicle body, whereby the bush central axis is fixed to the vehicle front-rear. Extending in the direction, it is arranged between the lower arm 86 and the vehicle body 88 and is connected to the vehicle body 88 in a vibration-proof manner.

また、ロアアーム86の内側後方端部94と車両ボデー88の間に装着される防振ブッシュには、本実施形態に係る流体封入式コンプライアンスブッシュ10が採用される。即ち、車両前後方向に延びるロッド状の内側後方端部94が、コンプライアンスブッシュ10の内筒金具12のフランジ状部18側から内筒金具12に内挿されて、ボルト等で固定されている。また、コンプライアンスブッシュ10の外筒金具14に取付ブラケット102が固定されて、取付ブラケット102がボルト等を用いて車両ボデー88に固定されている。これにより、流体封入式コンプライアンスブッシュ10が、ブッシュ中心軸が車両前後方向に延びるようにして、ロアアーム86と車両ボデー88の間に配されて、ロアアーム86を車両ボデー88に防振連結するようになっていると共に、車輪からの車両前後方向の入力荷重が、ロアアーム86を介してブッシュ10の軸直角方向に及ぼされるようになっている。   In addition, the fluid-filled compliance bush 10 according to the present embodiment is employed as a vibration-proof bush that is mounted between the inner rear end 94 of the lower arm 86 and the vehicle body 88. That is, a rod-shaped inner rear end portion 94 extending in the vehicle front-rear direction is inserted into the inner cylinder fitting 12 from the flange-like portion 18 side of the inner cylinder fitting 12 of the compliance bush 10 and fixed with a bolt or the like. Further, the mounting bracket 102 is fixed to the outer cylinder fitting 14 of the compliance bush 10, and the mounting bracket 102 is fixed to the vehicle body 88 using bolts or the like. Thus, the fluid filled compliance bushing 10 is disposed between the lower arm 86 and the vehicle body 88 so that the bush central axis extends in the vehicle front-rear direction, and the lower arm 86 is connected to the vehicle body 88 in a vibration-proof manner. In addition, an input load in the vehicle front-rear direction from the wheels is exerted in a direction perpendicular to the axis of the bush 10 via the lower arm 86.

流体封入式コンプライアンスブッシュ10のフロントサスペンション機構への装着下では、ブッシュ10における第一の流体室78と第二の流体室80の対向方向が車両左右方向に延びており、第一の流体室78が、車両前後方向に延びるブッシュ中心軸を挟んで車両内側(図9中、左側)に位置せしめられていると共に、第二の流体室80が、ブッシュ中心軸を挟んで車両外側(図9中、右側)に位置せしめられている。また、ブッシュ10における一対のすぐり部48,48が、車両の上下方向で対向位置せしめられている。   When the fluid-filled compliance bush 10 is mounted on the front suspension mechanism, the opposing direction of the first fluid chamber 78 and the second fluid chamber 80 in the bush 10 extends in the left-right direction of the vehicle. Is positioned on the vehicle inner side (left side in FIG. 9) with the bush central axis extending in the longitudinal direction of the vehicle, and the second fluid chamber 80 is on the vehicle outer side (in FIG. 9) with the bush central axis in between. , Right side). Further, the pair of straight portions 48, 48 in the bush 10 are opposed to each other in the vertical direction of the vehicle.

また、流体封入式コンプライアンスブッシュ10と防振ブッシュ100の静的なばね特性に関して、防振ブッシュ100が、流体封入式コンプライアンスブッシュ10に比して硬くされている。   Further, regarding the static spring characteristics of the fluid-filled compliance bush 10 and the vibration-proof bushing 100, the vibration-proof bush 100 is harder than the fluid-filled compliance bush 10.

このような流体封入式コンプライアンスブッシュ10を備えたサスペンション機構では、車両前後方向の荷重が車輪に及ぼされると、防振ブッシュ100と流体封入式コンプライアンスブッシュ10のコンプライアンスによって、車輪からロアアーム86を介して車両ボデー88に伝わる荷重が低減されるようになっている。特に、防振ブッシュ100の静ばねが流体封入式コンプライアンスブッシュ10の静ばねよりも硬くされていることにより、車輪からの前後方向の荷重がロアアーム86に入力されると、ロアアーム86の主たる変位が、防振ブッシュ100が固定される内側前方端部92を支点として、車輪側に固定される外側端部90と流体封入式コンプライアンスブッシュ10が固定される内側後方端部94が一体的に変位するようになっている。即ち、車輪への車両前方から後方に向かう荷重の入力により、外側端部90が前方から後方に向かって変位すると共に、内側後方端部94が車両外側から内側に向かって変位する。また、車輪への車両後方から前方に向かう荷重の入力により、外側端部90が後方から前方に向かって変位すると共に、内側後方端部94が車両内側から外側に向かって変位する。この内側後方端部94の車両左右方向への変位に伴い、内筒金具12が外筒金具14に対して車両左右方向に変位せしめられ、車両左右方向で対向位置せしめられた第一の流体室78の第二の流体室80の間に相対的な圧力変動が生ぜしめられる。   In the suspension mechanism including the fluid-filled compliance bush 10, when a load in the vehicle front-rear direction is applied to the wheel, the suspension is supported from the wheel via the lower arm 86 by the compliance of the vibration-proof bush 100 and the fluid-filled compliance bush 10. The load transmitted to the vehicle body 88 is reduced. In particular, since the static spring of the vibration isolating bush 100 is harder than the static spring of the fluid-filled compliance bushing 10, when a longitudinal load from the wheel is input to the lower arm 86, the main displacement of the lower arm 86 is reduced. The outer end 90 fixed to the wheel side and the inner rear end 94 fixed to the fluid filled compliance bush 10 are integrally displaced with the inner front end 92 to which the vibration isolating bush 100 is fixed as a fulcrum. It is like that. In other words, the outer end 90 is displaced from the front to the rear and the inner rear end 94 is displaced from the outside to the inside of the vehicle by the input of the load from the front to the rear of the vehicle. In addition, the outer end 90 is displaced from the rear to the front and the inner rear end 94 is displaced from the inner side of the vehicle to the outer side by the input of the load from the rear of the vehicle toward the front. As the inner rear end 94 is displaced in the left-right direction of the vehicle, the inner cylinder fitting 12 is displaced in the left-right direction of the vehicle with respect to the outer cylinder fitting 14, and the first fluid chamber is positioned opposite to the left-right direction of the vehicle. A relative pressure variation occurs between the 78 second fluid chambers 80.

かかるサスペンション機構に対してオリフィス通路82のチューニング周波数域のフラッタやブレーキ振動等の振動が入力されると、第一の流体室78と第二の流体室80の間に相対的な圧力変動が有効に生ぜしめられて、オリフィス通路82を通じての流体の共振作用等により、かかる流体流動量が充分に確保される。また、当該振動入力による第一の流体室78と第二の流体室80の間の圧力変動の大きさでは、予圧縮によるゴム弁56と当接弁座74の当接状態が解除されないように設定されているため、短絡流路84の閉塞状態が保持されており、それによって、第一の流体室78と第二の流体室80の間の短絡流路84を通じての圧力漏れに起因してオリフィス通路82を通じての流体流動量が損なわれることもない。これにより、オリフィス通路82の共振作用等の流動作用に基づく高減衰特性によって、優れた防振効果が発揮され得る。   When vibration such as flutter or brake vibration in the tuning frequency range of the orifice passage 82 is input to such a suspension mechanism, relative pressure fluctuation is effective between the first fluid chamber 78 and the second fluid chamber 80. The fluid flow amount is sufficiently secured by the resonance action of the fluid through the orifice passage 82 and the like. Further, the contact state between the rubber valve 56 and the contact valve seat 74 due to pre-compression is not released with the magnitude of the pressure fluctuation between the first fluid chamber 78 and the second fluid chamber 80 due to the vibration input. Therefore, the closed state of the short-circuit channel 84 is maintained, thereby causing a pressure leak through the short-circuit channel 84 between the first fluid chamber 78 and the second fluid chamber 80. The amount of fluid flow through the orifice passage 82 is not impaired. Accordingly, an excellent vibration isolation effect can be exhibited by the high damping characteristics based on the flow action such as the resonance action of the orifice passage 82.

そこにおいて、自動車が段差乗り越えや凹凸の大きな路面等を走行して、車両前後方向の一方となる車両前方から車両前後方向の他方となる後方に向かって衝撃的な荷重が車輪に入力されるに際して、ロアアーム86の内側後方端部94が車両内側から外側に向かって急に乃至は過大に変位せしめられることにより、第一の流体室78に過大な圧力が惹起される。この圧力が短絡流路84を通じてゴム弁56に及ぼされて、予圧縮によるゴム弁56の弾性変形力に抗して、ゴム弁56が第一の流体室78から第二の流体室80に向かって弾性変形する程度にゴム弁56の予圧縮力が設定されているため、当該衝撃荷重の入力時には、短絡流路84の閉塞状態が解除されて、第一の流体室78と第二の流体室80が短絡流路84を通じて相互に連通せしめられることとなる。その結果、第一の流体室78の圧力が第二の流体室80の圧力に比して十分に大きくされていることで、短絡流路84に生ぜしめられる第一の流体室78から第二の流体室80に向かう流体流動方向に比して第二の流体室80から第一の流体室78に向かう流体流動方向でより大きな流動抵抗が発揮されており、短絡流路84を通じての第一の流体室78から第二の流体室80に向かう流体の流動が有利に許容される。これにより、衝撃的な荷重入力による第一の流体室78の高圧状態に起因する高動ばね化が抑えられて、ブッシュ10が撓み始める初期の段階で、衝撃荷重が低ばね特性に基づき低減されて、車輪からボデーに伝わる路面振動が有利に抑えられる。   There, when an automobile travels over a step or has a large uneven surface, an impact load is input to the wheels from the front of the vehicle, which is one of the front and rear directions of the vehicle, to the rear, which is the other of the front and rear directions of the vehicle. The inner rear end portion 94 of the lower arm 86 is suddenly or excessively displaced from the inner side to the outer side of the vehicle, so that an excessive pressure is generated in the first fluid chamber 78. This pressure is applied to the rubber valve 56 through the short-circuit channel 84, and the rubber valve 56 moves from the first fluid chamber 78 toward the second fluid chamber 80 against the elastic deformation force of the rubber valve 56 due to pre-compression. Since the precompression force of the rubber valve 56 is set to such an extent that the rubber valve 56 is elastically deformed, the closed state of the short-circuit channel 84 is released when the impact load is input, and the first fluid chamber 78 and the second fluid The chambers 80 are communicated with each other through the short-circuit channel 84. As a result, the pressure of the first fluid chamber 78 is sufficiently larger than the pressure of the second fluid chamber 80, so that the first fluid chamber 78 generated in the short-circuit channel 84 is changed from the first fluid chamber 78 to the second fluid chamber 80. A larger flow resistance is exhibited in the fluid flow direction from the second fluid chamber 80 toward the first fluid chamber 78 as compared with the fluid flow direction toward the first fluid chamber 80. The flow of fluid from one fluid chamber 78 to the second fluid chamber 80 is advantageously permitted. Accordingly, the high dynamic spring due to the high pressure state of the first fluid chamber 78 due to the shock load input is suppressed, and the impact load is reduced based on the low spring characteristics at the initial stage where the bush 10 starts to bend. Thus, road surface vibration transmitted from the wheel to the body is advantageously suppressed.

また、ロアアーム86の車両外側から内側に向かって変位した内側後方端部94の中心が再び縦軸:l2上に位置せしめられるように変位するに際して、ロアアーム86の外側端部90が車両後方から前方に向かって変位することに伴い、車両後方から前方に向かう荷重が車輪に入力される。その際に、第二の流体室80から第一の流体室78に向かう流体の圧力がゴム弁56に及ぼされることで、予圧縮をもって当接弁座74に当接されていたゴム弁56に対して、更に当接弁座74に向かう方向に弾性変形作用が及ぼされることとなり、当接状態が一層確実になる。その結果、第二の流体室80の圧力が第一の流体室78の圧力に比して十分に大きくされた状態下、ゴム弁56と当接弁座74の当接状態が維持されていることによって、短絡流路84に生ぜしめられる第一の流体室78から第二の流体室80に向かう流体の流動抵抗と第二の流体室80から第一の流体室78に向かう流体の流動抵抗が何れも大きくされる。これにより、短絡流路84の閉塞状態が好適に保持されて、第一及び第二の流体室78,80間の短絡流路84を通じての圧力漏れが抑えられることから、比較的に高い減衰性能が得られる。従って、前述の車輪への前方から後方に向かう衝撃荷重が流体封入式コンプライアンスブッシュ10に入力されることで車輪に反作用的に及ぼす後方から前方に向かう荷重が、高減衰特性に基づき低減されて、車輪がキャリアに支持される中央位置から後方に変位して再び中央位置に戻った後に該中央位置を超えて前方に変位する、所謂車輪の揺れ戻しが有利に抑えられる。   Further, when the center of the inner rear end portion 94 displaced from the vehicle outer side toward the inner side of the lower arm 86 is displaced again so as to be positioned on the longitudinal axis 12, the outer end portion 90 of the lower arm 86 moves forward from the vehicle rear side. As the vehicle is displaced toward the vehicle, a load from the rear to the front of the vehicle is input to the wheels. At that time, the pressure of the fluid from the second fluid chamber 80 toward the first fluid chamber 78 is exerted on the rubber valve 56, so that the rubber valve 56 that has been in contact with the contact valve seat 74 with pre-compression is applied to the rubber valve 56. On the other hand, an elastic deformation action is further exerted in the direction toward the contact valve seat 74, and the contact state is further ensured. As a result, the contact state between the rubber valve 56 and the contact valve seat 74 is maintained while the pressure in the second fluid chamber 80 is sufficiently higher than the pressure in the first fluid chamber 78. As a result, the flow resistance of the fluid from the first fluid chamber 78 to the second fluid chamber 80 and the flow resistance of the fluid from the second fluid chamber 80 to the first fluid chamber 78 generated in the short-circuit channel 84. Is increased. As a result, the closed state of the short-circuit channel 84 is suitably maintained, and pressure leakage through the short-circuit channel 84 between the first and second fluid chambers 78 and 80 is suppressed, so that a relatively high attenuation performance is achieved. Is obtained. Therefore, the load from the rear to the front acting on the wheel reactively by the impact load from the front to the rear of the wheel being input to the fluid-filled compliance bushing 10 is reduced based on the high damping characteristics. The so-called swinging back of the wheel, in which the wheel is displaced rearward from the center position supported by the carrier and returned to the center position and then moved forward beyond the center position, is advantageously suppressed.

それ故、本実施形態に係る流体封入式コンプライアンスブッシュ10がサスペンション機構に採用されることで、車輪への車両前方から後方に向かう衝撃荷重の入力時に、低ばね特性が発揮されることによって、高ばね状態での伝わり易さが問題となる路面振動が低減されて、優れた乗り心地が得られる。しかも、車輪への後方から前方に向かう荷重入力時やフラッタやブレーキ振動等の通常の振動入力時に、高減衰特性が発揮されることで、車輪の揺れ戻しが抑えられて優れた操安性が得られると共に、所期の防振効果が安定して得られるのである。   Therefore, when the fluid filled compliance bushing 10 according to the present embodiment is employed in the suspension mechanism, a low spring characteristic is exhibited when an impact load from the front of the vehicle toward the rear is input to the wheels. Road surface vibration, which is a problem with ease of transmission in the spring state, is reduced, and an excellent riding comfort can be obtained. In addition, when the load is applied from the rear to the front of the wheel, or when normal vibration such as flutter or brake vibration is input, the high damping characteristics are exhibited, so that the wheel does not swing back and has excellent operability. In addition to being obtained, the desired anti-vibration effect can be stably obtained.

また、本実施形態では、第一及び第二の流体室78,80内にストッパ部材20や緩衝ゴム層42を含んでなるストッパ機構が突設されていることにより、第一の流体室78と第二の流体室80の対向方向に過大な荷重が入力されて、内筒金具12と外筒金具14がストッパ機構を介して互いに打ち当たることで、内外筒金具12,14の相対的な変位量が緩衝的に制限されるようになっている。それによって、前述の揺れ戻し等を一層有利に抑えることも可能となる。   In this embodiment, a stopper mechanism including the stopper member 20 and the buffer rubber layer 42 is provided in the first and second fluid chambers 78 and 80 so that the first fluid chamber 78 and When an excessive load is input in the opposite direction of the second fluid chamber 80 and the inner cylinder fitting 12 and the outer cylinder fitting 14 abut against each other via the stopper mechanism, the relative displacement of the inner and outer cylinder fittings 12, 14 is achieved. The amount is buffered. Thereby, it is possible to more advantageously suppress the above-described shaking back and the like.

以上、本発明の一実施形態について詳述してきたが、かかる実施形態における具体的な記載によって、本発明は、何等限定されるものでなく、当業者の知識に基づいて種々なる変更、修正、改良等を加えた態様で実施可能であり、また、そのような実施態様が、本発明の趣旨を逸脱しない限り、何れも、本発明の範囲内に含まれるものであることは、言うまでもない。   As mentioned above, although one embodiment of the present invention has been described in detail, the present invention is not limited in any way by the specific description in the embodiment, and various changes, modifications, and modifications based on the knowledge of those skilled in the art. Needless to say, the present invention can be implemented in a mode with improvements and the like, and all such modes are included in the scope of the present invention without departing from the gist of the present invention.

例えば、ゴム弁56や第一及び第二の流体室78,80、オリフィス通路82、短絡流路84における形状や大きさ、構造、数、配置等の形態は、例示の如きものに限定されるものでない。具体的に前記実施形態では、第一の流体室78と第二の流体室80が一組設けられて、これら第一の流体室78と第二の流体室80の間に短絡流路84とゴム弁56が一組設けられていたが、これら第一及び第二の流体室や短絡流路、ゴム弁は、それぞれ複数組設けても良い。   For example, the shape, size, structure, number, arrangement, etc. of the rubber valve 56, the first and second fluid chambers 78, 80, the orifice passage 82, and the short-circuit passage 84 are limited to those illustrated. Not a thing. Specifically, in the embodiment, a set of the first fluid chamber 78 and the second fluid chamber 80 is provided, and the short-circuit channel 84 is provided between the first fluid chamber 78 and the second fluid chamber 80. Although one set of rubber valves 56 is provided, a plurality of sets of these first and second fluid chambers, short-circuit flow paths, and rubber valves may be provided.

また、前記実施形態では、オリフィス通路82が第一の流体室78と第二の流体室80の一方の周方向間に設けられていると共に、短絡流路84が第一の流体室78と第二の流体室80の他方の周方向間に設けられていることによって、オリフィス通路82と短絡流路84が互いに独立して形成されていたが、例えば第一及び第二の流体室78,80間の一方の端部間にオリフィス通路と短絡流路を設けたり、更にオリフィス通路と短絡流路が互いの一部を利用して形成されることも可能である。   In the embodiment, the orifice passage 82 is provided between the first fluid chamber 78 and the second fluid chamber 80 in the circumferential direction, and the short-circuit channel 84 is connected to the first fluid chamber 78 and the first fluid chamber 78. Although the orifice passage 82 and the short-circuit passage 84 are formed independently of each other by being provided between the other circumferential directions of the two fluid chambers 80, for example, the first and second fluid chambers 78, 80 are formed. It is also possible to provide an orifice passage and a short-circuit channel between one end portion between them, and further, an orifice channel and a short-circuit channel can be formed using a part of each other.

さらに、前記実施形態においては、車輪への車両前方から後方に向かう衝撃荷重の入力時において短絡流路84に生ぜしめられる第一の流体室78から第二の流体室80に向かう流体流動方向に比して反対に第二の流体室80から第一の流体室78に向かう流体流動方向でより大きな流動抵抗が発揮される際に、予圧縮が及ぼされるゴム弁56が当接弁座74に当接して、短絡流路84が閉塞状態とされていたが、片方向弁手段としてゴム弁56および当接弁座74を採用したり、短絡流路84を閉塞状態としたりすることは、必須の構成要件でない。具体的に例えば、第一のオリフィス形成部材の周方向端部に開口する短絡流路の開口縁部に対して周方向に所定距離を隔てて対向せしめられるように障壁を設けると共に、上述の流体流動方向の調整が出来るように、障壁を弾性部材で構成することも可能である。   Furthermore, in the above-described embodiment, in the direction of fluid flow from the first fluid chamber 78 to the second fluid chamber 80 generated in the short-circuit channel 84 when an impact load is applied to the wheels from the front to the rear of the vehicle. In contrast, when a greater flow resistance is exerted in the fluid flow direction from the second fluid chamber 80 toward the first fluid chamber 78, the rubber valve 56 to which pre-compression is applied is brought into contact with the contact valve seat 74. Although the short-circuit channel 84 is closed due to contact, it is essential to adopt the rubber valve 56 and the contact valve seat 74 as a one-way valve means or to close the short-circuit channel 84. It is not a configuration requirement. Specifically, for example, a barrier is provided so as to face the opening edge of the short-circuit channel opening at the circumferential end of the first orifice forming member at a predetermined distance in the circumferential direction, and the above-described fluid The barrier can be made of an elastic member so that the flow direction can be adjusted.

加えて、前記実施形態では、本発明を自動車のフロントサスペンション機構のロアアームを車両ボデーに対して防振連結するコンプライアンスブッシュに適用したものの具体例について示したが、本発明は、自動車のリアサスペンション機構のトレーリングアームを車両ボデーに対して防振連結するコンプライアンスブッシュの他、自動車以外の各種車両のサスペンション用のコンプライアンスブッシュに対して、何れも、適用可能である。   In addition, in the above-described embodiment, the present invention is applied to a compliance bushing in which the lower arm of the front suspension mechanism of the automobile is connected to the vehicle body in a vibration-proof manner. However, the present invention is not limited to the rear suspension mechanism of the automobile. In addition to the compliance bushing for connecting the trailing arm to the vehicle body in an anti-vibration manner, any of them can be applied to the compliance bushing for suspensions of various vehicles other than automobiles.

また、前記実施形態では、車輪への車両前後方向の一方となる前方から車両前後方向の他方となる後方に向かう衝撃荷重の入力時に、短絡流路84の第二の流体室80側の開口部に設けられたゴム弁56が弾性変形して当接弁座74から離隔し、第一の流体室78と第二の流体室80が短絡流路84を通じて連通せしめられることによって、低ばね特性が得られる一方、車輪への車両後方から前方に向かう荷重入力時に、ゴム弁56が当接弁座74に当接されて、短絡流路84が閉塞せしめられていることで、高減衰特性が得られるようになっていた。しかしながら、かかる形態は、図9に示される如きフロントサスペンション機構への適用下での具体的な要求特性の一態様を示したに過ぎず、場合によっては、車輪への車両前後方向の一方となる後方から車両前後方向の他方となる前方に向かう衝撃荷重の入力時に、低ばね特性が要求される一方、車輪への車両前方から後方に向かう荷重入力時に、高減衰特性が要求されることも考えられる。そのような場合に、例えば、当接弁座およびゴム弁を短絡流路の第二の流体室側の開口部に代えて第一の流体室側の開口部に設けて、車輪への車両後方から前方に向かう衝撃荷重の入力時に、ゴム弁を弾性変形させて当接弁座から離隔せしめ、第一の流体室と第二の流体室を短絡流路を通じて連通させて、低ばね特性を得る一方、車輪への車両前方から後方に向かう荷重入力時に、ゴム弁を当接弁座に当接させて、短絡流路の閉塞状態を保持して、高減衰特性を得るようにすることも、本発明に係る流体封入式コンプライアンスブッシュの技術的範囲に含まれる。   Moreover, in the said embodiment, the opening part by the side of the 2nd fluid chamber 80 side of the short circuit flow path 84 is input at the time of the input of the impact load which goes to the back which becomes the other in the vehicle front-back direction from the front which becomes one in the vehicle front-back direction to a wheel. The rubber valve 56 provided in the elastic member is elastically deformed to be separated from the contact valve seat 74, and the first fluid chamber 78 and the second fluid chamber 80 are communicated with each other through the short-circuit channel 84. On the other hand, when the load is applied to the wheels from the rear to the front of the vehicle, the rubber valve 56 is brought into contact with the contact valve seat 74 and the short-circuit channel 84 is closed, thereby obtaining a high damping characteristic. It was supposed to be. However, this form only shows one aspect of the specific required characteristics under application to the front suspension mechanism as shown in FIG. 9, and in some cases, it is one of the vehicle front-rear directions to the wheels. While low spring characteristics are required when an impact load is applied from the rear to the other side in the vehicle longitudinal direction, high damping characteristics are also required when a load is applied to the wheels from the front to the rear of the vehicle. It is done. In such a case, for example, the contact valve seat and the rubber valve are provided in the opening on the first fluid chamber side instead of the opening on the second fluid chamber side of the short-circuit flow path, so that the vehicle rearward to the wheel The rubber valve is elastically deformed and separated from the contact valve seat when an impact load directed from the front to the front is input, and the first fluid chamber and the second fluid chamber are communicated through a short-circuit channel to obtain a low spring characteristic. On the other hand, at the time of load input from the front to the rear of the vehicle to the wheels, the rubber valve is brought into contact with the contact valve seat to maintain the closed state of the short-circuit flow path so as to obtain a high attenuation characteristic. It is included in the technical scope of the fluid filled compliance bushing according to the present invention.

上述の如き構造とされた流体封入式コンプライアンスブッシュ10の防振効果について確認するために実験をした。その結果を実施例として図10に示す。本実施例では、問題となる衝撃荷重に相当する、周波数が15Hzで、振幅が±2.0mmの荷重を第一の流体室78と第二の流体室80の対向方向に入力して、かかるコンプライアンスブッシュ10の荷重−撓み特性について測定した。荷重−撓み特性を示すグラフにおいて、荷重−撓み曲線内の面積が減衰特性の大きさに比例する。   An experiment was conducted to confirm the vibration isolation effect of the fluid-filled compliance bushing 10 having the above-described structure. The result is shown in FIG. 10 as an example. In this embodiment, a load having a frequency of 15 Hz and an amplitude of ± 2.0 mm, which corresponds to the impact load in question, is input in the opposing direction of the first fluid chamber 78 and the second fluid chamber 80 and applied. The load-deflection characteristics of the compliance bush 10 were measured. In the graph showing the load-deflection characteristic, the area in the load-deflection curve is proportional to the magnitude of the attenuation characteristic.

また、第一の流体室78から第二の流体室80に向かう方向の荷重入力時には、荷重と撓みが最小の状態から最大の状態に至るように設定されており、その荷重−撓み特性が、図10中の荷重−撓み曲線における左斜め下方の端点から右斜め上方の端点に向かって上方に湾曲する線で示されるようにした。即ち、第一の流体室78から第二の流体室80に向かう方向の荷重入力時における減衰特性の大きさは、荷重−撓み曲線の長手方向の両端点を結ぶ直線と上方に湾曲してそれら両端点を結ぶ曲線内の面積:Aで表される。更に、第二の流体室80から第一の流体室78に向かう方向の荷重入力時には、荷重と撓みが最大の状態から最小の状態に至るように設定されており、その荷重−撓み特性が、図10中の荷重−撓み曲線における右斜め上方の端点から左斜め下方の端点に向かって下方に湾曲する線で示されるようにした。即ち、第二の流体室80から第一の流体室78に向かう方向の荷重入力時における減衰特性の大きさは、荷重−撓み曲線の長手方向の両端点を結ぶ直線と下方に湾曲してそれら両端点を結ぶ曲線内の面積:Bで表される。   In addition, when a load is applied in the direction from the first fluid chamber 78 toward the second fluid chamber 80, the load and the deflection are set so as to reach from the minimum state to the maximum state. In the load-deflection curve in FIG. 10, the curve is shown by a line that curves upward from the left diagonally lower end point to the right diagonally upper end point. In other words, the magnitude of the attenuation characteristic when a load is input in the direction from the first fluid chamber 78 to the second fluid chamber 80 is curved upwardly with a straight line connecting both end points in the longitudinal direction of the load-deflection curve. The area in the curve connecting both end points is represented by A. Furthermore, at the time of load input in the direction from the second fluid chamber 80 toward the first fluid chamber 78, the load and the deflection are set so as to reach from the maximum state to the minimum state, and the load-deflection characteristic is In the load-deflection curve in FIG. 10, the curve is indicated by a line that curves downward from the upper right end point to the lower left end point. In other words, the magnitude of the damping characteristic at the time of load input in the direction from the second fluid chamber 80 toward the first fluid chamber 78 is curved downwardly with a straight line connecting both end points in the longitudinal direction of the load-deflection curve. The area in the curve connecting both end points is represented by B.

また、短絡流路84を設けずに、第一の流体室と第二の流体室がオリフィス通路によってのみ相互に連通されるようにした、図示しない流体封入式コンプライアンスブッシュを用意し、実施例と同じ測定条件のもと、かかる流体封入式コンプライアンスブッシュの荷重−撓み特性を測定した。その結果を、図10中に比較例として一点鎖線により示す。比較例において、第一の流体室から第二の流体室に向かう方向の荷重入力時における減衰特性の大きさが、荷重−撓み曲線の長手方向の両端点を結ぶ直線と上方に湾曲してそれら両端点を結ぶ曲線内の面積:A’で表される一方、第二の流体室から第一の流体室に向かう方向の荷重入力時における減衰特性の大きさが、荷重−撓み曲線の長手方向の両端点を結ぶ直線と下方に湾曲してそれら両端点を結ぶ曲線内の面積:B’で表される。   In addition, a fluid-filled compliance bushing (not shown) in which the first fluid chamber and the second fluid chamber are communicated with each other only by the orifice passage without providing the short-circuit channel 84 is provided. Under the same measurement conditions, the load-deflection characteristics of the fluid-filled compliance bushing were measured. The result is shown by a dashed line in FIG. 10 as a comparative example. In the comparative example, the magnitude of the damping characteristic at the time of load input in the direction from the first fluid chamber to the second fluid chamber is curved upwards with a straight line connecting both end points in the longitudinal direction of the load-deflection curve. The area in the curve connecting the two end points: represented by A ′, the magnitude of the damping characteristic at the time of load input in the direction from the second fluid chamber toward the first fluid chamber is the longitudinal direction of the load-deflection curve It is represented by an area B ′ that is curved downward and connects a straight line that connects the two end points.

図10に示される結果からも、比較例に係る流体封入式コンプライアンスブッシュの減衰特性に関してみると、面積:A’と面積:B’の大きさが略同じとされていることから、第一の流体室から第二の流体室に向かう方向の荷重入力時の減衰特性と第二の流体室から第一の流体室に向かう方向の荷重入力時の減衰特性とが、略同じであることが認められる。   From the results shown in FIG. 10 as well, regarding the damping characteristics of the fluid-filled compliance bushing according to the comparative example, the sizes of area: A ′ and area: B ′ are substantially the same. It is recognized that the damping characteristics at the time of load input in the direction from the fluid chamber to the second fluid chamber and the damping characteristics at the time of load input in the direction from the second fluid chamber to the first fluid chamber are substantially the same. It is done.

これに対して、本実施例に係る流体封入式コンプライアンスブッシュ10の減衰特性では、面積:Aが面積:Bに比して小さくされていることにより、第一の流体室78から第二の流体室80に向かう方向の荷重入力時の減衰特性(ばね特性)が、第二の流体室80から第一の流体室78に向かう方向の荷重入力時の減衰特性に比して小さくされていることが認められる。   On the other hand, in the damping characteristic of the fluid filled compliance bushing 10 according to the present embodiment, the area: A is smaller than the area: B, so that the first fluid chamber 78 to the second fluid. The damping characteristic (spring characteristic) at the time of load input in the direction toward the chamber 80 is made smaller than the damping characteristic at the time of load input in the direction from the second fluid chamber 80 toward the first fluid chamber 78. Is recognized.

従って、本発明に従う構造とされた流体封入式コンプライアンスブッシュ10においては、第一の流体室78から第二の流体室80に向かう方向の荷重入力時に低ばね特性が得られる一方、第二の流体室80から第一の流体室78に向かう方向の荷重入力時に高減衰特性が得られることで、ばね特性乃至は減衰特性の調整が有利に為される。それ故、車輪への車両前後方向の一方から他方に向かう衝撃荷重の入力時にあって、低ばね特性が要求される一方、通常の振動入力時や車輪への車両前後方向の他方から一方に向かう衝撃荷重の入力時には高減衰特性が要求される、相反する特性を備えたサスペンション用のコンプライアンスブッシュに対して好適に採用され得るのである。   Therefore, in the fluid-filled compliance bushing 10 according to the present invention, a low spring characteristic can be obtained when a load is applied in the direction from the first fluid chamber 78 to the second fluid chamber 80, while the second fluid Since a high damping characteristic is obtained when a load is applied in a direction from the chamber 80 toward the first fluid chamber 78, the spring characteristic or the damping characteristic is advantageously adjusted. Therefore, when an impact load is applied to the wheel from one side of the vehicle longitudinal direction to the other side, low spring characteristics are required, while at the time of normal vibration input or from the other side of the vehicle longitudinal direction to the other side. It can be suitably used for a suspension compliance bushing that has a contradictory characteristic that requires a high damping characteristic when an impact load is input.

本発明の一実施形態としてのサスペンション用の流体封入式コンプライアンスブッシュの横断面図であって、図2のI−I断面に相当する図。FIG. 3 is a cross-sectional view of a fluid-filled compliance bushing for a suspension as an embodiment of the present invention, corresponding to the II cross section of FIG. 2. 図1のII−II断面図。II-II sectional drawing of FIG. 同流体封入式コンプライアンスブッシュの一部を構成する内筒金具と金属スリーブを備えた本体ゴム弾性体の一体加硫成形品の斜視図。The perspective view of the integral vulcanization molding product of the main body rubber elastic body provided with the inner cylinder metal fitting and metal sleeve which constitute a part of the fluid enclosure type compliance bush. 同本体ゴム弾性体の一体加硫成形品の一側面図。The one side view of the integral vulcanization molding product of the main body rubber elastic body. 同流体封入式コンプライアンスブッシュの一部を構成する第一オリフィス部材の斜視図。The perspective view of the 1st orifice member which comprises a part of the fluid enclosure type compliance bush. 同流体封入式コンプライアンスブッシュの一部を構成する第二オリフィス部材の斜視図。The perspective view of the 2nd orifice member which comprises a part of the fluid enclosure type compliance bush. 同本体ゴム弾性体の一体加硫成形品に対して同第一オリフィス部材と同第二オリフィス部材を組付けた状態の斜視図。The perspective view of the state which assembled | attached the 1st orifice member and the 2nd orifice member with respect to the integral vulcanization molded product of the main body rubber elastic body. 同本体ゴム弾性体の一体加硫成形品に対して同第一オリフィス部材と同第二オリフィス部材を組付けた状態の一側面図。The one side view of the state which assembled | attached the 1st orifice member and the 2nd orifice member with respect to the integral vulcanization molded product of the main body rubber elastic body. 同流体封入式コンプライアンスブッシュを自動車のサスペンション機構に組付けた状態の平面説明図。FIG. 3 is an explanatory plan view of the state in which the fluid-filled compliance bushing is assembled to the suspension mechanism of the automobile. 同流体封入式コンプライアンスブッシュをサスペンション機構に採用した状態での減衰効果について測定した結果を示す荷重−撓み線図。The load-deflection diagram which shows the result measured about the damping effect in the state which employ | adopted the fluid enclosure type compliance bush as a suspension mechanism.

符号の説明Explanation of symbols

10:流体封入式コンプライアンスブッシュ、12:内筒金具、14:外筒金具、16:本体ゴム弾性体、56:ゴム弁、74:当接弁座、78:第一の流体室、80:第二の流体室、82:オリフィス通路、84:短絡流路、86:ロアアーム、88:車両ボデー 10: Fluid filled compliance bushing, 12: Inner cylinder fitting, 14: Outer cylinder fitting, 16: Main rubber elastic body, 56: Rubber valve, 74: Contact valve seat, 78: First fluid chamber, 80: No. Second fluid chamber, 82: Orifice passage, 84: Short circuit flow path, 86: Lower arm, 88: Vehicle body

Claims (7)

軸部材と該軸部材の外周側に所定距離を隔てて配された外筒部材が本体ゴム弾性体で相互に弾性連結されており、サスペンション機構におけるサスペンションアームの車両ボデー側への取付部位に装着されて、車輪からの車両前後方向の入力荷重が軸直角方向に及ぼされるサスペンション用の流体封入式コンプライアンスブッシュにおいて、
前記軸部材を挟んだ軸直角方向一方向で対向位置して、振動入力時に相対的な圧力変動が生ぜしめられる第一の流体室と第二の流体室が形成されており、それら第一の流体室と第二の流体室に非圧縮性流体が封入されていると共に、該第一の流体室と該第二の流体室を相互に連通するオリフィス通路が形成されている一方、該第一の流体室と該第二の流体室の間に短絡流路が設けられていると共に、該短絡流路には片方向弁手段が設けられており、前記車輪への車両前後方向の一方から他方に向かう衝撃荷重の入力時において該短絡流路に生ぜしめられる該第一の流体室から該第二の流体室に向かう流体流動方向に比して該第二の流体室から該第一の流体室に向かう流体流動方向でより大きな流動抵抗が該片方向弁手段によって発揮されるようにしたことを特徴とするサスペンション用の流体封入式コンプライアンスブッシュ。
A shaft member and an outer cylinder member arranged at a predetermined distance on the outer peripheral side of the shaft member are elastically connected to each other by a main rubber elastic body, and are attached to a vehicle body side of a suspension arm in a suspension mechanism. In the fluid-filled compliance bush for the suspension in which the input load in the vehicle longitudinal direction from the wheel is exerted in the direction perpendicular to the axis,
A first fluid chamber and a second fluid chamber, which are opposed to each other in one direction perpendicular to the axis across the shaft member and in which a relative pressure fluctuation occurs when vibration is input, are formed. An incompressible fluid is sealed in the fluid chamber and the second fluid chamber, and an orifice passage is formed to communicate the first fluid chamber and the second fluid chamber with each other. A short-circuit channel is provided between the fluid chamber and the second fluid chamber, and a one-way valve means is provided in the short-circuit channel. The first fluid from the second fluid chamber as compared to the direction of fluid flow from the first fluid chamber to the second fluid chamber generated in the short-circuit channel when an impact load toward the Greater flow resistance is exerted by the one-way valve means in the direction of fluid flow toward the chamber. Fluid-filled compliance bushing for suspension, characterized in that the.
前記片方向弁手段が、前記短絡流路における前記第一の流体室への開口縁部に設けられた当接弁座と該当接弁座に対して予圧縮をもって当接される弾性弁体とを含んで構成されており、前記車輪への車両前後方向の一方から他方に向かう衝撃荷重の入力時に該弾性弁体が弾性変形して該短絡流路を開口せしめて、該第一の流体室と該第二の流体室が該短絡流路を通じて相互に連通せしめられる一方、該車輪への車両前後方向の他方から一方に向かう衝撃荷重の入力時や通常の振動入力の状態では該弾性弁体が該短絡流路の該第一の流体室への開口縁部に予圧縮をもって当接されていることで該短絡流路が閉塞状態とされている請求項1に記載のサスペンション用の流体封入式コンプライアンスブッシュ。   The one-way valve means includes an abutting valve seat provided at an opening edge of the first short circuit channel to the first fluid chamber, and an elastic valve body that abuts the corresponding valve seat with pre-compression. The elastic valve element is elastically deformed when the impact load from one side in the vehicle front-rear direction to the other side is input to the wheel to open the short-circuit flow path, and the first fluid chamber And the second fluid chamber are communicated with each other through the short-circuit flow path, while the elastic valve body is in an input state of an impact load directed to the wheel from the other in the vehicle longitudinal direction to the wheel or in a normal vibration input state. 2. The suspension fluid-sealing according to claim 1, wherein the short-circuit channel is closed with a precompression contacted with an opening edge of the short-circuit channel to the first fluid chamber. Formula compliance bush. 前記短絡流路が前記オリフィス通路と独立して形成されている請求項1又は2に記載のサスペンション用の流体封入式コンプライアンスブッシュ。   The fluid-filled compliance bush for a suspension according to claim 1 or 2, wherein the short-circuit channel is formed independently of the orifice passage. 前記第一の流体室と前記第二の流体室の周方向一方の端部間に跨がって前記オリフィス通路が形成されている一方、該第一の流体室と該第二の流体室の周方向他方の端部間に跨がって前記短絡流路が形成されている請求項3に記載のサスペンション用の流体封入式コンプライアンスブッシュ。   The orifice passage is formed across one circumferential end of the first fluid chamber and the second fluid chamber, while the first fluid chamber and the second fluid chamber The fluid-filled compliance bush for a suspension according to claim 3, wherein the short-circuit channel is formed across the other end portion in the circumferential direction. 前記軸部材の外周側に中間スリーブが所定距離を隔てて配されて、該軸部材と該中間スリーブが前記本体ゴム弾性体で相互に連結されていると共に、該中間スリーブに前記外筒部材が外嵌固定されて、該中間スリーブに設けられた第一の窓部と第二の窓部を通じて外周面に開口するように形成された第一のポケット部と第二のポケット部が流体密に覆蓋されることにより、前記第一の流体室と前記第二の流体室が形成されている一方、該中間スリーブの軸方向中間部分には該第一の流体室と該第二の流体室の間を周方向に延びる支持溝が形成されて、該支持溝に対して周方向に延びるオリフィス部材が嵌め込まれると共に、該外筒部材が該オリフィス部材の外周面に外嵌装着されて、該オリフィス部材の外周面に設けられたオリフィス溝が該外筒部材で覆蓋されることで前記オリフィス通路が形成されている請求項1乃至4の何れか一項に記載のサスペンション用の流体封入式コンプライアンスブッシュ。   An intermediate sleeve is arranged on the outer peripheral side of the shaft member at a predetermined distance, the shaft member and the intermediate sleeve are connected to each other by the main rubber elastic body, and the outer cylinder member is connected to the intermediate sleeve. The first pocket portion and the second pocket portion, which are fixedly fitted to the outside and are formed to open to the outer peripheral surface through the first window portion and the second window portion provided in the intermediate sleeve, are fluid-tight. The first fluid chamber and the second fluid chamber are formed by being covered, while the intermediate portion in the axial direction of the intermediate sleeve has the first fluid chamber and the second fluid chamber. A support groove extending in the circumferential direction is formed between the orifice member and an orifice member extending in the circumferential direction is fitted into the support groove, and the outer cylinder member is fitted on the outer peripheral surface of the orifice member. The orifice groove provided on the outer peripheral surface of the member Fluid-filled compliance bushing for suspension according to any one of the preceding claims orifice passage is formed 1 to 4 by being covering with the cylindrical member. 前記オリフィス部材の内周面に短絡溝が形成されており、該オリフィス部材が前記中間スリーブの前記支持溝に嵌合固定されて該短絡溝が該支持溝の底部で覆蓋せしめられることで前記短絡流路が形成されていると共に、該短絡流路の一方の端部が開口する該オリフィス部材の周方向端縁部に前記当接弁座が設けられていると共に、該中間スリーブにおける該支持溝の底部には前記本体ゴム弾性体と一体形成された前記弾性弁体が突設されて、該オリフィス部材の該支持溝への固定に基づき、該弾性弁体が弾性変形しつつ該オリフィス部材における該当接弁座に密着状に当接されることによって、該弾性弁体が該短絡流路の一方の該流体室への開口縁部に対して予圧縮をもって当接されている請求項5に記載のサスペンション用の流体封入式コンプライアンスブッシュ。   A short-circuit groove is formed on the inner peripheral surface of the orifice member, the orifice member is fitted and fixed to the support groove of the intermediate sleeve, and the short-circuit groove is covered with a bottom portion of the support groove, thereby causing the short-circuit. A flow path is formed, and the contact valve seat is provided at a circumferential end edge of the orifice member where one end of the short-circuit flow path opens, and the support groove in the intermediate sleeve The elastic valve body integrally formed with the main rubber elastic body projects from the bottom of the orifice member, and the elastic valve body is elastically deformed based on the fixing of the orifice member to the support groove. 6. The elastic valve body is brought into contact with an opening edge of one of the short-circuit channels to the fluid chamber with precompression by being in close contact with the contact valve seat. Fluid-filled type for the described suspension Compliance bush. 前記サスペンション機構を構成する前記サスペンションアームが、車輪側から車体側に向かって車両横方向に延びる横腕部と車両前後方向に延びる縦腕部を有しており、該縦腕部の車体側への取付部分において、前記第一の流体室と前記第二の流体室が車両横方向で対向位置するようにして装着される請求項1乃至6の何れか一項に記載のサスペンション用の流体封入式コンプライアンスブッシュ。   The suspension arm constituting the suspension mechanism has a horizontal arm portion extending in the vehicle lateral direction from the wheel side toward the vehicle body side and a vertical arm portion extending in the vehicle front-rear direction, and the vertical arm portion toward the vehicle body side. The suspension fluid enclosure according to any one of claims 1 to 6, wherein the first fluid chamber and the second fluid chamber are mounted so as to face each other in a lateral direction of the vehicle. Formula compliance bush.
JP2007026758A 2007-02-06 2007-02-06 Fluid sealing type compliance bush for suspension Pending JP2008190653A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007026758A JP2008190653A (en) 2007-02-06 2007-02-06 Fluid sealing type compliance bush for suspension

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007026758A JP2008190653A (en) 2007-02-06 2007-02-06 Fluid sealing type compliance bush for suspension

Publications (1)

Publication Number Publication Date
JP2008190653A true JP2008190653A (en) 2008-08-21

Family

ID=39750934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007026758A Pending JP2008190653A (en) 2007-02-06 2007-02-06 Fluid sealing type compliance bush for suspension

Country Status (1)

Country Link
JP (1) JP2008190653A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014030428A1 (en) * 2012-08-20 2014-02-27 日産自動車株式会社 Suspension device
JP2016080056A (en) * 2014-10-16 2016-05-16 東洋ゴム工業株式会社 Liquid sealed type vibration-proof device
WO2019093367A1 (en) * 2017-11-08 2019-05-16 株式会社ブリヂストン Anti-vibration device
JP2019086104A (en) * 2017-11-08 2019-06-06 株式会社ブリヂストン Vibration control device
JP2019086100A (en) * 2017-11-08 2019-06-06 株式会社ブリヂストン Vibration control device
CN113195270A (en) * 2018-12-20 2021-07-30 株式会社普利司通 Toe correction bushing and rear suspension device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014030428A1 (en) * 2012-08-20 2014-02-27 日産自動車株式会社 Suspension device
JP5846310B2 (en) * 2012-08-20 2016-01-20 日産自動車株式会社 Suspension device
JP2016080056A (en) * 2014-10-16 2016-05-16 東洋ゴム工業株式会社 Liquid sealed type vibration-proof device
WO2019093367A1 (en) * 2017-11-08 2019-05-16 株式会社ブリヂストン Anti-vibration device
JP2019086104A (en) * 2017-11-08 2019-06-06 株式会社ブリヂストン Vibration control device
JP2019086100A (en) * 2017-11-08 2019-06-06 株式会社ブリヂストン Vibration control device
CN113195270A (en) * 2018-12-20 2021-07-30 株式会社普利司通 Toe correction bushing and rear suspension device

Similar Documents

Publication Publication Date Title
JP4871890B2 (en) Fluid filled cylindrical vibration isolator
JP2010159873A (en) Cylindrical vibration isolating device of fluid encapsulation type
WO2015145672A1 (en) Anti-vibration device
JPH0724674Y2 (en) Upper support for suspension
JP4238892B2 (en) Fluid filled cylindrical vibration isolator
JP5783858B2 (en) Fluid filled cylindrical vibration isolator
JP2009041740A (en) Fluid filled type vibration absorbing device
JP2008190653A (en) Fluid sealing type compliance bush for suspension
JP4802164B2 (en) Vibration isolator
JP5829156B2 (en) Vibration isolator
WO2014156867A1 (en) Liquid-sealed vibration prevention device
US20190113099A1 (en) Fluid-filled engine mounting apparatus
JP4340911B2 (en) Vibration isolator
KR101089137B1 (en) Hydro bush for car and strut mount for car
JP2008163970A (en) Fluid-sealed vibration control device
JP3705715B2 (en) Fluid filled cylindrical mount
JP4124973B2 (en) Fluid filled toe collect bush and suspension mechanism using the same
KR20120033836A (en) Hydraulic bush
JP3998491B2 (en) Fluid filled anti-vibration bush
JP2008111558A (en) Fluid filled system toe correct bush and suspension mechanism using it
JP4697459B2 (en) Fluid filled cylindrical vibration isolator
JP5907777B2 (en) Fluid filled cylindrical vibration isolator
JP2013170660A (en) Fluid sealed vibration control device
JP5738062B2 (en) Fluid filled vibration isolator
JP2019207022A (en) Vibration control device