JP2016080056A - Liquid sealed type vibration-proof device - Google Patents

Liquid sealed type vibration-proof device Download PDF

Info

Publication number
JP2016080056A
JP2016080056A JP2014211372A JP2014211372A JP2016080056A JP 2016080056 A JP2016080056 A JP 2016080056A JP 2014211372 A JP2014211372 A JP 2014211372A JP 2014211372 A JP2014211372 A JP 2014211372A JP 2016080056 A JP2016080056 A JP 2016080056A
Authority
JP
Japan
Prior art keywords
orifice forming
recessed groove
liquid
forming member
orifice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014211372A
Other languages
Japanese (ja)
Other versions
JP6411163B2 (en
Inventor
達哉 大庭
Tatsuya Oba
達哉 大庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2014211372A priority Critical patent/JP6411163B2/en
Publication of JP2016080056A publication Critical patent/JP2016080056A/en
Application granted granted Critical
Publication of JP6411163B2 publication Critical patent/JP6411163B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Combined Devices Of Dampers And Springs (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a liquid sealed type vibration-proof device capable of increasing a degree of freedom in design in a short-circuited path while restricting a product cost.SOLUTION: An end surface in a peripheral direction of an orifice forming member 50 is provided with a recessed groove 62. Thus, end surfaces of a pair of orifice forming members 50 in their peripheral directions are abutted to each other under attitude in which they are reversed upside-down, the short-circuited paths for communicating orifices can be formed by recessed groove 62. As a result, a structure of molding die does not become complex as found in the prior art product and the recessed groove 62 can be molded by mold. Post-processing with a drill or pressing of another member becomes unnecessary. With this arrangement, it is possible to reduce product cost. In addition, it is optionally possible to set a shape of the recessed groove 62. Accordingly, it is possible to increase a degree of freedom in design of the short-circuited paths.SELECTED DRAWING: Figure 4

Description

本発明は液封入式防振装置に関し、特に、製品コストを抑制しつつ短絡経路の設計の自由度を高めることができる液封入式防振装置に関するものである。   The present invention relates to a liquid-filled vibration isolator, and more particularly to a liquid-filled vibration isolator that can increase the degree of freedom in designing a short-circuit path while suppressing product cost.

自動車に使用される液封入式防振装置として、特許文献1には、ゴム状弾性体28により連結された第1取付部材12と第2取付部材16との内部に複数の流体室(液室)を形成し、それら流体室間での流体の流動を許容するオリフィス通路44と、そのオリフィス通路44の両端開口部を直接に繋ぐ短絡経路46とを設けたものが開示される。   As a liquid-filled vibration isolator used in an automobile, Patent Document 1 discloses a plurality of fluid chambers (liquid chambers) inside a first mounting member 12 and a second mounting member 16 connected by a rubber-like elastic body 28. And an orifice passage 44 that allows fluid flow between the fluid chambers, and a short-circuit path 46 that directly connects the opening portions at both ends of the orifice passage 44 are disclosed.

また、特許文献2には、オリフィス金具16に仕切金具17を圧入し、オリフィス金具16の第1縦壁23aの端面部23a1と仕切金具17の下面との間に、オリフィス25の2点間を連通する短絡経路SCを設けたものが開示される。   Further, in Patent Document 2, a partition fitting 17 is press-fitted into the orifice fitting 16, and between the two ends of the orifice 25 between the end surface portion 23 a 1 of the first vertical wall 23 a of the orifice fitting 16 and the lower surface of the partition fitting 17. What provided the short circuit path | route SC which connects is disclosed.

これら特許文献1,2に開示される技術によれば、比較的小さな振幅の入力時には、流体が短絡経路46,SCを流動することで、オリフィス(オリフィス通路46、オリフィス25)の流通量を少なくして、動的なばね定数を低減できる一方、比較的大きな振幅の入力時には、オリフィス(オリフィス通路46、オリフィス25)の流動量を確保して、高い減衰効果を発揮できる。   According to the techniques disclosed in these Patent Documents 1 and 2, when a relatively small amplitude is input, the fluid flows through the short-circuit paths 46 and SC, thereby reducing the flow rate of the orifices (orifice passage 46 and orifice 25). Thus, while the dynamic spring constant can be reduced, when a relatively large amplitude is input, the flow amount of the orifice (orifice passage 46, orifice 25) can be secured and a high damping effect can be exhibited.

特開平04−203631号公報(例えば、第6頁左上第2行から第9行、第6図など)Japanese Laid-Open Patent Publication No. 04-203631 (for example, the upper left, second to ninth lines on page 6, FIG. 6) 再表2005−106283号公報(例えば、第9頁第11行から第13行、第7図など)No. 2005-106283 (for example, page 9, line 11 to line 13, FIG. 7)

しかしながら、上述した特許文献1の技術では、短絡経路46が仕切部材72の隔壁88を連通する貫通孔として形成される。そのため、仕切部材72を型成形する場合には、成形金型の構造が複雑となり、その分、製品コストが嵩むという問題点があった。この場合仕切部材72の型成形後にドリルによる切削加工により貫通孔を貫通形成する方法であっても、切削工程が更に必要となる分、工数が増加するため、製品コストが嵩む。   However, in the technique of Patent Document 1 described above, the short circuit path 46 is formed as a through hole that communicates with the partition wall 88 of the partition member 72. Therefore, when the partition member 72 is molded, there is a problem that the structure of the molding die becomes complicated and the product cost increases accordingly. In this case, even if the through hole is formed by cutting with a drill after the partition member 72 is molded, the number of steps is increased and the number of steps is increased, resulting in an increase in product cost.

また、上述した特許文献2の技術においても、オリフィス金具16に仕切金具17を圧入することで、短絡経路SCを形成する構造であるため、オリフィス金具16の他に仕切金具17が必要となり、部品点数が増加すると共に、圧入工程の分、工数が増加するため、製品コストが嵩むという問題点があった。   Further, in the technique of Patent Document 2 described above, since the short-circuit path SC is formed by press-fitting the partition fitting 17 into the orifice fitting 16, the partition fitting 17 is required in addition to the orifice fitting 16, and the parts As the number of points increases, the man-hours increase by the press-fitting process, resulting in an increase in product cost.

更に、上述した特許文献1の技術では、短絡経路46が貫通孔からなり、特許文献2の技術では、第1立壁23aと仕切金具17との対向面間を短絡経路SCとするものであるため、短絡経路46,SCが直線状の形状に限定され、その設計の自由度が低いという問題点があった。   Furthermore, in the technique of Patent Document 1 described above, the short circuit path 46 is formed of a through-hole, and in the technique of Patent Document 2, the space between the opposing surfaces of the first standing wall 23a and the partition fitting 17 is the short circuit path SC. The short-circuit paths 46 and SC are limited to a linear shape, and there is a problem that the degree of freedom in design is low.

本発明は、上述した問題点を解決するためになされたものであり、製品コストを抑制しつつ短絡経路の設計の自由度を高めることができる液封入式防振装置を提供することを目的としている。   The present invention has been made to solve the above-described problems, and an object thereof is to provide a liquid-filled vibration isolator capable of increasing the degree of freedom in designing a short-circuit path while suppressing product cost. Yes.

課題を解決するための手段および発明の効果Means for Solving the Problems and Effects of the Invention

請求項1記載の液封入式防振装置によれば、一対のオリフィス形成部材のうちの少なくとも一方のオリフィス形成部材の周方向の端面に凹設溝が凹設されるので、一対のオリフィス形成部材の周方向の端面どうしが互いに突き合わされた状態を形成することで、周方向の端面どうしの間に、オリフィスどうしを連通させる又はオリフィスと液室とを連通させる短絡経路が凹設溝によって形成することができる。よって、型成形する場合には、成形金型の構造を簡素化でき、従来品のように、型構造が複雑となることがない。また、型成形する場合には、ドリルによる後加工や別部材の圧入が必要となることもない。その結果、製品コストの削減を図ることができる。   According to the liquid-filled vibration isolator according to claim 1, since the recessed groove is formed in the circumferential end surface of at least one of the orifice forming members, the pair of orifice forming members. By forming a state in which the circumferential end faces of each other are abutted with each other, a short-circuit path is formed between the circumferential end faces so that the orifices communicate with each other or the orifice and the liquid chamber communicate with each other. be able to. Therefore, in the case of molding, the structure of the molding die can be simplified, and the mold structure does not become complicated unlike conventional products. Further, in the case of molding, post-processing with a drill or press-fitting of another member is not required. As a result, the product cost can be reduced.

また、凹設溝は、オリフィス形成部材の周方向の端面に凹設されるので、かかる周方向の端面を利用して、凹設溝の形状を任意に設定することができる。よって、短絡経路の設計の自由度を高めることができる。   Moreover, since the recessed groove is recessed in the circumferential end surface of the orifice forming member, the shape of the recessed groove can be arbitrarily set using the circumferential end surface. Therefore, the freedom degree of design of a short circuit path | route can be raised.

請求項2記載の液封入式防振装置によれば、請求項1記載の液封入式防振装置の奏する効果に加え、一方のオリフィス形成部材の端面に第1凹設溝が凹設されると共に、他方のオリフィス形成部材の端面に第2凹設溝が凹設され、一方のオリフィス形成部材の端面と他方のオリフィス形成部材の端面とが突き合わされた状態では、第1凹設溝の他端側と第2凹設溝の他端側とが重ね合わされ、それら第1凹設溝と第2凹設溝とによって短絡経路が形成されるので、かかる短絡経路の途中に、端面の重ね合わせ方向に屈曲する部分を形成することができる。その結果、比較的大きな振幅の入力時に、液体が短絡経路を流動し難くでき、その分、オリフィスの流動量を確保できるので、減衰効果を高めることができる。   According to the liquid-filled vibration isolator of claim 2, in addition to the effect exhibited by the liquid-filled vibration isolator of claim 1, the first recessed groove is formed in the end face of one orifice forming member. In addition, when the second recessed groove is formed in the end surface of the other orifice forming member and the end surface of the one orifice forming member and the end surface of the other orifice forming member are in contact with each other, Since the end side and the other end side of the second recessed groove are overlapped and a short circuit path is formed by the first recessed groove and the second recessed groove, the end surfaces are overlapped in the middle of the short circuit path. A portion bent in the direction can be formed. As a result, when a relatively large amplitude is input, the liquid can hardly flow through the short-circuit path, and the flow amount of the orifice can be ensured accordingly, so that the damping effect can be enhanced.

請求項3記載の液封入式防振装置によれば、請求項2記載の液封入式防振装置の奏する効果に加え、第1凹設溝または第2凹設溝の少なくとも一方は、一端と他端との間の少なくとも1カ所が屈曲して形成されるので、端面の重ね合わせ方向に屈曲した部分に加え、端面の面内で屈曲した部分を短絡経路に形成することができる。その結果、比較的大きな振幅の入力時に、液体が短絡経路を流動し難くでき、その分、オリフィスの流動量を確保できるので、減衰効果を更に高めることができる。   According to the liquid-filled vibration isolator according to claim 3, in addition to the effect exerted by the liquid-filled vibration isolator according to claim 2, at least one of the first recessed groove or the second recessed groove has one end and Since at least one portion between the other end is bent, the end face can be formed in the short-circuit path in addition to the end face bent in the overlapping direction. As a result, when a relatively large amplitude is input, the liquid can hardly flow through the short-circuit path, and the flow amount of the orifice can be secured correspondingly, so that the damping effect can be further enhanced.

請求項4記載の液封入式防振装置によれば、請求項2記載の液封入式防振装置の奏する効果に加え、第1凹設溝および第2凹設溝は、一端と他端との間が直線状に延設されるので、これら第1凹設溝および第2凹設溝の形状を簡素化して、その分、オリフィス形成部材の製造時における歩留りの向上を図ることができる。この場合、一方のオリフィス形成部材の端面と他方のオリフィス形成部材の端面とが突き合わされた状態では、端面の正面視において、第1凹設溝の延設方向と第2凹設溝の延設方向とが異なる方向に設定されるので、かかる延設方向の変化を利用して、短絡経路を液体が流動し難くできる。即ち、比較的大きな振幅の入力時に、液体が短絡経路を流動し難くできる。よって、その分、オリフィスの流動量を確保できるので、減衰効果を更に高めることができる。   According to the liquid-filled vibration isolator of claim 4, in addition to the effect exhibited by the liquid-filled vibration isolator of claim 2, the first recessed groove and the second recessed groove have one end and the other end. Since the gap extends linearly, the shapes of the first concave groove and the second concave groove can be simplified, and the yield in manufacturing the orifice forming member can be improved accordingly. In this case, in a state where the end face of one orifice forming member and the end face of the other orifice forming member are abutted, the extending direction of the first recessed groove and the extending direction of the second recessed groove are viewed from the front of the end face. Since the direction is set to a different direction, it is possible to make it difficult for the liquid to flow through the short-circuit path by using the change in the extending direction. That is, the liquid can hardly flow through the short-circuit path when a relatively large amplitude is input. Therefore, since the flow amount of the orifice can be ensured accordingly, the damping effect can be further enhanced.

請求項5に記載の液封入式防振装置によれば、請求項2から4のいずれかに記載の液封入式防振装置の奏する効果に加え、一方のオリフィス形成部材と他方のオリフィス形成部材とが互いに同一の形状に形成されるので、軸方向の一側および他側の向きを互いに逆とした姿勢で端面どうしを互いに突き合わせることで、第1凹設溝の他端側と第2凹設溝の他端側とを重ね合わせて、短絡経路を形成できる。よって、一対のオリフィス形成部材が互いに異なる形状の2種類のオリフィス形成部材からなる場合と比較して、部品点数を削減でき、その分、製品コストの削減を図ることができる。また、一対のオリフィス形成部材が互いに異なる形状の2種類のオリフィス形成部材からなる場合には、2種類のオリフィス形成部材のうちの一方のオリフィス形成部材どうしを組み合わせて一対のオリフィス形成部材として組み付けるといった誤った組み付けが生じるおそれがあるところ、本発明によれば、かかる誤った組み付けが生じることを回避できる。   According to the liquid-filled vibration isolator according to claim 5, in addition to the effect exerted by the liquid-filled vibration isolator according to any one of claims 2 to 4, one orifice forming member and the other orifice forming member Are formed in the same shape as each other, so that the end surfaces of the first recessed groove and the second side of the first recessed groove are aligned with each other in a posture in which the directions of the one side and the other side in the axial direction are opposite to each other. A short circuit path can be formed by overlapping the other end of the recessed groove. Therefore, compared with the case where the pair of orifice forming members is composed of two types of orifice forming members having different shapes, the number of parts can be reduced, and the product cost can be reduced correspondingly. Further, when the pair of orifice forming members is composed of two types of orifice forming members having different shapes, one of the two types of orifice forming members is combined and assembled as a pair of orifice forming members. According to the present invention, it is possible to avoid the occurrence of such an incorrect assembly.

請求項6記載の液封入式防振装置によれば、請求項1記載の液封入式防振装置の奏する効果に加え、一対のオリフィス形成部材のうちの一方のオリフィス形成部材の端面に凹設溝が凹設されると共に、一対のオリフィス形成部材のうちの他方のオリフィス形成部材の端面には、凹設溝が非形成とされ、第1凹設溝は、一端および他端が前記一方のオリフィス形成部材の端面の外縁に連なるので、一方のオリフィス形成部材の凹設溝のみにより短絡経路を形成できる。   According to the liquid-filled vibration isolator according to claim 6, in addition to the effect exhibited by the liquid-filled vibration isolator according to claim 1, the end surface of one of the orifice forming members is recessed. The groove is recessed, and the end surface of the other orifice forming member of the pair of orifice forming members is not formed with a recessed groove, and the first recessed groove has one end and the other end of the one end. Since it is connected to the outer edge of the end face of the orifice forming member, a short-circuit path can be formed only by the recessed groove of one of the orifice forming members.

ここで、例えば、一方のオリフィス形成部材の凹設溝と他方のオリフィス形成部材の凹設溝とを接続して1の短絡経路を形成する場合には、両凹設溝が接続可能な位置に配置される必要があり、そのため、各凹設溝の形成位置の精度や一対のオリフィス形成部材の組み付け精度を確保する必要がある。これに対し、本発明によれば、凹設溝どうしの接続を考慮する必要がないので、その分、かかる凹設溝の形成位置の精度や一対のオリフィス形成部材の組み付け精度を緩やかとすることができる。その結果、製品コストの削減を図ることができる。   Here, for example, when one concave forming groove of one orifice forming member and the concave groove of the other orifice forming member are connected to form one short-circuit path, the two concave grooves are at positions where they can be connected. Therefore, it is necessary to ensure the accuracy of the formation position of each recessed groove and the assembly accuracy of the pair of orifice forming members. On the other hand, according to the present invention, it is not necessary to consider the connection between the recessed grooves, and accordingly, the accuracy of the formation position of the recessed grooves and the assembly accuracy of the pair of orifice forming members are moderated accordingly. Can do. As a result, the product cost can be reduced.

また、例えば、一方のオリフィス形成部材の凹設溝と他方のオリフィス形成部材の凹設溝とを接続して1の短絡経路を形成する場合には、走行時の振動や防振基体の経時劣化に起因して、一対のオリフィス形成部材の相対位置に位置ずれが発生すると、一方の凹設溝と他方の凹設溝との接続状態(即ち、短絡経路の状態)が変化して、動的な特性に影響を与えるおそれがある。これに対し、本発明によれば、一対のオリフィス形成部材の相対位置に位置ずれが発生したとしても、短絡経路の状態が変化し難く、動的な特性に影響を与えることを抑制できる。   In addition, for example, when one concave forming groove of one orifice forming member and the concave groove of the other orifice forming member are connected to form one short-circuit path, vibration during running and deterioration with time of the vibration-proof base As a result, when the relative position of the pair of orifice forming members is displaced, the connection state between one recessed groove and the other recessed groove (that is, the state of the short-circuit path) changes, and dynamic May affect other characteristics. On the other hand, according to the present invention, even if a positional shift occurs between the relative positions of the pair of orifice forming members, the state of the short-circuit path is hardly changed, and the dynamic characteristics can be suppressed from being affected.

請求項7記載の液封入式防振装置によれば、請求項6記載の液封入式防振装置の奏する効果に加え、凹設溝は、一端と他端との間の少なくとも1カ所が屈曲して形成されるので、屈曲した部分を有する短絡経路に形成することができる。その結果、比較的大きな振幅の入力時に、液体が短絡経路を流動し難くでき、その分、オリフィスの流動量を確保できるので、減衰効果を更に高めることができる。   According to the liquid filled type vibration isolator of claim 7, in addition to the effect exhibited by the liquid filled type vibration isolator of claim 6, the recessed groove is bent at least at one point between one end and the other end. Therefore, it can be formed in a short circuit path having a bent portion. As a result, when a relatively large amplitude is input, the liquid can hardly flow through the short-circuit path, and the flow amount of the orifice can be secured correspondingly, so that the damping effect can be further enhanced.

請求項8記載の液封入式防振装置によれば、請求項1から7のいずれかに記載の液封入式防振装置の奏する効果に加え、一対のオリフィス形成部材は、鋳造または射出成型により形成されるので、製品コストの削減を図ることができる。   According to the liquid-filled vibration isolator according to claim 8, in addition to the effect exhibited by the liquid-filled vibration isolator according to any one of claims 1 to 7, the pair of orifice forming members is formed by casting or injection molding. Since it is formed, the product cost can be reduced.

(a)は、第1実施形態における液封入式防振装置の平面図であり、(b)は、液封入式防振装置の正面図である。(A) is a top view of the liquid enclosure type vibration isolator in 1st Embodiment, (b) is a front view of a liquid enclosure type vibration isolator. (a)は、図1(a)のIIa−IIa線における液封入式防振装置の断面図であり、図2(b)は、図1のIIb−IIb線における液封入式防振装置の断面図である。(A) is sectional drawing of the liquid-filled type vibration isolator in the IIa-IIa line of FIG. 1 (a), FIG.2 (b) is a liquid-filled type vibration isolator in the IIb-IIb line of FIG. It is sectional drawing. 図1(b)のIII−III線における液封入式防振装置の断面図である。FIG. 3 is a cross-sectional view of the liquid-filled vibration isolator taken along line III-III in FIG. オリフィス形成部材の斜視図である。It is a perspective view of an orifice formation member. (a)は、図2(b)のVa部における拡大断面図であり、(b)は、図5(a)のVb−Vb線における拡大断面図である。(A) is an expanded sectional view in the Va section of Drawing 2 (b), and (b) is an expanded sectional view in the Vb-Vb line of Drawing 5 (a). (a)は、成形体の側面図であり、(b)は、成形体の正面図である。(A) is a side view of a molded object, (b) is a front view of a molded object. (a)は、オリフィス形成部材が組み付けられた成形体の正面図であり、(b)は、オリフィス形成部材が組み付けられた成形体の背面図である。(A) is a front view of the molded body in which the orifice forming member is assembled, and (b) is a rear view of the molded body in which the orifice forming member is assembled. (a)は、第2実施形態における液封入式防振装の断面図であり、(b)は、図8(a)のVIIIb−VIIIb線における液封入式防振装置の断面図である。(A) is sectional drawing of the liquid enclosure type vibration isolator in 2nd Embodiment, (b) is sectional drawing of the liquid enclosure type vibration isolator in the VIIIb-VIIIb line | wire of Fig.8 (a). (a)は、第3実施形態における液封入式防振装置の断面図であり、(b)は、第4実施形態における液封入式防振装置の断面図である。(A) is sectional drawing of the liquid filled type vibration isolator in 3rd Embodiment, (b) is sectional drawing of the liquid filled type vibration isolator in 4th Embodiment. (a)は、第5実施形態における液封入式防振装置の断面図であり、(b)は、図10(a)のXb−Xb線における液封入式防振装置の断面図である。(A) is sectional drawing of the liquid filled type vibration isolator in 5th Embodiment, (b) is sectional drawing of the liquid filled type vibration isolator in the Xb-Xb line | wire of Fig.10 (a). (a)は、第6実施形態における液封入式防振装置の断面図であり、図11(b)は、図11(a)のXIb−XIb線における液封入式防振装置の断面図である。(A) is sectional drawing of the liquid filled type vibration isolator in 6th Embodiment, FIG.11 (b) is sectional drawing of the liquid filled type vibration isolator in the XIb-XIb line | wire of Fig.11 (a). is there. (a)は、第7実施形態における液封入式防振装置の断面図であり、図12(b)は、図12(a)のXIIb−XIIb線における液封入式防振装置の断面図である。(A) is sectional drawing of the liquid filled type vibration isolator in 7th Embodiment, FIG.12 (b) is sectional drawing of the liquid filled type vibration isolator in the XIIb-XIIb line | wire of Fig.12 (a). is there.

以下、本発明の好ましい実施の形態について添付図面を参照して説明する。図1(a)は、第1実施形態における液封入式防振装置100の平面図であり、図1(b)は、液封入式防振装置100の正面図である。図1(a)及び図1(b)に示すように液封入式防振装置100は円環状に形成された内側部材10と、内側部材10を同心状に取り囲む円環状の外側部材20と、外側部材20及び内側部材10の間に介設される防振基体30とを備えて構成される。   Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1A is a plan view of the liquid filled vibration isolator 100 according to the first embodiment, and FIG. 1B is a front view of the liquid filled vibration isolator 100. As shown in FIGS. 1A and 1B, the liquid-filled vibration isolator 100 includes an inner member 10 formed in an annular shape, an annular outer member 20 that concentrically surrounds the inner member 10, and And an antivibration base 30 interposed between the outer member 20 and the inner member 10.

図2(a)は、図1(a)のIIa−IIa線における液封入式防振装置100の断面図であり、図2(b)は、図1(a)のIIb−IIb線における液封入式防振装置100の断面図である。図3は、図1(b)のIII−III線における液封入式防振装置100の断面図である。   2A is a cross-sectional view of the liquid-filled vibration isolator 100 taken along the line IIa-IIa in FIG. 1A, and FIG. 2B is a liquid taken along the line IIb-IIb in FIG. 1 is a cross-sectional view of a sealed vibration isolator 100. FIG. FIG. 3 is a cross-sectional view of the liquid-filled vibration isolator 100 taken along line III-III in FIG.

図2(a)に示すように、内側部材10は、円筒状に形成された筒部11と、筒部11の軸方向(図2(a)上下方向)中央から径方向(図2(a)左右方向)外側に向かって略球状に膨出する膨出部12とを備えている。   As shown in FIG. 2A, the inner member 10 includes a cylindrical portion 11 formed in a cylindrical shape, and a radial direction (FIG. 2A) from the center of the cylindrical portion 11 in the axial direction (vertical direction in FIG. 2A). ) Left and right direction) It has a bulging portion 12 that bulges outward in a substantially spherical shape.

外側部材20は、内側部材10を同心状に取り囲む円筒状の部材であり、円筒状に形成された筒部21と、内筒21の内周面に加硫接着されると共にゴム状弾性体から構成されるゴム膜22と、筒部21が外嵌される中間筒40とを備えている。   The outer member 20 is a cylindrical member that concentrically surrounds the inner member 10. The outer member 20 is vulcanized and bonded to the cylindrical portion 21 and the inner peripheral surface of the inner cylinder 21, and from a rubber-like elastic body. A rubber film 22 is provided, and an intermediate cylinder 40 on which the cylinder portion 21 is fitted.

防振基体30は、内側部材10と外側部材20とを連結すると共にゴム状弾性体から構成される部材である。防振基体30は、内側部材10及び外側部材20の軸方向両側に円環状に形成される一対の径方向隔壁31と、一対の径方向隔壁31の間に形成されるゴム膜部32とを備えている。径方向隔壁31及びゴム膜部32は、一体に加硫成形され、径方向隔壁31の内周は筒部11の外周に加硫接着される。径方向隔壁31の外周は内側部材10を同心状に取り囲む中間筒40の嵌合周壁41の内周に加硫接着される。一対の径方向隔壁31によって、外側部材20の軸方向両端が閉鎖されることにより、液室71,72が形成される。液室71,72にはエチルグリコールなどの不凍液(液体)が封入される。   The anti-vibration base 30 is a member that connects the inner member 10 and the outer member 20 and is made of a rubber-like elastic body. The anti-vibration base 30 includes a pair of radial partition walls 31 formed in an annular shape on both axial sides of the inner member 10 and the outer member 20, and a rubber film portion 32 formed between the pair of radial partition walls 31. I have. The radial partition wall 31 and the rubber film portion 32 are integrally vulcanized and molded, and the inner periphery of the radial partition wall 31 is vulcanized and bonded to the outer periphery of the cylindrical portion 11. The outer periphery of the radial partition wall 31 is vulcanized and bonded to the inner periphery of the fitting peripheral wall 41 of the intermediate cylinder 40 that concentrically surrounds the inner member 10. Liquid chambers 71 and 72 are formed by closing both axial ends of the outer member 20 by the pair of radial partition walls 31. The liquid chambers 71 and 72 are filled with an antifreeze liquid (liquid) such as ethyl glycol.

図2(b)に示すように、中間筒40は、筒部21が外嵌される一対のリング状の嵌合周壁41と、嵌合周壁41同士を連結すると共に嵌合周壁41よりも径方向内側に位置し軸直方向断面が円弧状の連結壁42とを備えている。連結壁42は、径方向隔壁31と一体に加硫形成される一対の軸方向隔壁33が、内周面に加硫接着される。また、連結壁42は、径方向隔壁31と一体加硫成形されるゴム膜状の外面部34が、外周面に加硫接着される。   As shown in FIG. 2B, the intermediate cylinder 40 connects the pair of ring-shaped fitting peripheral walls 41 to which the cylindrical portion 21 is fitted and the fitting peripheral walls 41 to each other and has a diameter larger than that of the fitting peripheral wall 41. And a connecting wall 42 having an arcuate cross section in the axial direction. The connecting wall 42 is formed by vulcanizing and bonding a pair of axial partition walls 33 formed by vulcanization integrally with the radial partition wall 31 to the inner peripheral surface. The connecting wall 42 has a rubber film-like outer surface portion 34 that is integrally vulcanized with the radial partition wall 31 and is vulcanized and bonded to the outer peripheral surface.

外周面34の軸方向両側に、ゴム状弾性体から構成される壁面部36,38が形成される。壁面部36,38は、内側部材10を挟んで軸方向隔壁33の各々の径方向外側に配置され、それぞれ径方向外側へ向かって延設される。一対の壁面部36は、壁面部36の間の軸方向距離が、壁面部38の軸方向距離より大きく設定される。   Wall portions 36 and 38 made of a rubber-like elastic body are formed on both axial sides of the outer peripheral surface 34. The wall surface portions 36 and 38 are disposed on the radially outer side of the axial partition wall 33 with the inner member 10 interposed therebetween, and extend toward the radially outer side. In the pair of wall surface portions 36, the axial distance between the wall surface portions 36 is set to be larger than the axial distance of the wall surface portion 38.

図3に示すように、液室71,72は、径方向隔壁31の間を軸方向に連結する軸方向隔壁33により、周方向に区画される。これにより、内側部材10を挟んで相対する略対称な2つの液室71,72が形成される。図2及び図3に示すように、内側部材10と外側部材20(筒部21)との間に一対のオリフィス形成部材50が配置される。オリフィス形成部材50は、液室71,72を連通するオリフィス73(図3参照)を形成するための部材である。   As shown in FIG. 3, the liquid chambers 71 and 72 are partitioned in the circumferential direction by an axial partition 33 that connects the radial partition 31 in the axial direction. As a result, two substantially symmetric liquid chambers 71 and 72 facing each other with the inner member 10 interposed therebetween are formed. As shown in FIGS. 2 and 3, a pair of orifice forming members 50 are disposed between the inner member 10 and the outer member 20 (tubular portion 21). The orifice forming member 50 is a member for forming an orifice 73 (see FIG. 3) communicating with the liquid chambers 71 and 72.

次に、図4を参照してオリフィス形成部材50について説明する。図4は、オリフィス形成部材50の斜視図である。図4に示すように、オリフィス形成部材50は、断面円弧状に形成される本体部51と、本体部51の径方向内側に形成されると共にゴム膜部32(内側部材10)の軸直角方向(図3左右方向)に配置される断面円形状のストッパ52と、本体部51の周方向両側にそれぞれ突出する第1突部53及び第2突部58とを備えている。なお、オリフィス形成部材50は、合成樹脂から射出成型により一体成型される。よって、後述する凹設溝62を、その形状に寄らず、別工程を行うことなく形成することができる。従って、例えば、凹設溝62を切削加工により形成する場合と比較して、製品コストの削減を図ることができる。   Next, the orifice forming member 50 will be described with reference to FIG. FIG. 4 is a perspective view of the orifice forming member 50. As shown in FIG. 4, the orifice forming member 50 is formed in a main body portion 51 formed in an arc shape in cross section, and on the radially inner side of the main body portion 51 and at the direction perpendicular to the axis of the rubber film portion 32 (inner member 10). A stopper 52 having a circular cross section disposed in the left-right direction (FIG. 3), and a first protrusion 53 and a second protrusion 58 that protrude on both sides in the circumferential direction of the main body 51 are provided. The orifice forming member 50 is integrally molded from synthetic resin by injection molding. Therefore, a recessed groove 62 to be described later can be formed without performing another process regardless of its shape. Therefore, for example, the product cost can be reduced as compared with the case where the recessed groove 62 is formed by cutting.

第1突部53は、湾曲状に形成される底面部54と、底面部54の幅方向(軸方向)の両側縁に径方向外側へ向けて立設させると共に周方向に延在する一対の立設部55と、一対の立設部55の間に並設されつつ径方向外側へ向けて底面部54に立設されると共に周方向へ延在する仕切部56とを備えている。底面部54に立設部55及び仕切部56が立設されることで、仕切部56を挟んで軸方向に隣り合う第1凹溝57a及び第2凹溝57bが形成される。第1凹溝57a及び第2凹溝57bは、第1突部53の周方向端部に開口する。   The first protrusion 53 is a pair of a bottom surface 54 formed in a curved shape, and a pair of extending in the circumferential direction while being erected radially outward on both side edges in the width direction (axial direction) of the bottom surface 54. There are provided a standing portion 55 and a partition portion 56 that is provided between the pair of standing portions 55 and is provided on the bottom surface portion 54 so as to extend radially outward while extending in the circumferential direction. When the standing portion 55 and the partitioning portion 56 are erected on the bottom surface portion 54, first and second concave grooves 57 a and 57 b that are adjacent in the axial direction with the partitioning portion 56 interposed therebetween are formed. The first concave groove 57 a and the second concave groove 57 b open at the circumferential end of the first protrusion 53.

仕切部56には、その周方向の端面に断面略コ字状の凹設溝62が凹設される。凹設溝62は、一端が仕切部56の端面の外縁(第2凹溝57b側、図4下側)に連なる(即ち、凹設溝62の内部空間を第2凹溝57bの内部空間に連通させる)と共に他端が仕切部56の端面内に位置し、仕切部56(オリフィス形成部材50)の軸方向(図4上下方向)に沿って直線状に延設される。本実施形態では、凹設溝62の延設長さが仕切部56の幅寸法(厚み寸法、図4上下方向寸法)の略2/3の寸法に設定される。   The partition portion 56 is provided with a recessed groove 62 having a substantially U-shaped cross section on the end surface in the circumferential direction. The concave groove 62 is connected at one end to the outer edge (the second concave groove 57b side, the lower side in FIG. 4) of the end surface of the partitioning portion 56 (that is, the internal space of the concave groove 62 becomes the internal space of the second concave groove 57b. The other end is positioned within the end face of the partition 56 and extends linearly along the axial direction (vertical direction in FIG. 4) of the partition 56 (orifice forming member 50). In the present embodiment, the extending length of the recessed groove 62 is set to approximately 2/3 of the width dimension (thickness dimension, vertical dimension in FIG. 4) of the partition portion 56.

第2突部58は、湾曲状に形成される底面部59と、底面部59の幅方向(軸方向)の両側縁に径方向外側に向けて立設されると共に周方向に延在する一対の立設部60とを備えている。底面部59に立設部60が立設されることで、第2凹溝57bが形成される。第2凹溝57bは、オリフィス形成部材50(第1突部53、本体部51及び第2突部58)の周方向に亘って形成される。第1突部53に凹設された第1凹溝57aは、本体部51の第2突部58寄りに形成された連通開口61が端部に形成され、本体部51の軸方向に開口する。   The second protrusion 58 is a curved bottom surface 59, and a pair of radial protrusions extending from both sides of the bottom surface 59 in the width direction (axial direction) and extending in the circumferential direction. The standing part 60 is provided. When the standing portion 60 is erected on the bottom surface portion 59, the second concave groove 57b is formed. The second recessed groove 57b is formed over the circumferential direction of the orifice forming member 50 (the first protrusion 53, the main body 51, and the second protrusion 58). The first concave groove 57 a provided in the first projection 53 has a communication opening 61 formed near the second projection 58 of the main body 51 at the end, and opens in the axial direction of the main body 51. .

一対のオリフィス形成部材50は、軸方向の一側(図4上側)及び他側(図4下側)の向きを互いに逆とした姿勢(一方のオリフィス形成部材50を他方のオリフィス形成部材50に対して裏返した姿勢)で第1突部53の端面どうし及び第2突部58の端面どうしがそれぞれ互いに突き合わされ、連結壁42と筒部21との間に配置される(図3参照)。本実施形態では、図2(b)に示すように、第1突部53(底面部54)は、一対の壁面部36の軸方向内側に配設され、第2突部58(底面部59)は、一対の壁面部38の軸方向内側に配置される。第1突部53及び第2突部58がそれぞれ突き合わされることにより、第1凹溝57a及び第2凹溝57bにより筒部21(ゴム膜22)の内側にオリフィス73が形成される。   The pair of orifice forming members 50 has a posture in which the directions of one side (upper side in FIG. 4) and the other side (lower side in FIG. 4) are opposite to each other (one orifice forming member 50 is changed to the other orifice forming member 50). The end surfaces of the first protrusions 53 and the end surfaces of the second protrusions 58 are brought into contact with each other in a posture that is turned upside down, and are disposed between the connecting wall 42 and the cylindrical portion 21 (see FIG. 3). In the present embodiment, as shown in FIG. 2B, the first protrusion 53 (bottom surface portion 54) is disposed on the inner side in the axial direction of the pair of wall surface portions 36, and the second protrusion 58 (bottom surface portion 59). ) Is disposed inside the pair of wall surface portions 38 in the axial direction. When the first protrusion 53 and the second protrusion 58 are abutted with each other, an orifice 73 is formed inside the cylindrical portion 21 (rubber film 22) by the first concave groove 57a and the second concave groove 57b.

また、一対のオリフィス形成部材50は、それらの第1突部53の端面どうしが互いに突き合わされると、一方のオリフィス形成部材50の仕切部56に形成した凹設溝62の他端側と他方のオリフィス形成部材50の仕切部56に形成した凹設溝62の他端側とが重なり合わされ、オリフィス73の2点間を連通させる短絡経路74が形成される。この短絡経路74の詳細構成について、図5(a)及び図5(b)を参照して説明をする。   Further, when the end surfaces of the first projecting portions 53 of the pair of orifice forming members 50 are abutted with each other, the other end side of the recessed groove 62 formed in the partition portion 56 of the one orifice forming member 50 and the other The other end side of the recessed groove 62 formed in the partition portion 56 of the orifice forming member 50 is overlapped, and a short-circuit path 74 that connects the two points of the orifice 73 is formed. The detailed configuration of the short-circuit path 74 will be described with reference to FIGS. 5 (a) and 5 (b).

図5(a)は、図2(b)のVa部における拡大断面図であり、図5(b)は、図5(a)のVb−Vb線における拡大断面図である。なお、図5(a)では、理解を容易とするため、図5(a)に図示される一方の凹設溝62に重ね合わされる他方の凹設溝62が破線を用いて図示される。   FIG. 5A is an enlarged cross-sectional view taken along the line Va in FIG. 2B, and FIG. 5B is an enlarged cross-sectional view taken along the line Vb-Vb in FIG. In FIG. 5A, for the sake of easy understanding, the other recessed groove 62 superimposed on the one recessed groove 62 illustrated in FIG. 5A is illustrated using a broken line.

凹設溝62は、上述したように、仕切部56の周方向の端面において、一端を第2凹溝57b側の縁部に連ならせると共にその一端から第1凹溝57a側に向かって直線状に延設され、一端から他端までの長さ寸法が、仕切部56の幅寸法(軸方向寸法、図5(a)上下方向寸法)の略2/3の寸法に設定される(図4参照)。   As described above, the recessed groove 62 has one end connected to the edge on the second recessed groove 57b side and a straight line from the one end toward the first recessed groove 57a side on the circumferential end surface of the partition 56. The length dimension from one end to the other end is set to approximately 2/3 of the width dimension (axial dimension, vertical dimension in FIG. 5A) of the partition 56 (see FIG. 4).

これにより、図5(a)及び図5(b)に示すように、一対のオリフィス形成部材50が互いに上下反転された姿勢とされ、第1突部53(仕切部56)の端面どうしが互いに突き合わされると、一方の仕切部56に形成される凹設溝62の他端側と、他方の仕切部56に形成される凹設溝62の他端側とが周方向(図5(b)左右方向)に重ね合わされ、両凹設溝62の内部空間が互いに連通されることで、オリフィス73の断面積よりも小さく且つオリフィス73よりも流路長さが短い短絡経路74が形成される。   As a result, as shown in FIGS. 5A and 5B, the pair of orifice forming members 50 are turned upside down with respect to each other, and the end surfaces of the first protrusions 53 (partitions 56) are mutually connected. When abutted, the other end side of the recessed groove 62 formed in one partition 56 and the other end side of the recessed groove 62 formed in the other partition 56 are circumferential (see FIG. 5B). ) Are overlapped in the left-right direction), and the internal spaces of both concave grooves 62 communicate with each other, whereby a short-circuit path 74 that is smaller than the cross-sectional area of the orifice 73 and shorter in length than the orifice 73 is formed. .

以上のように構成される液封入式防振装置100によれば、軸直角方向に比較的大きな振幅が入力されると、軸方向隔壁が弾性変形して、内側部材10と外側部材20とが相対変位される。これにより、液室71,72を区画する軸方向隔壁33が変形するので、液室71,72の液圧変動が生じ、液室71,72内の液体がオリフィス73を通って流れる。   According to the liquid-filled vibration isolator 100 configured as described above, when a relatively large amplitude is input in the direction perpendicular to the axis, the axial partition is elastically deformed, and the inner member 10 and the outer member 20 are separated. Relative displacement. As a result, the axial partition 33 that divides the liquid chambers 71 and 72 is deformed, so that the liquid pressure in the liquid chambers 71 and 72 changes, and the liquid in the liquid chambers 71 and 72 flows through the orifice 73.

この場合、比較的大きな振幅の入力時は、オリフィス73を通過する液体の流速が比較的速いので、オリフィス73の断面積より小さい断面積で形成される短絡経路74を液体が通過し難くできる。よって、オリフィス73の流通(流動量)を確保して、減衰効果を高めることができる。   In this case, when a relatively large amplitude is input, the flow rate of the liquid passing through the orifice 73 is relatively fast, so that it is difficult for the liquid to pass through the short-circuit path 74 formed with a cross-sectional area smaller than the cross-sectional area of the orifice 73. Therefore, it is possible to secure the circulation (flow amount) of the orifice 73 and enhance the damping effect.

一方、比較的小さな振幅の入力時には、液体の流速が比較的遅くなり、短絡経路74を液体が通過しやすくなるため、オリフィス73の流通量を少なくでき、その分、流体流動効果(液柱共振)を抑制することができる。その結果、反共振時の動ばね定数の低減を図ることができる。   On the other hand, when a relatively small amplitude is input, the flow rate of the liquid is relatively slow, and the liquid easily passes through the short-circuit path 74. Therefore, the flow rate of the orifice 73 can be reduced, and the fluid flow effect (liquid column resonance) is correspondingly reduced. ) Can be suppressed. As a result, the dynamic spring constant during anti-resonance can be reduced.

特に、本実施形態では、一方のオリフィス形成部材50における仕切部56の端面と他方のオリフィス形成部材50における仕切部56の端面とが突き合わされた状態では、一方の凹設溝62の他端側と他方の凹設溝62の他端側とが重ね合わされ、それら両凹設溝62によって短絡経路74が形成されるので、かかる短絡経路74の途中(流路上)に、仕切部56の端面どうしの重ね合わせ方向(図5(b)左右方向)に屈曲する部分を形成することができる。その結果、比較的大きな振幅の入力時に、液体が短絡経路74を流動し難くでき、その分、オリフィス73の流動量を確保できるので、減衰効果を高めることができる。   In particular, in the present embodiment, in a state where the end surface of the partition portion 56 in one orifice forming member 50 and the end surface of the partition portion 56 in the other orifice forming member 50 are abutted, the other end side of the one recessed groove 62. And the other end of the other recessed groove 62 are overlapped with each other, and a short-circuit path 74 is formed by the both recessed grooves 62, so that the end faces of the partition portion 56 are arranged in the middle of the short-circuit path 74 (on the flow path). Can be formed that bends in the overlapping direction (the left-right direction in FIG. 5B). As a result, when a relatively large amplitude is input, the liquid can hardly flow through the short-circuit path 74, and the flow amount of the orifice 73 can be secured correspondingly, so that the damping effect can be enhanced.

次に、図6及び図7を参照して、液封入式防振装置100の製造工程について説明する。図6(a)は、成形体80の側面図であり、図6(b)は、成形体80の正面図である。図7(a)は、オリフィス形成部材50が組み付けられた成形体80の正面図であり、図7(b)は、オリフィス形成部材50が組み付けられた成形体80の背面図である。   Next, with reference to FIG.6 and FIG.7, the manufacturing process of the liquid filled type vibration isolator 100 is demonstrated. FIG. 6A is a side view of the molded body 80, and FIG. 6B is a front view of the molded body 80. FIG. 7A is a front view of the molded body 80 in which the orifice forming member 50 is assembled, and FIG. 7B is a rear view of the molded body 80 in which the orifice forming member 50 is assembled.

成型体80は、内側部材10と中間筒40とを成形金型(図示せず)に装着した後、防振基体30を加硫接着すると共に内側部材10及び中間筒40に加硫接着することにより形成される。形成された成形体80に対して、中間筒40を縮径加工することにより防振基体30に予圧縮を与える。なお、図6(a)及び図6(b)は、縮径加工された後の状態が図示される。   The molded body 80 is obtained by attaching the inner member 10 and the intermediate cylinder 40 to a molding die (not shown) and then vulcanizing and adhering the vibration-proof base 30 to the inner member 10 and the intermediate cylinder 40. It is formed by. The formed molded body 80 is pre-compressed to the vibration-proof base 30 by reducing the diameter of the intermediate tube 40. 6A and 6B show a state after the diameter reduction processing.

次いで、図7(a)及び図7(b)に示すように、一対のオリフィス形成部材50を成形体80に組み付ける。即ち、図7(a)に示すように、一対の壁面部36の間には、一対のオリフィス形成部材50の底面部54を嵌挿する。一方、図7(b)に示すように、一対の壁面部38の間には、一対のオリフィス形成部材50の底面部59を嵌挿する。   Next, as shown in FIGS. 7A and 7B, the pair of orifice forming members 50 are assembled to the molded body 80. That is, as shown in FIG. 7A, the bottom surface portions 54 of the pair of orifice forming members 50 are fitted between the pair of wall surface portions 36. On the other hand, as shown in FIG. 7B, the bottom surface portions 59 of the pair of orifice forming members 50 are fitted between the pair of wall surface portions 38.

次いで、一対のオリフィス形成部材50が組み付けられた成形体80に、液体中で筒部21を被せた後に筒部21を縮径して、その両端部を内側に折曲することにより外側部材20配置する。筒部21が縮径されることで、一対のオリフィス形成部材50の底面部54,54の隙間と底面部59,59の隙間とが詰められる。これにより、第1突部53,53の各端面及び第2突部58,58の各端面が突き当てられる。その結果、壁面部36間で第1凹溝57aと第2凹溝57bとが連通接続され、壁面部38間で第2凹溝57b同士が連通接続されることで、オリフィス73が形成されると共に、短絡経路74が形成される。これにより、液封入式防振装置100が形成される。   Next, the molded body 80 in which the pair of orifice forming members 50 are assembled is covered with the cylindrical portion 21 in a liquid, and then the cylindrical portion 21 is reduced in diameter, and both end portions thereof are bent inward to form the outer member 20. Deploy. By reducing the diameter of the cylindrical portion 21, the gap between the bottom surface portions 54 and 54 of the pair of orifice forming members 50 and the clearance between the bottom surface portions 59 and 59 are filled. Thereby, each end surface of the 1st protrusion 53 and 53 and each end surface of the 2nd protrusion 58 and 58 are abutted. As a result, the first concave groove 57a and the second concave groove 57b are connected in communication between the wall surface portions 36, and the second concave groove 57b is connected in communication between the wall surface portions 38, whereby the orifice 73 is formed. At the same time, a short circuit path 74 is formed. Thereby, the liquid-filled vibration isolator 100 is formed.

液封入式防振装置100は、周方向に延びるオリフィス73により、液室71,72が互いに連通される。具体的には、一方の液室71に開口する連通開口61と他方の液室72に開口する連通開口61とが、第1凹溝57a、第2凹溝57b及び第1凹溝57aにより連通される。その結果、オリフィス形成部材50により外側部材20の内周側を略一周反する長さのオリフィス73が形成される。   In the liquid-filled vibration isolator 100, the liquid chambers 71 and 72 are communicated with each other by an orifice 73 extending in the circumferential direction. Specifically, the communication opening 61 that opens to one liquid chamber 71 and the communication opening 61 that opens to the other liquid chamber 72 communicate with each other through the first groove 57a, the second groove 57b, and the first groove 57a. Is done. As a result, the orifice forming member 50 forms an orifice 73 having a length substantially opposite to the inner circumferential side of the outer member 20.

液封入式防振装置100によれば、一対のオリフィス形成部材50(一方のオリフィス形成部材50及び他方のオリフィス形成部材50)が互いに同一の形状に形成される。よって、例えば、一方のオリフィス形成部材と他方のオリフィス形成部材とが互いに異なる形状の2種類のオリフィス形成部材からなる場合と比較して、部品点数を削減でき、その分、製品コストの削減を図ることができる。   According to the liquid-filled vibration isolator 100, the pair of orifice forming members 50 (one orifice forming member 50 and the other orifice forming member 50) are formed in the same shape. Therefore, for example, compared with the case where one orifice forming member and the other orifice forming member are made of two types of orifice forming members having different shapes, the number of parts can be reduced, and the product cost can be reduced accordingly. be able to.

更に、一方のオリフィス形成部材と他方のオリフィス形成部材とが互いに異なる形状の2種類のオリフィス形成部材からなる場合には、2種類のオリフィス形成部材のうちの一方のオリフィス形成部材どうしを組み合わせて一対のオリフィス形成部材として組み付けるといった誤った組み付けが生じるおそれがあるところ、本発明によれば、かかる誤った組み付けが生じることを回避できる。   Further, when one orifice forming member and the other orifice forming member are composed of two types of orifice forming members having different shapes, a combination of one of the two types of orifice forming members is paired. However, according to the present invention, it is possible to avoid the occurrence of such an incorrect assembly.

次に、図8を参照して第2実施の形態について説明する。図8(a)は、第2実施形態における液封入式防振装200の断面図であり、図8(b)は、図8(a)のVIIIb−VIIIb線における液封入式防振装置200の断面図である。なお、図8(a)は、図5(a)に対応する。また、第1実施形態と同一の部分については、同一の符号を付して以下の説明を省略する。   Next, a second embodiment will be described with reference to FIG. FIG. 8A is a cross-sectional view of the liquid filled vibration isolator 200 according to the second embodiment, and FIG. 8B is a liquid filled vibration isolator 200 taken along line VIIIb-VIIIb in FIG. FIG. FIG. 8A corresponds to FIG. Further, the same parts as those of the first embodiment are denoted by the same reference numerals and the following description is omitted.

図8(a)及び図8(b)に示すように、第2実施形態における液封入式防振装置200は、一方(図8(b)右側)のオリフィス形成部材250における仕切部256の端面には、凹設溝262が凹設される一方、他方(図8(b)左側)のオリフィス形成部材250における仕切部256の端面には、凹設溝が非形成とされる。   As shown in FIGS. 8A and 8B, the liquid-filled vibration isolator 200 according to the second embodiment is the end face of the partition portion 256 in the orifice forming member 250 on one side (right side in FIG. 8B). On the other hand, the recessed groove 262 is recessed, but the recessed groove is not formed on the end face of the partition portion 256 in the orifice forming member 250 on the other side (left side in FIG. 8B).

凹設溝262は、一方のオリフィス形成部材50における仕切部256の端面において、一端および他端を第1凹溝57a側の縁部および第2凹溝57b側の縁部にそれぞれ連ならせると共に、それら一端および他端の間が、仕切部256(オリフィス形成部材250)の軸方向(図8(a)上下方向)に沿って直線状に延設される。   The concave groove 262 has one end and the other end connected to the edge on the first concave groove 57a side and the edge on the second concave groove 57b side on the end surface of the partition portion 256 in one orifice forming member 50, respectively. The one end and the other end extend linearly along the axial direction (vertical direction in FIG. 8A) of the partition portion 256 (orifice forming member 250).

これにより、一対のオリフィス形成部材250が互いに上下反転された姿勢とされ、仕切部256の端面どうしが互いに突き合わされることで、オリフィス73の断面積よりも小さく且つオリフィス73よりも流路長さが短い流路であって、オリフィス73の2点間を連通させる短絡経路274を形成できる。   As a result, the pair of orifice forming members 250 are turned upside down, and the end surfaces of the partition portion 256 are abutted with each other, so that the cross-sectional area of the orifice 73 is smaller and the flow path length than the orifice 73 is. Is a short flow path, and a short-circuit path 274 that communicates between two points of the orifice 73 can be formed.

ここで、第1実施形態の場合のように、一方のオリフィス形成部材50の凹設溝62と他方のオリフィス形成部材50の凹設溝62との他端どうしを接続して短絡経路74を形成する場合には、両凹設溝62が他端どうしを接続可能な位置に配置される必要があり、そのため、各凹設溝62の形成位置の精度や一対のオリフィス形成部材50どうしの組み付け精度を確保する必要がある。これに対し、本実施形態によれば、凹設溝どうしの接続を考慮する必要がないので、その分、凹設溝262の形成位置の精度や一対のオリフィス形成部材250どうしの組み付け精度を緩やかとすることができる。その結果、製品コストの削減を図ることができる。   Here, as in the first embodiment, the other ends of the recessed groove 62 of one orifice forming member 50 and the recessed groove 62 of the other orifice forming member 50 are connected to form a short circuit path 74. In this case, it is necessary that the two concave grooves 62 be arranged at a position where the other ends can be connected to each other. Therefore, the accuracy of the formation positions of the concave grooves 62 and the assembly accuracy of the pair of orifice forming members 50 are required. It is necessary to ensure. On the other hand, according to this embodiment, it is not necessary to consider the connection between the recessed grooves, and accordingly, the accuracy of the formation position of the recessed grooves 262 and the assembly accuracy of the pair of orifice forming members 250 are moderated accordingly. It can be. As a result, the product cost can be reduced.

また、第1実施形態の場合のように、一方のオリフィス形成部材50の凹設溝62と他方のオリフィス形成部材50の凹設溝62との他端どうしを接続して短絡経路74を形成する場合には、走行時の振動や防振基体30の経時劣化(へたり)に起因して、一対のオリフィス形成部材50の相対位置に位置ずれが発生すると、一方の凹設溝62と他方の凹設溝62との他端どうしの接続状態(即ち、短絡経路74の状態)が変化して、動的な特性に影響を与えるおそれがある。これに対し、本実施形態によれば、一対のオリフィス形成部材250の相対位置に位置ずれが発生したとしても、短絡経路274の状態が変化し難く、動的な特性に影響を与えることを抑制できる。   Further, as in the first embodiment, the other ends of the recessed groove 62 of one orifice forming member 50 and the recessed groove 62 of the other orifice forming member 50 are connected to form a short circuit path 74. In this case, if a displacement occurs in the relative position of the pair of orifice forming members 50 due to vibration during running or deterioration with time (sagging) of the vibration-proof base 30, one concave groove 62 and the other are formed. There is a possibility that the connection state between the other ends of the recessed groove 62 (that is, the state of the short-circuit path 74) changes and affects dynamic characteristics. On the other hand, according to the present embodiment, even if a positional deviation occurs between the relative positions of the pair of orifice forming members 250, the state of the short-circuit path 274 is hardly changed, and the dynamic characteristics are suppressed from being affected. it can.

次に、図9(a)及び図9(b)を参照して、第3実施形態および第4実施形態における液封入式防振装置300,400について説明する。   Next, with reference to FIG. 9A and FIG. 9B, the liquid filled type vibration isolator 300, 400 in the third embodiment and the fourth embodiment will be described.

図9(a)は、第3実施形態における液封入式防振装置300の断面図であり、図9(b)は、第4実施形態における液封入式防振装置400の断面図である。なお、図9(a)及び図9(b)は、図8(a)に対応する。   FIG. 9A is a cross-sectional view of a liquid-filled vibration isolator 300 according to the third embodiment, and FIG. 9B is a cross-sectional view of a liquid-filled vibration isolator 400 according to the fourth embodiment. 9A and 9B correspond to FIG. 8A.

第3実施形態及び第4実施形態における液封入式防振装置300,400は、上述した第2実施形態の場合と同様に、一方(図9(a)及び図9(b)紙面奥側)のオリフィス形成部材350,450における仕切部356,456の端面のみに凹設溝362,462が凹設され、他方(図示せず)のオリフィス形成部材における仕切部の端面には、凹設溝が非形成とされる。   As in the case of the second embodiment described above, one of the liquid-filled vibration isolator 300 and 400 in the third embodiment and the fourth embodiment (FIG. 9 (a) and FIG. 9 (b) on the back side of the paper surface). Recessed grooves 362 and 462 are recessed only on the end surfaces of the partition portions 356 and 456 of the orifice forming members 350 and 450, and the recessed grooves are formed on the end surface of the partition portion of the other (not shown) orifice forming member. Not formed.

図9(a)に示すように、第3実施形態における液封入式防振装置300の凹設溝362は、一端および他端を第1凹溝57a側の縁部および第2凹溝57b側の縁部にそれぞれ連ならせると共に、それら一端および他端の間が、仕切部356(オリフィス形成部材350)の軸方向(図9(a)上下方向)に対して傾斜しつつ直線状に延設される。これにより、短絡経路374の流路長さを、上述した第2実施形態の場合と比較して、長い寸法とすることできる。   As shown in FIG. 9A, the recessed groove 362 of the liquid filled type vibration isolator 300 in the third embodiment has one end and the other end on the edge on the first groove 57a side and the second groove 57b side. The one end and the other end are linearly extended while being inclined with respect to the axial direction of the partition portion 356 (orifice forming member 350) (vertical direction in FIG. 9A). Established. Thereby, the flow path length of the short circuit path 374 can be made into a long dimension compared with the case of 2nd Embodiment mentioned above.

図9(b)に示すように、第4実施形態における液封入式防振装置400の凹設溝462は、一端および他端を第1凹溝57a側の縁部および第2凹溝57b側の縁部にそれぞれ連ならせると共に、それら一端および他端の間の2カ所が屈曲して形成される。これにより、短絡経路474を、2カ所に屈曲部分を有する形状(即ち、略直角に屈曲する流路が交互に2つ繋がるクランク形状)に形成できる。その結果、比較的大きな振幅の入力時に、液体が短絡経路474を流動し難くでき、その分、オリフィス73の流動量を確保できるので、減衰効果を高めることができる。   As shown in FIG. 9B, the recessed groove 462 of the liquid filled type vibration damping device 400 in the fourth embodiment has one end and the other end on the edge on the first groove 57a side and the second groove 57b side. The two edges between the one end and the other end are bent and formed. As a result, the short-circuit path 474 can be formed in a shape having bent portions at two locations (that is, a crank shape in which two flow paths that are bent at substantially right angles are alternately connected). As a result, when a relatively large amplitude is input, the liquid can hardly flow through the short-circuit path 474, and the flow amount of the orifice 73 can be secured correspondingly, so that the damping effect can be enhanced.

次に、図10(a)及び図10(b)を参照して、第5実施形態における液封入式防振装置500について説明する。   Next, a liquid-filled vibration isolator 500 according to the fifth embodiment will be described with reference to FIGS. 10 (a) and 10 (b).

図10(a)は、第5実施形態における液封入式防振装置500の断面図であり、図10(b)は、図10(a)のXb−Xb線における液封入式防振装置500の断面図である。なお、図10(a)では、理解を容易とするため、図10(a)に図示される一方の凹設溝562に重ね合わされる他方の凹設溝562が破線を用いて図示される。   FIG. 10A is a cross-sectional view of a liquid filled vibration isolator 500 according to the fifth embodiment, and FIG. 10B is a liquid filled vibration isolator 500 taken along line Xb-Xb of FIG. FIG. In FIG. 10A, for easy understanding, the other recessed groove 562 superimposed on the one recessed groove 562 illustrated in FIG. 10A is illustrated using a broken line.

図10(a)及び図10(b)に示すように、第4実施形態における液封入式防振装置500の凹設溝562は、一端が仕切部556の端面の外縁(第2凹溝57b側、図10(a)下側)に連なる(即ち、凹設溝562の内部空間を第2凹溝57bの内部空間に連通させる)と共に他端が仕切部556の端面内に位置し、それら一端および他端の間の2カ所が屈曲して形成される。即ち、凹設溝562は、2カ所に屈曲部分を有する形状(略直角に屈曲する流路が交互に2つ繋がるクランク形状)に形成される。   As shown in FIGS. 10A and 10B, the recessed groove 562 of the liquid filled type vibration damping device 500 according to the fourth embodiment has one end at the outer edge (second recessed groove 57b) of the end face of the partition portion 556. 10a (the lower side of FIG. 10A) (that is, the internal space of the recessed groove 562 communicates with the internal space of the second recessed groove 57b) and the other end is located within the end surface of the partition portion 556, Two portions between one end and the other end are bent and formed. That is, the recessed groove 562 is formed in a shape having bent portions at two locations (a crank shape in which two flow paths bent at substantially right angles are alternately connected).

よって、一対のオリフィス形成部材550が互いに上下反転された姿勢とされ、仕切部556の端面どうしが互いに突き合わされると、一方の仕切部556に形成される凹設溝562の他端側と、他方の仕切部556に形成される凹設溝562の他端側とが周方向(図10(b)左右方向)に重ね合わされ、両凹設溝562の内部空間が互いに連通されることで、オリフィス73の断面積よりも小さく且つオリフィス73よりも流路長さが短い流路であって、オリフィス73の2点間を連通させる短絡経路574を形成できる。   Therefore, when the pair of orifice forming members 550 are in an upside down posture and the end surfaces of the partitioning portion 556 are abutted with each other, the other end side of the recessed groove 562 formed in one partitioning portion 556, The other end side of the recessed groove 562 formed in the other partition portion 556 is overlapped in the circumferential direction (FIG. 10 (b) left and right direction), and the internal spaces of the both recessed grooves 562 communicate with each other. A short-circuit path 574 that is smaller than the cross-sectional area of the orifice 73 and shorter than the orifice 73 and that communicates between two points of the orifice 73 can be formed.

この場合、本実施形態では、短絡経路74の途中(流路上)に、仕切部556の端面どうしの重ね合わせ方向(図10(b)左右方向)に屈曲する部分を、一方の凹設溝562の他端と他方の凹設溝562の他端とが重ね合わされる部分に形成することができるだけでなく、各凹設溝562の一端および他端の間において、それぞれ2カ所に屈曲する部分を形成することができる。即ち、短絡経路74を、全体で5カ所に屈曲する部分を有する形状とすることができる。その結果、比較的大きな振幅の入力時に、液体が短絡経路574を流動し難くでき、その分、オリフィス73の流動量を確保できるので、減衰効果を高めることができる。   In this case, in the present embodiment, a part of the short-circuit path 74 that is bent in the overlapping direction (the left-right direction in FIG. 10B) between the end faces of the partition portion 556 is provided in the middle of the short-circuit path 74 (on the flow path). The other end of the recess groove 562 and the other end of the other recessed groove 562 can be formed on each other, and a portion that is bent at two positions between one end and the other end of each recessed groove 562 can be formed. Can be formed. That is, the short-circuit path 74 can be formed into a shape having portions bent at five places as a whole. As a result, when a relatively large amplitude is input, the liquid can hardly flow through the short-circuit path 574, and the flow amount of the orifice 73 can be secured correspondingly, so that the damping effect can be enhanced.

次に、図11(a)及び図11(b)を参照して、第6実施形態における液封入式防振装置600について説明する。   Next, with reference to FIG. 11A and FIG. 11B, a liquid filled type vibration damping device 600 according to the sixth embodiment will be described.

図11(a)は、第6実施形態における液封入式防振装置600の断面図であり、図11(b)は、図11(a)のXIb−XIb線における液封入式防振装置600の断面図である。なお、図11(a)では、理解を容易とするため、図11(a)に図示される一方の凹設溝662に重ね合わされる他方の凹設溝662が破線を用いて図示される。   FIG. 11A is a cross-sectional view of a liquid-filled vibration isolator 600 according to the sixth embodiment, and FIG. 11B is a liquid-filled vibration isolator 600 taken along the line XIb-XIb in FIG. FIG. In FIG. 11A, for easy understanding, the other recessed groove 662 superimposed on one recessed groove 662 illustrated in FIG. 11A is illustrated using a broken line.

図11(a)及び図11(b)に示すように、第6実施形態における液封入仕式防振装置600の凹設溝662は、仕切部656の周方向の端面を略球状の凹面として凹設した凹部(溝)として形成される。   As shown in FIGS. 11 (a) and 11 (b), the recessed groove 662 of the liquid filled type vibration damping device 600 in the sixth embodiment has a circumferential end surface of the partition portion 656 as a substantially spherical concave surface. It is formed as a recessed part (groove) provided as a recess.

なお、この場合、凹設溝662は、仕切部656の周方向の端面において、一端を第2凹溝57b側の縁部に連ならせると共に一端から他端(第1凹溝57a側の端部、図11(a)上側端)までの長さ寸法が、仕切部656の幅寸法(軸方向の長さ、図11(a)上下方向寸法)の略2/3の寸法に設定される。よって、一対のオリフィス形成部材650が互いに上下反転された姿勢とされ、仕切部656の端面どうしが互いに突き合わされると、一方の仕切部656に形成される凹設溝662の他端側と、他方の仕切部656に形成される凹設溝662の他端側とが周方向(図11(b)左右方向)に重ね合わされ、両凹設溝662の内部空間が互いに連通されることで、オリフィス73の断面積よりも小さく且つオリフィス73よりも流路長さが短い短絡経路674が形成される。   In this case, the recessed groove 662 has one end connected to the edge on the second recessed groove 57b side and the other end (the end on the first recessed groove 57a side) on the circumferential end surface of the partition portion 656. 11 (a) (upper end in FIG. 11 (a)) is set to approximately 2/3 of the width dimension (length in the axial direction, vertical dimension in FIG. 11 (a)) of the partition 656. . Therefore, when the pair of orifice forming members 650 are vertically inverted from each other and the end surfaces of the partition portion 656 are abutted with each other, the other end side of the recessed groove 662 formed in one partition portion 656, The other end side of the recessed groove 662 formed in the other partitioning portion 656 is overlapped in the circumferential direction (FIG. 11 (b) left and right direction), and the internal spaces of the both recessed grooves 662 communicate with each other. A short-circuit path 674 that is smaller than the cross-sectional area of the orifice 73 and has a shorter flow path length than the orifice 73 is formed.

本実施形態によれば、上述した第1実施形態の場合と同様に、短絡経路674の途中(流路上)に、仕切部656の端面どうしの重ね合わせ方向(図11(b)左右方向)に屈曲する部分を形成することができるので、比較的大きな振幅の入力時に、液体が短絡経路674を流動し難くでき、その分、オリフィス73の流動量を確保して、減衰効果を高めることができる。   According to this embodiment, as in the case of the first embodiment described above, in the middle of the short-circuit path 674 (on the flow path), in the overlapping direction of the end faces of the partition portion 656 (FIG. 11 (b) left-right direction). Since the bent portion can be formed, the liquid can hardly flow through the short-circuit path 674 when a relatively large amplitude is input, and accordingly, the flow amount of the orifice 73 can be secured and the damping effect can be enhanced. .

これに加え、上述したように、凹設溝662の形状が、仕切部656の周方向の端面を略球状の凹面として凹設した凹部(溝)として形成されるので、オリフィス形成部材650を成形する成形金型(図示せず)において、凹設溝662を成形するための突出部分に鋭角な部位(角ばった形状)が形成されることを抑制できる。これにより、突出部分の欠けや摩耗を抑制でき、その分、成形金型の耐久性の向上を図ることができる。また、鋭角な部位(角ばった形状)が形成されることが抑制されることで、オリフィス形成部材650を鋳造または射出成型で成形する際には、仕切部656の凹設溝662近傍における素材の流動性を確保して、歩留りの向上を図ることができる。   In addition, as described above, the shape of the recessed groove 662 is formed as a recessed portion (groove) in which the circumferential end surface of the partitioning portion 656 is formed as a substantially spherical recessed surface, so that the orifice forming member 650 is formed. In the molding die (not shown) to be formed, it is possible to suppress the formation of an acute portion (angular shape) at the protruding portion for forming the recessed groove 662. Thereby, chipping and wear of the protruding portion can be suppressed, and the durability of the molding die can be improved accordingly. In addition, since formation of an acute portion (angular shape) is suppressed, when the orifice forming member 650 is formed by casting or injection molding, the material in the vicinity of the recessed groove 662 of the partition portion 656 is reduced. The liquidity can be secured and the yield can be improved.

次に、図12(a)及び図12(b)を参照して、第7実施形態における液封入式防振装置700について説明する。   Next, with reference to FIG. 12A and FIG. 12B, a liquid filled type vibration damping device 700 according to the seventh embodiment will be described.

図12(a)は、第7実施形態における液封入式防振装置700の断面図であり、図12(b)は、図12(a)のXIIb−XIIb線における液封入式防振装置700の断面図である。なお、図12(a)では、理解を容易とするため、図12(a)に図示される一方の凹設溝762に重ね合わされる他方の凹設溝762が破線を用いて図示される。   FIG. 12A is a cross-sectional view of a liquid-filled vibration isolator 700 according to the seventh embodiment, and FIG. 12B is a liquid-filled vibration isolator 700 taken along the line XIIb-XIIb in FIG. FIG. In FIG. 12A, for easy understanding, the other recessed groove 762 superimposed on the one recessed groove 762 illustrated in FIG. 12A is illustrated using a broken line.

図12(a)及び図12(b)に示すように、第7実施形態における液封入仕式防振装置700の凹設溝762は、一端と他端との間が直線状に延設され、一方のオリフィス形成部材750における仕切部756の端面と他方のオリフィス形成部材750における仕切部756の端面とが突き合わされた状態では、端面の正面視(即ち、図12(a)に図示する状態)において、一方の凹設溝762の延設方向と他方の凹設溝762の延設方向とが異なる方向に設定される(即ち、略V字状に交差される)。   As shown in FIG. 12A and FIG. 12B, the recessed groove 762 of the liquid-filled vibration isolator 700 in the seventh embodiment extends linearly between one end and the other end. When the end face of the partition 756 in one orifice forming member 750 and the end face of the partition 756 in the other orifice forming member 750 are in contact with each other, the end face is viewed from the front (that is, the state shown in FIG. 12A). ), The extending direction of one recessed groove 762 and the extending direction of the other recessed groove 762 are set to different directions (that is, intersecting in a substantially V shape).

なお、この場合、凹設溝762は、仕切部756の周方向の端面において、一端を第2凹溝57b側の縁部に連ならせると共にその一端から仕切部756(オリフィス形成部材750)の軸方向(図12(a)上下方向)に対して傾斜しつつ仕切部56の幅方向(軸方向寸法、図12(a)上下方向寸法)の中央を越える位置まで直線状に延設される。   In this case, the recessed groove 762 has one end connected to the edge on the second recessed groove 57b side on the circumferential end surface of the partition 756 and the partition 756 (orifice forming member 750) from one end thereof. Inclined with respect to the axial direction (FIG. 12 (a) vertical direction), it extends linearly to a position exceeding the center in the width direction (axial dimension, FIG. 12 (a) vertical dimension) of the partition 56. .

よって、一対のオリフィス形成部材750が互いに上下反転された姿勢とされ、仕切部756の端面どうしが互いに突き合わされると、一方の仕切部756に形成される凹設溝762の他端側と、他方の仕切部756に形成される凹設溝762の他端側とが周方向(図12(a)紙面垂直方向)に重ね合わされ、両凹設溝762の内部空間が互いに連通されることで、オリフィス73の断面積よりも小さく且つオリフィス73よりも流路長さが短い短絡経路774が形成される。   Therefore, when the pair of orifice forming members 750 are in an upside-down posture and the end surfaces of the partition portion 756 are abutted with each other, the other end side of the recessed groove 762 formed in one partition portion 756, The other end side of the recessed groove 762 formed in the other partition portion 756 is overlapped in the circumferential direction (FIG. 12 (a) perpendicular to the paper surface), and the internal spaces of the both recessed grooves 762 are communicated with each other. A short-circuit path 774 that is smaller than the cross-sectional area of the orifice 73 and shorter in length than the orifice 73 is formed.

本実施形態によれば、上述した第1実施形態の場合と同様に、短絡経路774の途中(流路上)に、仕切部756の端面どうしの重ね合わせ方向(図12(b)左右方向)に屈曲する部分を形成することができるので、比較的大きな振幅の入力時に、液体が短絡経路774を流動し難くでき、その分、オリフィス73の流動量を確保して、減衰効果を高めることができる。   According to the present embodiment, as in the case of the first embodiment described above, in the middle of the short-circuit path 774 (on the flow path), in the overlapping direction of the end surfaces of the partition portion 756 (FIG. 12B, left-right direction). Since the bent portion can be formed, the liquid can hardly flow through the short-circuit path 774 when a relatively large amplitude is input, and the amount of flow of the orifice 73 can be secured correspondingly, and the damping effect can be enhanced. .

これに加え、上述したように、一方の仕切部756の端面と他方の仕切部756の端面とが突き合わされた状態では、端面の正面視(即ち、図12(a)に図示する状態)において、一方の凹設溝762の延設方向と他方の凹設溝762の延設方向とが異なる方向に設定される(即ち、略V字状に交差される)ので、かかる延設方向の変化(略V字状の交差)を利用して、短絡経路774を液体が流動し難くできる。即ち、比較的大きな振幅の入力時に、液体が短絡経路774を流動し難くして、その分、オリフィスの流動量を確保できるので、減衰効果を更に高めることができる。   In addition, as described above, in a state where the end surface of one partition 756 and the end surface of the other partition 756 are abutted, in front view of the end surface (that is, the state illustrated in FIG. 12A). Since the extending direction of the one recessed groove 762 and the extending direction of the other recessed groove 762 are set in different directions (that is, intersecting in a substantially V shape), the change in the extending direction is performed. By utilizing (substantially V-shaped intersection), the liquid can hardly flow through the short-circuit path 774. That is, when a relatively large amplitude is input, the liquid is less likely to flow through the short-circuit path 774, and the flow amount of the orifice can be ensured accordingly, so that the damping effect can be further enhanced.

以上、実施の形態に基づき本発明を説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。   The present invention has been described above based on the embodiments. However, the present invention is not limited to the above embodiments, and various improvements and modifications can be made without departing from the spirit of the present invention. It can be easily guessed.

上記各実施形態における構成の一部または全部を他の実施形態における構成の一部または全部と組み合わせることは当然可能である。   It is naturally possible to combine part or all of the configuration in each of the above embodiments with part or all of the configuration in the other embodiments.

上記第1実施形態、第5実施形態、第6実施形態および第7実施形態では、一対のオリフィス形成部材50,550,650,750が互いに同一の形状で形成される場合を説明したが、必ずしもこれに限られるものではなく、一対のオリフィス形成部材50,550,650,750は、互いに同一の形状でなくても良い。   In the first embodiment, the fifth embodiment, the sixth embodiment, and the seventh embodiment, the case where the pair of orifice forming members 50, 550, 650, and 750 are formed in the same shape is described. However, the present invention is not limited to this, and the pair of orifice forming members 50, 550, 650, and 750 may not have the same shape.

即ち、一方のオリフィス形成部材の凹設溝と、他方のオリフィス形成部材の凹設溝とが異なる形状とされ、且つ、それら一方および他方のオリフィス形成部材の仕切部の端面どうしが突き合わされた場合に互いの凹設溝の一部(他端どうし)が重なり合って、短絡経路を形成するものであっても良い。   That is, when the recessed groove of one orifice forming member and the recessed groove of the other orifice forming member have different shapes, and the end surfaces of the partition portions of the one and other orifice forming members are abutted with each other Alternatively, a part of the concave grooves of each other (the other ends) may overlap to form a short circuit path.

上記第2実施形態、第3実施形態および第4実施形態では、一方のオリフィス形成部材250,350,450のみに凹設溝262,362,462を設け、他方のオリフィス形成部材250,350,450には凹設溝262,362,462を設けない(非形成とする)場合を説明したが、必ずしもこれに限られるものではなく、他方オリフィス形成部材250,350,450にも凹設溝262,362,462を設けても良い。即ち、凹設溝262,362,462が形成された一方のオリフィス形成部材250,350,450を2枚組み合わせて、液封入式防振装置200,300,400を形成しても良い。これにより、オリフィス形成部材の種類を1種類として、部品点数を削減できるので、その分、製品コストの削減を図ることができる。   In the second embodiment, the third embodiment, and the fourth embodiment, the concave grooves 262, 362, and 462 are provided only in one orifice forming member 250, 350, and 450, and the other orifice forming member 250, 350, and 450 are provided. However, the present invention is not necessarily limited to this, and the orifice forming members 250, 350, and 450 are not necessarily provided with the concave grooves 262, 362, and 462. 362 and 462 may be provided. That is, the liquid-filled vibration isolator 200, 300, 400 may be formed by combining two orifice forming members 250, 350, 450 having the recessed grooves 262, 362, 462 formed therein. Thereby, since the number of parts can be reduced by using one kind of orifice forming member, the product cost can be reduced accordingly.

なお、この場合、第3実施形態および第4実施形態では、一方および他方の凹設溝362,462が一部で交差(重なり合う)ことで、流路の一部が交差(連通)する2本の短絡経路がそれぞれ形成されるが、かかる短絡経路は、オリフィス73よりも断面積が小さく且つ流路長さが短い経路となるので、上述した場合と同様の効果(比較的小振幅の振動入力時は動ばね定数を低減しつつ比較的大振幅の振動入力時には減衰効果を高める)を奏することができる。   In this case, in the third embodiment and the fourth embodiment, one and the other recessed grooves 362 and 462 partially intersect (overlap), so that two of the flow paths partially intersect (communicate). However, since the short-circuit path has a smaller cross-sectional area and a shorter flow path length than the orifice 73, the same effect as that described above (relatively small amplitude vibration input) In some cases, the dynamic spring constant can be reduced and the damping effect can be increased when a relatively large amplitude vibration is input.

上記各実施形態では、短絡経路74〜674が、オリフィス73の2点間(第1凹溝57a及び第2凹溝57b)を連通する流路として形成される場合を説明したが、必ずしもこれに限られるものではなく、オリフィス73(第1凹溝57a又は第2凹溝57b)と液室71又は液室72とを連通する流路として形成しても良い。   In each of the above-described embodiments, the case where the short-circuit paths 74 to 674 are formed as flow paths that communicate between two points of the orifice 73 (the first concave groove 57a and the second concave groove 57b) has been described. The flow path is not limited, and the orifice 73 (the first concave groove 57 a or the second concave groove 57 b) and the liquid chamber 71 or the liquid chamber 72 may be formed as a flow path.

なお、この場合には、凹設溝を、仕切部56〜756ではなく、第1突部53における立設部55の周方向の端面または第2突部58における立設部60の周方向の端面に形成(凹設)すると共に、その凹設溝(短絡経路)と液室71又は液室72とを連通させるための流路を防振基体30の壁面部36,38に形成する。   In this case, the concave groove is not formed in the partitioning portions 56 to 756 but in the circumferential end surface of the standing portion 55 in the first protrusion 53 or in the circumferential direction of the standing portion 60 in the second protrusion 58. In addition to being formed (concave) on the end surface, a channel for communicating the concave groove (short-circuit path) with the liquid chamber 71 or the liquid chamber 72 is formed in the wall surface portions 36 and 38 of the vibration-proof base 30.

上記各実施形態では、オリフィス形成部材50〜750が、合成樹脂で形成される場合を説明したが、必ずしもこれに限られるものではなく、他の素材から形成されるものであっても良い。他の素材としては、例えば、鉄やアルミニウム合金などが例示される。   In each of the above-described embodiments, the case where the orifice forming members 50 to 750 are formed of synthetic resin has been described. However, the present invention is not necessarily limited thereto, and may be formed of other materials. Examples of other materials include iron and aluminum alloys.

上記各実施形態では、凹設溝62〜762が凹設された状態のオリフィス形成部材50〜750を鋳造または射出成型により型成形する場合を説明したが、必ずしもこれに限られるものではなく、例えば、凹設溝62〜762が非形成の状態でオリフィス形成部材50〜750を鋳造または射出成型により型成形し、別工程(例えば、切削や研削、レーザー加工など)において、凹設溝62〜762を形成するものであっても良い。この場合には、成形金型を流用しつつ、車種ごとに異なる形状の短絡経路を設定できる。   In each of the embodiments described above, the case where the orifice forming members 50 to 750 in which the recessed grooves 62 to 762 are recessed is formed by casting or injection molding is not necessarily limited to this. For example, The orifice forming members 50 to 750 are molded by casting or injection molding in a state where the recessed grooves 62 to 762 are not formed, and the recessed grooves 62 to 762 are formed in another process (for example, cutting, grinding, laser processing, etc.). May be formed. In this case, a short-circuit path having a different shape can be set for each vehicle type while diverting the molding die.

上記各実施形態では、第6実施形態を除き、仕切部56〜556,756の端面の正面視における凹設溝62〜562,762の形状が、直線からなる又は直線を組み合わせた形状とされる場合を説明したが、必ずしもこれに限られるものではなく、曲線からなる又は直線と曲線とを組み合わせた形状であっても良い。   In the above embodiments, except for the sixth embodiment, the shape of the recessed grooves 62 to 562 and 762 in the front view of the end faces of the partition portions 56 to 556 and 756 is a straight line or a combination of straight lines. Although the case has been described, the present invention is not necessarily limited thereto, and may be a shape formed of a curve or a combination of a straight line and a curve.

上記各実施形態では、第6実施形態を除き、凹設溝62〜562,762が断面コ字状とされる場合を説明したが、必ずしもこれに限られるものではなく、他の断面形状であっても良い。他の断面形状としては、例えば、断面円弧状、断面半円状、断面U字状、断面V字状、断面台形状などが例示される。   In each of the above embodiments, except for the sixth embodiment, the case where the recessed grooves 62 to 562 and 762 have a U-shaped cross section has been described. However, the present invention is not necessarily limited to this, and other cross sectional shapes are used. May be. Examples of other cross-sectional shapes include a circular arc shape, a semicircular cross-section, a U-shaped cross-section, a V-shaped cross-section, and a trapezoidal cross-section.

100,200,300,400,500,600,700 液封入式防振装置
10 内側部材(内筒)
20 外側部材(外筒)
30 防振基体
50,250、350、450、550、650、750 オリフィス形成部材
262,362,462 凹設溝
62,562,662,762 凹設溝(第1凹設溝、第2凹設溝)
71,72 液室
73 オリフィス
74,274,374,474,574,674,774 短絡経路
100, 200, 300, 400, 500, 600, 700 Liquid-sealed vibration isolator 10 Inner member (inner cylinder)
20 Outer member (outer cylinder)
30 Anti-vibration base 50, 250, 350, 450, 550, 650, 750 Orifice forming member 262, 362, 462 Recessed groove 62, 562, 662, 762 Recessed groove (first recessed groove, second recessed groove) )
71,72 Liquid chamber 73 Orifice 74,274,374,474,574,674,774 Short circuit path

Claims (8)

筒状に形成される内筒と、前記内筒の外周側を取り囲む外筒と、前記内筒および前記外筒を連結すると共にゴム状弾性体から構成される防振基体と、前記防振基体により前記内筒を挟んで相対する位置に区画される2つの液室と、周方向の端面どうしが互いに突き合わされて前記外筒と前記内筒との間に配設されると共に前記2つの液室を互いに連通させるオリフィスを形成する一対のオリフィス形成部材と、を備える液封入式防振装置において、
前記一対のオリフィス形成部材のうちの少なくとも一方のオリフィス形成部材の前記端面に凹設される凹設溝を備え、
前記一対のオリフィス形成部材の前記端面どうしが互いに突き合わされた状態では、前記端面どうしの間に、前記オリフィスよりも断面積が小さく且つ流路長さが短くされる流路であって、前記オリフィスどうしを連通させる又は前記オリフィスと前記液室とを連通させる短絡経路が前記凹設溝によって形成されることを特徴とする液封入式防振装置。
An inner cylinder formed in a cylindrical shape, an outer cylinder surrounding an outer peripheral side of the inner cylinder, a vibration isolating base that connects the inner cylinder and the outer cylinder and is made of a rubber-like elastic body, and the vibration isolating base The two liquid chambers that are partitioned at positions facing each other with the inner cylinder interposed therebetween, and the end faces in the circumferential direction are abutted with each other and disposed between the outer cylinder and the inner cylinder, and the two liquids In a liquid-filled vibration isolator comprising a pair of orifice forming members that form orifices that allow the chambers to communicate with each other,
A recessed groove recessed in the end face of at least one of the pair of orifice forming members;
In a state where the end faces of the pair of orifice forming members are in contact with each other, a flow path between the end faces having a smaller cross-sectional area and a shorter flow path length than the orifices. The liquid-filled vibration isolator is characterized in that a short-circuit path for communicating the orifice or the liquid chamber is formed by the recessed groove.
前記凹設溝は、
前記一対のオリフィス形成部材のうちの一方のオリフィス形成部材の前記端面に凹設される第1凹設溝と、
前記一対のオリフィス形成部材のうちの他方のオリフィス形成部材の前記端面に凹設される第2凹設溝と、を備え、
前記第1凹設溝は、一端が前記一方のオリフィス形成部材の端面の外縁に連なると共に他端が前記一方のオリフィス形成部材の端面内に位置し、
前記第2凹設溝は、一端が前記他方のオリフィス形成部材の端面の外縁に連なると共に他端が前記他方のオリフィス形成部材の端面内に位置し、
前記一方のオリフィス形成部材の端面と前記他方のオリフィス形成部材の端面とが突き合わされた状態では、前記第1凹設溝の他端側と第2凹設溝の他端側とが重ね合わされ、それら第1凹設溝と第2凹設溝とによって前記短絡経路が形成されることを特徴とする請求項1記載の液封入式防振装置。
The recessed groove is
A first recessed groove that is recessed in the end surface of one of the pair of orifice forming members;
A second recessed groove recessed in the end face of the other orifice forming member of the pair of orifice forming members,
The first recessed groove has one end connected to the outer edge of the end surface of the one orifice forming member and the other end positioned in the end surface of the one orifice forming member,
The second recessed groove has one end connected to the outer edge of the end surface of the other orifice forming member and the other end located in the end surface of the other orifice forming member,
In a state where the end face of the one orifice forming member and the end face of the other orifice forming member are abutted, the other end side of the first recessed groove and the other end side of the second recessed groove are overlapped, 2. The liquid-filled vibration isolator according to claim 1, wherein the short-circuit path is formed by the first concave groove and the second concave groove.
前記第1凹設溝または第2凹設溝の少なくとも一方は、前記一端と他端との間の少なくとも1カ所が屈曲して形成されることを特徴とする請求項2記載の液封入式防振装置。   The liquid-filled type prevention according to claim 2, wherein at least one of the first concave groove or the second concave groove is formed by bending at least one portion between the one end and the other end. Shaker. 前記第1凹設溝および第2凹設溝は、前記一端と他端との間が直線状に延設され、
前記一方のオリフィス形成部材の端面と前記他方のオリフィス形成部材の端面とが突き合わされた状態では、前記端面の正面視において、前記第1凹設溝の延設方向と第2凹設溝の延設方向とが異なる方向に設定されることを特徴とする請求項2記載の液封入式防振装置。
The first concave groove and the second concave groove are linearly extended between the one end and the other end,
In a state where the end surface of the one orifice forming member and the end surface of the other orifice forming member are in contact with each other, the extending direction of the first recessed groove and the extending direction of the second recessed groove are viewed from the front of the end surface. The liquid-filled vibration isolator according to claim 2, wherein the installation direction is set in a different direction.
前記一方のオリフィス形成部材と他方のオリフィス形成部材とは、互いに同一の形状に形成され、軸方向の一側および他側の向きを互いに逆とした姿勢で前記端面どうしが互いに突き合わされることで、前記第1凹設溝の他端側と第2凹設溝の他端側とが重ね合わされて、前記短絡経路が形成されることを特徴とする請求項2から4のいずれかに記載の液封入式防振装置。   The one orifice forming member and the other orifice forming member are formed in the same shape as each other, and the end surfaces are abutted against each other in a posture in which the directions on one side and the other side in the axial direction are opposite to each other. The other end side of the first recessed groove and the other end side of the second recessed groove are overlapped to form the short circuit path. Liquid-filled vibration isolator. 前記一対のオリフィス形成部材のうちの一方のオリフィス形成部材の前記端面に前記凹設溝が凹設されると共に、前記一対のオリフィス形成部材のうちの他方のオリフィス形成部材の前記端面には、前記凹設溝が非形成とされ、
前記凹設溝は、一端および他端が前記一方のオリフィス形成部材の端面の外縁に連なることを特徴とする請求項1記載の液封入式防振装置。
The recessed groove is formed in the end surface of one orifice forming member of the pair of orifice forming members, and the end surface of the other orifice forming member of the pair of orifice forming members includes the The recessed groove is not formed,
The liquid-filled vibration isolator according to claim 1, wherein one end and the other end of the recessed groove are continuous with an outer edge of an end surface of the one orifice forming member.
前記凹設溝は、前記一端と他端との間の少なくとも1カ所が屈曲して形成されることを特徴とする請求項6記載の液封入式防振装置。   The liquid filled type vibration damping device according to claim 6, wherein the recessed groove is formed by bending at least one portion between the one end and the other end. 前記一対のオリフィス形成部材は、鋳造または射出成型により形成されることを特徴とする請求項1から7のいずれかに記載の液封入式防振装置。   The liquid-filled vibration isolator according to any one of claims 1 to 7, wherein the pair of orifice forming members are formed by casting or injection molding.
JP2014211372A 2014-10-16 2014-10-16 Liquid-filled vibration isolator Expired - Fee Related JP6411163B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014211372A JP6411163B2 (en) 2014-10-16 2014-10-16 Liquid-filled vibration isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014211372A JP6411163B2 (en) 2014-10-16 2014-10-16 Liquid-filled vibration isolator

Publications (2)

Publication Number Publication Date
JP2016080056A true JP2016080056A (en) 2016-05-16
JP6411163B2 JP6411163B2 (en) 2018-10-24

Family

ID=55958132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014211372A Expired - Fee Related JP6411163B2 (en) 2014-10-16 2014-10-16 Liquid-filled vibration isolator

Country Status (1)

Country Link
JP (1) JP6411163B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019093367A1 (en) * 2017-11-08 2019-05-16 株式会社ブリヂストン Anti-vibration device
JP2019086104A (en) * 2017-11-08 2019-06-06 株式会社ブリヂストン Vibration control device
JP2019086100A (en) * 2017-11-08 2019-06-06 株式会社ブリヂストン Vibration control device
WO2022080338A1 (en) * 2020-10-12 2022-04-21 株式会社ブリヂストン Anti-vibration device
JP7420689B2 (en) 2020-10-12 2024-01-23 株式会社プロスパイラ Vibration isolator
JP7500385B2 (en) 2020-10-12 2024-06-17 株式会社プロスパイラ Anti-vibration device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05209646A (en) * 1991-11-19 1993-08-20 Carl Freudenberg:Fa Multi-compartment liquid pressure bushing
JP2000320604A (en) * 1999-05-14 2000-11-24 Yamashita Rubber Co Ltd Liquid-sealed vibration control device
JP2008190653A (en) * 2007-02-06 2008-08-21 Tokai Rubber Ind Ltd Fluid sealing type compliance bush for suspension
JP2011094750A (en) * 2009-10-30 2011-05-12 Tokai Rubber Ind Ltd Fluid filled active type engine mount

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05209646A (en) * 1991-11-19 1993-08-20 Carl Freudenberg:Fa Multi-compartment liquid pressure bushing
JP2000320604A (en) * 1999-05-14 2000-11-24 Yamashita Rubber Co Ltd Liquid-sealed vibration control device
JP2008190653A (en) * 2007-02-06 2008-08-21 Tokai Rubber Ind Ltd Fluid sealing type compliance bush for suspension
JP2011094750A (en) * 2009-10-30 2011-05-12 Tokai Rubber Ind Ltd Fluid filled active type engine mount

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019093367A1 (en) * 2017-11-08 2019-05-16 株式会社ブリヂストン Anti-vibration device
JP2019086104A (en) * 2017-11-08 2019-06-06 株式会社ブリヂストン Vibration control device
JP2019086100A (en) * 2017-11-08 2019-06-06 株式会社ブリヂストン Vibration control device
WO2022080338A1 (en) * 2020-10-12 2022-04-21 株式会社ブリヂストン Anti-vibration device
JP2022063458A (en) * 2020-10-12 2022-04-22 株式会社ブリヂストン Anti-vibration device
JP7383593B2 (en) 2020-10-12 2023-11-20 株式会社プロスパイラ Vibration isolator
JP7420689B2 (en) 2020-10-12 2024-01-23 株式会社プロスパイラ Vibration isolator
JP7500385B2 (en) 2020-10-12 2024-06-17 株式会社プロスパイラ Anti-vibration device

Also Published As

Publication number Publication date
JP6411163B2 (en) 2018-10-24

Similar Documents

Publication Publication Date Title
JP6411163B2 (en) Liquid-filled vibration isolator
JP6422179B2 (en) Liquid-filled bush
JP4871890B2 (en) Fluid filled cylindrical vibration isolator
JP5783858B2 (en) Fluid filled cylindrical vibration isolator
JP2010159873A (en) Cylindrical vibration isolating device of fluid encapsulation type
WO2017038357A1 (en) Vibration damping device
US10047819B2 (en) Vibration-damping device
US9964173B2 (en) Antivibration device
CN104302942A (en) Vibration damping device
JP2018204675A (en) Vibration proofing device
US9995363B2 (en) Liquid-sealed vibration damping device
JP6338448B2 (en) Liquid-filled vibration isolator
JP7349325B2 (en) Vibration isolator
JP2015172424A (en) Liquid sealing type vibration-proof device
JP2019086099A (en) Vibration controller
JP6442330B2 (en) Vibration isolator
JP7424954B2 (en) Vibration isolator
JP7420689B2 (en) Vibration isolator
JP2016044780A (en) Liquid-sealed vibration isolation device
JP6395511B2 (en) Liquid-filled vibration isolator
JP7183118B2 (en) Liquid-sealed bushings and suspension devices
JP6989355B2 (en) Anti-vibration device
JP7383593B2 (en) Vibration isolator
JP2017062028A (en) Fluid sealed type cylindrical vibration isolation device
JP2016065558A (en) Liquid sealed type vibration-proof device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180926

R150 Certificate of patent or registration of utility model

Ref document number: 6411163

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees