JP2008171913A - 半導体装置およびその製造方法 - Google Patents

半導体装置およびその製造方法 Download PDF

Info

Publication number
JP2008171913A
JP2008171913A JP2007002114A JP2007002114A JP2008171913A JP 2008171913 A JP2008171913 A JP 2008171913A JP 2007002114 A JP2007002114 A JP 2007002114A JP 2007002114 A JP2007002114 A JP 2007002114A JP 2008171913 A JP2008171913 A JP 2008171913A
Authority
JP
Japan
Prior art keywords
active region
electrode
recess
trench
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007002114A
Other languages
English (en)
Inventor
Hidenori Sato
英則 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Original Assignee
Renesas Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp filed Critical Renesas Technology Corp
Priority to JP2007002114A priority Critical patent/JP2008171913A/ja
Publication of JP2008171913A publication Critical patent/JP2008171913A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Element Separation (AREA)
  • Semiconductor Memories (AREA)

Abstract

【課題】形成面積の縮小化とキャパシタの容量の確保との両立を可能にする半導体装置を提供する。
【解決手段】DRAMセルは、シリコン基板1の上部に形成された分離トレンチ40により規定される活性領域7に形成され、当該活性領域7の端部にキャパシタC1,C2が形成される。このキャパシタC1,C2が形成される活性領域7の端部の表面には、選択エピタキシャル成長法によりエピタキシャル層25が形成されており、他の部分よりも幅が広くなっている。当該キャパシタC1,C2は、その幅広部の形成された不純物拡散層24を第1電極とし、その上に誘電体層21を介して形成された電極22を第2電極とする。
【選択図】図3

Description

本発明は半導体装置およびその製造方法に関するものであり、特に、DRAM(Dynamic Random Access Memory)など、キャパシタを有する半導体記憶装置に関する。
従来の半導体記憶装置として、MOS(Metal-Oxide Semiconductor)トランジスタと、当該MOSトランジスタのソース/ドレイン領域に接続した不純物拡散層を下部電極とするキャパシタとにより構成されるDRAMセルが知られている(例えば特許文献1)。
特許文献1においては、DRAMセルが形成される活性領域は、半導体基板の上部に配設された分離絶縁膜(フィールド絶縁膜)により規定される。分離絶縁膜の上部には、リセス(キャビティ)が形成されており、該リセスに活性領域の側面が露出される。そしてDRAMセルのキャパシタがその活性領域の側面にまで延在することで、該キャパシタの有効面積を増やして容量の増大を図っている。
特表2004−527901号公報
DRAMセルのキャパシタは情報保持のために一定以上の容量値を有する必要がある。しかし近年における半導体記憶装置の大規模化および高集積化の要請により、セル面積の縮小化が望まれており、キャパシタの容量値を確保することが困難になってきている。
DRAMセルのキャパシタの容量が小さくなると、そのリフレッシュ特性が劣化するため問題となる。またキャパシタの容量にある程度のマージンがなければ、製造過程における寸法ばらつきや位置合わせずれによって、キャパシタの有効面積が減少した場合に、容量が不足するケースが増え、半導体装置の不良率が高くなる。このような理由から、小さな形成面積で一定以上の容量値を確保する技術の重要性が増している。
一方、DRAMセルの集積度を維持しつつキャパシタの容量値を上げる方法としては、DRAMセルが形成される活性領域間のピッチ(分離トレンチの幅)を狭くすることにより、その分だけ活性領域の面積を広くしてキャパシタの有効面積を大きくするが考えられる。しかし、分離トレンチの幅が狭くすると、分離絶縁膜の埋め込み不良が生じやすくなるという問題を伴う。また従来の手法では、分離トレンチの幅を、露光可能な最小寸法(露光限界)以下に狭くできない点でも限界があった。
本発明は以上のような課題を解決するためになされたものであり、形成面積の縮小化とキャパシタの容量の確保との両立を可能にする半導体装置を提供することを目的とする。
本発明の一実施の形態に係る半導体装置は、半導体基板の上部に形成されたトレンチにより規定される活性領域を有しており、当該活性領域の端部にキャパシタが形成される。このキャパシタが形成される活性領域の端部は、選択的な結晶成長により、他の部分よりも幅が広く形成される。当該キャパシタは、その幅広部の上面および側面に形成された不純物拡散層を第1電極とする。また第1電極上に誘電体層を介して形成された第2電極は、その一部がトレンチ内に埋め込まれる。
本発明の一実施の形態によれば、第1電極である不純物拡散層が活性領域の幅広部に形成されるため、キャパシタの有効面積を大きくでき、容量の増大を図ることができる。また活性領域に幅広部が形成されることにより、その周囲のトレンチ幅が狭くなるが、活性領域の幅広部は選択的な結晶成長により形成されるため、その部分のトレンチ幅の寸法は露光限界よりも狭くすることもできる。また、幅広部の形成前にトレンチ内に分離絶縁膜を埋め込んでおけば、幅広部の周囲のトレンチ幅が狭くなることに起因する分離絶縁膜の埋め込み不良は生じない。
図1は一般的な1トランジスタ・1キャパシタ型のDRAMセルの基本的な回路図である。このDRAMセル100は、データの書き込み、リフレッシュ、読み出し等を行うアクセストランジスタとして機能するメモリトランジスタ101と、データに応じた電荷を蓄積するメモリキャパシタ102とにより構成される。この例において、メモリトランジスタ101はPチャネル型MOSトランジスタである。メモリトランジスタ101のゲート端子はワード線WLに接続し、またソース/ドレイン端子の一方はビット線BLに接続し他方はキャパシタ102の片方の端子に接続する。キャパシタ102のもう片方の端子は所定の電源に接続される。
図2は、本実施の形態に係るDRAMセルアレイの上面図である。また図3(a)〜(c)は、本実施の形態に係る半導体記憶装置の要部断面図である。図3(a),(b)は、DRAMセルアレイの断面を示しており、それぞれ図2のA−A線およびB−B線に沿った断面に対応している。即ち、図3(a)はDRAMセルの断面図であり、図3(b)は、ワード線WL(ゲート電極12)の延在方向に隣接するDRAMセルの間の素子分離領域の断面を示している。なお、図3(c)は、当該DRAMセルの周辺回路(図2では不図示)の断面図である。またこれらの図において互いに対応する要素には、同一符号を付している。
まず図3(a)を参照し、同図には、DRAMセルアレイのうちビット線BLの延在方向に隣接する2つのセルを示している。即ち、図3(a)中の左側にはメモリトランジスタT1(PMOSトランジスタ)とキャパシタC1とから成るDRAMセルが示されており、右側には同じくメモリトランジスタT2(PMOSトランジスタ)とキャパシタC2とから成るDRAMセルが示されている。
本実施の形態では、DRAMセルはP型のシリコン基板1に形成される。図2の如く、シリコン基板1において、DRAMセルが形成される活性領域7は、分離絶縁膜4(分離トレンチ40)により規定されている。
図3(a)のように、DRAMセルが形成される活性領域7はNウェル2内に形成されている。活性領域7間の分離トレンチ40内には、STI(shallow trench isolation)である分離絶縁膜4が形成される。分離絶縁膜4は高密度プラズマ酸化膜である。また分離絶縁膜4とシリコン基板1との間には、薄い熱酸化膜である酸化膜5が介在している。さらに、Nウェル2内における分離絶縁膜4の底部の深さ近傍の一帯には、チャネルカット層3が形成される。
メモリトランジスタT1,T2の各々は、ゲート酸化膜11およびその上のゲート電極12、該ゲート電極12の側面に形成されたサイドウォール13、並びにシリコン基板1の表面部におけるゲート電極12両側に形成されたソース/ドレイン領域14,15により構成される。ゲート電極12およびソース/ドレイン領域14,15の上部には、それぞれシリサイド層121,141,151が形成される。
DRAMセルの上方は層間絶縁膜6で覆われており、その上の配線層にビット線BLが形成される。層間絶縁膜6内にはビット線BLに接続するためのコンタクト16が形成される。ソース/ドレイン領域14上部のシリサイド層141は、当該ソース/ドレイン領域14とビット線BL(コンタクト16)との間の接続抵抗を小さくしている。またソース/ドレイン領域15の上部のシリサイド層151は、メモリトランジスタT1,T2とキャパシタC1,C2との間の接続抵抗を小さくしており、それによりDRAMセルの高速動作化を図ることが可能になる。
本実施の形態では図2および図3(a)の如く、活性領域7の端部の表面に、選択的なエピタキシャル成長法により結晶成長させたシリコン層25(以下「エピタキシャル層25」)が形成されている。その結果、活性領域7の端部の幅W1は、その他の部分(エピタキシャル層25が形成されていない部分)の幅W2よりも、エピタキシャル層25の厚さDの分だけ広くなる(W1=W2+2×D)。以下、活性領域7の端部およびその表面のエピタキシャル層25を含めた概念として、活性領域7の端部における幅の広い部分を「幅広部」と称する。
図3(a)の如く、キャパシタC1,C2は、互いに上部電極22を共有しており、また下部電極として機能するP型の不純物拡散層24(以下「下部拡散層24」)、上部電極22と下部拡散層24の間の誘電体層として機能する絶縁膜21(以下「誘電体層21」)をそれぞれ備えている。上部電極22の上部にはシリサイド層221が形成される。
本実施の形態において、下部拡散層24(第1電極)は、エピタキシャル層25を含む幅広部26に形成される。また下部拡散層24は、それと同じP型のソース/ドレイン領域15に繋がっている。つまり、下部拡散層24はソース/ドレイン領域15に電気的に接続しており、図1に示したキャパシタ102におけるメモリトランジスタ101のソース/ドレイン端子に接続する側の電極(ストレージ電極)として機能している。一方、上部電極22は(第2電極)、セルアレイ内にある複数のキャパシタの共通電極(セルプレート電極)として機能する。
通常の分離絶縁膜は、分離トレンチを完全に埋めるように形成されるが、本実施の形態の分離絶縁膜4には、上部電極22の下方に、活性領域7の側面を露出するリセス41が形成される。そのため図3(a)の断面では、分離絶縁膜4は分離トレンチ40の底部のみに残存する。またリセス41は、図3(b)のようにゲート電極12の延在方向に隣接するDRAMセルの間にも形成されている。上記の幅広部26は、図2のようにリセス41の内側に形成される。
下部拡散層24および誘電体層21は、活性領域7の上面だけでなくリセス41内に露出した側面(幅広部26の側面)にも形成される。また上部電極22の一部は、リセス41内に埋め込まれる。この構成により、活性領域7の上面だけでなく、その側面もキャパシタC1,C2の有効面積として寄与するようになる。しかも本実施の形態では、下部拡散層24は、活性領域7の端部の幅を広げた幅広部26に形成されるので、キャパシタC1,C2の有効面積はさらに大きくなり、キャパシタC1,C2の容量を増大させることができる。その結果、DRAMセルのリフレッシュ特性が向上され、応じてDRAM装置の不良率が低減される。
ここで図3(c)を参照し、DRAMセルの周辺回路について説明する。図3(c)には、周辺回路の一部を成す2つのトランジスタ(以下「周辺トランジスタ」)TP1,TP2が示されている。周辺トランジスタTP1,TP2も、分離トレンチ40により規定される活性領域7に形成されており、その各々の構造は、図3(a)に示したメモリトランジスタT1,T2と同じ構造を有している。
即ち周辺トランジスタTP1,TP2のそれぞれは、ゲート酸化膜33およびその上のゲート電極31、該ゲート電極31の側面に形成されたサイドウォール13、並びにシリコン基板1の表面部におけるゲート電極31両側に形成されたソース/ドレイン領域32により構成される。ゲート電極31およびソース/ドレイン領域32の上部には、それぞれシリサイド層311,321が形成される。各ソース/ドレイン領域32は、シリサイド層321を介して、層間絶縁膜6上の配線37へ接続するためのコンタクト35に接続する。
このように周辺トランジスタTP1,TP2が、メモリトランジスタT1,T2と同じ構造を有することにより、両者を同じ製造工程で並行して形成することができるようになる。つまり半導体記憶装置の製造工程の簡略化に寄与することができる。
以下、本実施の形態に係る半導記憶体装置の製造方法について説明する。図4〜図13は、当該製造方法を説明するための工程図である。図4〜図13の(a)〜(c)は、それぞれ図3の(a)〜(c)の断面にそれぞれ対応している。
まず図4(a)〜(c)に示すように、シリコン基板1のDRAMセル領域および周辺回路領域に分離トレンチ40を形成して活性領域7を規定し、当該分離トレンチ40の中に酸化膜5および分離絶縁膜4を形成する。より具体的には次の手順で行われる。即ち、シリコン基板1の上面を熱酸化してパッド酸化膜50を形成し、その上にシリコン窒化膜を形成する。そして当該シリコン窒化膜を分離トレンチ40のパターンに開口し、その開口されたシリコン窒化膜をマスクにして、パッド酸化膜50およびシリコン基板1の上部をエッチングすることにより、分離トレンチ40を形成する。その後、熱酸化により分離トレンチ40の内壁に酸化膜5を形成し、高密度プラズマ酸化膜により分離トレンチ40内を埋める。そしてCMPによりシリコン基板1の上面上の余剰な高密度プラズマ酸化膜を除去することで分離トレンチ40内に分離絶縁膜4を形成する。そしてシリコン窒化膜を除去すると図4の構成が得られる。
続いて、図5(a)〜(c)のように、この後形成するリセス41のパターンに開口されたレジストマスク51を形成する。当該レジストマスク51をマスクにするドライエッチングにより、分離絶縁膜4および酸化膜5の上部を除去してリセス41を形成する(図6(a)〜(c))。
このときレジストマスク51の開口の幅(リセス41の幅)は、分離トレンチ40の幅(活性領域7同士の間隔)よりも広いので、活性領域7の端部はレジストマスク51の開口の内側に位置することになる。よって上記ドライエッチングの際には、活性領域7の端部の上のパッド酸化膜50も除去される。但し、活性領域7の端部自体まで除去されないように、シリコンと酸化膜とのエッチング選択性を確保できるものにする必要がある。その結果、図6(a)のように活性領域7の上面および側面がリセス41内に露出することとなる。
分離絶縁膜4に形成するリセス41の深さは、分離トレンチ40の深さの半分程度が望ましい。リセス41を深くするほどキャパシタC1,C2のそれぞれの有効面積を大きくできるが、深すぎると分離絶縁膜4の残存膜厚が薄くなってキャパシタC1,C2間に寄生MOSトランジスタが構成されてしまい、隣接セル間での電荷リークが生じてしまうためである。
その後、レジストマスク51を除去する(図7(a)〜(c))。このとき活性領域7の上面は、リセス41の内側にある端部では露出しているが、それ以外の部分ではパッド酸化膜50が残存しているため露出しない。活性領域7の側面も、リセス41の内側にある端部では露出しているが、それ以外の部分では分離絶縁膜4に接しているため露出しない。
この状態でシリコンの選択エピタキシャル成長処理を実施する(図8(a)〜(c))。すると図8(a)の如く、リセス41内に露出した活性領域7の端部の上面および側面のみにエピタキシャル層25が形成される。それにより活性領域7の端部の幅は広くなり、その部分が幅広部26になる。このようにエピタキシャル層25はリセス41内の活性領域7に自己整合的に形成される。よって活性領域7における幅広部26(エピタキシャル層25が形成された部分)と他の部分との境界の位置は(即ち幅の広さが変化する部分)は、リセス41の外端の位置と一致することになる(図2参照)。
その後、再びリセス41のパターンに開口したレジストマスク52を形成し、それをマスクにして、P型イオンをシリコン基板1に注入する(図9(a)〜(c))。ここでもレジストマスク52の開口の幅(リセス41の幅)は、分離トレンチ40の幅(活性領域7同士の間隔)よりも広いので、P型イオンは、リセス41内の活性領域7の端部(幅広部26)に注入される。それにより、エピタキシャル層25を含む幅広部26の上面および側面に、高濃度(1020/cm3程度)の下部拡散層24が形成される(図9(a))。
続いてレジストマスク52およびパッド酸化膜50を除去し、シリコン基板1表面に犠牲酸化膜(不図示)を形成した後、イオン注入によって、Nウェル2およびチャネルカット層3の形成や、メモリトランジスタT1,T2および周辺回路のトランジスタ(以下「周辺トランジスタ」)のしきい値を調整するためのチャネルドープを行う。そして犠牲酸化膜を除去した後、図10(a)〜(c)のように、シリコン基板1の表面に酸化膜53およびポリシリコン膜54を形成する。なお、上記イオン注入はポリシリコン膜54の成膜後に行ってもよい。
その後、ポリシリコン膜54上に所定パターンのレジストマスクを形成し、それをマスクにするエッチングによりポリシリコン膜54をパターニングする。それにより、メモリトランジスタT1,T2のゲート電極12、キャパシタC1,C2上部電極22、および周辺トランジスタTP1,TP2のゲート電極31が形成される(図11(a)〜(c))。
そして、それらゲート電極12,31および上部電極22をマスクとするイオン注入により、メモリトランジスタT1,T2および周辺トランジスタのLDD(Lightly Doped Drain)層を形成する。その後、全面にシリコン窒化膜を堆積してエッチバックすることで、ゲート電極12,31および上部電極22の側面にそれぞれサイドウォール13,34およびサイドウォール23を形成する。またこのとき酸化膜53もパターニングされ、メモリトランジスタT1,T2のゲート酸化膜11、キャパシタC1,C2の誘電体層21並びに周辺トランジスタのゲート酸化膜33が形成される。
そして、さらにイオン注入を行って、メモリトランジスタT1,T2のソース/ドレイン領域14,15、並びに周辺トランジスタのソース/ドレイン領域32を形成する(図12(a)〜(c))。
その後、シリサイドを形成する領域の全面に、例えばコバルトなどの金属膜を形成して熱処理を施し、未反応の金属膜を除去することにより、DRAMセル領域および周辺回路領域に、自己整合的にシリサイド層121、141、151、221、311,321が形成される(図13(a)〜(c))。
そして層間絶縁膜6を堆積してその中にコンタクト16、35を形成し、当該層間絶縁膜6の上にビット線BLおよび周辺回路の配線37を形成することによって、図3(a)〜(c)に示した本実施の形態に係る半導体記憶装置が形成される。
以上のように、本実施の形態に係る半導体記憶装置の製造方法においては、キャパシタC1,C2が形成される活性領域7の幅広部26は、分離トレンチ40の形成により規定された本来の活性領域7の端部を、その後にエピタキシャル成長させることによって形成される。そのため図2に示すように、幅広部26の周囲の分離トレンチ40の幅(L1およびL3)は、図4の工程にて分離トレンチ40を形成した直後の本来の幅(L2およびL4)よりも狭くなる。
つまり、図4の工程で形成する分離トレンチ40の幅(L2およびL4)および活性領域7の幅(W2)を従来と同じにした場合であっても、キャパシタC1,C2を形成する活性領域7の端部の幅を広くでき、キャパシタC1,C2の有効面積は拡大される。よってキャパシタC1,C2の容量が増大する。従って、DRAMセルの集積度を落とすことなく、各セルのキャパシタC1,C2の容量値を上げることができる。
従来の手法では、分離トレンチ40の幅は露光限界よりも狭くすることはできなかった。しかし本実施の形態によれば、例えば図4の工程で形成する分離トレンチ40の幅(L2およびL4)が露光限界に等しいものであった場合でも、その後のエピタキシャル層25を形成することにより、幅広部26の周囲の分離トレンチ40の幅(L1およびL3)はそれよりも狭くできる。つまり、キャパシタC1,C2の容量値を大きくしつつ、より狭い分離トレンチ40を実現でき、DRAMセルの高密度化を図ることができる。
なお、エピタキシャル層25の形成は、分離絶縁膜4を分離トレンチ40に埋め込んだ後で、当該分離絶縁膜4のリセス41に露出した活性領域7の端部に対して自己整合的に行われる。そのため、エピタキシャル層25の形成により分離トレンチ40の幅が狭くなったとしても、そのことによって分離絶縁膜4の埋込不良が生じることはない。
本実施の形態に係るDRAMセルの活性領域7はその端部に幅広部26を有するため、結果的に複雑な形状となる。しかし図4の工程で形成する活性領域7は従来と同じ単純な形状でよく、また上記の製造方法によればエピタキシャル層25はリセス41の形成後に、リセス41に対して自己整合的に形成できる。よってDRAMセルの微細化の妨げにはならない。
一般的なDRAMセルの回路図である。 実施の形態に係るDRAMセルアレイの上面図である。 実施の形態に係る半導体記憶装置が備えるDRAMセルおよび周辺回路の要部断面図である。 実施の形態に係る半導体記憶装置の製造方法を示す工程図である。 実施の形態に係る半導体記憶装置の製造方法を示す工程図である。 実施の形態に係る半導体記憶装置の製造方法を示す工程図である。 実施の形態に係る半導体記憶装置の製造方法を示す工程図である。 実施の形態に係る半導体記憶装置の製造方法を示す工程図である。 実施の形態に係る半導体記憶装置の製造方法を示す工程図である。 実施の形態に係る半導体記憶装置の製造方法を示す工程図である。 実施の形態に係る半導体記憶装置の製造方法を示す工程図である。 実施の形態に係る半導体記憶装置の製造方法を示す工程図である。 実施の形態に係る半導体記憶装置製造方法を示す工程図である。
符号の説明
1 シリコン基板、2 Nウェル、3 チャネルカット層、4 分離絶縁膜、5 酸化膜、6 層間絶縁膜、7 活性領域、11 ゲート酸化膜、12 ゲート電極、13,23 サイドウォール、14,15 ソース/ドレイン領域、16 コンタクト、21 誘電体層、22 上部電極、24 下部拡散層、25 エピタキシャル層、26 幅広部、40 分離トレンチ、41 リセス、T1,T2 PMOSトランジスタ、C1,C2 キャパシタ、TP1,TP2 周辺トランジスタ。

Claims (4)

  1. 半導体基板の上部に形成されたトレンチと、
    前記半導体基板において前記トレンチにより規定され、その端部に幅広部を有する活性領域と、
    前記活性領域の前記幅広部の上面および側面に形成された不純物拡散層である第1電極、前記不純物拡散層の表面に形成された誘電体層、並びに前記誘電体層上に形成され一部が前記トレンチ内に埋め込まれた第2電極とから成るキャパシタとを備える
    ことを特徴とする半導体装置。
  2. 請求項1記載の半導体装置であって、
    前記トレンチ内には、分離絶縁膜が形成されており、
    当該分離絶縁膜には、前記第2電極の前記一部を前記トレンチ内に埋め込むためのリセスが形成されており、
    前記幅広部は、前記リセスの内側に形成されている
    ことを特徴とする半導体装置。
  3. 請求項2記載の半導体装置であって、
    前記活性領域における前記幅広部とその他の部分との境界の位置は、前記リセスの端の位置と一致している
    ことを特徴とする半導体装置。
  4. (a)半導体基板の上部にトレンチを形成することで、それにより規定される活性領域を形成する工程と、
    (b)前記トレンチ内に分離絶縁膜を形成する工程と、
    (c)前記分離絶縁膜に、前記活性領域の端部の側面を露出するリセスを形成する工程と、
    (d)前記リセス内に露出した前記活性領域の前記端部の表面に、選択的に結晶成長層を形成する工程と、
    (e)前記結晶成長層が形成された前記活性領域の前記端部の上面および側面にキャパシタの第1電極となる不純物拡散層を形成する工程と、
    (f)前記不純物拡散層上に誘電体層を形成する工程と、
    (g)前記リセス内を含む前記誘電体層上にキャパシタの第2電極を形成する工程とを備える
    ことを特徴とする半導体装置の製造方法。
JP2007002114A 2007-01-10 2007-01-10 半導体装置およびその製造方法 Pending JP2008171913A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007002114A JP2008171913A (ja) 2007-01-10 2007-01-10 半導体装置およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007002114A JP2008171913A (ja) 2007-01-10 2007-01-10 半導体装置およびその製造方法

Publications (1)

Publication Number Publication Date
JP2008171913A true JP2008171913A (ja) 2008-07-24

Family

ID=39699750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007002114A Pending JP2008171913A (ja) 2007-01-10 2007-01-10 半導体装置およびその製造方法

Country Status (1)

Country Link
JP (1) JP2008171913A (ja)

Similar Documents

Publication Publication Date Title
JP4773169B2 (ja) 半導体装置の製造方法
US7189605B2 (en) Method for fabricating semiconductor device
US6998676B2 (en) Double-gate structure fin-type transistor
US8053307B2 (en) Method of fabricating semiconductor device with cell epitaxial layers partially overlap buried cell gate electrode
US7247541B2 (en) Method of manufacturing a semiconductor memory device including a transistor
US7348235B2 (en) Semiconductor device and method of manufacturing the same
US20090173992A1 (en) Semiconductor device with improved performance characteristics
JP2006339476A (ja) 半導体装置及びその製造方法
US7381612B2 (en) Method for manufacturing semiconductor device with recess channels and asymmetrical junctions
KR20010083145A (ko) 반도체 집적 회로 장치의 제조 방법 및 반도체 집적 회로장치
JP2008244093A (ja) 半導体装置の製造方法
US20010012673A1 (en) Mos transistor having self-aligned well bias area and method of fabricating the same
JP2011243802A (ja) 半導体装置及びその製造方法、並びにデータ処理システム
US8106437B2 (en) Semiconductor storage device
US7332390B2 (en) Semiconductor memory device and fabrication thereof
US8658491B2 (en) Manufacturing method of transistor structure having a recessed channel
JP4058403B2 (ja) 半導体装置
JP2004327517A (ja) 半導体装置およびその製造方法
JP2008171863A (ja) トレンチゲートの形成方法
JP2005236135A (ja) 半導体装置の製造方法
JP2005203615A (ja) 半導体記憶装置、半導体装置およびそれらの製造方法
JP2007157977A (ja) 半導体装置およびその製造方法
JP2008171913A (ja) 半導体装置およびその製造方法
US7700435B2 (en) Method for fabricating deep trench DRAM array
JP3691966B2 (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20081023