JP2008170349A - Method of manufacturing glass microchip substrate with electrode - Google Patents

Method of manufacturing glass microchip substrate with electrode Download PDF

Info

Publication number
JP2008170349A
JP2008170349A JP2007005073A JP2007005073A JP2008170349A JP 2008170349 A JP2008170349 A JP 2008170349A JP 2007005073 A JP2007005073 A JP 2007005073A JP 2007005073 A JP2007005073 A JP 2007005073A JP 2008170349 A JP2008170349 A JP 2008170349A
Authority
JP
Japan
Prior art keywords
glass
substrate
glass substrate
electrode
microchip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007005073A
Other languages
Japanese (ja)
Other versions
JP4942094B2 (en
Inventor
Naoko Inoue
直子 井上
Masao Karube
征夫 軽部
Hirotaka Miyaji
寛登 宮地
Keisuke Iwata
恵助 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007005073A priority Critical patent/JP4942094B2/en
Publication of JP2008170349A publication Critical patent/JP2008170349A/en
Application granted granted Critical
Publication of JP4942094B2 publication Critical patent/JP4942094B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Joining Of Glass To Other Materials (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a simple jointing method that does not cause exfoliation due to ultrasonic cleaning and cleaning due to high-pressure air, without having to seal a fine flow channel by an adhesive, by superimposing a glass substrate having an electrode on its surface and a glass substrate, which has a flat surface that is brought into close contact with the glass substrate, and that has a fine flow channel overlapped on one another. <P>SOLUTION: A method of manufacturing a glass microchip with an electrode includes a step of superimposing one glass substrate having the fine flow channel formed to its surface on another glass substrate having an electrode formed on its surface so that the electrode and the fine flow channel are opposed to each other; a step of making a UV-curing adhesive penetrate the gap between one glass substrate and another glass substrate; and a step of making the UV-curing adhesive that has infiltrated the fine flow channel an UV-light irradiation step remove. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、一方のガラス基板の表面部に微細流路溝を形成し、他方のガラス基板には電極を形成して、2枚のガラス基板を接合してガラス製マイクロチップを製造(接合方法)
に関するものである。
In the present invention, a micro flow channel is formed on the surface of one glass substrate, an electrode is formed on the other glass substrate, and two glass substrates are joined to produce a glass microchip (joining method) )
It is about.

従来のマイクロシステム用チップの接合方法は、フッ酸水溶液又は無水ケイ酸を片方のガラス基板に滴下し、もう一方のガラス基板を張り合わせて長時間荷重を印加して接合するものや、NaOH等のアルカリで両方のガラス基板を洗浄し、軽い圧を加えることで接合するものや、高真空化で両方のガラス基板表面をエネルギービームの照射により活性化させて接合するものなどが知られており、いずれの方法でもガラス基板をガラス転移点Tg付近まで加熱している。   Conventional microsystem chip bonding methods include a method in which an aqueous solution of hydrofluoric acid or anhydrous silicic acid is dropped onto one glass substrate, and the other glass substrate is bonded to each other by applying a load for a long time, such as NaOH. It is known that both glass substrates are washed with alkali and bonded by applying light pressure, and that both glass substrate surfaces are activated by energy beam irradiation and bonded with high vacuum. In either method, the glass substrate is heated to near the glass transition point Tg.

従来のマイクロチップの製造方法としては、「互いに接合されるべき少なくとも2枚のガラス基板で構成されたマイクロ化学システム用チップの製造方法において、前記ガラス基板のガラス粘度をηで表したときに、前記ガラス基板をlogηが10.5〜12.5となる温度で加熱融着することを特徴とするマイクロシステム用化学チップの製造方法。」が知られている。(特許文献1参照)
また、「少くとも一方のガラス基板の表面部に微細流路が溝形成されている2枚のガラス基板を接合してガラス基板マイクロチップを製造する方法であって、10−4Torr以上の低真空度の減圧環境において、ガラス基板の軟化点以下の加熱温度でプレス加圧してガラス基板を密着接合することを特徴とするガラス基板マイクロチップの製造方法。」が知られている。(特許文献2参照)
特開2004−125476号公報 特開2004−210592号公報
As a conventional microchip manufacturing method, “in the microchemical system chip manufacturing method constituted by at least two glass substrates to be bonded to each other, when the glass viscosity of the glass substrate is represented by η, A method for producing a chemical chip for a microsystem, wherein the glass substrate is heat-sealed at a temperature at which log η is 10.5 to 12.5 ”is known. (See Patent Document 1)
Further, “a method of manufacturing a glass substrate microchip by joining two glass substrates having a micro-channel formed in a surface of at least one glass substrate, and having a low vacuum of 10 −4 Torr or more There is known a manufacturing method of a glass substrate microchip characterized by press-pressing at a heating temperature equal to or lower than a softening point of a glass substrate in a reduced pressure environment, and closely bonding the glass substrate. (See Patent Document 2)
JP 2004-125476 A JP 2004-210592 A

しかしながら、上記従来のマイクロシステム用チップの接合方法では、ガラス基板同士の接合がガラス同士の融着に至っておらず、ガラス基板同士の接合の程度が充分ではなかった。また、基板上に電極などのガラスとは異なる物質(金電極)が存在する場合、ガラスと異なる物質(金電極)との膨張率の違いから、セルが破損することが多く、歩留まりの低下を招いていた。   However, in the conventional method for joining chips for a microsystem, the glass substrates are not joined to each other, and the glass substrates are not fused together, and the degree of joining between the glass substrates is not sufficient. In addition, when a material such as an electrode (gold electrode) such as an electrode is present on the substrate, the cell is often damaged due to the difference in expansion coefficient between the glass and the material (gold electrode), which reduces the yield. I was invited.

本発明の課題(目的)は、表面に電極を有する基板(マイクロチップ本体)と、マイクロチップ本体と密着する平坦な面及び微細流路を有する蓋となる基板(マイクロチップ蓋基板)とを重ね合わせて、微細流路を封鎖することなく、また超音波洗浄及び高圧空気による洗浄で剥離が起こらない、簡易的かつ簡便な接合方法とこの方法によって製造しうるマイクロチップを提供することにある。   An object (object) of the present invention is to superimpose a substrate (microchip body) having an electrode on a surface thereof and a substrate (microchip lid substrate) serving as a lid having a flat surface in close contact with the microchip body and a fine channel. In addition, it is an object of the present invention to provide a simple and simple joining method and a microchip that can be manufactured by this method, in which separation is not caused by ultrasonic cleaning and cleaning with high-pressure air without blocking fine channels.

また、これまでの融着による接合方法では、ガラス基板のみの材質同士の接合と異なり、ガラス基板とその基板上にある異なる物質(金電極)との膨張率の違いから、セルが破損することが多く、歩留まりの低下を招いていたため、この発明により歩留まりを向上した簡易的かつ簡便な接合方法とこの方法によって製造しうるマイクロチップを提供することにある。   In addition, in the conventional bonding method by fusion, the cell may be damaged due to the difference in expansion coefficient between the glass substrate and a different substance (gold electrode) on the substrate, unlike the bonding between the materials of only the glass substrate. Therefore, the present invention is to provide a simple and simple bonding method with improved yield and a microchip that can be manufactured by this method.

前記課題を解決するために、本発明の電極付きガラス製マイクロチップ基板の製造方法は、表面に微細流路が形成された一方のガラス基板を、表面に電極が形成された他方のガラス基板上に、前記電極と微細流路が対向するように位置合わせて重ね合わせる工程と、前記一方のガラス基板と他方のガラス基板間にUV硬化性接着剤を侵入させる工程と、前記微細流路内に侵入したUV硬化性接着剤を除去する工程と、UV光を照射する工程とを含むことを特徴とする。(請求項1)   In order to solve the above-mentioned problems, the method for producing a glass microchip substrate with an electrode according to the present invention comprises: one glass substrate having a fine flow path formed on the surface; and the other glass substrate having an electrode formed on the surface. A step of aligning and overlapping the electrode and the fine channel so as to face each other, a step of injecting a UV curable adhesive between the one glass substrate and the other glass substrate, The method includes a step of removing the invading UV curable adhesive and a step of irradiating UV light. (Claim 1)

また、前記微細流路内に侵入したUV硬化性接着剤を除去する工程の前に、前記他方のガラス基板上に圧力を加えて2枚のガラス基板間の接着剤を所定の高さにして、過剰な接着剤を除去する工程を含むことを特徴とする。(請求項2)
また、前記工程処理を窒素を充填した環境下で実行することを特徴とする。(請求項3)
In addition, before the step of removing the UV curable adhesive that has entered the fine flow path, pressure is applied on the other glass substrate to bring the adhesive between the two glass substrates to a predetermined height. And a step of removing excess adhesive. (Claim 2)
The process is performed in an environment filled with nitrogen. (Claim 3)

また、前記2枚のガラス基板の接合時において、前記他方のガラス基板の表面から前記微細流路の高さが7μm以上であることを特徴とする。(請求項4)
また、前記微細流路が、前記一方のガラス基板の側面で貫通していることを特徴とする。(請求項5)
In addition, when the two glass substrates are joined, the height of the fine channel from the surface of the other glass substrate is 7 μm or more. (Claim 4)
Further, the fine flow path is penetrated by a side surface of the one glass substrate. (Claim 5)

また、前記微細流路の両側面には、前記電極が露出していることを特徴とする。(請求項6)
また、前記微細流路が一方のガラス基板に複数形成されていることを特徴とする。(請求項7)
In addition, the electrodes are exposed on both side surfaces of the fine channel. (Claim 6)
Further, a plurality of the fine flow paths are formed on one glass substrate. (Claim 7)

また、前記一方のガラス基板の厚さは0.2mm未満であることを特徴とする。(請求項8)
また、本発明の電極付きガラス製マイクロチップ基板は、請求項1〜8のいずれかの電極付きガラス製マイクロチップ基板の製造方法で製造されたものである。(請求項9)
The thickness of the one glass substrate is less than 0.2 mm. (Claim 8)
Moreover, the glass microchip board | substrate with an electrode of this invention is manufactured with the manufacturing method of the glass microchip board | substrate with an electrode in any one of Claims 1-8. (Claim 9)

請求項1〜8に記載の本発明の電極付きガラス製マイクロチップ基板の製造方法によれば、大掛かりな装置を使用することなく、少ない工程で2枚のガラス基板を接着でき熟練の必要性が無いため、様々なパターンに迅速に対応出来ることにより研究及び開発の促進に寄与出来る。
また、電極付きの基板等の材質が異なる物質が複合されている場合でも、簡易的かつ簡便に接合が出来る。
According to the method for manufacturing a glass microchip substrate with an electrode according to the present invention described in claims 1 to 8, two glass substrates can be bonded in a small number of steps without using a large-scale apparatus. Since it is not available, it can contribute to the promotion of research and development by being able to respond quickly to various patterns.
In addition, even when substances having different materials such as a substrate with electrodes are combined, it is possible to perform simple and simple bonding.

本願発明の基本は、一方のガラス基板の表面部に微細流路溝を形成し、他方のガラス基板には電極を形成して、2枚のガラス基板を接合してガラス製マイクロチップを製造する方法である。
そして、本発明のガラス製マイクロチップの製造方法では、2枚のガラス基板の接合には接着剤として、所定の粘度のUV硬化性接着剤を使用して、該接着剤の表面張力及び毛細管現象により流路内への接着剤の侵入を防ぐと共に、2枚のガラス基板を密着接合することを特徴とする。
The basis of the present invention is that a microchannel groove is formed on the surface of one glass substrate, an electrode is formed on the other glass substrate, and two glass substrates are joined to produce a glass microchip. Is the method.
In the method for producing a glass microchip according to the present invention, a UV curable adhesive having a predetermined viscosity is used as an adhesive for joining two glass substrates, and the surface tension and capillary action of the adhesive are used. Thus, the adhesive is prevented from entering the flow path, and two glass substrates are tightly bonded.

具体的には、例えば、粘度6-10 mPa・sのUV硬化性接着剤を用いて、表面張力及び毛細管現象により流路内への接着剤の侵入を防ぎ、ガラス基板を密着接合することを特徴とする。   Specifically, for example, by using a UV curable adhesive having a viscosity of 6-10 mPa · s, it is possible to prevent adhesion of the adhesive into the flow path by surface tension and capillary phenomenon, and to bond the glass substrates in close contact. Features.

また、例えば、粘度6-10 mPa・sのUV硬化性接着剤を用いることによって、微細流路付き蓋基板及び電極付きガラス基板間を、表面張力によりマイクロチップ内の全チャンネルの高さを一定に簡便に保った状態で、2枚のガラス基板を接合してガラス製マイクロチップを製造することを特徴とする。   Also, for example, by using a UV curable adhesive with a viscosity of 6-10 mPa · s, the height of all channels in the microchip is kept constant between the lid substrate with a fine flow path and the glass substrate with an electrode by surface tension. The glass microchip is manufactured by joining two glass substrates in a state kept simply.

また、本発明のガラス製マイクロチップの製造方法は、過剰湿布により流路内へ接着剤が侵入した場合には、市販のマイクロピペット及びダイヤグラムポンプにより吸引することで、再洗浄及び接着剤の再湿布の工程を省くことが出来ることを特徴とする。   In addition, in the method for producing a glass microchip of the present invention, when the adhesive enters the flow path due to excessive poultice, the adhesive is sucked with a commercially available micropipette and a diagram pump, thereby re-cleaning and re-adhesion of the adhesive. It is characterized in that the step of the compress can be omitted.

また、本発明のガラス製マイクロチップの製造方法は、UV照射による接着剤硬化時は、窒素雰囲気下でUV照射を行うことを特徴とし、接合前のマイクロチップを窒素雰囲気下に置く前に、流路内を十分に窒素で置換することにより2枚のガラスを接合することを特徴とする。   In addition, the method for producing a glass microchip of the present invention is characterized in that when the adhesive is cured by UV irradiation, UV irradiation is performed in a nitrogen atmosphere, and before placing the microchip before bonding in a nitrogen atmosphere, It is characterized in that two sheets of glass are joined by sufficiently replacing the inside of the flow path with nitrogen.

次に図1〜図6を用いて本発明のガラス製マイクロチップを製造方法の説明をする。
図1は、本発明のガラス製マイクロチップを製造の開始直前の状態を示す図である。
図1において、1は表面部に微細流路溝(図では高さ7μm)を形成した1方のガラス基板であって、2は電極3を形成した他方のガラス基板である。
本発明は、上記2枚のガラス基板を接合してガラス製マイクロチップを製造する方法である。
図1において、4は2枚のガラス基板を接合するために、2枚のガラス基板間に接着剤を侵入させるピペットを示している。
Next, the manufacturing method of the glass microchip of this invention is demonstrated using FIGS.
FIG. 1 is a view showing a state immediately before the start of production of the glass microchip of the present invention.
In FIG. 1, reference numeral 1 denotes one glass substrate having a fine flow channel groove (height 7 μm in the figure) formed on the surface portion, and 2 denotes the other glass substrate on which an electrode 3 is formed.
The present invention is a method for producing a glass microchip by bonding the two glass substrates.
In FIG. 1, reference numeral 4 denotes a pipette that allows an adhesive to enter between two glass substrates in order to join the two glass substrates.

図2は、本発明のガラス製マイクロチップを製造で、図1の状態でピペット4で接着剤を侵入させた状態を示す図である。
図2において、1、2,3は図1と同く1方のガラス基板(蓋基板),他方のガラス基板,電極である。
図1の状態で2枚のガラス基板間にピペットで接着剤を侵入させると、2枚のガラス基板間及びガラス基板1に形成された微細流路溝内に毛細管現象によって侵入する。
その状態で、5,6,7は侵入した接着剤であり、5が2枚のガラス基板の接着に必要な部分であり、6が一方のガラス基板1に形成された微細流路溝内に毛細管現象によって侵入した接着剤部分であり、7は溢れた過剰な接着剤部分である。
接着剤には表面張力が働いてガラス基板1は、ガラス基板2に対して所定の高さに保たれている。
図2において、8はスライドガラス(通常顕微鏡で使用するもの)であり、一方のガラス基板1の上部にキムワイプ9を介して加圧する直前の状態を示している。
FIG. 2 is a view showing a state in which the glass microchip of the present invention is manufactured and an adhesive is invaded by the pipette 4 in the state of FIG.
In FIG. 2, reference numerals 1, 2, and 3 denote one glass substrate (lid substrate), the other glass substrate, and electrodes as in FIG.
In the state of FIG. 1, when an adhesive is made to penetrate between two glass substrates with a pipette, it penetrates between the two glass substrates and into the fine channel groove formed in the glass substrate 1 by capillary action.
In this state, 5, 6 and 7 are intruded adhesives, 5 is a part necessary for bonding two glass substrates, and 6 is in a fine flow channel groove formed on one glass substrate 1. An adhesive portion invaded by capillary action, and 7 is an overflowing excessive adhesive portion.
The surface tension acts on the adhesive, and the glass substrate 1 is kept at a predetermined height with respect to the glass substrate 2.
In FIG. 2, reference numeral 8 denotes a slide glass (usually used in a microscope), and shows a state immediately before pressurizing the upper part of one glass substrate 1 through a Kim wipe 9.

図3は、本発明のガラス製マイクロチップを製造で、図2の状態でキムワイプを介してスライドガラスで加圧した後に、過剰な接着剤7を除去した状態を示す図である。
図2において、1、2,3は図1と同じく1方のガラス基板,他方のガラス基板,電極であり、この状態ではまだ微細流路11内に接着剤が充填(侵入)している。
また、この状態では、キムワイプを介してスライドガラスで加圧されたために、一方のガラス基板と他方のガラス基板間の距離は表面張力によって所定の高さに保たれている。
この状態で微細流路11内に充填(侵入)している接着剤をマイクロピペット若しくはダイヤグラムポンプで吸引して除去する。
なお、この接着剤の吸引除去の工程では、微細流路内の接着剤のみを吸引除去して、2枚のガラス基板間の接着剤は残す程度の排気速度(例えば、60L/min)、到達圧力(例えば、21.3kPa)で実行すると、2枚のガラス基板間の接合部における距離と、一方のガラス基板の表面と微細流路間の高さに差があり、そこに生じる毛細管現象によるる力にも差が生じることによって、微細流路内の接着剤のみの吸引除去が可能である。
FIG. 3 is a view showing a state in which excess adhesive 7 is removed after the glass microchip of the present invention is manufactured and pressed with a slide glass through a Kimwipe in the state of FIG.
In FIG. 2, reference numerals 1, 2, and 3 denote one glass substrate, the other glass substrate, and an electrode as in FIG. 1, and in this state, the adhesive is still filled (invaded) into the microchannel 11.
Moreover, in this state, since it was pressurized with the slide glass through the Kim wipe, the distance between one glass substrate and the other glass substrate is kept at a predetermined height by the surface tension.
In this state, the adhesive filling (invading) the fine flow path 11 is removed by suction with a micropipette or a diagram pump.
It should be noted that in the step of removing the adhesive by suction, only the adhesive in the fine flow path is removed by suction, and the exhaust speed (for example, 60 L / min) is reached so as to leave the adhesive between the two glass substrates. When executed at a pressure (for example, 21.3 kPa), there is a difference in the distance at the joint between the two glass substrates and the height between the surface of one glass substrate and the fine flow path, which is caused by the capillary action that occurs there. As a result, the adhesive force in the fine channel alone can be removed by suction.

図4は、図3の状態で微細流路内の接着剤を除去し、UV光を照射して接着剤を硬化させた状態を示している。
図4において、1、2,3は図1と同じく1方のガラス基板,他方のガラス基板,電極であり、10は、2枚のガラス基板間を接合している接着剤である。
そして、図の例では、微細流路12の高さは7μmであり、接着剤の高さ(厚さ)は2μmである。
FIG. 4 shows a state where the adhesive in the fine channel is removed in the state of FIG. 3 and the adhesive is cured by irradiating UV light.
In FIG. 4, 1, 2 and 3 are one glass substrate, the other glass substrate and electrodes as in FIG. 1, and 10 is an adhesive which joins the two glass substrates.
And in the example of a figure, the height of the microchannel 12 is 7 micrometers, and the height (thickness) of an adhesive agent is 2 micrometers.

図5は図4の2枚のガラス基板を接合したガラス製マイクロチップの平面図であって、
1、2,3は図1と同じく1方のガラス基板,他方のガラス基板,電極であり、12は一方のガラス基板に形成された微細流路を示している。
FIG. 5 is a plan view of a glass microchip obtained by bonding the two glass substrates of FIG.
Reference numerals 1, 2, and 3 denote one glass substrate, the other glass substrate, and electrodes as in FIG. 1, and 12 denotes a fine flow path formed on one glass substrate.

図6は図4の2枚のガラス基板を接合したガラス製マイクロチップの分解斜視図であって、1、2,3は図5と同じく1方のガラス基板,他方のガラス基板,電極であり、10歯接着剤、12は一方のガラス基板に形成された微細流路を示している。
また、図6では、一方のガラス基板に形成された微細流路が一方のガラス基板の両側面で貫通している状態を示している。
6 is an exploded perspective view of the glass microchip in which the two glass substrates of FIG. 4 are joined, and 1, 2 and 3 are the one glass substrate, the other glass substrate and the electrode as in FIG. A 10-tooth adhesive, 12 indicates a fine channel formed on one glass substrate.
FIG. 6 shows a state in which the fine channel formed in one glass substrate penetrates on both side surfaces of one glass substrate.

次に本発明の実施例の説明をする。
本発明のガラス製マイクロチップを製造で使用した試薬・器具の例を以下に示す。
・試薬
ガラス洗浄には、EXTRAN MA02 ニュートラル( MERCK, Ltd., Japan)、イソプロピルアルコール、アセトン及びヘキサン(Wako, Japan)、超純水を用いた。
接着剤には、オプトクレーブ UT20 ( 株式会社アーデル、Japan)を用いた。
その他、UV照射時に窒素を用いた。
・器具
UVランプ ( 20 mW/ cm2程度)、ダイヤグラムポンプ、楊枝、ファスナー付ビニル袋、照度計を使用した。
なお、上記の試薬・器具は1例であって、他の同等のものを使用可能であることは明らかである。
Next, examples of the present invention will be described.
Examples of reagents and instruments using the glass microchip of the present invention in production are shown below.
-Reagents EXTRAN MA02 neutral (MERCK, Ltd., Japan), isopropyl alcohol, acetone and hexane (Wako, Japan), and ultrapure water were used for glass cleaning.
As the adhesive, Optoclave UT20 (Ardel, Inc., Japan) was used.
In addition, nitrogen was used during UV irradiation.
・ Equipment
A UV lamp (about 20 mW / cm2), a diagram pump, a toothpick, a zippered vinyl bag, and a luminometer were used.
In addition, said reagent and instrument are examples, and it is clear that other equivalents can be used.

前記図1〜6に基づいて記載した本発明のガラス製マイクロチップの製造の前処理として実行されるガラス洗浄工程について説明する。
・ガラス洗浄工程
(a)一方のガラス基板(1)及び他方の電極付ガラス基板(2)をキムワイプで包む。
(b)ビーカー等にEXTRAN MA02 ニュートラルを30倍程度希釈し、超音波で10分間洗浄。
(c)キムワイプから両方のガラス基板(1,2)を取り出し、超純水で良く洗浄する。
(d)再度、両方のガラス基板(1,2)をキムワイプで包む。
(e)ビーカー等にイソプロピルアルコールを加え、前記(d)の処理後の両方のガラス基板(1,2)を入れて超音波で10分間洗浄。
(f)前記(e)の処理後、両方のガラス基板(1,2)を取り出し、そのまま乾燥。
(g)ビーカー等にアセトンを加え、前記(f)の処理後の両方のガラス基板(1,2)を入れて超音波で10分間洗浄。
(h)前記(g)の処理後の両方のガラス基板(1,2)を取り出し、ドライヤーでそのまま乾燥。
(i)ビーカー等にヘキサンを加え、延期(h)の処理後の両方のガラス基板(1,2)を入れて超音波で10分間洗浄。
(j)キムワイプからガラスを取り出し、オーブン(80℃程度)で乾燥後、デシケーターで放熱させる。
なお、(e)〜(j)までの処理では、同じキムワイプで包まれた状態であり、キムワイプで包みのはガラス同士の傷つきを防止するためである。
The glass cleaning process performed as pre-processing of manufacture of the glass microchip of this invention described based on the said FIGS. 1-6 is demonstrated.
・ Glass cleaning process
(a) Wrap one glass substrate (1) and the other glass substrate with electrode (2) with Kimwipe.
(b) Dilute EXTRAN MA02 neutral about 30 times in a beaker, etc., and wash with ultrasound for 10 minutes.
(c) Remove both glass substrates (1,2) from Kimwipe and clean them thoroughly with ultrapure water.
(d) Wrap both glass substrates (1, 2) again with Kimwipe.
(e) Add isopropyl alcohol to a beaker or the like, put both glass substrates (1, 2) after the treatment of (d) above, and wash with ultrasonic waves for 10 minutes.
(f) After the processing of (e), both glass substrates (1, 2) are taken out and dried as they are.
(g) Acetone is added to a beaker or the like, and both glass substrates (1, 2) after the treatment of (f) are added, followed by ultrasonic cleaning for 10 minutes.
(h) Both glass substrates (1, 2) after the treatment of (g) are taken out and dried as they are with a dryer.
(i) Add hexane to a beaker, etc., put both glass substrates (1, 2) after the postponement (h) treatment, and wash with ultrasound for 10 minutes.
(j) Remove the glass from the Kimwipe, dry in an oven (about 80 ° C), and dissipate heat with a desiccator.
In the processes from (e) to (j), the same wiping is used to prevent the glass from being damaged.

次に、本発明のガラス製マイクロチップの製造における2枚のガラス基板の接着工程の詳細な説明をする。
・接着工程
(a)一方のガラス基板(1)及び他方の電極付ガラス基板(2)の位置合わせを行う。
(b)2枚のガラス基板間に接着剤を、2μl用ピペットチップ(4)を使い毛細管現象により侵入させる。(接着剤をピペットに取るときは、ピペットを押さずにチップの先を接着剤に接触させる程度で良い。)(図1参照 )
(c)一方のガラス基板(1)の上にキムワイプ(9)を4つ折にしたものを乗せ、さらにスライドガラス(8)(通常顕微鏡で用いるもの。)を乗せて一定の圧力を加えて、過剰量の接着剤(7)を除去する(ふき取る)。(図2,3参照)
(d)流路内の接着剤(6)をダイヤフラムポンプで吸引除去する。(排気速度60L/min ,到達圧力21.3kPa)(図4)
(e)流路内に窒素を流し、窒素を充填させたビニル袋に入れる。
(f)UVランプにより、5000〜6000 mJ/ cm2 程度UVを照射する。
(g)60℃で2時間乾燥。
(h)デシケーター中で放熱。
(i)EtOH中で超音波処理後(10分間)、80℃で乾燥し、デシケーター中で放熱。
(j)顕微鏡により、確認する。
なお、EtOH中での処理は、EtOHによって未硬化の接着剤を洗い出すためである。
Next, a detailed description will be given of the bonding process of two glass substrates in the production of the glass microchip of the present invention.
・ Adhesion process
(a) Position alignment of one glass substrate (1) and the other glass substrate with electrode (2).
(b) An adhesive is allowed to enter between two glass substrates by capillary action using a 2 μl pipette tip (4). (When taking the adhesive into a pipette, the tip of the tip may be brought into contact with the adhesive without pressing the pipette.) (See Fig. 1)
(c) Place one piece of Kimwipe (9) folded on one glass substrate (1), and then place a slide glass (8) (usually used in a microscope) and apply a certain pressure. Remove excess amount of adhesive (7). (See Figures 2 and 3)
(d) The adhesive (6) in the flow path is removed by suction with a diaphragm pump. (Pumping speed 60L / min, ultimate pressure 21.3kPa) (Fig. 4)
(e) Pour nitrogen into the flow path and place it in a vinyl bag filled with nitrogen.
(f) Use a UV lamp to irradiate about 5000 to 6000 mJ / cm2.
(g) Dry at 60 ° C. for 2 hours.
(h) Heat dissipation in the desiccator.
(i) After sonication in EtOH (10 minutes), dry at 80 ° C and dissipate heat in a desiccator.
(j) Confirm with a microscope.
The treatment in EtOH is for washing out the uncured adhesive with EtOH.

前記一方のガラス基板の厚さが0.15mmの場合は目的の箇所を良好に接着できたが、厚さを0.2mmとした場合にはガラスの淵に沿って未接着部分が生じた。
したがって、本発明のガラス製マイクロチップの製造では、一方のガラス基板の厚さは0.2mmが好ましい。
他方のガラス基板の厚さには特に制限はない。
When the thickness of the one glass substrate was 0.15 mm, the target portion could be satisfactorily bonded, but when the thickness was 0.2 mm, an unbonded portion was generated along the glass ridge.
Therefore, in the production of the glass microchip of the present invention, the thickness of one glass substrate is preferably 0.2 mm.
There is no particular limitation on the thickness of the other glass substrate.

なお、上記の説明では、一方のガラス基板に1個の微細流路が形成されているものとして説明をしているが、1枚の一方のガラス基板に複数個の微細流路を形成して、1枚のガラス基板上に複数個のマイクロチップを製造することもできる。
その場合には、複数個の微細流路に対応して、他方のガラス基板に複数個の電極(対)を形成する必要がある。
In the above description, one glass substrate is described as having one fine channel, but a plurality of fine channels are formed on one glass substrate. A plurality of microchips can be manufactured on a single glass substrate.
In that case, it is necessary to form a plurality of electrodes (pairs) on the other glass substrate corresponding to the plurality of fine flow paths.

本発明のガラス製マイクロチップを製造における、接合工程開始直前の状態を示す図である。It is a figure which shows the state just before the joining process start in manufacture of the glass microchip of this invention. 本発明のガラス製マイクロチップを製造における、図1の状態でピペット4で接着剤を侵入させた状態を示す図である。It is a figure which shows the state which made the adhesive penetrate | invade with the pipette 4 in the state of FIG. 1 in manufacture of the glass microchip of this invention. 本発明のガラス製マイクロチップを製造における、図2の状態でキムワイプを介してスライドガラスで加圧した後に、過剰な接着剤7を除去した状態を示す図である。It is a figure which shows the state which removed the excess adhesive agent 7, after pressurizing with a slide glass through a Kim wipe in the state of FIG. 2 in manufacture of the glass microchip of this invention. 図3の状態で微細流路内の接着剤を除去し、UV光を照射して接着剤を硬化させた状態を示す図である。It is a figure which shows the state which removed the adhesive agent in a microchannel in the state of FIG. 3, and irradiated the UV light and hardened the adhesive agent. 図4の2枚のガラス基板を接合したガラス製マイクロチップの平面図である。It is a top view of the glass microchip which joined two glass substrates of FIG. 図4の2枚のガラス基板を接合したガラス製マイクロチップの分解斜視図である。It is a disassembled perspective view of the glass-made microchip which joined the two glass substrates of FIG.

符号の説明Explanation of symbols

1:一方のガラス基板(蓋基板)
2:他方の電極付きガラス基板
3:電極
4:ピペット
5,6,7、:接着剤
8:スライドガラス
9:キムワイプ
10:接着剤(加圧後)
11:微細流路(接着剤充填中)
12:微細流路(接着剤除去後)
1: One glass substrate (lid substrate)
2: Glass substrate with other electrode 3: Electrode 4: Pipettes 5, 6, 7 ;: Adhesive 8: Slide glass 9: Kimwipe 10: Adhesive (after pressurization)
11: Fine channel (during adhesive filling)
12: Fine channel (after removal of adhesive)

Claims (9)

表面に微細流路が形成された一方のガラス基板を、表面に電極が形成された他方のガラス基板上に、前記電極と微細流路が対向するように位置合わせて重ね合わせる工程と、
前記一方のガラス基板と他方のガラス基板間にUV硬化性接着剤を侵入させる工程と、
前記微細流路内に侵入したUV硬化性接着剤を除去する工程と、
UV光を照射する工程と、
を含むことを特徴とする電極付きガラス製マイクロチップ基板の製造方法。
A step of superposing one glass substrate having a fine channel formed on the surface thereof on the other glass substrate having an electrode formed on the surface so that the electrode and the fine channel face each other;
A step of allowing a UV curable adhesive to penetrate between the one glass substrate and the other glass substrate;
Removing the UV curable adhesive that has entered the fine flow path;
Irradiating with UV light;
The manufacturing method of the glass microchip board | substrate with an electrode characterized by including these.
前記微細流路内に侵入したUV硬化性接着剤を除去する工程の前に、前記他方のガラス基板上に圧力を加えて2枚のガラス基板間の接着剤を所定の高さにして、過剰な接着剤を除去する工程を含むことを特徴とする請求項1に記載の電極付きガラス製マイクロチップ基板の製造方法。 Before the step of removing the UV curable adhesive that has penetrated into the fine flow path, pressure is applied on the other glass substrate to bring the adhesive between the two glass substrates to a predetermined height, and the excess 2. The method for producing a glass microchip substrate with an electrode according to claim 1, further comprising a step of removing an adhesive. 前記工程処理を窒素を充填した環境下で実行することを特徴とする請求項1又は2に記載の電極付きガラス製マイクロチップ基板の製造方法。 The method for producing a glass microchip substrate with an electrode according to claim 1 or 2, wherein the process is performed in an environment filled with nitrogen. 前記2枚のガラス基板の接合時において、前記他方のガラス基板の表面から前記微細流路の高さが7μm以上であることを特徴とする請求項1〜3のいずれか1項に記載の電極付きガラス製マイクロチップ基板の製造方法。 4. The electrode according to claim 1, wherein, when the two glass substrates are joined, a height of the fine channel from the surface of the other glass substrate is 7 μm or more. 5. Of manufacturing a glass microchip substrate with glass. 前記微細流路が、前記一方のガラス基板の側面で貫通していることを特徴とする請求項1〜4のいずれか1項に記載の電極付きガラス製マイクロチップ基板の製造方法。 The method for producing a glass microchip substrate with an electrode according to any one of claims 1 to 4, wherein the fine channel passes through a side surface of the one glass substrate. 前記微細流路の両側面には、前記電極が露出していることを特徴とする請求項1〜5のいずれか1項に記載の電極付きガラス製マイクロチップ基板の製造方法。 The method for producing a glass microchip substrate with an electrode according to any one of claims 1 to 5, wherein the electrodes are exposed on both side surfaces of the fine channel. 前記微細流路が一方のガラス基板に複数形成されていることを特徴とする請求項1〜6のいずれか1項に記載の電極付きガラス製マイクロチップ基板の製造方法。 The method for producing a glass microchip substrate with an electrode according to any one of claims 1 to 6, wherein a plurality of the fine flow paths are formed on one glass substrate. 前記一方のガラス基板の厚さは0.2mm未満であることを特徴とする
請求項1〜7のいずれか1項に記載の電極付きガラス製マイクロチップ基板の製造方法。
The thickness of said one glass substrate is less than 0.2 mm, The manufacturing method of the glass-made microchip board | substrate with an electrode of any one of Claims 1-7 characterized by the above-mentioned.
前記請求項1〜8のいずれかの電極付きガラス製マイクロチップ基板の製造方法で製造された電極付きガラス製マイクロチップ基板。 The glass microchip board | substrate with an electrode manufactured with the manufacturing method of the glass microchip board | substrate with an electrode in any one of the said Claims 1-8.
JP2007005073A 2007-01-12 2007-01-12 Method for manufacturing glass microchip substrate with electrodes Expired - Fee Related JP4942094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007005073A JP4942094B2 (en) 2007-01-12 2007-01-12 Method for manufacturing glass microchip substrate with electrodes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007005073A JP4942094B2 (en) 2007-01-12 2007-01-12 Method for manufacturing glass microchip substrate with electrodes

Publications (2)

Publication Number Publication Date
JP2008170349A true JP2008170349A (en) 2008-07-24
JP4942094B2 JP4942094B2 (en) 2012-05-30

Family

ID=39698577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007005073A Expired - Fee Related JP4942094B2 (en) 2007-01-12 2007-01-12 Method for manufacturing glass microchip substrate with electrodes

Country Status (1)

Country Link
JP (1) JP4942094B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012220205A (en) * 2011-04-04 2012-11-12 Enplas Corp Fluid handling device and fluid handling system

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1183784A (en) * 1997-09-03 1999-03-26 Nippon Telegr & Teleph Corp <Ntt> Microquantity online biosensor and manufacture thereof
JP2002510567A (en) * 1998-04-07 2002-04-09 マックス−プランク−ゲゼルシャフト・ツア・フェルデルング・デア・ヴィッセンシャフテン・エー・ファオ Bonding adhesive-free polymer components to produce closed microchannel and nanochannel structures
JP2003277719A (en) * 2002-03-26 2003-10-02 Dainippon Printing Co Ltd Jointing body having uniform thickness and method for jointing uniformly in thickness
JP2003285298A (en) * 2002-03-26 2003-10-07 Seiko Instruments Inc Micro-channel device and method of manufacturing the same
JP2004205225A (en) * 2002-12-20 2004-07-22 Sumitomo Bakelite Co Ltd Method for bonding microchip substrate and microchip
JP2006029841A (en) * 2004-07-13 2006-02-02 Sumitomo Electric Ind Ltd Sensor chip, measuring instrument using it, and measuring method of very small amount of sample
JP2006130400A (en) * 2004-11-05 2006-05-25 Yokogawa Electric Corp Micro-electrochemical reactor
JP2006136990A (en) * 2004-11-15 2006-06-01 Kawamura Inst Of Chem Res Microfluid device having valve
JP2006234791A (en) * 2005-01-26 2006-09-07 Seiko Instruments Inc Reactor, microreactor chip, microreactor system and method for manufacturing the reactor
JP2006317427A (en) * 2005-04-13 2006-11-24 Sharp Corp Substrate for analysis and analyzer

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1183784A (en) * 1997-09-03 1999-03-26 Nippon Telegr & Teleph Corp <Ntt> Microquantity online biosensor and manufacture thereof
JP2002510567A (en) * 1998-04-07 2002-04-09 マックス−プランク−ゲゼルシャフト・ツア・フェルデルング・デア・ヴィッセンシャフテン・エー・ファオ Bonding adhesive-free polymer components to produce closed microchannel and nanochannel structures
JP2003277719A (en) * 2002-03-26 2003-10-02 Dainippon Printing Co Ltd Jointing body having uniform thickness and method for jointing uniformly in thickness
JP2003285298A (en) * 2002-03-26 2003-10-07 Seiko Instruments Inc Micro-channel device and method of manufacturing the same
JP2004205225A (en) * 2002-12-20 2004-07-22 Sumitomo Bakelite Co Ltd Method for bonding microchip substrate and microchip
JP2006029841A (en) * 2004-07-13 2006-02-02 Sumitomo Electric Ind Ltd Sensor chip, measuring instrument using it, and measuring method of very small amount of sample
JP2006130400A (en) * 2004-11-05 2006-05-25 Yokogawa Electric Corp Micro-electrochemical reactor
JP2006136990A (en) * 2004-11-15 2006-06-01 Kawamura Inst Of Chem Res Microfluid device having valve
JP2006234791A (en) * 2005-01-26 2006-09-07 Seiko Instruments Inc Reactor, microreactor chip, microreactor system and method for manufacturing the reactor
JP2006317427A (en) * 2005-04-13 2006-11-24 Sharp Corp Substrate for analysis and analyzer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012220205A (en) * 2011-04-04 2012-11-12 Enplas Corp Fluid handling device and fluid handling system

Also Published As

Publication number Publication date
JP4942094B2 (en) 2012-05-30

Similar Documents

Publication Publication Date Title
JP4993243B2 (en) Manufacturing method of resin microchannel chemical device and resin microchannel chemical device structure manufactured by the manufacturing method
JP7321760B2 (en) Display device manufacturing method and source substrate structure
JPWO2008087800A1 (en) Microchip manufacturing method and microchip
JP6394651B2 (en) Substrate bonding method and microchip manufacturing method
CN107775960B (en) Microfluidic chip bonding method and microfluidic chip
JP2007136292A (en) Manufacturing method of microchannel structure, microchannel structure, and microreactor
JP2005074796A (en) Method for joining microchip substrate and microchip
WO2016060080A1 (en) Workpiece bonding method
JP4942094B2 (en) Method for manufacturing glass microchip substrate with electrodes
JP2011214838A (en) Resin microchannel chip
TW201922473A (en) Microchip
JP6195022B2 (en) How to bond workpieces
JP2009205140A5 (en)
JP2009166416A (en) Method for manufacturing microchip, and microchip
JP2005119300A (en) Method of jointing two work materials without accompanied by impurity, and work material jointed by said method
JP5516954B2 (en) Method for bonding substrates having fine structure and method for manufacturing microfluidic device using the bonding method
Knapkiewicz et al. Anodic bonding of glass-to-glass through magnetron spattered nanometric silicon layer
JP2005224688A (en) Method for manufacturing microreactor chip
JP4492120B2 (en) Microreactor chip fabrication method
JP2009143992A5 (en)
WO2018216673A1 (en) Microchip
CN111450909A (en) Laser bonding equipment and method for glass-based microfluidic chip
JP2008249346A (en) Manufacturing method of microchip, and the microchip
JP7503262B2 (en) Apparatus for joining components and method for manufacturing joined components
WO2023032166A1 (en) Inter-member bonding device and method for manufacturing bonded member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120224

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees