JP2006130400A - Micro-electrochemical reactor - Google Patents

Micro-electrochemical reactor Download PDF

Info

Publication number
JP2006130400A
JP2006130400A JP2004321847A JP2004321847A JP2006130400A JP 2006130400 A JP2006130400 A JP 2006130400A JP 2004321847 A JP2004321847 A JP 2004321847A JP 2004321847 A JP2004321847 A JP 2004321847A JP 2006130400 A JP2006130400 A JP 2006130400A
Authority
JP
Japan
Prior art keywords
flow path
microelectrochemical
reactor
reaction
separation means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004321847A
Other languages
Japanese (ja)
Other versions
JP4591759B2 (en
Inventor
Tetsuya Watanabe
哲也 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2004321847A priority Critical patent/JP4591759B2/en
Publication of JP2006130400A publication Critical patent/JP2006130400A/en
Application granted granted Critical
Publication of JP4591759B2 publication Critical patent/JP4591759B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To realize a micro-electrochemical reactor capable of efficiently preventing the mixing with a reaction product. <P>SOLUTION: This micro-electrochemical reactor is constituted so as to allow a fluid to flow through a flow channel to produce two reaction products and equipped with a separation means provided to the reaction part of the flow channel to separate two reaction products. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電気化学反応が行われるマイクロ電気化学リアクタに関するものである。
更に,詳述すれば、反応生成物の混合を効率良く防止することが出来るマイクロ電気化学リアクタに関するものである。
The present invention relates to a microelectrochemical reactor in which an electrochemical reaction is performed.
More specifically, the present invention relates to a microelectrochemical reactor that can efficiently prevent mixing of reaction products.

マイクロ電気化学リアクタに関連する先行技術文献としては次のようなものがある。
特開2003−285298号公報
Prior art documents related to microelectrochemical reactors include the following.
JP 2003-285298 A

図9は、従来より一般に使用されている従来例の要部構成説明図である。
微量な液体を流して分離や分析を行うマイクロ流路デバイスの構成例を示したものである。
基板部101、光硬化性樹脂102、光透過性のあるカバー板103の順の3層で構成されている。
この流路デバイスは、基板部101とカバー基板103の間に未硬化の光硬化性樹脂を充填したのちに、光硬化反応によって流路パターン104の周辺部を硬化させることによって、流路パターン104が形成されて、マイクロ流路デバイスが一体に構成されている。
FIG. 9 is a diagram for explaining the configuration of the main part of a conventional example that is generally used conventionally.
An example of the configuration of a microchannel device that performs separation and analysis by flowing a small amount of liquid is shown.
It consists of three layers of a substrate part 101, a photocurable resin 102, and a light-transmitting cover plate 103 in this order.
In this flow channel device, the uncured photocurable resin is filled between the substrate unit 101 and the cover substrate 103, and then the peripheral portion of the flow channel pattern 104 is cured by a photocuring reaction. Are formed, and the microchannel device is integrally formed.

ここで、基板部101に光透過性の材料を用いた場合には、送液側の注入口105,105’から試料液と反応液を外部ポンプによって流すことで、混合部106で反応によって生じた変化を吸光度変化として検出することができ、これをもとに微量な試料液体中の目的物質の濃度を知ることができる。
なお、混合液は廃液口107から排出される。
Here, in the case where a light-transmitting material is used for the substrate unit 101, the sample solution and the reaction solution are caused to flow from the injection ports 105 and 105 ′ on the liquid feeding side by an external pump, thereby causing a reaction in the mixing unit. This change can be detected as a change in absorbance, and based on this change, the concentration of the target substance in a small amount of sample liquid can be known.
The mixed liquid is discharged from the waste liquid port 107.

しかしながら、このような装置においては、1個の反応物を取り出すことは出来ても、2個の反応物を効率良く取り出すことは出来ない。   However, in such an apparatus, one reactant can be taken out, but two reactants cannot be taken out efficiently.

本発明の目的は、上記の課題を解決するもので、反応生成物の混合を効率良く防止することが出来るマイクロ電気化学リアクタを提供することを目的とする。
要するに、マイクロ流路内に形成された2個の電極間に電圧を印加して電気化学反応を行わせる場合に、容易に陽極の反応生成物と陰極の反応生成物を分離するために分離手段が設けられたマイクロ電気化学リアクタを提供することを目的とする。
An object of the present invention is to solve the above-described problems, and an object thereof is to provide a microelectrochemical reactor that can efficiently prevent mixing of reaction products.
In short, the separation means for easily separating the reaction product of the anode and the reaction product of the cathode when an electrochemical reaction is carried out by applying a voltage between the two electrodes formed in the microchannel. An object of the present invention is to provide a microelectrochemical reactor provided with

このような課題を達成するために、本発明では、請求項1のマイクロ電気化学リアクタにおいては、
流体が流路に流されて2個の反応物を生成するマイクロ電気化学リアクタにおいて、
前記流路の反応部に設けられ前記2個の反応物を分離する分離手段を具備したことを特徴とする。
In order to achieve such a problem, in the present invention, in the microelectrochemical reactor according to claim 1,
In a microelectrochemical reactor in which a fluid is flowed through a flow path to produce two reactants,
A separation means for separating the two reactants is provided in the reaction section of the flow path.

本発明の請求項2においては、請求項1記載のマイクロ電気化学リアクタにおいて、
前記分離手段は、前記反応部の流路方向に流路中心に沿って設けられ流路を流路方向と直交方向に断続的に遮えぎる断続分離板を有することを特徴とする。
According to claim 2 of the present invention, in the microelectrochemical reactor according to claim 1,
The separation means includes an intermittent separation plate that is provided along the center of the flow path in the flow path direction of the reaction section and intermittently blocks the flow path in a direction orthogonal to the flow path direction.

本発明の請求項3においては、請求項1又は請求項2記載のマイクロ電気化学リアクタにおいて、
前記断続分離板は、流路方向に断続した貫通孔を有することを特徴とする。
According to a third aspect of the present invention, in the microelectrochemical reactor according to the first or second aspect,
The intermittent separation plate has a through hole that is intermittent in the flow path direction.

本発明の請求項4においては、請求項1乃至請求項3の何れかに記載のマイクロ電気化学リアクタにおいて、
前記貫通孔は、角孔であることを特徴とする。
According to a fourth aspect of the present invention, in the microelectrochemical reactor according to any one of the first to third aspects,
The through hole is a square hole.

本発明の請求項5においては、請求項1記載のマイクロ電気化学リアクタにおいて、
前記分離手段は、前記反応部の流路方向に流路中心に沿って設けられ流路を流路方向と直交方向に連続的に遮えぎる第1の連続分離板と、
この連続分離板に対向して前記流路に設けられこの連続分離板と流路方向と直交方向に連続的に隙間を構成する溝とを有することを特徴とする。
According to claim 5 of the present invention, in the microelectrochemical reactor according to claim 1,
The separation means is provided along the flow path center of the reaction section along the flow path center, and continuously blocks the flow path in the direction orthogonal to the flow path direction; and
It is provided in the said flow path facing this continuous separation plate, It has this continuous separation plate and the groove | channel which comprises a clearance gap continuously in the direction orthogonal to a flow path direction, It is characterized by the above-mentioned.

本発明の請求項6においては、請求項1記載のマイクロ電気化学リアクタにおいて、
前記分離手段は、前記反応部の流路方向に流路中心に沿って設けられ流路を流路方向と直交方向に連続的に遮えぎると共に前記流路と流路方向と直交方向に連続的に隙間を構成する第2の連続分離板を有することを特徴とする。
According to a sixth aspect of the present invention, in the microelectrochemical reactor according to the first aspect,
The separation means is provided along the center of the flow path in the flow path direction of the reaction unit and continuously blocks the flow path in a direction orthogonal to the flow path direction and is continuous in the direction orthogonal to the flow path direction. It has the 2nd continuous separation plate which comprises a clearance gap in general.

本発明の請求項7においては、請求項1乃至請求項6の何れかに記載のマイクロ電気化学リアクタにおいて、
前記流路は、流入路が1個であることを特徴とする。
According to a seventh aspect of the present invention, in the microelectrochemical reactor according to any one of the first to sixth aspects,
The flow path has one inflow path.

本発明の請求項8においては、請求項1乃至請求項6の何れかに記載のマイクロ電気化学リアクタにおいて、
前記流路は、流入路が2個に分離されていることを特徴とする。
According to an eighth aspect of the present invention, in the microelectrochemical reactor according to any one of the first to sixth aspects,
The flow path is characterized in that the inflow path is separated into two.

以上説明したように、本発明の請求項1によれば、次のような効果がある。
流路の反応部に設けられ、2個の反応物を分離する分離手段が設けられたので、反応生成物の混合を効率良く防止することが出来るマイクロ電気化学リアクタが得られる。
As described above, according to the first aspect of the present invention, the following effects can be obtained.
Since a separation means for separating the two reactants is provided in the reaction section of the flow path, a microelectrochemical reactor capable of efficiently preventing the reaction products from mixing can be obtained.

本発明の請求項2によれば、次のような効果がある。
分離手段は、反応部の流路方向に流路中心に沿って設けられ流路を流路方向と直交方向に断続的に遮えぎる断続分離板を有するので、2個の反応物の混合を効率良く防止することが出来るマイクロ電気化学リアクタが得られる。
According to claim 2 of the present invention, there are the following effects.
The separation means has an intermittent separation plate that is provided along the center of the flow path in the flow path direction of the reaction section and intermittently blocks the flow path in the direction orthogonal to the flow path direction. A microelectrochemical reactor that can be efficiently prevented is obtained.

本発明の請求項3によれば、次のような効果がある。
分離板は、流路方向に断続した貫通孔を有するので、電気化学反応を維持できるマイクロ電気化学リアクタが得られる。
According to claim 3 of the present invention, there are the following effects.
Since the separation plate has through holes intermittent in the flow path direction, a microelectrochemical reactor capable of maintaining an electrochemical reaction is obtained.

本発明の請求項4によれば、次のような効果がある。
貫通孔は、角孔であるので、貫通孔面積が広く確保でき、電気化学反応を効率よく維持出来るマイクロ電気化学リアクタが得られる。
According to claim 4 of the present invention, there are the following effects.
Since the through-hole is a square hole, a micro-electrochemical reactor capable of ensuring a wide through-hole area and efficiently maintaining an electrochemical reaction can be obtained.

本発明の請求項5によれば、次のような効果がある。
分離手段は、反応部の流路方向に流路中心に沿って設けられ流路を流路方向と直交方向に連続的に遮えぎる第1の連続分離板と、この連続分離板に対向して前記流路に設けられこの連続分離板と流路方向と直交方向に連続的に隙間を構成する溝とを有するので、電気化学反応を維持でき、かつ2個の反応物の混合を確実に防止出来るマイクロ電気化学リアクタが得られる。
According to claim 5 of the present invention, there are the following effects.
The separating means is provided in the direction of the flow path of the reaction section along the center of the flow path, and is opposed to the first continuous separation plate and continuously blocks the flow path in the direction orthogonal to the flow path direction. The continuous separation plate provided in the flow path and a groove that continuously forms a gap in the direction orthogonal to the flow path direction can maintain an electrochemical reaction and reliably mix the two reactants. A microelectrochemical reactor that can be prevented is obtained.

本発明の請求項6によれば、次のような効果がある。
分離手段は、反応部の流路方向に流路中心に沿って設けられ流路を流路方向と直交方向に連続的に遮えぎると共に、流路と流路方向と直交方向に連続的に隙間を構成する第2の連続分離板を有するので、構成が簡単に出来、安価なマイクロ電気化学リアクタが得られる。
According to claim 6 of the present invention, there are the following effects.
The separation means is provided along the center of the flow path in the flow path direction of the reaction section and continuously blocks the flow path in the direction orthogonal to the flow path direction and continuously in the direction orthogonal to the flow path and the flow path direction. Since it has the 2nd continuous separator which comprises a clearance gap, a structure can be simplified and an inexpensive microelectrochemical reactor can be obtained.

本発明の請求項7によれば、次のような効果がある。
流路は、流入路が1個であるので、一つの流体から、2個の反応生成物を得るのに便利なマイクロ電気化学リアクタが得られる。
According to claim 7 of the present invention, there are the following effects.
Since the flow path has one inflow path, a convenient microelectrochemical reactor can be obtained for obtaining two reaction products from one fluid.

本発明の請求項8によれば、次のような効果がある。
流路は、流入路が2個に分離されているので、2個の流入流体を反応部で確実に反応させることが出来るマイクロ電気化学リアクタが得られる。
According to claim 8 of the present invention, there are the following effects.
Since the flow path is divided into two inflow paths, a microelectrochemical reactor capable of reliably reacting the two inflowing fluids in the reaction section is obtained.

以下本発明を図面を用いて詳細に説明する。
図1は本発明の一実施例の要部構成説明図,図2は図1のA-A断面図、図3は図1のB-B断面図である。
Hereinafter, the present invention will be described in detail with reference to the drawings.
FIG. 1 is an explanatory view showing the structure of a main part of one embodiment of the present invention, FIG. 2 is a cross-sectional view taken along line AA in FIG. 1, and FIG.

図において、絶縁性基板1上に電極2と電極3が形成されている。
絶縁性基板1は、例えば、ガラス基板が使用されている。
電極2と電極3の上に流路形成用膜4が設けられている。
流路形成用膜4は、例えば、フォトレジストや低融点ガラスが使用されている。
In the figure, an electrode 2 and an electrode 3 are formed on an insulating substrate 1.
As the insulating substrate 1, for example, a glass substrate is used.
A flow path forming film 4 is provided on the electrodes 2 and 3.
For the flow path forming film 4, for example, a photoresist or a low melting point glass is used.

電極2と電極3は流路形成用膜4によりシールされた状態で流路外部から取り出す構造になっている。
絶縁性基板5は、接着層6を介して流路形成用膜4に接着されている。
絶縁性基板5は、例えば、ガラス基板が使用されている。
The electrode 2 and the electrode 3 are structured to be taken out from the outside of the flow path while being sealed by the flow path forming film 4.
The insulating substrate 5 is bonded to the flow path forming film 4 via the adhesive layer 6.
As the insulating substrate 5, for example, a glass substrate is used.

接着層6は、例えば、接着剤、フォトレジストが使用されている。
絶縁性基板1と流路形成用膜4と絶縁性基板5とにより流路7,8が構成されている。
流路7,8は、流入流路71,81、電極2と電極3とに対応する反応部72,82、流出流路73,83とよりなる。
For example, an adhesive or a photoresist is used for the adhesive layer 6.
The insulating substrate 1, the flow path forming film 4 and the insulating substrate 5 constitute flow paths 7 and 8.
The flow paths 7 and 8 include inflow flow paths 71 and 81, reaction portions 72 and 82 corresponding to the electrodes 2 and 3, and outflow flow paths 73 and 83.

流路7,8は、反応部72,82において接している。
分離手段9は、反応部72,82に設けられ、2個の反応物を分離する。
この場合は、分離手段9は、反応部72,82の流路方向に流路中心に沿って設けられ流路7,8を流路方向と直交方向に断続的に遮えぎる断続分離板を有する。
この場合は、断続分離板9は、流路方向に断続した貫通孔91を有する。
The flow paths 7 and 8 are in contact with each other at the reaction portions 72 and 82.
The separation means 9 is provided in the reaction units 72 and 82 and separates the two reactants.
In this case, the separating means 9 is provided with an intermittent separation plate that is provided along the center of the flow path in the flow path direction of the reaction sections 72 and 82 and intermittently blocks the flow paths 7 and 8 in the direction orthogonal to the flow path direction. Have.
In this case, the intermittent separation plate 9 has a through hole 91 that is intermittent in the flow path direction.

この場合は、貫通孔91は角孔である。
この場合は、断続分離板9は流路形成用膜4で作製された柱を、並べたものとも言える。
絶縁性基板5には、流入流路71,81に連通する流入穴74,84と、流出流路73,83に連通する流出穴75,85が設けられている。
In this case, the through hole 91 is a square hole.
In this case, the intermittent separation plate 9 can be said to be a column in which the columns made of the flow path forming film 4 are arranged.
The insulating substrate 5 is provided with inflow holes 74 and 84 that communicate with the inflow channels 71 and 81 and outflow holes 75 and 85 that communicate with the outflow channels 73 and 83.

以上の構成において、本発明装置は、以下の如くして作製する。
絶縁性基板1上に電極2と電極3を形成し、その上に流路形成用膜4のパターンを作製する。
流路7,8は流路形成用膜4のパターンにより形成される。
In the above configuration, the device of the present invention is manufactured as follows.
An electrode 2 and an electrode 3 are formed on the insulating substrate 1, and a pattern of the flow path forming film 4 is formed thereon.
The flow paths 7 and 8 are formed by the pattern of the flow path forming film 4.

絶縁性基板5には流入穴74,84と流出穴75,85とが開けられ、基板5表面に接着層6が形成される。
絶縁性基板1と絶縁性基板5を、接着層6によって貼り合わせることにより完成する。
The insulating substrate 5 has inflow holes 74 and 84 and outflow holes 75 and 85, and the adhesive layer 6 is formed on the surface of the substrate 5.
The insulating substrate 1 and the insulating substrate 5 are completed by bonding them together with the adhesive layer 6.

以上の構成において、以下の動作が行われる。
流路7と流路8に流体を流した状態で,電極2と電極3の間に電圧を印加すると、電極2と電極3の表面で電気化学反応が起きて反応生成物が生成される。
分離手段9が、電極2の反応生成物と電極3の反応生成物の混合を妨げる。
In the above configuration, the following operation is performed.
When a voltage is applied between the electrode 2 and the electrode 3 with a fluid flowing in the flow channel 7 and the flow channel 8, an electrochemical reaction occurs on the surfaces of the electrode 2 and the electrode 3, and a reaction product is generated.
Separation means 9 prevents mixing of the reaction product of electrode 2 and the reaction product of electrode 3.

この結果、
流路7,8の反応部72,82に設けられ、2個の反応物を分離する分離手段9が設けられたので、反応生成物の混合を効率良く防止することが出来るマイクロ電気化学リアクタが得られる。
As a result,
Since the separation means 9 for separating the two reactants is provided in the reaction sections 72 and 82 of the flow paths 7 and 8, a microelectrochemical reactor capable of efficiently preventing reaction products from mixing is provided. can get.

分離手段9は、反応部72,82の流路方向に流路中心に沿って設けられ流路7,8を流路方向と直交方向に断続的に遮えぎる断続分離板9を有するので、2個の反応物の混合を効率良く防止することが出来るマイクロ電気化学リアクタが得られる。   Since the separation means 9 includes the intermittent separation plate 9 provided along the flow path center of the reaction portions 72 and 82 along the flow path center and intermittently blocks the flow paths 7 and 8 in the direction orthogonal to the flow path direction. A microelectrochemical reactor capable of efficiently preventing mixing of two reactants is obtained.

分離板9は、流路方向に断続した貫通孔91を有するので、電気化学反応を維持でき、かつ、反応生成物の混合を効率良く防止することが出来るマイクロ電気化学リアクタが得られる。   Since the separation plate 9 has the through-holes 91 that are intermittent in the direction of the flow path, a microelectrochemical reactor capable of maintaining an electrochemical reaction and efficiently preventing mixing of reaction products is obtained.

貫通孔91は、角孔であるので、貫通孔面積が広く確保でき、電気化学反応を効率よく維持出来るマイクロ電気化学リアクタが得られる。
流路7,8は、流入路71,81が2個に分離されているので、2個の流入流体を反応部72,82で確実に反応させることが出来るマイクロ電気化学リアクタが得られる。
Since the through-hole 91 is a square hole, a micro-electrochemical reactor capable of ensuring a wide through-hole area and maintaining an electrochemical reaction efficiently can be obtained.
Since the inflow channels 71 and 81 are separated into two in the channels 7 and 8, a microelectrochemical reactor capable of reliably reacting the two inflowing fluids in the reaction units 72 and 82 is obtained.

図4は本発明の他の実施例の要部構成説明図,図5は図4のC-C断面図、図6は図4のD-D断面図である。
本実施例においては、絶縁性基板5に流入穴11が、流路7,8に共通の流入穴として設けられた実施例である。
一つの流体から、2個の反応生成物を得るのに便利である。
FIG. 4 is a diagram for explaining the construction of the main part of another embodiment of the present invention, FIG. 5 is a sectional view taken along the line CC in FIG. 4, and FIG.
In this embodiment, the inflow hole 11 is provided in the insulating substrate 5 as a common inflow hole in the flow paths 7 and 8.
It is convenient to obtain two reaction products from one fluid.

図7は本発明の他の実施例の要部構成説明図である。
本実施例においては、分離手段21は、反応部72,82の流路方向に流路中心に沿って設けられ流路を流路方向と直交方向に連続的に遮えぎる第1の連続分離板22と、この連続分離板22に対向して、流路に設けられこの連続分離板22と流路方向と直交方向に連続的に隙間を構成する溝23とを有する。
FIG. 7 is an explanatory view showing the configuration of the main part of another embodiment of the present invention.
In the present embodiment, the separating means 21 is a first continuous separation that is provided along the center of the flow path in the flow path direction of the reaction sections 72 and 82 and continuously blocks the flow path in the direction orthogonal to the flow path direction. Opposite to the continuous separation plate 22, there is a plate 22 and a groove 23 provided in the flow path and continuously forming a gap in a direction orthogonal to the flow path direction.

この結果、電気化学反応を維持でき、かつ2個の反応物の混合を確実に防止出来るマイクロ電気化学リアクタが得られる。   As a result, a microelectrochemical reactor can be obtained that can maintain an electrochemical reaction and reliably prevent mixing of two reactants.

図8は本発明の他の実施例の要部構成説明図である。
本実施例においては、分離手段31は、反応部72,82の流路方向に流路中心に沿って設けられ流路を流路方向と直交方向に連続的に遮えぎると共に前記流路と流路方向と直交方向に連続的に隙間33を構成する第2の連続分離板32を有する。
この結果、構成が簡単に出来、安価なマイクロ電気化学リアクタが得られる。
FIG. 8 is an explanatory view showing the configuration of the main part of another embodiment of the present invention.
In the present embodiment, the separation means 31 is provided along the center of the flow path in the flow path direction of the reaction sections 72 and 82 and continuously blocks the flow path in the direction orthogonal to the flow path direction and the flow path. It has the 2nd continuous separation plate 32 which comprises the clearance gap 33 continuously in a direction orthogonal to a flow path direction.
As a result, an inexpensive microelectrochemical reactor can be obtained that can be simply configured.

なお、絶縁性基板1,4は、絶縁基板1,4そのものだけでなく、表面に絶縁膜を成膜した普通の基板でも良い,要するに、実質的に絶縁基板であれば良い。   The insulating substrates 1 and 4 may be not only the insulating substrates 1 and 4 themselves, but also an ordinary substrate having an insulating film formed on the surface. In short, it may be substantially an insulating substrate.

なお、前述の実施例においては、絶縁性基板5は、接着層6を介して流路形成用膜4に接着されていると説明したが、これに限ることはなく、絶縁性基板5自体、あるいは流路形成用膜4自体が接着性を持っている場合は、接着層6は不要である。例えば、絶縁性基板5として、PDMS(ポリジメチルシロキサン)などのようにそれ自体が接着性を持つ場合、あるいは流路形成用膜4として低融点ガラスが使用された場合である。   In the above-described embodiment, it has been described that the insulating substrate 5 is bonded to the flow path forming film 4 via the adhesive layer 6, but the present invention is not limited thereto, and the insulating substrate 5 itself, Alternatively, when the flow path forming film 4 itself has adhesiveness, the adhesive layer 6 is not necessary. For example, when the insulating substrate 5 itself has adhesive properties such as PDMS (polydimethylsiloxane), or when the low melting point glass is used as the flow path forming film 4.

なお、以上の説明は、本発明の説明および例示を目的として特定の好適な実施例を示したに過ぎない。
したがって本発明は、上記実施例に限定されることなく、その本質から逸脱しない範囲で更に多くの変更、変形をも含むものである。
The above description merely shows a specific preferred embodiment for the purpose of explanation and illustration of the present invention.
Therefore, the present invention is not limited to the above-described embodiments, and includes many changes and modifications without departing from the essence thereof.

本発明の一実施例の要部構成説明図である。It is principal part structure explanatory drawing of one Example of this invention. 図1のA-A断面図である。It is AA sectional drawing of FIG. 図1のB-B断面図である。It is BB sectional drawing of FIG. 本発明の他の実施例の要部構成説明図である。It is principal part structure explanatory drawing of the other Example of this invention. 図4のC-C断面図である。It is CC sectional drawing of FIG. 図1のD-D断面図である。It is DD sectional drawing of FIG. 本発明の他の実施例の要部構成説明図である。It is principal part structure explanatory drawing of the other Example of this invention. 本発明の他の実施例の要部構成説明図である。It is principal part structure explanatory drawing of the other Example of this invention. 従来より一般に使用されている従来例の要部構成説明図である。It is principal part structure explanatory drawing of the prior art example generally used conventionally.

符号の説明Explanation of symbols

1 絶縁性基板
2 電極
3 電極
4 流路形成用膜
5 絶縁性基板
6 接着層
7 流路
71 流入流路
72 反応部
73 流出流路
74 流入穴
75 流出穴
8 流路
81 流入流路
82 反応部
83 流出流路
84 流入穴
85 流出穴
9 分離手段
91 貫通孔
11 流入穴
21 分離手段
22 第1の連続分離板
23 溝
31 分離手段
32 第2の連続分離板
33 隙間

DESCRIPTION OF SYMBOLS 1 Insulating substrate 2 Electrode 3 Electrode 4 Channel formation film 5 Insulating substrate 6 Adhesive layer 7 Channel 71 Inflow channel 72 Reaction part 73 Outflow channel 74 Inflow hole 75 Outflow hole 8 Channel 81 Inflow channel 82 Reaction Part 83 Outflow channel 84 Inflow hole 85 Outflow hole 9 Separation means 91 Through hole 11 Inflow hole 21 Separation means 22 First continuous separation plate 23 Groove 31 Separation means 32 Second continuous separation plate 33 Gap

Claims (8)

流体が流路に流されて2個の反応物を生成するマイクロ電気化学リアクタにおいて、
前記流路の反応部に設けられ前記2個の反応物を分離する分離手段
を具備したことを特徴とするマイクロ電気化学リアクタ。
In a microelectrochemical reactor in which a fluid is flowed through a flow path to produce two reactants,
A microelectrochemical reactor, comprising a separation means provided in a reaction part of the flow path for separating the two reactants.
前記分離手段は、前記反応部の流路方向に流路中心に沿って設けられ流路を流路方向と直交方向に断続的に遮えぎる断続分離板を有すること
を特徴とする請求項1記載のマイクロ電気化学リアクタ。
The separation means includes an intermittent separation plate that is provided along the center of the flow path in the flow path direction of the reaction section and intermittently blocks the flow path in a direction perpendicular to the flow path direction. The described microelectrochemical reactor.
前記断続分離板は、流路方向に断続した貫通孔を有すること
を特徴とする請求項1又は請求項2記載のマイクロ電気化学リアクタ。
The microelectrochemical reactor according to claim 1 or 2, wherein the intermittent separation plate has a through hole intermittent in a flow path direction.
前記貫通孔は、角孔であること
を特徴とする請求項1乃至請求項3の何れかに記載のマイクロ電気化学リアクタ。
The micro electrochemical reactor according to any one of claims 1 to 3, wherein the through hole is a square hole.
前記分離手段は、前記反応部の流路方向に流路中心に沿って設けられ流路を流路方向と直交方向に連続的に遮えぎる第1の連続分離板と、
この連続分離板に対向して前記流路に設けられこの連続分離板と流路方向と直交方向に連続的に隙間を構成する溝と
を有することを特徴とする請求項1記載のマイクロ電気化学リアクタ。
The separation means is provided along the flow path center of the reaction section along the flow path center, and continuously blocks the flow path in the direction orthogonal to the flow path direction; and
2. The microelectrochemistry according to claim 1, further comprising: a groove which is provided in the flow path so as to face the continuous separation plate and forms a gap continuously in a direction orthogonal to the flow path direction. Reactor.
前記分離手段は、前記反応部の流路方向に流路中心に沿って設けられ流路を流路方向と直交方向に連続的に遮えぎると共に前記流路と流路方向と直交方向に連続的に隙間を構成する第2の連続分離板
を有することを特徴とする請求項1記載のマイクロ電気化学リアクタ。
The separation means is provided along the center of the flow path in the flow path direction of the reaction unit and continuously blocks the flow path in a direction orthogonal to the flow path direction and is continuous in the direction orthogonal to the flow path direction. The microelectrochemical reactor according to claim 1, further comprising a second continuous separation plate constituting a gap.
前記流路は、流入路が1個であること
を特徴とする請求項1乃至請求項6の何れかに記載のマイクロ電気化学リアクタ。
The micro electrochemical reactor according to any one of claims 1 to 6, wherein the flow path has one inflow path.
前記流路は、流入路が2個に分離されていること
を特徴とする請求項1乃至請求項6の何れかに記載のマイクロ電気化学リアクタ。

The microelectrochemical reactor according to any one of claims 1 to 6, wherein the flow path is divided into two inflow paths.

JP2004321847A 2004-11-05 2004-11-05 Micro electrochemical reactor Expired - Fee Related JP4591759B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004321847A JP4591759B2 (en) 2004-11-05 2004-11-05 Micro electrochemical reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004321847A JP4591759B2 (en) 2004-11-05 2004-11-05 Micro electrochemical reactor

Publications (2)

Publication Number Publication Date
JP2006130400A true JP2006130400A (en) 2006-05-25
JP4591759B2 JP4591759B2 (en) 2010-12-01

Family

ID=36724408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004321847A Expired - Fee Related JP4591759B2 (en) 2004-11-05 2004-11-05 Micro electrochemical reactor

Country Status (1)

Country Link
JP (1) JP4591759B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008170349A (en) * 2007-01-12 2008-07-24 National Institute Of Advanced Industrial & Technology Method of manufacturing glass microchip substrate with electrode
US9316576B2 (en) 2013-03-07 2016-04-19 Kabushiki Kaisha Toshiba Sample detection apparatus and detection method
US9448153B2 (en) 2013-03-07 2016-09-20 Kabushiki Kaisha Toshiba Semiconductor analysis microchip and method of manufacturing the same
JPWO2015159348A1 (en) * 2014-04-14 2017-04-13 富士通株式会社 Photosynthesis equipment
US10279348B2 (en) 2013-08-12 2019-05-07 Kabushiki Kaisha Toshiba Semiconductor micro-analysis chip and method of manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001515216A (en) * 1997-08-13 2001-09-18 シーフィード Microstructure for manipulating fluid samples
JP2004530044A (en) * 2001-04-12 2004-09-30 アストラゼネカ アクチボラグ Micro-engineered reactor
JP2006104538A (en) * 2004-10-06 2006-04-20 Kyoto Univ Microflow electrochemical reactor and method for synthesizing organic compound using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001515216A (en) * 1997-08-13 2001-09-18 シーフィード Microstructure for manipulating fluid samples
JP2004530044A (en) * 2001-04-12 2004-09-30 アストラゼネカ アクチボラグ Micro-engineered reactor
JP2006104538A (en) * 2004-10-06 2006-04-20 Kyoto Univ Microflow electrochemical reactor and method for synthesizing organic compound using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008170349A (en) * 2007-01-12 2008-07-24 National Institute Of Advanced Industrial & Technology Method of manufacturing glass microchip substrate with electrode
US9316576B2 (en) 2013-03-07 2016-04-19 Kabushiki Kaisha Toshiba Sample detection apparatus and detection method
US9448153B2 (en) 2013-03-07 2016-09-20 Kabushiki Kaisha Toshiba Semiconductor analysis microchip and method of manufacturing the same
US10279348B2 (en) 2013-08-12 2019-05-07 Kabushiki Kaisha Toshiba Semiconductor micro-analysis chip and method of manufacturing the same
JPWO2015159348A1 (en) * 2014-04-14 2017-04-13 富士通株式会社 Photosynthesis equipment

Also Published As

Publication number Publication date
JP4591759B2 (en) 2010-12-01

Similar Documents

Publication Publication Date Title
US20030198130A1 (en) Fluidic mixer in microfluidic system
CN101405084B (en) A system-in-package platform for electronic-microfluidic devices
US8398866B2 (en) Microchip for forming emulsion and method for manufacturing the same
DK2394156T3 (en) Device and method for electrochemical measurement of biochemical reactions as well as method of preparation for the device.
JP2006220606A (en) Liquid sending device
JP4367283B2 (en) Microfluidic chip
KR20080059413A (en) Microchip device
KR20060052217A (en) Channel structure and method of manufacturing the same
Vasilakis et al. High-performance PCB-based capillary pumps for affordable point-of-care diagnostics
JP4591759B2 (en) Micro electrochemical reactor
Khashayar et al. Rapid prototyping of microfluidic chips using laser-cut double-sided tape for electrochemical biosensors
JP5746632B2 (en) Microchannel structure, emulsion and method for producing solid spherical particles
JP4021391B2 (en) Microchip substrate bonding method and microchip
JP2006122735A (en) Channel structure and fluid mixing apparatus
JP5598432B2 (en) Microchannel device manufacturing method and microchannel chip
WO2014027435A1 (en) Fluid handling device and fluid handling method
JP3968929B2 (en) Liquid mixer
JP2004113967A (en) Micromixer
KR100485317B1 (en) Micro mixer and method of manufacturing the same
JP2006224014A (en) Micro-flowing passage device
JP4431982B2 (en) Micro electrochemical reactor
JP4348820B2 (en) Liquid mixer
JP4431983B2 (en) Microchannel device
JP2008170405A (en) Mixing/transferring device for microfluid and mixing/transferring device for microfluid by alternating current electrophoretic method
JP2004195338A (en) Particle production method and minute channel structure for the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100901

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140924

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees