JP4367283B2 - Microfluidic chip - Google Patents
Microfluidic chip Download PDFInfo
- Publication number
- JP4367283B2 JP4367283B2 JP2004230055A JP2004230055A JP4367283B2 JP 4367283 B2 JP4367283 B2 JP 4367283B2 JP 2004230055 A JP2004230055 A JP 2004230055A JP 2004230055 A JP2004230055 A JP 2004230055A JP 4367283 B2 JP4367283 B2 JP 4367283B2
- Authority
- JP
- Japan
- Prior art keywords
- flow
- liquid
- microfluidic chip
- liquid supply
- liquids
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000007788 liquid Substances 0.000 claims description 168
- 238000006243 chemical reaction Methods 0.000 claims description 9
- 230000004888 barrier function Effects 0.000 claims description 5
- 238000010030 laminating Methods 0.000 claims description 3
- 238000009792 diffusion process Methods 0.000 description 14
- 238000000034 method Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 4
- 230000006698 induction Effects 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000011143 downstream manufacturing Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000009154 spontaneous behavior Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Images
Landscapes
- Physical Or Chemical Processes And Apparatus (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
- Micromachines (AREA)
Description
本発明は、複数の液体供給口からそれぞれ供給される液体を微小流路に導き、微小流路において液体の混合や反応(化学反応)を行なわせ、液体排出口から処理済みの液体を得るマイクロ流体チップに関する。 The present invention is directed to a micro that obtains a processed liquid from a liquid discharge port by guiding the liquid supplied from a plurality of liquid supply ports to a micro flow channel, causing the liquid to be mixed and reacted (chemical reaction) in the micro flow channel. The present invention relates to a fluid chip.
マイクロ流体チップとは、幅及び深さが数μmから数百μmの微小流路に複数の液体を供給し、液体を構成するの分子や粒子の自発的挙動に基づいて液体の混合や反応を微小流路内で行なう装置である。 A microfluidic chip supplies a plurality of liquids to a microchannel with a width and depth of several μm to several hundred μm, and mixes and reacts liquids based on the spontaneous behavior of the molecules and particles that make up the liquid. It is an apparatus that performs in a micro flow path.
即ち、マイクロ流体チップが持つ微小流路では液体のレイノルズ数は数百以下となり、従来の反応装置のような乱流支配ではなく、層流支配の世界となる。この層流支配下での液体同士の混合・反応は各液体の接触界面における分子拡散によるものが主となり、その速度を規定する物は液体の拡散方向厚さ(異種の液体が均一濃度になるまで拡散すべき距離=拡散距離)である。 That is, the Reynolds number of the liquid is several hundreds or less in the micro flow path possessed by the microfluidic chip, and it becomes a world of laminar flow control, not turbulent flow control as in the conventional reaction apparatus. The mixing and reaction of liquids under the control of laminar flow is mainly due to molecular diffusion at the contact interface of each liquid, and the thing that defines the speed is the thickness of the liquid in the diffusion direction (different liquids have a uniform concentration) Is the distance to be diffused = diffusion distance).
従来のマイクロ流体チップは液体の分析を目的とした物が多く、数μl/minから数十μl/minの流量をもつ液体を数百μm以下の幅の狭い(=拡散距離が短い)微小流路内で混合・反応を行なうようになっている。 Many conventional microfluidic chips are intended for liquid analysis, and a liquid having a flow rate of several μl / min to several tens of μl / min is a narrow flow (= short diffusion distance) of a few hundred μm or less. It is designed to mix and react in the road.
具体的には下記特許文献1に開示されているように、複数の液体をそれぞれ多数の層状の流れに分割し、それらを交互に配することで、液体の総体積に占める各液体の接触面積の割合を増加させたラミネートフローを形成し、高効率の液体混合を可能としたものや、下記特許文献2に開示されているように、液体を薄膜状の流れに整形し、それを流れ方向に対して垂直に積層し、その積層した流れを断続的に絞る事で発生する攪拌流で液体を混合するものなどが知られている。
Specifically, as disclosed in the following Patent Document 1, a plurality of liquids are divided into a large number of laminar flows, and these are alternately arranged, so that the contact area of each liquid occupying the total volume of the liquid Forming a laminate flow with an increased proportion of the liquid, enabling highly efficient liquid mixing, and as disclosed in
上記従来技術は、数十μl/min程度の少量の液体を分析することを前提としてマイクロ流体チップを設計してあり、数十ml/min程度の流量で液体の混合・反応を行なうべく高速で液体を流すと、流路が微小過ぎて内部の圧力損失が過大となって所望の流量を流すことは不可能で、処理量の増大化は期待できない。また、微小流路を高速で液体が通過すると、拡散が不十分となり、期待した混合・反応も得られない。 The above prior art has designed a microfluidic chip on the premise of analyzing a small amount of liquid of about several tens of μl / min, and at high speed to mix and react at a flow rate of about several tens of ml / min. When the liquid is flowed, the flow path is too small, the internal pressure loss becomes excessive, and it is impossible to flow a desired flow rate, and an increase in the processing amount cannot be expected. Further, when the liquid passes through the microchannel at high speed, the diffusion becomes insufficient, and the expected mixing and reaction cannot be obtained.
処理量を増やし、確実な混合・反応を得るためには、ナンバリングアップと呼ばれる複数のマイクロ流体チップを用いた並列処理を行う必要があり、装置全体が大型化する。 In order to increase the amount of processing and to obtain reliable mixing and reaction, it is necessary to perform parallel processing using a plurality of microfluidic chips called numbering up, which increases the size of the entire apparatus.
それゆえ本発明の目的は、大流量の液体を高速に処理することができ、しかも装置が大型化しないマイクロ流体チップを提供することにある。 Therefore, an object of the present invention is to provide a microfluidic chip that can process a large flow rate of liquid at high speed and does not increase the size of the apparatus.
上記目的を達成する本発明マイクロ流体チップの特徴とするところは、複数の液体供給口からそれぞれ供給される液体を微小流路に導き、微小流路において液体の混合・反応を行ない、液体排出口から処理済みの液体を得るマイクロ流体チップにおいて、少なくとも2種類の液体をそれぞれ分割して複数の流れとしたものを交互に配列するように供給する液体供給部と、該液体供給部の下流に該液体供給部において交互に配列された液体の配列方向での寸法が下流に向かうに従い小さくなり該配列方向と流れの方向に交差する方向での寸法が下流に向かうに従い大きくなって断面積が流れの方向にほぼ同等か僅かに大きくなる流路形状の流れ扁平化部とを設け、、前記液体供給部は、一の液体の流路を画定しこの一の液体の流路の両側に形成される障壁を有し、この障壁の流路下流側端部から始まり、一の液体の流れ間に形成される流路に他の液体を流下させてラミネートフローを形成するラミネートフロー形成部を、前記液体供給部と前記流れ扁平化部間に設けたことにある。
The microfluidic chip of the present invention that achieves the above object is characterized in that the liquid supplied from a plurality of liquid supply ports is guided to the micro flow channel, and the liquid is mixed and reacted in the micro flow channel. In the microfluidic chip for obtaining the processed liquid from the above, a liquid supply unit that supplies at least two types of liquids so as to be divided into a plurality of flows alternately divided, and downstream of the liquid supply unit The dimensions in the arrangement direction of the liquids arranged alternately in the liquid supply section become smaller as they go downstream, and the dimensions in the direction intersecting the arrangement direction and the flow direction become larger as they go downstream. A flow flattening portion having a flow path shape that is substantially equal to or slightly larger in the direction, and the liquid supply section defines a flow path for one liquid and is formed on both sides of the flow path for the one liquid. A laminate flow forming portion that has a barrier to be formed and starts from the downstream end of the flow path of the barrier and causes another liquid to flow down into the flow path formed between the flow of one liquid to form a laminate flow, It exists in providing between the said liquid supply part and the said flow flattening part .
さらに上記目的を達成する本発明マイクロ流体チップの特徴とするところは、該流れ扁平化部の下流に流れに交差する方向での該流れ扁平化部との接続部における断面積をそのまま液体排出口まで維持し該液体供給部から供給された各液体の混合もしくは反応が終了するまでの滞留時間を確保する長さの流路の処理部を設けたことにある。 Further, the microfluidic chip of the present invention that achieves the above object is characterized in that the cross-sectional area at the connection portion with the flow flattening portion in the direction intersecting the flow downstream of the flow flattening portion is the liquid discharge port as it is. And a processing section having a channel having a length that ensures a residence time until mixing or reaction of each liquid supplied from the liquid supply section is completed.
該液体供給部において交互に配列された液体の配列方向での寸法を下流に向かうに従い小さくすると、交互に配列された液体の配列方向での各液体の幅は狭くなり(拡散距離は短縮され)、拡散が良好に進むと考えられがちであるが、該配列方向と流れの方向に交差する方向での寸法を流れの方向に維持していると流路断面積は流れの方向に小さくなって行く。そうすると、圧力損失は大きくなり大流量を流せない。 When the dimensions in the arrangement direction of the alternately arranged liquids in the liquid supply unit are reduced toward the downstream, the width of each liquid in the arrangement direction of the alternately arranged liquids becomes narrower (the diffusion distance is shortened). However, if the dimensions in the direction intersecting the direction of flow and the direction of flow are maintained in the direction of flow, the cross-sectional area of the flow path becomes smaller in the direction of flow. go. If it does so, pressure loss will become large and will not be able to flow a big flow.
そこで、該配列方向と流れの方向に交差する方向での寸法を流れの方向に大きくし流路断面積が流れの方向にほぼ同等か僅かに大きくなるようにすることで、圧力損失の増大化を阻止し、大流量の液体を流すことができるようにした。 Therefore, by increasing the dimension in the direction intersecting the direction of flow and the flow direction in the flow direction so that the cross-sectional area of the flow path is approximately equal to or slightly larger than the flow direction, the pressure loss is increased. And a large flow rate of liquid was allowed to flow.
該液体供給部において交互に配列された液体の配列方向での寸法を下流に向かうに従い小さくすると、交互に配列された液体の配列方向での各液体の幅は狭くなることに加えて、該配列方向と流れの方向に交差する方向での寸法を流れの方向に大きくすると、流れの方向における単位長当りの隣接する液体同士の接触面積は拡がる。 In addition to reducing the width of each liquid in the arrangement direction of the alternately arranged liquids when the dimension in the arrangement direction of the alternately arranged liquids in the liquid supply unit is reduced as it goes downstream, When the dimension in the direction intersecting the direction of flow and the direction of flow is increased in the direction of flow, the contact area between adjacent liquids per unit length in the direction of flow is expanded.
続く処理部で流れに交差する方向での該流れ扁平化部との接続部における断面積をそのまま液体排出口まで維持させるようにすると、処理部でも流れの方向における単位長当りの隣接する液体同士の拡大された接触面積は維持できるので、該液体供給部から供給された各液体の混合もしくは反応が終了するまでの滞留時間は短縮でき、処理部における流路の長さが短くなることから装置を小型化することができる。 If the cross-sectional area at the connection portion with the flow flattening portion in the direction intersecting the flow in the subsequent processing portion is maintained as it is to the liquid discharge port, the adjacent liquid per unit length in the flow direction also in the processing portion Therefore, the residence time until the mixing or reaction of each liquid supplied from the liquid supply unit is completed can be shortened, and the length of the flow path in the processing unit is shortened. Can be miniaturized.
それによって、液体を高速に流すことが可能となり、また1個のマイクロ流体チップで処理できる流量が向上するので、並列処理数を低減でき、装置の大型化を避けることができる。 As a result, the liquid can be flowed at a high speed, and the flow rate that can be processed by one microfluidic chip is improved, so that the number of parallel processes can be reduced and the enlargement of the apparatus can be avoided.
以下、図に示す実施形態について説明する。 Hereinafter, embodiments shown in the drawings will be described.
以下、本発明マイクロ流体チップの一実施形態として2種類の液体を混合するマイクロ流体チップを図示し説明するが、本発明はこれらの実施例により何ら限定されるものではない。
図1は、マイクロ流体チップ1の全体を示す概略的分解斜視図である。
Hereinafter, as an embodiment of the microfluidic chip of the present invention, a microfluidic chip for mixing two kinds of liquids will be illustrated and described, but the present invention is not limited to these examples.
FIG. 1 is a schematic exploded perspective view showing the entire microfluidic chip 1.
マイクロ流体チップ1は、混合や反応などの処理をする液体の種類に応じて金属,ガラス,シリコン,樹脂などの数mm厚の板材により形成したマイクロ流体チップ本体10と、マイクロ流体チップ本体10の一主面側に配置されマイクロ流体チップ本体10における流路の天井部分を構成する蓋部材30と、この蓋部材30とは反対側になるマイクロ流体チップ本体10の他の主面側に配置されポンプなどの送液機構とチップをつなぐアダプタ部材50、及びこれら3部材間に配設したシール部材70,90(図3参照)からなり、ねじ締結により液体が漏れないようにしている。
The microfluidic chip 1 includes a
シール部材としては粘着性パッキング材やメタルパッキング材などを使用してもよいが、レーザー接合や接着剤など他の方法を用いてマイクロ流体チップ本体10の表裏に蓋部材30やアダプタ部材50を直接固定しても良い。なお、図1において、マイクロ流体チップ本体10,蓋部材30,アダプタ部材50に描いてある楕円はねじ孔である。また、アダプタ部材50とシール部材90にはそれぞれ供給する原液や排出する処理液の通路となる開孔を設けてあるが、詳細な図示は省略する。
As the sealing member, an adhesive packing material, a metal packing material, or the like may be used. However, the
図2はマイクロ流体チップ本体10の一主面側の正面図であり、第一液供給部11,第一液誘導流路部12,第二液供給部13,ラミネートフロー形成部14,流れ扁平化部15,処理部16,液体排出部17を備えている。
FIG. 2 is a front view of one main surface side of the
マイクロ流体チップ本体10には、以下具体的に説明する液体供給部から液体排出口に至る各種形状の溝を設けてあり、マイクロ流体チップ本体10の表面に密着固定される蓋部材30はそれらの溝を密封する蓋の機能を果たす。
The
第一液供給部11は、多数の第一液供給ノズル11aから構成される。各第一液供給ノズル11aはマイクロ流体チップ本体10の幅方向に一定の間隔をもって一列に並ぶようにマイクロ流体チップ本体10の裏面(アダプタ部材50側の主面)から表面(蓋部材30側の主面)にかけて設けてある開孔で構成される。
The first
図3は図2に示したA−A切断線に沿ったマイクロ流体チップ本体10の横断面図であり、各第一液供給ノズル11aの下部(アダプタ部材50側の裏面)には供給液である第一液を一時的に溜めておくバッファ槽18を設けてある。バッファ槽18はマイクロ流体チップ本体10の裏面に設けた凹部とアダプタ部材50で形成している。
FIG. 3 is a cross-sectional view of the
アダプタ部材50のバッファ槽18に対応する位置に第一液供給ヘッド19を取り付けてあり、第一液供給ヘッド19から供給された第一液は、バッファ槽18を満たした後に液面の上昇に伴い全ての第一液吐出ノズル11aへと均一に供給される。この結果、全ての第一液吐出ノズル11aから第一液が吐出され、それらの液体は各ノズルから延びる第一液誘導流路部12を通り、ラミネートフロー形成部14へと移動する。
The first
第二液供給部13は、第一液吐出ノズル11aとノズル1個分ずつ位置がマイクロ流体チップ本体10の幅方向にずれた多数の第二液吐出ノズル13aから構成され、バッファ槽や第二液供給ヘッドなどを擁している点において、第一液供給部11と同様の構造を持つ。
The second
第二液は、全ての第二液吐出ノズル13aから吐出され、ラミネートフロー形成部14へ供給される。
The second liquid is discharged from all the second
図4に拡大して示すように、第一液誘導流路部12では各第一液吐出ノズル11aの位置からマイクロ流体チップ本体10長手方向(第一液の流れの方向)に沿う多数の障壁12aの間に第一液誘導流路12bがあり、第一液は第一液誘導流路12bを流下する。
As shown in FIG. 4 in an enlarged manner, in the first liquid guiding
多数の第二液吐出ノズル13aは障壁12aにおける下流側端部に開孔しており、各第一液吐出ノズル11aと各第二液吐出ノズル13aから吐出された両液体は、両ノズル11a,13aの位置のずれにより、ラミネートフロー形成部14において、2種類の液体が交互に配されたラミネートフロー14Aを形成する。
A large number of second
ラミネートフローを形成する事で、2種類の液体の総体積に占める接触面積の割合は増加し、接触面で発生する分子拡散が活発になり、一定時間の分子拡散量が増加するためマイクロ流体チップにおける処理の高効率化が実現する。同一体積の場合、マイクロ流体チップの処理効率はラミネートフローの層の数に比例する。 By forming the laminate flow, the ratio of the contact area to the total volume of the two types of liquid increases, the molecular diffusion generated at the contact surface becomes active, and the amount of molecular diffusion for a certain time increases, so the microfluidic chip High efficiency of processing is realized. For the same volume, the processing efficiency of the microfluidic chip is proportional to the number of layers in the laminate flow.
なお、第一液供給部11,第一液誘導流路部12,第二液供給部13およびラミネートフロー形成部14は、少なくとも2種類の液体をそれぞれ分割して複数の流れとしたものを交互に配列するように供給する液体供給部を構成している。
The first
ラミネートフロー形成部14で形成されたラミネートフロー14Aは、次に流れ扁平化部15と移動する。
The
分子拡散による液体の混合において、混合完了までの時間に影響するのは接触界面に垂直な方向の液体の厚さ(=分子や粒子の拡散距離)であり、厚さの2乗に時間が比例する関係を持つ。例えば、10秒で1mm拡散する場合は、拡散距離を1/2の0.5mmに短縮すると、時間は1/4の2.5秒しかかからない。 In liquid mixing by molecular diffusion, the time to mixing is affected by the liquid thickness in the direction perpendicular to the contact interface (= diffusion distance of molecules and particles), and time is proportional to the square of the thickness. Have a relationship. For example, in the case of spreading 1 mm in 10 seconds, if the diffusion distance is reduced to 0.5 mm, which is 1/2, the time only takes 1/4 seconds, 2.5 seconds.
この関係に基づいて、流れ扁平化部15ではラミネートフロー14Aの接触界面に垂直な方向に流路幅を絞る。これにより拡散距離を短縮し、高速で液体の混合を行う事が可能となる。
Based on this relationship, the
また、絞る前と絞った後の流路幅の比が同じ値の場合、第一液吐出ノズル11aとノズル1個分ずつ位置がマイクロ流体チップ本体10の幅方向にずれた第二液吐出ノズル13aの交互配列数を多くし、ラミネートフローの層の数が多くなるほど、1層辺りの厚さは薄くなり、それによって混合完了までの時間は短くて済む。
In addition, when the ratio of the flow path width before and after squeezing is the same value, the position of the first
通常、流路の幅を絞ると流路断面積が減少し、それにより流路内での単位長当りの圧力損失は下流に向かうほど増大する。特にマイクロ流体チップに大流量で送液しようとすると、流路内の圧力損失は第一液供給ヘッド19などの上流側に配設してある図示していないポンプの性能限界を超過し、送液は不可能となる。
Usually, when the width of the flow path is reduced, the cross-sectional area of the flow path is reduced, whereby the pressure loss per unit length in the flow path increases toward the downstream. In particular, when trying to send liquid to the microfluidic chip at a large flow rate, the pressure loss in the flow path exceeds the performance limit of a pump (not shown) arranged on the upstream side of the first
そこで本実施形態においては、従来は0.5mm程度の薄板で製作される事の多かったマイクロ流体チップ本体10に数mm厚の板材を用い、図2に示すように下流に向かうに従って流路幅Wを絞ると同時にそれに比例して図2に示したB−B切断線に沿った部分的縦断面図である図5に示すように流路の深さHを広げ、流路断面積を一定に保つ流れ扁平化部15を設けることで圧力損失が増大しない構造とした。流れ扁平化部15は、圧力損失増大阻止機能をもつ拡散距離短縮部と云える。
Therefore, in the present embodiment, a plate material having a thickness of several millimeters is used for the
この場合、流路の深さHを広げても、流路内の流れは層流を維持しているためにラミネートフロー14Aが乱れることはなく、分子拡散は乱されない。
In this case, even if the depth H of the flow path is increased, the laminar flow is maintained in the flow in the flow path, so that the
図6に示すように、流れ扁平化部15では流れの方向をX方向、幅方向(液体供給部11において交互に配列された液体の配列方向)をY方向、深さ方向(液体供給部11において交互に配列された液体の配列方向と流れの方向に交差する方向)をZ方向で表した場合、ラミネートフローの各1層は、厚さが下流に進むに連れて薄くなり(厚さw1⇒w2)、代わりに、深さ方向(Z方向)において長くなるように(深さh1⇒h2)扁平化され、流れ方向に交差する方向での断面積は上流のラミネートフロー形成部14側(断面積A1)と下流の処理部16側(断面積A2)でもほぼ同一(断面積A1≒A2)となるようにしているが、下流ほど断面積はやや広くなるようにする(断面積A2≧A1)と良い。
As shown in FIG. 6, in the
処理部16との接続部20における断面形状をどうするかは、マイクロ流体チップ本体10の厚さや後述する処理部16の長さなどによって決めれば良い。
What to do with the cross-sectional shape of the connecting
図2においては、流れ扁平化部15をマイクロ流体チップ本体10の正面から見て半円状としているが、形状に制限はなく、三角形でも構わない。また、半円状や三角形などの形状は微細ピッチの階段状の形に模擬してもよく、その形状に合せて、深さ方向においても緩やかな傾斜を階段状としてもよい。
In FIG. 2, the
流れ扁平化部15を通過した液体は、処理部16へ移動する。
処理部16は、流れに交差する方向での流れ扁平化部15との接続部20における断面積をそのまま液体排出部(液体排出口)17まで維持している。
The liquid that has passed through the
The
これは、流路断面形状を同一にすることで加工が容易となり、また液体の混合状態を推定する計算も容易となるからである。ただし、マイクロ流体チップ本体10の厚みに余裕があれば流れ扁平化部15の流路深さHを深くし、ラミネートフロー14Aの界面面積/全体積の比を増やすことができ、より混合性能を上げることも可能である。
This is because processing can be facilitated by making the cross-sectional shapes of the channels the same, and calculation for estimating the mixed state of the liquid can be facilitated. However, if there is a margin in the thickness of the
実施例では処理部16を円形の渦巻き状としたが、混合完了までに必要な滞留時間を計算により求め、そこから導かれる必要流路長をマイクロ流体チップ本体10上に確保できるならば、図7の方形の渦巻き状や図示していない六角形の渦巻き状、図8の蛇行状など他の形状でも良い。
In the embodiment, the
この処理部16を通過する間に液体の混合は完全に終了し、液体排出部17から装置外に均一に混合された処理液が排出される。アダプタ部材50の液体排出部17に対応する個所に図示していない処理液排出ヘッドを設けてあり、この処理液排出ヘッドを通して処理液を得る。
Mixing of the liquid is completely completed while passing through the
液体が層流である限り、本発明のマイクロ流体チップ1の混合性能は、ラミネートフロー14Aの層の数と流れ扁平化部15における前後の流路幅の比により決定される。よって、従来のマイクロ流体チップのような微細なノズルや溝は必ずしも必要ではなく、それぞれが数百μmから数mmのノズルや溝の組み合わせとしても性能を発揮できるため、加工性に優れる。
As long as the liquid is a laminar flow, the mixing performance of the microfluidic chip 1 of the present invention is determined by the ratio of the number of layers of the
図2の実施例ではラミネートフロー14Aを横に配列した形としているが、マイクロ流体チップ本体10の厚さ方向に配列した形、即ち、図6の各軸方向について、YとZの軸方向をX軸を中心として90度回転させ、Y軸が図6のZ軸方向となるような縦の配列としても良い。
In the embodiment of FIG. 2, the
上記実施例では2液を混合する例で説明したが、3液以上の液体を混合させたい場合には、液体供給部を多く設ければ良い。 In the above-described embodiment, an example in which two liquids are mixed has been described. However, when three or more liquids are to be mixed, a large number of liquid supply units may be provided.
1…マイクロ流体チップ
10…マイクロ流体チップ本体
11…第一液供給部
12…第一液誘導流路部
13…第二液供給部
14…ラミネートフロー形成部
15…流れ扁平化部
16…処理部
17…液体排出部
30…蓋部材
50…アダプタ部材
1 ... Microfluidic chip
10 ... Microfluidic chip body
11 ... First liquid supply unit
12 ... First liquid guiding channel section
13 ... Second liquid supply section
14 ... Laminate flow forming part
15 ... Flow flattening part
16 ... processing part
17 ... Liquid discharge part
30 ... Lid member
50 ... Adapter member
Claims (6)
少なくとも2種類の液体をそれぞれ分割して複数の流れとしたものを交互に配列するように供給する液体供給部と、該液体供給部の下流に該液体供給部において交互に配列された液体の配列方向での寸法が下流に向かうに従い小さくなり該配列方向と流れの方向に交差する方向での寸法が下流に向かうに従い大きくなって断面積が流れの方向にほぼ同等か僅かに大きくなる流路形状の流れ扁平化部とを設け、前記液体供給部は、一の液体の流路を画定しこの一の液体の流路の両側に形成される障壁を有し、この障壁の流路下流側端部から始まり、一の液体の流れ間に形成される流路に他の液体を流下させてラミネートフローを形成するラミネートフロー形成部を、前記液体供給部と前記流れ扁平化部間に設けたことを特徴とするマイクロ流体チップ。 In a microfluidic chip that guides liquid supplied from a plurality of liquid supply ports to a microchannel, mixes and reacts liquids in the microchannel, and obtains processed liquid from the liquid outlet,
A liquid supply unit that supplies a plurality of flows obtained by dividing at least two types of liquids, and an array of liquids arranged alternately in the liquid supply unit downstream of the liquid supply unit The shape of the flow path is such that the dimension in the direction becomes smaller as it goes downstream, the dimension in the direction intersecting the direction of flow and the flow direction becomes larger, and the cross-sectional area becomes almost equal to or slightly larger in the flow direction A flow flattening portion, and the liquid supply portion defines a flow path for one liquid and has barriers formed on both sides of the flow path for the one liquid. A laminating flow forming part for forming a laminating flow by causing another liquid to flow down in a flow path formed between the flow of one liquid is provided between the liquid supply part and the flow flattening part. Microfluidic features -Up.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004230055A JP4367283B2 (en) | 2004-08-06 | 2004-08-06 | Microfluidic chip |
TW093139208A TWI247626B (en) | 2004-08-06 | 2004-12-16 | Micro fluid chip |
US11/039,940 US7485266B2 (en) | 2004-08-06 | 2005-01-24 | Micro fluid chip |
EP05001743A EP1623760B1 (en) | 2004-08-06 | 2005-01-27 | Micro fluid chip |
DE602005005574T DE602005005574T2 (en) | 2004-08-06 | 2005-01-27 | Microfluidic chip |
CNB2005100058164A CN100377768C (en) | 2004-08-06 | 2005-01-27 | Micro fluid chip |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004230055A JP4367283B2 (en) | 2004-08-06 | 2004-08-06 | Microfluidic chip |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008279544A Division JP2009018311A (en) | 2008-10-30 | 2008-10-30 | Microfluid chip |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006043617A JP2006043617A (en) | 2006-02-16 |
JP4367283B2 true JP4367283B2 (en) | 2009-11-18 |
Family
ID=35962585
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004230055A Expired - Lifetime JP4367283B2 (en) | 2004-08-06 | 2004-08-06 | Microfluidic chip |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4367283B2 (en) |
CN (1) | CN100377768C (en) |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007252979A (en) * | 2006-03-20 | 2007-10-04 | National Institute Of Advanced Industrial & Technology | Method for manufacturing compound by micro-reactor, its micro-reactor and distributor for micro-reactor |
JP4940756B2 (en) * | 2006-05-22 | 2012-05-30 | ソニー株式会社 | Micro channel system |
JP2008014791A (en) * | 2006-07-05 | 2008-01-24 | Nipro Corp | Liquid mixing device, liquid mixing method, and measuring method of very small amount of specimen |
JP5030520B2 (en) * | 2006-09-29 | 2012-09-19 | 富士フイルム株式会社 | Fluid mixing method and microdevice |
JP5221287B2 (en) * | 2007-12-27 | 2013-06-26 | 日揮触媒化成株式会社 | Method for producing barium titanate and barium calcium titanate using a microreaction apparatus |
JP5470642B2 (en) * | 2008-03-25 | 2014-04-16 | 国立大学法人 岡山大学 | Micro droplet preparation device |
JP2009233514A (en) * | 2008-03-26 | 2009-10-15 | Hitachi Plant Technologies Ltd | Microchemical reaction device and microchemical reaction system |
JP5092881B2 (en) * | 2008-05-13 | 2012-12-05 | ソニー株式会社 | Channel structure and microchip |
US20120003122A1 (en) * | 2009-03-20 | 2012-01-05 | Avantium Holding B.V. | Flow controller assembly for microfluidic applications and system for performing a plurality of experiments in parallel |
JP5959835B2 (en) * | 2011-12-05 | 2016-08-02 | 株式会社日立製作所 | Reaction system |
CN102698672B (en) * | 2012-05-21 | 2014-01-29 | 中南大学 | Microfluidic reactor |
US10578613B2 (en) * | 2014-09-01 | 2020-03-03 | Ridgeview Instruments Ab | Solid support for improved detection of interaction between species |
WO2018190336A1 (en) * | 2017-04-10 | 2018-10-18 | 古河電気工業株式会社 | Liquid delivery device and liquid delivery method |
CN107702973B (en) * | 2017-09-08 | 2024-07-26 | 深圳市太赫兹科技创新研究院有限公司 | Whole blood plasma separation system and method |
TWI651074B (en) * | 2017-10-25 | 2019-02-21 | 台達電子工業股份有限公司 | Mixing method and mixing apparatus for particle agglutination |
WO2020118487A1 (en) | 2018-12-10 | 2020-06-18 | 深圳大学 | Micro-structure mold core of microfluidic chip and manufacturing method therefor |
CN111829822B (en) * | 2019-04-18 | 2023-10-20 | 中国科学院微电子研究所 | Liquid chip sampling device of electron microscope |
CN109967149B (en) * | 2019-04-24 | 2020-07-28 | 中国农业大学 | Micro-fluidic chip |
CN110052297B (en) * | 2019-04-26 | 2021-08-27 | 广州迈普再生医学科技股份有限公司 | Microfluidic chip for fluid blending and multi-component fluid blending method |
CN113720834B (en) * | 2021-08-25 | 2023-08-18 | 中国科学院南海海洋研究所 | Microfluidic chip, system and method for detecting biochemical elements of water body |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5842787A (en) * | 1997-10-09 | 1998-12-01 | Caliper Technologies Corporation | Microfluidic systems incorporating varied channel dimensions |
JP4346893B2 (en) * | 2002-11-01 | 2009-10-21 | 株式会社日立製作所 | Chemical reactor |
CN2596363Y (en) * | 2002-12-20 | 2003-12-31 | 上海博昇微晶科技有限公司 | Micro fluid system |
-
2004
- 2004-08-06 JP JP2004230055A patent/JP4367283B2/en not_active Expired - Lifetime
-
2005
- 2005-01-27 CN CNB2005100058164A patent/CN100377768C/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN1730142A (en) | 2006-02-08 |
JP2006043617A (en) | 2006-02-16 |
CN100377768C (en) | 2008-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4367283B2 (en) | Microfluidic chip | |
US7485266B2 (en) | Micro fluid chip | |
JP5604038B2 (en) | Reaction apparatus and reaction plant | |
US6851846B2 (en) | Mixing method, mixing structure, micromixer and microchip having the mixing structure | |
JP2009018311A (en) | Microfluid chip | |
JP2020114585A (en) | Process intensified microfluidic device | |
JP3694877B2 (en) | Micro mixer | |
US20050232076A1 (en) | Micromixer with overlapping-crisscross entrance | |
EP1908514B1 (en) | Microreactor | |
EP0873179A1 (en) | Micromixer | |
CN101178398A (en) | Micro total analysis chip and micro total analysis system | |
JP3810778B2 (en) | Flat plate static mixer | |
US7374726B2 (en) | Chemical reactor | |
JP2005118634A (en) | Micro-mixing device | |
KR101666425B1 (en) | A Micro-Channel Reactor | |
JP5746632B2 (en) | Microchannel structure, emulsion and method for producing solid spherical particles | |
US8920020B2 (en) | Flow passage structure | |
CN116550245A (en) | Double-layer composite micro-reaction channel plate containing three-dimensional ladder channel and micro-channel reactor | |
EP1827668A1 (en) | Bubble-tolerant micro-mixers | |
JP2006102649A (en) | Micro-fluid apparatus | |
JP2019002926A (en) | Microfluidic device and method for feeding fluid | |
JP2022080026A (en) | Dispenser in micro channel and micro channel device | |
US11975298B2 (en) | Fluid controller and fluid mixer | |
JP2006281071A (en) | Micro device | |
WO2016157893A1 (en) | Mixing flow path and microfluidic device provided with mixing flow path |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20060509 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060614 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060614 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20060823 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20070222 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20070820 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080827 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080902 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081030 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090804 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090817 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4367283 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120904 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120904 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130904 Year of fee payment: 4 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |