JP2005127864A - Micromixing device - Google Patents

Micromixing device Download PDF

Info

Publication number
JP2005127864A
JP2005127864A JP2003363693A JP2003363693A JP2005127864A JP 2005127864 A JP2005127864 A JP 2005127864A JP 2003363693 A JP2003363693 A JP 2003363693A JP 2003363693 A JP2003363693 A JP 2003363693A JP 2005127864 A JP2005127864 A JP 2005127864A
Authority
JP
Japan
Prior art keywords
channel
protrusion
flow path
fluid
outlet channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003363693A
Other languages
Japanese (ja)
Inventor
Kotaro Idegami
公太郎 井手上
Eiichi Tamiya
栄一 民谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2003363693A priority Critical patent/JP2005127864A/en
Publication of JP2005127864A publication Critical patent/JP2005127864A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Micromachines (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To further accelerate the mixture of fluids by increasing the relative interfacial area of the fluids for generating vortex for mixture, and reducing diffusion distance in a microchannel. <P>SOLUTION: A micromixing device has a structure for generating a volume change periodically in the channel space of an outlet channel 2 in one of the upstream and downstream of a projection 3 by providing the projection 3 in the outlet channel 2. The outlet channel 2 has channel resistance for generating vortex at both the sides of the upstream and downstream in the projection 3 by the periodical volume change in the channel space of the outlet channel 2. The periodical volume change in the channel space of the outlet channel 2 is caused by partial or entire displacement in a channel wall for orthogonally crossing the direction of the flow of the fluid. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、微細流路(マイクロチャネル)にて複数の流体を混合するためのマイクロミキシングデバイスに関するものである。   The present invention relates to a micromixing device for mixing a plurality of fluids in a microchannel (microchannel).

従来、医療用生化学分析や化学分析においては、資料と試薬とを混合し、これらを反応させることにより分析が行われる。従来、この混合や反応を行うに当たっては、タンク等を用いたいわゆるバッチ方式によって流体同士を接触させていた。
ところで、流体同士の接触を一層増大する、拡散による混合や反応を起こり易くする、混合容器間にて流体の滞留がない、部分的ではない均一な反応を得る、等の理由から、微小空間であるマイクロチャネルに流体を流して、この微小容器にて混合や反応を生じさせる、いわゆるマイクロミキサと呼ばれる装置が存在する。この場合、当然のことながら、反応の遅い・速いは資料と試薬、あるいは条件に依存するのであるが、資料と試薬との混合についてはバッチ方式に比べて短時間で十分に混合することが可能となる。
しかしながら、マイクロチャネル、すなわちマイクロメータ単位例えば500μm以下の流路等については、例えば200以下のレイノズル数によって支配される世界であり、層流支配の世界である。このため、混合すべき流体は、マイクロチャネル内にて層流となり、各流体の混合は、各流体の接触面すなわち比界面積での拡散が主となる。
このような現状において、従来、マイクロチャネルでの流体の混合を更に向上させ、層流を維持しようとする高速な流体流速に対処するためあるいは高速な反応に対処するためにも、種々の改良が重ねられており、これまでにもマイクロチャネルでの流体の混合に関しては種々の提案がある。
従来技術の典型例として、例えば特許文献1には、マイクロチャネル内に設けられたミキシング流路に流体の流れ方向と直交する流体の拡散方向に振動を伝達し、流体の分子運動を拡散方向に増大させ、流体の接触界面での分子の拡散方向の移動を増大させるという技術の開示がある。
すなわち、上記従来例においては、層流の存在を前提として、各流体間の拡散方向の分子移動を促すことが行われている。
特開2003−210963公報
Conventionally, in medical biochemical analysis and chemical analysis, analysis is performed by mixing materials and reagents and reacting them. Conventionally, in performing this mixing and reaction, fluids are brought into contact with each other by a so-called batch system using a tank or the like.
By the way, in order to further increase the contact between fluids, to facilitate mixing and reaction due to diffusion, there is no stagnation of fluid between mixing containers, to obtain a non-partial uniform reaction, etc. There is a so-called micromixer device that causes a fluid to flow through a microchannel to cause mixing and reaction in the micro container. In this case, as a matter of course, the slow / fast reaction depends on the materials and reagents or conditions, but the materials and reagents can be mixed in a shorter time compared to the batch method. It becomes.
However, a microchannel, that is, a flow path of a micrometer unit, for example, 500 μm or less is a world dominated by the number of ray nozzles of 200 or less, for example, and is a laminar flow dominated world. For this reason, the fluid to be mixed becomes a laminar flow in the microchannel, and the mixing of each fluid mainly involves diffusion at the contact surface, that is, the specific interface area of each fluid.
Under these circumstances, various improvements have been made in order to cope with a high fluid flow velocity or a fast reaction in order to further improve the mixing of the fluid in the microchannel and maintain a laminar flow. There have been various proposals regarding the mixing of fluids in microchannels.
As a typical example of the prior art, for example, in Patent Document 1, vibration is transmitted to a mixing flow path provided in a microchannel in a fluid diffusion direction perpendicular to the fluid flow direction, and the molecular motion of the fluid is changed in the diffusion direction. There is a disclosure of technology that increases and increases the movement of molecules in the diffusion direction at the fluid contact interface.
That is, in the above conventional example, on the premise of the existence of laminar flow, molecular movement in the diffusion direction between the fluids is promoted.
JP 2003-210963 A

しかしながら上述する各従来構造では、層流支配の微細空間であるマイクロチャネルにあって、例えば振動により拡散を促すものであり、混合へ顕著な効果アップは望めない。
本発明は、上述の問題に鑑み、マイクロチャネルにあって、渦を発生させて混合する流体の比界面積の増大、拡散距離の短縮をさせることにより、流体の混合を一層促進したマイクロミキシングデバイスの提供を目的とする。
However, each of the conventional structures described above is in a microchannel, which is a laminar-dominated fine space, and promotes diffusion by, for example, vibration, and a significant effect on mixing cannot be expected.
In view of the above-mentioned problems, the present invention is a micromixing device that further facilitates fluid mixing by increasing the specific interfacial area of the fluid to be mixed by generating vortices and shortening the diffusion distance in the microchannel. The purpose is to provide.

上述した課題を解決し、目的を達成するために、請求項1にかかる発明は、複数の入口流路が結合して、1本の出口流路に連通するマイクロミキシングデバイスにおいて、上記出口流路内に突起を設け、この突起の上流及び下流のいずれか一方の出口流路の流路空間にて周期的に体積変化を生じる構造を有することを特徴とする。
また、請求項2にかかる発明は、請求項1にかかる発明において、出口流路は、この出口流路の流路空間での周期的な体積変化にて突起の上流及び下流の両側に渦を生じさせる流路抵抗を有することを特徴とする。
また、請求項3にかかる発明は、請求項1にかかる発明において、出口流路の流路空間での周期的な体積変化は、流体の流れ方向に直交する流路壁の一部及び全部のいずれかの変位によることを特徴とする。
In order to solve the above-described problems and achieve the object, the invention according to claim 1 is directed to a micromixing device in which a plurality of inlet channels are connected to communicate with a single outlet channel. It has a structure in which a protrusion is provided inside, and a volume change is periodically generated in the flow path space of one of the upstream and downstream outlet flow paths of the protrusion.
The invention according to claim 2 is the invention according to claim 1, wherein the outlet channel causes vortices on both the upstream and downstream sides of the protrusion by a periodic volume change in the channel space of the outlet channel. It has a flow path resistance to be generated.
The invention according to claim 3 is the invention according to claim 1, wherein the periodic volume change in the flow path space of the outlet flow path is caused by a part and all of the flow path wall perpendicular to the fluid flow direction. It is characterized by any displacement.

本発明にかかる発明によれば、出口流路内に突起を設け、この突起の上流もしくは下流での出口流路の流路空間にて体積変化を生じさせることにより、流路の拡張及び/又は収縮の際突起の上流側に流体が逆流し、下流側では加速される交番的な流れの変化が起き、突起の上流及び下流で流れの渦が生じる。この渦により流体の比界面積が増大し、拡散距離の短縮が起こり、速やかな混合が可能となる。この場合、2種類の流体のみならず入口流路を結合することで複数種類の流体の混合が可能である。   According to the invention of the present invention, a protrusion is provided in the outlet channel, and volume change is caused in the channel space of the outlet channel upstream or downstream of the protrusion, thereby expanding the channel and / or During contraction, the fluid flows backward on the upstream side of the protrusion, and an alternating flow change that is accelerated on the downstream side occurs, resulting in a flow vortex upstream and downstream of the protrusion. This vortex increases the specific interface area of the fluid, shortens the diffusion distance, and enables rapid mixing. In this case, not only two types of fluids but also a plurality of types of fluids can be mixed by combining the inlet channels.

以下に添付図面を参照して、この発明にかかるマイクロミキシングデバイスの最良な実施の形態を詳細に説明する。
(実施形態)
図1は、本発明の実施形態にかかるマイクロミキシングデバイスの断面構成図である。図1において、このマイクロミキシングデバイス(以下デバイスという)では、2本の入口流路1と1本の出口流路2とが結合され、Y字型のマイクロチャネルが形成されている。そして、出口流路2では、各入口流路1から導入される2種類の流体の合流位置にて、1個の突起3が壁面から突出して設けられている。
この場合、このデバイスは、マイクロメータオーダの微細装置であり、既存の半導体製造技術(フォトリソグラフィ技術)にて形成され得る。また、突起3は、出口流路2の幅方向に対して流体の流れを非対称にするため、出口流路2の片側壁面のみから突出される構造であり、この非対称構造によって図2に示すように突起3の上流及び下流に渦が発生しやすくなる。更に、この突起3は、各入口流路1から導入される2種類の流体に対して流体層厚さを狭めるような方向に突出されている。また、この突起3については、図2に示すようにその上流あるいは下流で渦を作りやすい構造とするためには、突起3の流体流れ方向に沿う幅がなるべく狭く、また突起先端と流路壁との間隔もなるべく狭いのが好ましい。この場合、突起先端と流路壁との間隔を狭くするとき、流体に対する流路抵抗が高くならないようにある程度間隔を空けることも要求される。従って、これらの条件を勘案して突起3の突出量が決められることになる。具体的には、図3に示すように、出口流路の幅300μm、深さ120μm、突起3の幅50μm、突起先端と流路壁との間隔20μmのように構成することができる。
なお、入口流路1から導入される流体としては、例えば液体、気体、液体中に金属等の微粒子等が分散された固液混合物、気体中に金属等の微粒子等が分散された固気混合物、液体中に気体が溶解せずに分散した気液混合物等が挙げられる。また、例えば2種類の流体の場合としては、化学組成が異なる場合のほか、温度や固液比等が異なる場合も含まれる。
図1では、入口流路1を2本設けた例を示しているが、図4に示すように2本を超える例えば3本の入口流路1を結合したであっても適用することができ、ここでは3種類の流体について出口流路2での流体の混合が可能である。このことは、従来の2液の混合を得るためのマイクロミキサを直列に繋げて3液を混合する場合と比較すると、同時に3種類の流体を混合することが可能であり、速やかな反応に対処することができる。混合は、3種類のみならす更に複数種類の流体につき適用することができる。
Exemplary embodiments of a micromixing device according to the present invention will be explained below in detail with reference to the accompanying drawings.
(Embodiment)
FIG. 1 is a cross-sectional configuration diagram of a micromixing device according to an embodiment of the present invention. In FIG. 1, in this micromixing device (hereinafter referred to as a device), two inlet channels 1 and one outlet channel 2 are coupled to form a Y-shaped microchannel. In the outlet channel 2, one projection 3 is provided so as to protrude from the wall surface at a joining position of two kinds of fluids introduced from each inlet channel 1.
In this case, this device is a micrometer-order fine device and can be formed by an existing semiconductor manufacturing technology (photolithography technology). Further, the protrusion 3 has a structure that protrudes only from one side wall surface of the outlet flow channel 2 in order to make the flow of fluid asymmetric with respect to the width direction of the outlet flow channel 2, and as shown in FIG. In addition, vortices are likely to be generated upstream and downstream of the protrusion 3. Further, the protrusion 3 protrudes in such a direction as to reduce the fluid layer thickness with respect to two types of fluids introduced from the respective inlet channels 1. Further, as shown in FIG. 2, the protrusion 3 has a structure in which the width along the fluid flow direction of the protrusion 3 is as narrow as possible, and the protrusion tip and the flow path wall are formed in order to make it easy to create a vortex upstream or downstream as shown in FIG. It is preferable that the distance between and is as narrow as possible. In this case, when narrowing the gap between the tip of the protrusion and the flow path wall, it is also required to leave a certain distance so as not to increase the flow resistance against the fluid. Therefore, the protrusion amount of the protrusion 3 is determined in consideration of these conditions. Specifically, as shown in FIG. 3, the outlet channel width can be 300 μm, the depth is 120 μm, the projection 3 width is 50 μm, and the distance between the projection tip and the channel wall is 20 μm.
Examples of the fluid introduced from the inlet channel 1 include a liquid, a gas, a solid-liquid mixture in which fine particles such as metal are dispersed in the liquid, and a solid-gas mixture in which fine particles such as metal are dispersed in the gas. And a gas-liquid mixture in which a gas is not dissolved but dispersed in a liquid. Further, for example, the case of two types of fluids includes cases where the chemical composition is different and cases where the temperature, the solid-liquid ratio, and the like are different.
Although FIG. 1 shows an example in which two inlet channels 1 are provided, the present invention can be applied even when two inlet channels 1 exceeding two, for example, three are combined as shown in FIG. Here, it is possible to mix the fluid in the outlet channel 2 for three types of fluid. Compared with the case where three liquids are mixed by connecting a conventional micromixer to obtain a mixture of two liquids in series, it is possible to mix three types of fluids at the same time. can do. Mixing can be applied to only three types and more than one type of fluid.

さて、このように構成された入口流路1及び出口流路2を有するデバイスにあって、出口流路2の突起形成位置の直下流には、図1及び図3に示すように振動壁4が形成されている。この振動壁4は、流路空間に体積変化を生じさせるための流路壁を構成するもので、振動によって流路が拡大する方向に変位すると共に流路が縮小する方向に変位する。この場合、振動壁4の材質としては、例えば圧電材料を用いたPZTを挙げることができ、振動壁4への振動としては、例えば15000回/minの振動数をもって図示省略の振動駆動源により付与される。ここで、必要なことは、流路空間に体積変化を生じさせることで、そのためには、例えば流路内壁のみ拡大あるいは縮小させても良く、あるいは外部からの物理的な振動により流路自体を振動させて結果的に流路内壁の体積変化を生じさせるようにしても良い。もっとも、この構造はデバイス上に形成される微細なものであるため、その微細構造に適合する材料を選択しあるいは振動駆動源、例えば振動に相応する周波数の電圧や磁界を発生する手段を設ける必要はある。図5、図6は、流路空間が体積変化を生じている状態を示しており、図5、図6共上図(i)は流路の拡大、下図(ii)は流路の縮小をそれぞれ示す。なお、図5は、(iii)流路の両側壁を拡大あるいは縮小させる場合、更には(iv)流路の全壁(上下左右)を拡大あるいは縮小させる場合を示し、図6は、(iii)流路の一側壁を拡大あるいは縮小させる場合を示している。このほかにも、拡大縮小パターンは種々考えられ得る。
このように突起3を設け振動を発生させることにより、出口流路2に突起3を設けて渦を発生させやすい状態にするとともに、突起直下流の流路空間にて体積変化を振動によって生じさせることで、下流から上流への流体の逆流が生じ、突起上流及び下流にて実際に渦が発生する。この渦は、混合する流体の比界面積の増大、拡散距離の短縮をもたらし流体を一層混合させることにつながる。
Now, in the device having the inlet channel 1 and the outlet channel 2 configured as described above, the vibrating wall 4 is disposed immediately downstream of the projection forming position of the outlet channel 2 as shown in FIGS. Is formed. The vibration wall 4 constitutes a flow path wall for causing a volume change in the flow path space, and is displaced in a direction in which the flow path is enlarged and reduced in a direction in which the flow path is reduced by vibration. In this case, the material of the vibration wall 4 can be, for example, PZT using a piezoelectric material, and the vibration to the vibration wall 4 is given by a vibration drive source (not shown) with a frequency of 15000 times / min, for example. Is done. Here, what is necessary is to cause a volume change in the flow path space. For this purpose, for example, only the inner wall of the flow path may be enlarged or reduced, or the flow path itself may be caused by physical vibration from the outside. As a result, the volume of the inner wall of the flow path may be changed. However, since this structure is a fine structure formed on the device, it is necessary to select a material suitable for the fine structure or to provide a vibration driving source, for example, a means for generating a voltage or magnetic field having a frequency corresponding to vibration. There is. 5 and 6 show a state in which the flow path space has undergone a volume change. In FIGS. 5 and 6, the upper diagram (i) shows the enlargement of the flow channel, and the lower diagram (ii) shows the reduction of the flow channel. Each is shown. 5 shows a case where (iii) both side walls of the flow path are enlarged or reduced, and further (iv) a case where all the walls (upper, lower, left and right) of the flow path are enlarged or reduced, and FIG. ) The case where one side wall of the flow path is enlarged or reduced is shown. In addition, various enlargement / reduction patterns can be considered.
By providing the protrusion 3 and generating vibration in this way, the protrusion 3 is provided in the outlet flow path 2 to make it easy to generate vortices, and a volume change is generated by vibration in the flow path space immediately downstream of the protrusion. As a result, a reverse flow of the fluid from the downstream to the upstream occurs, and a vortex is actually generated upstream and downstream of the protrusion. This vortex increases the specific interface area of the fluid to be mixed, shortens the diffusion distance, and leads to further mixing of the fluid.

これまでの説明は、流路空間の体積変化を生じさせる部位として、突起3の直下流として述べてきた。しかしながら、体積変化である拡大と縮小によって、突起3の下上流にわたって流体の逆流を発生させることは、流路空間の体積変化を生じさせる部位を突起3の直上流に位置させても同様に発生する。したがって、流路空間の体積変化を生じさせる部位は、突起3の上流でもあるいは下流でも位置させることができる。
更に、これまでの説明は、突起3を出口流路2の片側壁面のみから突出する構造である非対称構造としたが、図7に示すように突起3を出口流路2の両側壁面から突出させることもできる。この場合、流体の流れが、非対称にならないので、図2のような渦を発生しやすい非対称構造ほど渦の発生は期待できないが、流体の混合は可能である。
更に、これまでの説明では、流路空間の体積変化として、流路の拡大及び縮小を述べてきた。しかし、振動によって拡大のみ生じあるいは縮小のみ生じる場合も、程度の差こそあれ逆流が発生し、突起上流での渦の発生をもたらし、流体の混合に寄与する。
このようにして、突起3と流体空間の体積変化により、突起3上流に渦を生じ、この渦により流体の比界面積を増大し拡散距離を短縮させて、速やかな流体の混合を促進することができる。
The description so far has been described as being directly downstream of the protrusion 3 as a portion that causes the volume change of the flow path space. However, generating a backflow of fluid over the lower and upstream sides of the protrusion 3 by expansion and contraction, which is a volume change, occurs in the same manner even if the portion that causes the volume change of the flow path space is located immediately upstream of the protrusion 3. To do. Therefore, the site causing the volume change of the flow path space can be located either upstream or downstream of the protrusion 3.
Further, in the description so far, the protrusion 3 is an asymmetric structure that protrudes from only one side wall surface of the outlet channel 2, but the protrusion 3 is protruded from both side walls of the outlet channel 2 as shown in FIG. 7. You can also. In this case, since the fluid flow does not become asymmetric, the generation of vortices cannot be expected as much as the asymmetric structure that easily generates vortices as shown in FIG. 2, but the fluids can be mixed.
Further, in the description so far, the expansion and contraction of the flow path have been described as the volume change of the flow path space. However, even when only expansion or contraction occurs due to vibration, backflow occurs to some extent, resulting in the generation of vortices upstream of the protrusions and contributing to fluid mixing.
In this way, a vortex is generated upstream of the protrusion 3 due to the volume change of the protrusion 3 and the fluid space, and the specific interface area of the fluid is increased by this vortex and the diffusion distance is shortened, thereby promptly mixing the fluid. Can do.

図8から図11は、実験の状況の説明と、この実験による渦の発生及び混合結果を示している。実験は、図8に示すように流体の流速を4段階に変化させ、振動場所を変化させ、そして、突起3より下流の出口流路2の流路抵抗を変えた。流体の流速は、1(μl/min)、2(μl/min)、4(μl/min)、8(μl/min)とし、振動場所は突起3から下流5mm、10mm、15mmとし、流路抵抗は突起3より下流5mmにて流路開放状態と、そのまま流路を引き回した状態とした。図9は、流体の流速を変化させた場合の混合状態を示す。この流速変化の場合には、流速が遅いほど突起上流側に長く大きな渦が生じ、流速が早くなると小さく丸まった渦となる。
また、図10は、振動場所を変化させた場合の混合状態を示す。振動場所を突起3から5mmの場所では、突起3上流に大きな渦が発生しており、振動場所を突起3から10mm、15mmと遠ざけるに従い突起3の上流に発生する渦は小さくなる。
図11は、突起3の下流での流路抵抗の大小に基づく混合状態を示す。図11の上図にて流路をそのまま引き回して流路抵抗がある程度存在する場合、突起3の上流にて大きな渦ができ良好な混合状態であるが、流路を突起から5mmにて開放(切断)した場合、突起3の上流での渦は小さい。このことは、振動による流体の体積変化が、下流に伝わり上流への逆流が少ないためであると考えられる。
このように種々条件を変えて実験を試みたが、いずれにしても突起3の存在と振動による体積変化とによって突起3の下流側での混合が促進された。
FIG. 8 to FIG. 11 show the explanation of the experimental situation and the results of vortex generation and mixing in this experiment. In the experiment, as shown in FIG. 8, the flow velocity of the fluid was changed in four stages, the vibration location was changed, and the flow path resistance of the outlet flow path 2 downstream from the protrusion 3 was changed. The flow rate of the fluid is 1 (μl / min), 2 (μl / min), 4 (μl / min), 8 (μl / min), the vibration location is 5 mm downstream from the protrusion 3, 10 mm, 15 mm. The resistance was 5 mm downstream from the protrusion 3, and the channel was opened and the channel was routed as it was. FIG. 9 shows the mixing state when the flow rate of the fluid is changed. In the case of this change in flow velocity, the slower the flow velocity, the longer and larger the vortex will be on the upstream side of the projection, and the faster the flow velocity, the smaller the vortex will be.
FIG. 10 shows a mixed state when the vibration location is changed. When the vibration location is 5 mm from the projection 3, a large vortex is generated upstream of the projection 3, and the vortex generated upstream of the projection 3 decreases as the vibration location is 10 mm and 15 mm away from the projection 3.
FIG. 11 shows a mixed state based on the magnitude of the channel resistance downstream of the protrusion 3. In the upper diagram of FIG. 11, when the flow path is routed as it is and a certain amount of flow resistance exists, a large vortex is formed upstream of the protrusion 3 and the mixed state is good, but the flow path is opened at 5 mm from the protrusion ( When cutting), the vortex upstream of the protrusion 3 is small. This is presumably because the change in volume of the fluid due to vibration is transmitted downstream and there is little backflow upstream.
In this way, the experiment was tried under various conditions. In any case, the mixing on the downstream side of the protrusion 3 was promoted by the presence of the protrusion 3 and the volume change due to vibration.

以上のように、本発明にかかるデバイスは、振動を使ったマイクロミキシング装置として有用であり、特に、分析合成用フローチップや化学分析装置に適している。   As described above, the device according to the present invention is useful as a micromixing apparatus using vibration, and is particularly suitable for an analysis / synthesis flow chip or a chemical analysis apparatus.

実施形態の断面構成図である。It is a section lineblock diagram of an embodiment. 突起による渦の発生状態を示す図である。It is a figure which shows the generation | occurrence | production state of the vortex by a protrusion. 突起の寸法例を示す図である。It is a figure which shows the example of a dimension of protrusion. 実施形態の他の例の断面構成図である。It is a section lineblock diagram of other examples of an embodiment. 流路の拡大縮小状態の説明図である。It is explanatory drawing of the expansion / contraction state of a flow path. 流路の拡大縮小状態の説明図である。It is explanatory drawing of the expansion / contraction state of a flow path. 流路の拡大縮小状態の説明図である。It is explanatory drawing of the expansion / contraction state of a flow path. 具体的実験例の状況説明図であるIt is a situation explanatory view of a specific experimental example 流速を変化させた場合の混合結果を示す図である。It is a figure which shows the mixing result at the time of changing a flow rate. 振動場所を変化させた場合の混合結果を示す図である。It is a figure which shows the mixing result at the time of changing a vibration location. 流路抵抗を変えた場合の混合結果を示す図である。It is a figure which shows the mixing result at the time of changing channel resistance.

符号の説明Explanation of symbols

1 入口流路
2 出口流路
3 突起
4 振動壁
1 Inlet channel 2 Outlet channel 3 Projection 4 Vibrating wall

Claims (3)

複数の入口流路が結合して、1本の出口流路に連通するマイクロミキシングデバイスにおいて、上記出口流路内に突起を設け、この突起の上流及び下流のいずれか一方の出口流路の流路空間にて周期的に体積変化を生じる構造を有することを特徴とするマイクロミキシングデバイス。   In a micromixing device in which a plurality of inlet channels are connected to communicate with one outlet channel, a protrusion is provided in the outlet channel, and the flow of one of the outlet channels upstream or downstream of the protrusion is provided. A micro-mixing device characterized by having a structure that causes a volume change periodically in a road space. 出口流路は、この出口流路の流路空間での周期的な体積変化にて突起の上流及び下流の両側に渦を生じさせる流路抵抗を有することを特徴とする請求項1に記載のマイクロミキシングデバイス。   2. The outlet channel according to claim 1, wherein the outlet channel has a channel resistance that causes vortices on both the upstream and downstream sides of the protrusion by a periodic volume change in the channel space of the outlet channel. Micro mixing device. 出口流路の流路空間での周期的な体積変化は、流体の流れ方向に直交する流路壁の一部及び全部のいずれかの変位によることを特徴とする請求項1に記載のマイクロミキシングデバイス。   2. The micromixing according to claim 1, wherein the periodic volume change in the flow path space of the outlet flow path is caused by displacement of any one or all of the flow path walls orthogonal to the fluid flow direction. device.
JP2003363693A 2003-10-23 2003-10-23 Micromixing device Pending JP2005127864A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003363693A JP2005127864A (en) 2003-10-23 2003-10-23 Micromixing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003363693A JP2005127864A (en) 2003-10-23 2003-10-23 Micromixing device

Publications (1)

Publication Number Publication Date
JP2005127864A true JP2005127864A (en) 2005-05-19

Family

ID=34642939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003363693A Pending JP2005127864A (en) 2003-10-23 2003-10-23 Micromixing device

Country Status (1)

Country Link
JP (1) JP2005127864A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005144356A (en) * 2003-11-17 2005-06-09 Tosoh Corp Micro flow path structure and method for producing fine particle using the same
JP2005185877A (en) * 2003-12-24 2005-07-14 Tosoh Corp Fine particle production apparatus and method for producing fine particle by using the same
JP2006320877A (en) * 2005-05-20 2006-11-30 Univ Of Tokyo Micro-mixer, stirring method for fluid and mixing method for fluid
WO2008102653A1 (en) * 2007-02-22 2008-08-28 Konica Minolta Medical & Graphic, Inc. Resin molded body, microchip and their production methods
US20080259720A1 (en) * 2005-07-21 2008-10-23 Yee Cheong Lam Methods and Apparatus for Microfluidic Mixing
JP2012524899A (en) * 2009-04-23 2012-10-18 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Mixer with zero dead volume
US8858067B2 (en) 2010-12-07 2014-10-14 Kobe Steel, Ltd. Flow channel structure
CN113842824A (en) * 2021-10-15 2021-12-28 西安交通大学 Passive micro mixer based on composite side wall microstructure enhanced mixing efficiency

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005144356A (en) * 2003-11-17 2005-06-09 Tosoh Corp Micro flow path structure and method for producing fine particle using the same
JP2005185877A (en) * 2003-12-24 2005-07-14 Tosoh Corp Fine particle production apparatus and method for producing fine particle by using the same
JP2006320877A (en) * 2005-05-20 2006-11-30 Univ Of Tokyo Micro-mixer, stirring method for fluid and mixing method for fluid
JP4590557B2 (en) * 2005-05-20 2010-12-01 国立大学法人 東京大学 Micromixer, fluid stirring method and fluid mixing method
US20080259720A1 (en) * 2005-07-21 2008-10-23 Yee Cheong Lam Methods and Apparatus for Microfluidic Mixing
WO2008102653A1 (en) * 2007-02-22 2008-08-28 Konica Minolta Medical & Graphic, Inc. Resin molded body, microchip and their production methods
JP5229211B2 (en) * 2007-02-22 2013-07-03 コニカミノルタエムジー株式会社 RESIN MOLDED BODY, MICROCHIP AND METHOD FOR PRODUCING THEM
JP2012524899A (en) * 2009-04-23 2012-10-18 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Mixer with zero dead volume
US8858067B2 (en) 2010-12-07 2014-10-14 Kobe Steel, Ltd. Flow channel structure
CN113842824A (en) * 2021-10-15 2021-12-28 西安交通大学 Passive micro mixer based on composite side wall microstructure enhanced mixing efficiency
CN113842824B (en) * 2021-10-15 2023-10-10 西安交通大学 Passive micromixer for enhancing mixing efficiency based on composite side wall microstructure

Similar Documents

Publication Publication Date Title
KR101211752B1 (en) Microstructure designs for optimizing mixing and pressure drop
JP6674933B2 (en) Process-enhanced microfluidic device
US7794136B2 (en) Twin-vortex micromixer for enforced mass exchange
JP2003001077A (en) Mixing method, mixing structure, micromixer and microchip provided with mixing structure
JP2009000592A (en) Reactor and reaction system
Pothuri et al. Rapid mixing in microchannel using standing bulk acoustic waves
JP2014198324A (en) Microfluidic channel and microfluidic device
Wang et al. Gas/liquid/liquid three‐phase flow patterns and bubble/droplet size laws in a double T‐junction microchannel
Tan et al. Surfactant‐free microdispersion process of gas in organic solvents in microfluidic devices
JP3974531B2 (en) Microchannel mixing method and microchannel apparatus
JP2005118634A (en) Micro-mixing device
JP2006043617A (en) Microfluidic chip
JP2005127864A (en) Micromixing device
JP2006167600A (en) Micromixer, micromixer chip and micro sensor
JP4590557B2 (en) Micromixer, fluid stirring method and fluid mixing method
JP2011509814A (en) Microfluidic device and method for liquid reaction of immiscible liquids
Sheng et al. Surfactant effect on mass transfer characteristics in the generation and flow stages of gas–liquid Taylor flow in a microchannel
JP2006205080A (en) Micromixer
JP2003164745A (en) Microreactor
Sheng et al. Remarkable improvement of gas–liquid mass transfer by modifying the structure of conventional T‐junction microchannel
Yamaguchi et al. Rapid micromixing based on multilayer laminar flows
Sain et al. Effect of Inlet Contactors of Splitting Distributors for Parallel Microchannels
US6986601B2 (en) Piezoelectric mixing method
JP2005169219A (en) Micro-mixer
JP2005169218A (en) Micro-mixer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060313

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060821