JP2009000592A - Reactor and reaction system - Google Patents

Reactor and reaction system Download PDF

Info

Publication number
JP2009000592A
JP2009000592A JP2007161407A JP2007161407A JP2009000592A JP 2009000592 A JP2009000592 A JP 2009000592A JP 2007161407 A JP2007161407 A JP 2007161407A JP 2007161407 A JP2007161407 A JP 2007161407A JP 2009000592 A JP2009000592 A JP 2009000592A
Authority
JP
Japan
Prior art keywords
reactor
channel
mixing
reaction
fluids
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007161407A
Other languages
Japanese (ja)
Inventor
Tsutomu Kawamura
勉 河村
Tomofumi Shiraishi
朋史 白石
Takeyuki Kondo
健之 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2007161407A priority Critical patent/JP2009000592A/en
Publication of JP2009000592A publication Critical patent/JP2009000592A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reactor in which by-products are restrained from being produced in a confluence part of a plurality of reaction solutions, the reaction yield of which is made high and the output of which is increased. <P>SOLUTION: The reactor is composed of: the confluence part 1 into which two different fluids 5, 6 are made to flow; a mixing flow passage 3 for mixing two different fluids with each other; a diameter-reduced part 2 for connecting the confluence part 1 to the mixing flow passage 3; and a reaction flow passage 4 for reacting the mixed fluid 7. The hydraulic equivalent diameter of the confluence part 1 is made larger than that of the mixing flow passage 3. In the confluence part 1, the Reynolds number is set at <2,300 to form a laminar flow. In the mixing flow passage 3, the Reynolds number is set at ≥2,300 to form a turbulent flow. The hydraulic equivalent diameter of the reaction flow passage 4 is made larger than that of the mixing flow passage 3. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、化学合成や化学分析などの分野における反応器および反応システムに係り、特に、液体または気体を混合して反応させる流体混合器および反応器の構造に関する。   The present invention relates to a reactor and a reaction system in fields such as chemical synthesis and chemical analysis, and more particularly, to a structure of a fluid mixer and a reactor in which a liquid or a gas is mixed and reacted.

近年、化学合成や化学分析の分野において、反応時間短縮および副反応抑制のために、マイクロ加工(MEMS:Micro Electro Mechanical System)技術により製作され、断面寸法が数十〜数百μmの流路を持つ流体混合器が使用され始めている。   In recent years, in the field of chemical synthesis and chemical analysis, in order to shorten reaction time and suppress side reactions, it has been manufactured by micro processing (MEMS: Micro Electro Mechanical System) technology, and has a cross-sectional dimension of tens to hundreds of μm. The fluid mixer that has started to be used.

このような流体混合器は、マイクロミキサまたはマイクロリアクタと呼ばれている。マイクロミキサでは、流路の水力等価直径が小さいので、流体の慣性力と粘性力との比を表す無次元数、すなわち、レイノルズ数が小さく、流れは層流となる。したがって、複数の異種の液体を混合する場合、分子拡散により混合が進む(例えば、非特許文献1参照)。   Such a fluid mixer is called a micromixer or a microreactor. In the micromixer, since the hydraulic equivalent diameter of the flow path is small, the dimensionless number representing the ratio between the inertia force and the viscous force of the fluid, that is, the Reynolds number is small, and the flow is a laminar flow. Therefore, when a plurality of different liquids are mixed, the mixing proceeds by molecular diffusion (see, for example, Non-Patent Document 1).

次に、代表的な反応である逐次反応を例にとり、マイクロ流路内での反応について検討する。この反応では、物質AとBとが反応して主生成物Rが生成され、
A+B→R ……(1)
R+B→S ……(2)
さらに、主生成物Rと物質Bとが反応して副生成物Sが生じる。
Next, taking a sequential reaction, which is a typical reaction, as an example, the reaction in the microchannel is examined. In this reaction, substances A and B react to produce main product R,
A + B → R (1)
R + B → S (2)
Further, the main product R and the substance B react to produce a by-product S.

マイクロリアクタでは、お互いに交じり合う2種類の流体を複数に分割して、それぞれの流体を交互にマイクロ流路に流入させ、混合を促進させている。一般に、流れは、層流であるから、2流体は、層状となって流れている。   In a microreactor, two types of fluids that intersect each other are divided into a plurality of fluids, and each fluid is alternately flowed into a microchannel to promote mixing. In general, since the flow is laminar, the two fluids flow in layers.

ここで、2流体のそれぞれの中心線の間隔を拡散距離Wと定義し、分子の拡散係数をDとすると、2流体の混合に必要な時間tmは、
tm=W/D ……(3)
で表される。拡散距離Wを小さくするほど、拡散時間が短縮されるので、流体の混合が促進される。
Here, when the distance between the center lines of the two fluids is defined as the diffusion distance W and the diffusion coefficient of the molecule is D, the time tm required for mixing the two fluids is:
tm = W 2 / D ...... ( 3)
It is represented by As the diffusion distance W is reduced, the diffusion time is shortened, so that the mixing of the fluid is promoted.

式(1)の主反応,式(2)の副反応の反応速度定数をk[L/(mol s)],k[L/(mol s)]とし、物質AおよびBの濃度を等濃度として反応させる場合の初期濃度をCとすると、生成物Rの反応時間trは、
tr=1/(k・C) ……(4)
で与えられる。
The reaction rate constants of the main reaction of formula (1) and the side reaction of formula (2) are k 1 [L / (mol s)] and k 2 [L / (mol s)], and the concentrations of substances A and B are When the initial concentration in the case of reacting at an equal concentration is C 0 , the reaction time tr of the product R is
tr = 1 / (k 1 · C 0 ) (4)
Given in.

非特許文献1によると、マイクロ流路内での式1および式2に示す逐次反応では、式5に示すように、式3の拡散時間と式4の反応時間との比である混合反応数φが減少するほど、混合時間と比較して反応時間が長い反応律速の状態に近づき、
φ=tm /tr=k1・C0・W2/D ……(5)
原料Aに対する目的物質Rの生成量である反応収率は、増大する。
According to Non-Patent Document 1, in the sequential reaction shown in Equation 1 and Equation 2 in the microchannel, as shown in Equation 5, the number of mixed reactions, which is the ratio of the diffusion time of Equation 3 and the reaction time of Equation 4 As φ decreases, the reaction time becomes closer to the rate-determined state compared to the mixing time,
φ = tm / tr = k1 / C0 / W2 / D (5)
The reaction yield, which is the amount of target substance R produced with respect to raw material A, increases.

したがって、混合反応数φを小さくして反応収率を高めるには、通常、マイクロリアクタでは、流路幅を小さくしたり、2種類の流体の分割数を増加させたりする。   Therefore, in order to reduce the number of mixed reactions φ and increase the reaction yield, usually, in a microreactor, the flow path width is reduced or the number of divisions of two kinds of fluids is increased.

一般に、マイクロリアクタは、流路幅が1mm未満であるから、式6で示す水力等価直径dhが小さく、流速Vが低いので、
dh=4×流路断面積/流路断面の周囲の長さ ……(6)
式7に示すレイノルズ数Reは、2,300未満であり、
Re=V・dh/ν ……(7)
流れは、層流状態である。ここで、νは、流体の動粘性係数を示す。
In general, since the microreactor has a flow path width of less than 1 mm, the hydraulic equivalent diameter dh shown in Equation 6 is small and the flow velocity V is low.
dh = 4 × channel cross-sectional area / periphery length of channel cross-section (6)
The Reynolds number Re shown in Equation 7 is less than 2,300,
Re = V · dh / ν (7)
The flow is in a laminar state. Here, ν represents the kinematic viscosity coefficient of the fluid.

Re>2,300となる乱流条件では、流れの乱れによる拡散係数(乱流拡散係数)Dtは、分子拡散係数Dmの数千倍以上に増大する。したがって、mmオーダの流路幅においても乱流条件にすると、混合反応数φは小さくなり、反応収率が高まることを示している。   Under the turbulent flow condition where Re> 2,300, the diffusion coefficient (turbulent diffusion coefficient) Dt due to the flow disturbance increases to several thousand times or more of the molecular diffusion coefficient Dm. Accordingly, it is shown that when the turbulent flow condition is used even in the channel width of the order of mm, the number of mixed reactions φ becomes small and the reaction yield increases.

図9は、従来のY字型反応器の一例の構造を示す水平断面図であり、図10は、従来の多層流型反応器の一例の構造を示す水平断面図である。   FIG. 9 is a horizontal sectional view showing the structure of an example of a conventional Y-shaped reactor, and FIG. 10 is a horizontal sectional view showing the structure of an example of a conventional multilayer flow reactor.

図9のY字型リアクタでは、式5において、拡散距離Wに相当する流路幅をマイクロ化すると、収率を高めることができ、図10の多層流型リアクタでは、式5において、拡散距離Wに相当する2液の間隔をマイクロ化すると、収率を高めることができる。   In the Y-shaped reactor of FIG. 9, the yield can be increased by micronizing the flow path width corresponding to the diffusion distance W in Equation 5, and in the multilayer flow reactor of FIG. If the interval between the two liquids corresponding to W is micronized, the yield can be increased.

河村ら:化学工学会第37回秋季大会,I205,(2005)(第1頁 図2)Kawamura et al: Chemical Engineering Society 37th Autumn Meeting, I205, (2005) (Fig. 2 on page 1)

マイクロリアクタを用いて物質を大量生産する場合、リアクタを多数並列化するナンバリングアップと呼ばれる方法が考えられている。   In the case of mass production of materials using a microreactor, a method called numbering up in which many reactors are arranged in parallel is considered.

しかし、図9,10の従来技術では、反応収率を高めるには、拡散距離Wを数十μmにする必要があるので、流路幅は、通常1mm以下となる。その場合、圧力損失の制限から流路内の流体の流速が小さくなるから、リアクタ1台当たりの物質生産量は、少量となり、ナンバリングアップ数は、数百台以上になると想定される。ナンバリングアップ数の増大に伴い部品点数が増加し、システムの信頼性や堅牢性が課題となる。このような背景から、ナンバリングアップ数を数十台に低減する要求があり、流路内の流れを高速にして乱流状態で流し、混合性を高め、かつ、1台当たりの生産量を増大させる方法が考えられている。   However, in the prior art of FIGS. 9 and 10, in order to increase the reaction yield, the diffusion distance W needs to be several tens of μm, so the flow path width is usually 1 mm or less. In that case, the flow rate of the fluid in the flow path is reduced due to the pressure loss limitation, so the amount of substance production per reactor is assumed to be small, and the numbering up is assumed to be several hundred or more. As the numbering up increases, the number of parts increases, and system reliability and robustness become issues. Against this background, there is a need to reduce the number of numbering up to several tens, increasing the flow rate in the flow path in a turbulent state, improving mixing, and increasing the production volume per unit A way to make it possible is considered.

乱流状態にすると、流れの乱れによる拡散係数(乱流拡散係数)Dtは、層流状態における分子拡散係数Dmの数千倍以上に増大するので、1mm以上の流路幅でも、式5の混合反応数φを低下させることが可能となり、反応収率を高めることができる。図9に示すY字型流路の場合、乱流状態にして反応収率を高めながら流量を増大させることは可能である。Y字型流路よりも流路を大きくして圧力損失を低下させて流量を増大し、かつ、図10に示すように、流れを多層流にすると、流路が大きくても拡散距離である2液の間隔を小さくして、生産量を更に増大できる。   In the turbulent flow state, the diffusion coefficient (turbulent diffusion coefficient) Dt due to the flow turbulence increases to several thousand times or more of the molecular diffusion coefficient Dm in the laminar flow state. The number of mixed reactions φ can be reduced, and the reaction yield can be increased. In the case of the Y-shaped channel shown in FIG. 9, it is possible to increase the flow rate while increasing the reaction yield in a turbulent state. If the flow path is made larger than the Y-shaped flow path to reduce the pressure loss and the flow rate is increased, and the flow is a multi-layer flow as shown in FIG. The production volume can be further increased by reducing the interval between the two liquids.

しかし、図10に示す多層流型リアクタの場合、2液が流路幅の大きい合流部に乱流状態で流入すると、乱流により2液が混合して反応し始め、反応収率が低下するおそれがある。   However, in the case of the multilayer flow reactor shown in FIG. 10, when the two liquids flow into the merging portion having a large flow path width in a turbulent state, the two liquids start to mix and react due to the turbulent flow, and the reaction yield decreases. There is a fear.

また、反応時間の長い物質を生産する場合、高速の乱流状態で流体を流すと、配管長が長くなり、圧力損失が増大する。   Further, when producing a substance having a long reaction time, if a fluid is flowed in a high-speed turbulent state, the pipe length becomes long and the pressure loss increases.

さらに、発熱反応の場合、高速で流体を流すと十分な温度制御ができない可能性が生じる。   Furthermore, in the case of an exothermic reaction, there is a possibility that sufficient temperature control cannot be performed if a fluid is flowed at a high speed.

本発明の課題は、複数の反応液の合流部における副生成物の生成を抑制し、反応収率を高め、生産量の大きい反応器を提供することである。   The subject of this invention is providing the reactor which suppresses the production | generation of the by-product in the confluence | merging part of a some reaction liquid, raises a reaction yield, and has a large production amount.

拡散距離Wの大きい合流部での反応を抑制し、拡散距離Wの小さい混合流路で混合させた後、反応流路で反応を開始して収率を高めることができる反応器を提供することである。   To provide a reactor capable of suppressing the reaction at a confluence portion having a large diffusion distance W, mixing in a mixing channel having a small diffusion distance W, and then starting the reaction in the reaction channel to increase the yield. It is.

本発明の課題は、また、高速の乱流状態で流体を流しても圧力損失が増大しない反応器を提供することである。   Another object of the present invention is to provide a reactor in which pressure loss does not increase even when fluid is flowed in a high-speed turbulent state.

本発明の課題は、さらに、高速で流体を流しても十分な温度制御が可能な反応システムを提供することである。   Another object of the present invention is to provide a reaction system capable of sufficient temperature control even when a fluid flows at high speed.

本発明は、上記課題を解決するために、複数の異種の流体を合流させる合流部と、合流した複数の流体を混合させる混合流路と、合流部と混合流路とを連結する縮流部とを有し、複数の異種の流体を反応させる反応器において、複数の流体が合流する合流部が、層流流路であり、複数の流体が混合する混合流路が、乱流流路である反応器を提案する。   In order to solve the above-described problems, the present invention provides a merging unit that merges a plurality of different fluids, a mixing channel that mixes a plurality of merged fluids, and a contraction unit that connects the merging unit and the mixing channel. In a reactor that reacts a plurality of different fluids, a merging portion where a plurality of fluids merge is a laminar flow channel, and a mixing channel where a plurality of fluids mix is a turbulent flow channel A reactor is proposed.

本発明においては、拡散距離の大きい合流部での反応を抑制し、拡散距離の小さい混合流路で混合させるために、混合流路の少なくとも一部の内壁面に突起物を形成し、または、混合流路の少なくとも一部の内壁面に凹凸表面を形成する。   In the present invention, in order to suppress the reaction at the merging portion having a large diffusion distance and mix in the mixing channel having a small diffusion distance, a protrusion is formed on at least a part of the inner wall surface of the mixing channel, or An uneven surface is formed on at least a part of the inner wall surface of the mixing channel.

このような混合流路で反応が完結する場合は、本発明の基本的効果が十分なので、後続の反応流路に特別の工夫は必ずしも必要ではない。   When the reaction is completed in such a mixing channel, the basic effect of the present invention is sufficient, and thus a special device is not necessarily required for the subsequent reaction channel.

混合した複数の異種の流体を反応させる反応流路を有する場合は、反応流路の水力等価直径を、前記混合流路の水力等価直径に比べて大きくする。反応流路は、複数に分岐させてもよい。   In the case of having a reaction channel for reacting a plurality of mixed different fluids, the hydraulic equivalent diameter of the reaction channel is made larger than the hydraulic equivalent diameter of the mixing channel. The reaction channel may be branched into a plurality.

前記反応器に熱交換器または熱源を接触させて設置し、反応システムを構成する。反応流路の断面形状が扁平であれば、扁平な反応流路の断面形状の長い面に対向するように前記反応器に熱交換器または熱源を接触させて設置し、熱交換効率を良くする。   A heat exchanger or a heat source is placed in contact with the reactor to constitute a reaction system. If the cross-sectional shape of the reaction channel is flat, install a heat exchanger or heat source in contact with the reactor so as to face the long cross-sectional surface of the flat reaction channel to improve heat exchange efficiency .

本発明によれば、拡散距離の大きい合流部において反応を防止し、拡散距離の小さい混合流路で混合した後に、反応流路で反応を開始させて副反応を抑制し、圧力損失を低減して高流量化するので、高い反応収率で生産量の大きい反応器を提供できる。   According to the present invention, the reaction is prevented at the junction where the diffusion distance is large, and after mixing in the mixing channel having a small diffusion distance, the reaction is started in the reaction channel to suppress the side reaction, thereby reducing the pressure loss. Therefore, it is possible to provide a reactor with a high production yield and a high reaction yield.

本発明では、複数の異種の流体の各々を複数に分流させた後に合流させる合流部と、複数の流体を混合させる混合流路と、合流部と混合流路を連結する縮流部と、混合流路下流の反応流路とを有し、複数の異種の流体を反応させる反応器において、複数の流体が合流する合流部のレイノルズ数が2,300未満で、層流であり、かつ、複数の流体が混合する縮流部下流の混合流路内のレイノルズ数が2,300以上で、乱流であり、さらに、混合流路の流路壁面に複数の突起物または凹凸表面を形成した構造を提案する。   In the present invention, a merging portion that divides each of a plurality of different kinds of fluids into a plurality of divided fluids, a mixing passage that mixes the plurality of fluids, a contraction portion that connects the merging portion and the mixing passage, A reactor having a reaction channel downstream of the channel and reacting a plurality of different types of fluids, the Reynolds number of the junction where the plurality of fluids merge is less than 2,300, a laminar flow, and a plurality of A structure in which the Reynolds number in the mixing flow channel downstream of the contracted flow portion where the fluid is mixed is 2,300 or more, is turbulent, and a plurality of protrusions or uneven surfaces are formed on the flow channel wall surface of the mixing flow channel Propose.

このような構造にすると、合流部での副反応が防止され、混合部での混合性能が高まるので、反応収率が高く、生産量の多い製品を生産する反応器を提供できる。   With such a structure, side reactions at the junction are prevented, and the mixing performance at the mixer is enhanced. Therefore, a reactor that produces a product with a high reaction yield and a large production volume can be provided.

混合部下流の反応流路は、水力等価直径が混合流路の水力等価直径に比べて大きい、または、複数に分岐している構造を提案する。   The reaction channel downstream of the mixing unit is proposed to have a structure in which the hydraulic equivalent diameter is larger than the hydraulic equivalent diameter of the mixing channel or is branched into a plurality of branches.

このような構造にすると、反応部での圧力損失が低減され、高流量化し、生産量を増大できる。   With such a structure, pressure loss in the reaction section is reduced, the flow rate is increased, and the production volume can be increased.

次に、図1〜図8を参照して、本発明による反応器および反応システムの実施例を説明する。   Next, with reference to FIGS. 1-8, the Example of the reactor and reaction system by this invention is described.

図1は、本発明による反応器の実施例1の構造を示す水平断面図である。   FIG. 1 is a horizontal sectional view showing the structure of Example 1 of a reactor according to the present invention.

本実施例1の反応器16の流路は、異なる2種類の流体5,6を流入させる合流部1と、これら2種類の流体5,6を混合させる混合流路3と、合流部1と混合流路3とを連結する縮流部2と、混合した2流体7を反応させる反応流路4とからなる。   The flow path of the reactor 16 according to the first embodiment includes a merging section 1 that allows two different types of fluids 5 and 6 to flow in, a mixing flow path 3 that mixes these two kinds of fluids 5 and 6, and a merging section 1. It consists of the contraction part 2 which connects the mixing flow path 3, and the reaction flow path 4 with which the mixed 2 fluid 7 is made to react.

合流部1の水力等価直径dhは、混合流路3の水力等価直径dhよりも大きいので、合流部1の流速は、混合流路3の流速に比べて低くなる。   Since the hydraulic equivalent diameter dh of the merging portion 1 is larger than the hydraulic equivalent diameter dh of the mixing channel 3, the flow velocity of the merging portion 1 is lower than the flow velocity of the mixing channel 3.

本発明においては、与えられた反応器1台当たりの流量に対して、合流部1では、レイノルズ数Reが2,300未満で、層流条件となり、混合流路3では、レイノルズ数Reが2,300以上で、乱流条件となるように、それぞれの水力等価直径dhが決められている。   In the present invention, the Reynolds number Re is less than 2,300 in the merging section 1 for a given flow rate per reactor, resulting in laminar flow conditions. In the mixing channel 3, the Reynolds number Re is 2 , 300 or more, the respective hydraulic equivalent diameters dh are determined so as to satisfy the turbulent flow condition.

縮流部2では、混合部近傍で流速が増加して、レイノルズ数Reが2,300以上になる領域が発生する。しかし、一般に、縮流構造には整流効果があるので、乱流への遷移は起こりにくい。   In the contraction part 2, the flow velocity increases in the vicinity of the mixing part, and a region where the Reynolds number Re is 2,300 or more is generated. However, in general, the contracted flow structure has a rectifying effect, so that transition to turbulent flow hardly occurs.

以上のような流路構成により、合流部1では、層流状態にあり、2流体の混合が抑制されるので、拡散距離が大きい場合に生じる副生成物が抑制され、混合流路3では、乱流になり、高速混合される。   With the flow path configuration as described above, the merging portion 1 is in a laminar flow state, and mixing of the two fluids is suppressed, so that by-products generated when the diffusion distance is large are suppressed. It becomes turbulent and mixed at high speed.

混合流体7は、混合流路3および反応流路4で反応を開始する。完全に混合した後、拡散距離の大小は無関係になり、反応に必要な滞留時間を確保できればよい。   The mixed fluid 7 starts the reaction in the mixing channel 3 and the reaction channel 4. After mixing completely, the diffusion distance becomes irrelevant, and it is sufficient that the residence time required for the reaction can be secured.

そこで、本発明では、反応流路4の圧力損失を低減するために、混合流路3の水力等価直径dhよりも反応流路4の水力等価直径dhを大きくしている。反応流路4での流れは、層流または乱流のどちらでもよい。   Therefore, in the present invention, the hydraulic equivalent diameter dh of the reaction channel 4 is made larger than the hydraulic equivalent diameter dh of the mixing channel 3 in order to reduce the pressure loss of the reaction channel 4. The flow in the reaction channel 4 may be either laminar or turbulent.

本実施例1によれば、反応収率が高く、圧力損失が小さく、高収率で生産性の高い反応器を提供できる。   According to Example 1, a reactor with high reaction yield, low pressure loss, high yield and high productivity can be provided.

図2は、本発明による反応器の実施例2の構造を示す水平断面図である。   FIG. 2 is a horizontal sectional view showing the structure of Example 2 of the reactor according to the present invention.

本実施例2は、反応流路4の構成以外は、図1の実施例1と同じである。   Example 2 is the same as Example 1 of FIG. 1 except for the configuration of the reaction channel 4.

本実施例2では、混合流路3下流の反応流路4は、複数の流路に分岐され、かつ、複数の反応流路4の全流路断面積は、混合流路3の流路断面積よりも大きいので、反応流路4の流速は、混合流路3の流速よりも低くなる。   In Example 2, the reaction flow path 4 downstream of the mixing flow path 3 is branched into a plurality of flow paths, and the total cross-sectional area of the plurality of reaction flow paths 4 is equal to the flow break of the mixing flow path 3. Since it is larger than the area, the flow rate of the reaction channel 4 is lower than the flow rate of the mixing channel 3.

その結果、圧力損失を低減できる。また、対象反応が発熱反応のように温度制御を必要とする場合、反応流路4を複数にして全伝熱面積を増大させてあるので、効率的に熱交換できる。   As a result, pressure loss can be reduced. In addition, when the target reaction requires temperature control like an exothermic reaction, since the total heat transfer area is increased by using a plurality of reaction flow paths 4, heat exchange can be performed efficiently.

本実施例2によれば、高速混合および精密温度制御により、反応収率を高め、かつ、生産量の大きい反応器を提供できる。   According to the second embodiment, it is possible to provide a reactor with high reaction yield and high production volume by high-speed mixing and precise temperature control.

図3は、本発明による反応器の実施例3の構造を示す水平断面図である。   FIG. 3 is a horizontal sectional view showing the structure of Example 3 of the reactor according to the present invention.

一般に、縮流部2の上流で層流状態の流れ11が縮流後に乱流に遷移する場合は、図4に示すように、乱流境界層9が、縮流後の混合流路3の入口8から発達し、混合流路3内は、水力等価直径dhの10倍の助走長さLdで、完全に乱流となる。すなわち、混合流路入口8から10dhの助走長さLdの領域においては、混合性が低下している。その結果、混合性が低下し、副生成物の増加および混合流路長の増大により、圧力損失が増加する可能性がある。   In general, when the laminar flow 11 upstream of the contracted flow part 2 transitions to turbulent flow after contracted, the turbulent boundary layer 9 is connected to the mixed flow path 3 after contracted flow as shown in FIG. Developed from the inlet 8, the mixing channel 3 is completely turbulent with a run length Ld that is 10 times the hydraulic equivalent diameter dh. That is, in the region of the run length Ld from the mixing flow path inlet 8 to 10 dh, the mixing property is lowered. As a result, the mixability is reduced, and the pressure loss may increase due to an increase in by-products and an increase in the mixing channel length.

これに対して、本実施例3では、円形の混合流路3の入口近傍の壁面に周方向に突起物14を設置し、突起物14で生成する乱流渦10により、助走長さLdを短縮している。   On the other hand, in the present Example 3, the protrusion 14 is installed in the circumferential direction on the wall surface near the inlet of the circular mixing channel 3, and the run length Ld is set by the turbulent vortex 10 generated by the protrusion 14. It is shortened.

混合流路3の混合流路形状および突起部形状は、図3の例に限らない。図5は、実施例3における混合流路形状および突起部形状の例を示す図3のA−A断面図である。混合流路3の断面は、円形でも矩形でもよく、突起物14は、混合流路断面の周方向および流れ方向に1ヵ所または複数箇所設置してもよい。   The mixing channel shape and the protrusion shape of the mixing channel 3 are not limited to the example of FIG. FIG. 5 is a cross-sectional view taken along the line AA of FIG. The cross section of the mixing channel 3 may be circular or rectangular, and the protrusions 14 may be installed at one or a plurality of locations in the circumferential direction and the flow direction of the mixing channel cross section.

本実施例3によれば、高速混合および圧力損失低減が可能となり、高収率,高生産量の反応器を提供できる。   According to the third embodiment, high-speed mixing and pressure loss reduction are possible, and a high-yield and high-production reactor can be provided.

図6は、本発明による反応器の実施例4の構造を示す水平断面図である。   FIG. 6 is a horizontal sectional view showing the structure of Example 4 of the reactor according to the present invention.

本実施例4では、混合流路3全体の内壁面に凹凸表面15を形成してある。   In the fourth embodiment, the uneven surface 15 is formed on the inner wall surface of the entire mixing channel 3.

本実施例4によれば、凹凸表面15を形成してあるので、平滑な壁面と比較して、助走長さLdを短縮でき、高速混合および圧力損失低減が可能となり、高収率,高生産量の反応器を実現できる。   According to the fourth embodiment, since the uneven surface 15 is formed, the run-up length Ld can be shortened compared with a smooth wall surface, high speed mixing and pressure loss reduction are possible, and high yield and high production are achieved. Volume reactor can be realized.

図7は、本発明による反応器の実施例5の構造を示す縦断面図である。   FIG. 7 is a longitudinal sectional view showing the structure of Example 5 of the reactor according to the present invention.

本実施例5は、反応器16の上下両面に熱交換器または熱源17を設置して、反応システムを構築してある。これらの熱交換器または熱源17は、加熱または冷却による温度制御が可能である。反応器16内の反応流路4の断面形状は、細長い長方形であり、流路の長辺は、流路中心と熱交換器または熱源17とを最短距離で結ぶ直線に対して直角に設置されている。   In Example 5, a reaction system is constructed by installing heat exchangers or heat sources 17 on the upper and lower surfaces of the reactor 16. These heat exchangers or heat sources 17 can be controlled by heating or cooling. The cross-sectional shape of the reaction flow path 4 in the reactor 16 is an elongated rectangle, and the long side of the flow path is installed at right angles to the straight line connecting the flow path center and the heat exchanger or heat source 17 with the shortest distance. ing.

本実施例5によれば、反応流路4内の伝熱面積が増加するので、熱交換効率が改善され、精密温度制御により反応収率を高めることが可能となる。   According to the fifth embodiment, the heat transfer area in the reaction channel 4 is increased, so that the heat exchange efficiency is improved and the reaction yield can be increased by precise temperature control.

図8は、本発明による反応器の実施例6の構造を示す縦断面図である。   FIG. 8 is a longitudinal sectional view showing the structure of Example 6 of the reactor according to the present invention.

本実施例6は、反応器16の上下両面に熱交換器または熱源17を設置して、反応システムを構築してある。これらの熱交換器または熱源17は、加熱または冷却による温度制御が可能である。反応器16内の反応流路4は、複数に分岐されている。   In Example 6, a reaction system is constructed by installing heat exchangers or heat sources 17 on the upper and lower surfaces of the reactor 16. These heat exchangers or heat sources 17 can be controlled by heating or cooling. The reaction flow path 4 in the reactor 16 is branched into a plurality.

本実施例6によれば、反応流路4内の伝熱面積が更に増加するので、熱交換効率が改善され、精密温度制御により反応収率を更に高めることが可能となる。   According to the sixth embodiment, the heat transfer area in the reaction channel 4 is further increased, so that the heat exchange efficiency is improved and the reaction yield can be further increased by precise temperature control.

このように、本発明の反応器および反応システムによれば、医薬品や化学工業製品などの合成プロセスにおける複数の流体の反応において、反応収率を高め、生産量を増大させることができる。   Thus, according to the reactor and reaction system of the present invention, in the reaction of a plurality of fluids in a synthesis process such as pharmaceuticals and chemical industrial products, the reaction yield can be increased and the production amount can be increased.

本発明による反応器の実施例1の構造を示す水平断面図である。It is a horizontal sectional view which shows the structure of Example 1 of the reactor by this invention. 本発明による反応器の実施例2の構造を示す水平断面図である。It is a horizontal sectional view which shows the structure of Example 2 of the reactor by this invention. 本発明による反応器の実施例3における混合流路の構造を示す水平断面図である。It is a horizontal sectional view which shows the structure of the mixing flow path in Example 3 of the reactor by this invention. 従来の反応器における混合流路の構造を示す水平断面図である。It is a horizontal sectional view which shows the structure of the mixing flow path in the conventional reactor. 実施例3における混合流路形状および突起部形状の例を示す図3のA−A断面図である。FIG. 6 is a cross-sectional view taken along line AA of FIG. 3, illustrating an example of a mixing channel shape and a protrusion shape in Example 3. 本発明による反応器の実施例4の構造を示す水平断面図である。It is a horizontal sectional view which shows the structure of Example 4 of the reactor by this invention. 本発明による反応器の実施例5の構造を示す図1のB−B断面図である。It is BB sectional drawing of FIG. 1 which shows the structure of Example 5 of the reactor by this invention. 本発明による反応器の実施例6の構造を示す図2のC−C断面図である。It is CC sectional drawing of FIG. 2 which shows the structure of Example 6 of the reactor by this invention. 従来のY字型反応器の一例の構造を示す水平断面図である。It is a horizontal sectional view showing the structure of an example of a conventional Y-shaped reactor. 従来の多層流型反応器の一例の構造を示す水平断面図である。It is a horizontal sectional view which shows the structure of an example of the conventional multilayer flow type reactor.

符号の説明Explanation of symbols

1 合流部
2 縮流部
3 混合流路
4 反応流路
5 流体A
6 流体B
7 混合流
8 混合流路入口
9 乱流境界層
10 乱流渦
11 層流の流れ
12 乱流の流れ
13 助走長さ
14 突起
15 凹凸表面
16 反応器
17 熱交換器または熱源
DESCRIPTION OF SYMBOLS 1 Junction part 2 Contraction part 3 Mixing flow path 4 Reaction flow path 5 Fluid A
6 Fluid B
7 Mixed flow 8 Mixing channel inlet 9 Turbulent boundary layer 10 Turbulent vortex 11 Laminar flow 12 Turbulent flow 13 Run-up length 14 Protrusion 15 Concavity and convexity surface 16 Reactor 17 Heat exchanger or heat source

Claims (13)

複数の異種の流体を合流させる合流部と、合流した複数の流体を混合させる混合流路と、前記合流部と前記混合流路とを連結する縮流部とを有し、複数の異種の流体を反応させる反応器において、
複数の流体が合流する前記合流部が、層流流路であり、
複数の流体が混合する前記混合流路が、乱流流路であることを特徴とする反応器。
A plurality of dissimilar fluids, each having a confluence portion for converging a plurality of different fluids, a mixing flow path for mixing the plurality of confluent fluids, and a contraction portion connecting the confluence portion and the mixing flow passages In a reactor for reacting
The merge portion where a plurality of fluids merge is a laminar flow channel,
A reactor characterized in that the mixing channel in which a plurality of fluids are mixed is a turbulent channel.
請求項1に記載の反応器において、
前記混合流路の少なくとも一部の内壁面に突起物を形成したことを特徴とする反応器。
The reactor according to claim 1,
A reactor wherein protrusions are formed on at least a part of the inner wall surface of the mixing channel.
請求項1に記載の反応器において、
前記混合流路の少なくとも一部の内壁面に凹凸表面を形成したことを特徴とする反応器。
The reactor according to claim 1,
An uneven surface is formed on at least a part of the inner wall surface of the mixing channel.
請求項1ないし3のいずれか一項に記載の反応器において、
前記混合流路の幅が、1mm以上10mm未満であることを特徴とする反応器。
Reactor according to any one of claims 1 to 3,
A reactor characterized in that the width of the mixing channel is 1 mm or more and less than 10 mm.
複数の異種の流体を合流させる合流部と、合流した複数の流体を混合させる混合流路と、前記合流部と前記混合流路とを連結する縮流部と、混合した複数の異種の流体を反応させる反応流路とを有し、複数の異種の流体を反応させる反応器において、
複数の流体が合流する前記合流部が、層流流路であり、
複数の流体が混合する前記混合流路が、乱流流路であることを特徴とする反応器。
A merging portion for merging a plurality of different fluids, a mixing channel for mixing the plurality of merged fluids, a contracting portion for connecting the merging portion and the mixing channel, and a plurality of the mixed different fluids In a reactor having a reaction flow path for reacting and reacting a plurality of different kinds of fluids,
The merge portion where a plurality of fluids merge is a laminar flow channel,
A reactor characterized in that the mixing channel in which a plurality of fluids are mixed is a turbulent channel.
請求項5に記載の反応器において、
前記混合流路の少なくとも一部の内壁面に突起物を形成したことを特徴とする反応器。
The reactor according to claim 5, wherein
A reactor wherein protrusions are formed on at least a part of the inner wall surface of the mixing channel.
請求項6に記載の反応器において、
前記混合流路の少なくとも一部の内壁面に凹凸表面を形成したことを特徴とする反応器。
The reactor according to claim 6,
An uneven surface is formed on at least a part of the inner wall surface of the mixing channel.
請求項5ないし7のいずれか一項に記載の反応器において、
前記混合流路の幅が、1mm以上10mm未満であることを特徴とする反応器。
Reactor according to any one of claims 5 to 7,
A reactor characterized in that the width of the mixing channel is 1 mm or more and less than 10 mm.
請求項5ないし8に記載の反応器において、
前記反応流路の水力等価直径が、前記混合流路の水力等価直径に比べて大きいことを特徴とする反応器。
Reactor according to claims 5 to 8,
A reactor characterized in that a hydraulic equivalent diameter of the reaction channel is larger than a hydraulic equivalent diameter of the mixing channel.
請求項5ないし9に記載の反応器において、
前記反応流路が、複数に分岐していることを特徴とする反応器。
Reactor according to claim 5-9,
A reactor characterized in that the reaction flow path is branched into a plurality.
請求項10に記載の反応器において、
複数に分岐した前記反応流路の幅が、1mm未満であることを特徴とする反応器。
Reactor according to claim 10,
A reactor having a width of the reaction channel branched into a plurality of less than 1 mm.
請求項1ないし11のいずれか一項に記載の反応器を含む反応システムにおいて、
前記反応器に熱交換器または熱源を接触させて設置したことを特徴とする反応システム。
A reaction system comprising the reactor according to any one of claims 1 to 11,
A reaction system, wherein a heat exchanger or a heat source is placed in contact with the reactor.
請求項5ないし11のいずれか一項に記載の反応器を含む反応システムにおいて、
前記反応流路の断面形状が扁平であり、
扁平な前記反応流路の断面形状の長い面に対向するように前記反応器に熱交換器または熱源を接触させて設置したことを特徴とする反応システム。
A reaction system comprising the reactor according to any one of claims 5 to 11,
The reaction channel has a flat cross-sectional shape,
A reaction system, wherein a heat exchanger or a heat source is placed in contact with the reactor so as to face a long cross-sectional surface of the flat reaction channel.
JP2007161407A 2007-06-19 2007-06-19 Reactor and reaction system Pending JP2009000592A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007161407A JP2009000592A (en) 2007-06-19 2007-06-19 Reactor and reaction system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007161407A JP2009000592A (en) 2007-06-19 2007-06-19 Reactor and reaction system

Publications (1)

Publication Number Publication Date
JP2009000592A true JP2009000592A (en) 2009-01-08

Family

ID=40317572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007161407A Pending JP2009000592A (en) 2007-06-19 2007-06-19 Reactor and reaction system

Country Status (1)

Country Link
JP (1) JP2009000592A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012046389A1 (en) * 2010-10-04 2012-04-12 株式会社神戸製鋼所 Flow path structure
JP2013507241A (en) * 2009-10-09 2013-03-04 ダウ グローバル テクノロジーズ エルエルシー Adiabatic plug flow reactor and process incorporating the adiabatic plug flow reactor
US8907148B2 (en) 2011-08-07 2014-12-09 Dow Global Technologies Llc Process for the production of chlorinated propenes
US8907149B2 (en) 2011-05-31 2014-12-09 Dow Global Technologies Llc Process for the production of chlorinated propenes
US8926918B2 (en) 2009-10-09 2015-01-06 Dow Global Technologies Llc Isothermal multitube reactors
US8933280B2 (en) 2009-10-09 2015-01-13 Dow Global Technologies Llc Processes for the production of hydrofluoroolefins
US9056808B2 (en) 2011-05-31 2015-06-16 Dow Global Technologies, Llc Process for the production of chlorinated propenes
US9067855B2 (en) 2011-11-21 2015-06-30 Dow Global Technologies Llc Process for the production of chlorinated alkanes
US9169177B2 (en) 2011-12-22 2015-10-27 Blue Cube Ip Llc Process for the production of tetrachloromethane
US9199899B2 (en) 2011-12-02 2015-12-01 Blue Cube Ip Llc Process for the production of chlorinated alkanes
US9233896B2 (en) 2011-08-07 2016-01-12 Blue Cube Ip Llc Process for the production of chlorinated propenes
US9284239B2 (en) 2011-12-02 2016-03-15 Blue Cube Ip Llc Process for the production of chlorinated alkanes
US9321707B2 (en) 2012-09-20 2016-04-26 Blue Cube Ip Llc Process for the production of chlorinated propenes
US9334205B2 (en) 2011-12-13 2016-05-10 Blue Cube Ip Llc Process for the production of chlorinated propanes and propenes
US9382176B2 (en) 2013-02-27 2016-07-05 Blue Cube Ip Llc Process for the production of chlorinated propenes
US9403741B2 (en) 2013-03-09 2016-08-02 Blue Cube Ip Llc Process for the production of chlorinated alkanes
JP2016155103A (en) * 2015-02-25 2016-09-01 学校法人早稲田大学 Device and method for removing boron
US9475740B2 (en) 2012-12-19 2016-10-25 Blue Cube Ip Llc Process for the production of chlorinated propenes
US9512053B2 (en) 2012-12-18 2016-12-06 Blue Cube Ip Llc Process for the production of chlorinated propenes
US9512049B2 (en) 2011-12-23 2016-12-06 Dow Global Technologies Llc Process for the production of alkenes and/or aromatic compounds
US9598334B2 (en) 2012-09-20 2017-03-21 Blue Cube Ip Llc Process for the production of chlorinated propenes
US9795941B2 (en) 2012-09-30 2017-10-24 Blue Cube Ip Llc Weir quench and processes incorporating the same
EP3030543B1 (en) 2013-08-09 2018-07-25 Arkema France Hydrobromination method
US10065157B2 (en) 2012-10-26 2018-09-04 Blue Cube Ip Llc Mixer and processes incorporating the same
CN109718730A (en) * 2019-03-04 2019-05-07 昆山复希工程技术有限公司 It is a kind of to realize the microchannel structure for reinforcing gas-liquid mixed effect

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004016870A (en) * 2002-06-13 2004-01-22 Atec Japan:Kk Micro-reactor and chemical reaction method using the same
JP2004305937A (en) * 2003-04-08 2004-11-04 Tosoh Corp Structure having minute flow passage
WO2006043642A1 (en) * 2004-10-20 2006-04-27 Ebara Corporation Fluid reactor
JP2006231255A (en) * 2005-02-28 2006-09-07 Okayama Univ Microreactor
JP2007061735A (en) * 2005-08-31 2007-03-15 Ymc Co Ltd Reactor
JP2008043912A (en) * 2006-08-21 2008-02-28 Hitachi Ltd Microreactor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004016870A (en) * 2002-06-13 2004-01-22 Atec Japan:Kk Micro-reactor and chemical reaction method using the same
JP2004305937A (en) * 2003-04-08 2004-11-04 Tosoh Corp Structure having minute flow passage
WO2006043642A1 (en) * 2004-10-20 2006-04-27 Ebara Corporation Fluid reactor
JP2006231255A (en) * 2005-02-28 2006-09-07 Okayama Univ Microreactor
JP2007061735A (en) * 2005-08-31 2007-03-15 Ymc Co Ltd Reactor
JP2008043912A (en) * 2006-08-21 2008-02-28 Hitachi Ltd Microreactor

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8926918B2 (en) 2009-10-09 2015-01-06 Dow Global Technologies Llc Isothermal multitube reactors
JP2013507241A (en) * 2009-10-09 2013-03-04 ダウ グローバル テクノロジーズ エルエルシー Adiabatic plug flow reactor and process incorporating the adiabatic plug flow reactor
US8933280B2 (en) 2009-10-09 2015-01-13 Dow Global Technologies Llc Processes for the production of hydrofluoroolefins
JP2012076034A (en) * 2010-10-04 2012-04-19 Kobe Steel Ltd Flow path structure
WO2012046389A1 (en) * 2010-10-04 2012-04-12 株式会社神戸製鋼所 Flow path structure
US8920020B2 (en) 2010-10-04 2014-12-30 Kobe Steel, Ltd. Flow passage structure
US9056808B2 (en) 2011-05-31 2015-06-16 Dow Global Technologies, Llc Process for the production of chlorinated propenes
US8907149B2 (en) 2011-05-31 2014-12-09 Dow Global Technologies Llc Process for the production of chlorinated propenes
US9475739B2 (en) 2011-08-07 2016-10-25 Blue Cube Ip Llc Process for the production of chlorinated propenes
US9233896B2 (en) 2011-08-07 2016-01-12 Blue Cube Ip Llc Process for the production of chlorinated propenes
US8907148B2 (en) 2011-08-07 2014-12-09 Dow Global Technologies Llc Process for the production of chlorinated propenes
US9067855B2 (en) 2011-11-21 2015-06-30 Dow Global Technologies Llc Process for the production of chlorinated alkanes
US9199899B2 (en) 2011-12-02 2015-12-01 Blue Cube Ip Llc Process for the production of chlorinated alkanes
US9284239B2 (en) 2011-12-02 2016-03-15 Blue Cube Ip Llc Process for the production of chlorinated alkanes
US9334205B2 (en) 2011-12-13 2016-05-10 Blue Cube Ip Llc Process for the production of chlorinated propanes and propenes
US9169177B2 (en) 2011-12-22 2015-10-27 Blue Cube Ip Llc Process for the production of tetrachloromethane
US9512049B2 (en) 2011-12-23 2016-12-06 Dow Global Technologies Llc Process for the production of alkenes and/or aromatic compounds
US9321707B2 (en) 2012-09-20 2016-04-26 Blue Cube Ip Llc Process for the production of chlorinated propenes
US9598334B2 (en) 2012-09-20 2017-03-21 Blue Cube Ip Llc Process for the production of chlorinated propenes
US9795941B2 (en) 2012-09-30 2017-10-24 Blue Cube Ip Llc Weir quench and processes incorporating the same
US10065157B2 (en) 2012-10-26 2018-09-04 Blue Cube Ip Llc Mixer and processes incorporating the same
US9512053B2 (en) 2012-12-18 2016-12-06 Blue Cube Ip Llc Process for the production of chlorinated propenes
US9475740B2 (en) 2012-12-19 2016-10-25 Blue Cube Ip Llc Process for the production of chlorinated propenes
US9382176B2 (en) 2013-02-27 2016-07-05 Blue Cube Ip Llc Process for the production of chlorinated propenes
US9403741B2 (en) 2013-03-09 2016-08-02 Blue Cube Ip Llc Process for the production of chlorinated alkanes
EP3030543B1 (en) 2013-08-09 2018-07-25 Arkema France Hydrobromination method
JP2016155103A (en) * 2015-02-25 2016-09-01 学校法人早稲田大学 Device and method for removing boron
CN109718730A (en) * 2019-03-04 2019-05-07 昆山复希工程技术有限公司 It is a kind of to realize the microchannel structure for reinforcing gas-liquid mixed effect

Similar Documents

Publication Publication Date Title
JP2009000592A (en) Reactor and reaction system
JP6674933B2 (en) Process-enhanced microfluidic device
JP5604038B2 (en) Reaction apparatus and reaction plant
US7753580B2 (en) Microstructure designs for optimizing mixing and pressure drop
Kumar et al. Slug flow in curved microreactors: hydrodynamic study
Shen et al. Numbering-up strategies of micro-chemical process: Uniformity of distribution of multiphase flow in parallel microchannels
JP2005512760A (en) Apparatus for mixing and reacting at least two fluids
JP2011504221A (en) Microfluidic self-excited oscillation mixer and apparatus and method of use thereof
JP2008093498A (en) Microreactor
JP4403943B2 (en) Fluid mixer and microreactor system
JP2013040776A (en) Fluidic channel device, and method for mixing fluids
Sotowa Fluid behavior and mass transport characteristics of gas–liquid and liquid–liquid flows in microchannels
JP2008246283A (en) Collision type micromixer
JP2009018311A (en) Microfluid chip
JP2005118634A (en) Micro-mixing device
TW202023679A (en) Microchannel reaction appratus
JP4687238B2 (en) Micro channel structure
JP5504526B2 (en) Method of forming slag flow using a microreactor
JP2005127864A (en) Micromixing device
US9138696B2 (en) Honeycomb body u-bend mixers
JP4867000B2 (en) Deep groove type microreactor
TWI636948B (en) Fluid backflow-proof microfluidic reactor
JP2010042333A (en) Reactor
Reichmann et al. Mixing Time Scale Measurement With Fast Exothermic Reactions Using Microchannel Reaction Calorimetry
JP2010234302A (en) Merged flow passage of reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090611

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100930

A131 Notification of reasons for refusal

Effective date: 20120410

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20121030

Free format text: JAPANESE INTERMEDIATE CODE: A02