JP4403943B2 - Fluid mixer and microreactor system - Google Patents

Fluid mixer and microreactor system Download PDF

Info

Publication number
JP4403943B2
JP4403943B2 JP2004294594A JP2004294594A JP4403943B2 JP 4403943 B2 JP4403943 B2 JP 4403943B2 JP 2004294594 A JP2004294594 A JP 2004294594A JP 2004294594 A JP2004294594 A JP 2004294594A JP 4403943 B2 JP4403943 B2 JP 4403943B2
Authority
JP
Japan
Prior art keywords
mixing
flow path
plate
introduction
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004294594A
Other languages
Japanese (ja)
Other versions
JP2006102681A (en
Inventor
勉 河村
朋史 白石
勝 難波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2004294594A priority Critical patent/JP4403943B2/en
Publication of JP2006102681A publication Critical patent/JP2006102681A/en
Application granted granted Critical
Publication of JP4403943B2 publication Critical patent/JP4403943B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)

Description

本発明は、化学合成や化学分析などの分野において液体又は気体を混合する流体混合器に係わり、また、この混合器を備えたマイクロリアクタシステムに関する。   The present invention relates to a fluid mixer that mixes liquid or gas in fields such as chemical synthesis and chemical analysis, and also relates to a microreactor system including the mixer.

近年、化学合成や化学分析の分野において、反応時間の短縮及び副反応抑制のために、マイクロ加工(MEMS:Micro Electro Mechanical System)技術を用いて製作された断面寸法が数十〜数百μmの流路から構成される混合器が使用されはじめている。このような混合器は、マイクロミキサ、又はマイクロリアクタと呼ばれる。マイクロミキサでは流路の代表長さが短いので、流体の慣性力と粘性力の比を表わす無次元数であるレイノルズ数が小さいため、流れは層流となる。したがって、2種類の流体を混合する場合には、分子拡散によって混合が進む。そこで、流路の代表長さを小さくするほど、拡散距離が短縮されるため、流体の混合は促進される。また、流路の代表長さが小さいことにより流路内の熱伝達率が向上するため、精密な流体の温度制御が可能となる。例えば、マイクロミキサで反応熱を伴う反応を行う場合、一様な温度場を作ることが可能なため、副反応を抑制することができる。   In recent years, in the fields of chemical synthesis and chemical analysis, the cross-sectional dimension produced using micro processing (MEMS) technology is several tens to several hundreds μm in order to shorten the reaction time and suppress side reactions. Mixers composed of flow paths are beginning to be used. Such a mixer is called a micromixer or a microreactor. Since the representative length of the flow path in the micromixer is short, the flow becomes a laminar flow because the Reynolds number, which is a dimensionless number representing the ratio between the inertia force and the viscous force of the fluid, is small. Therefore, when mixing two types of fluids, mixing proceeds by molecular diffusion. Therefore, as the representative length of the flow path is reduced, the diffusion distance is shortened, so that fluid mixing is promoted. In addition, since the heat transfer coefficient in the flow path is improved due to the small representative length of the flow path, it is possible to precisely control the temperature of the fluid. For example, when a reaction involving reaction heat is performed using a micromixer, a side temperature can be suppressed because a uniform temperature field can be created.

特許文献1では、混合流路の下方から2種類の流体を流れ方向に交互に流入させて、流路の高さ方向に流れを多層化して2流体間の拡散距離を小さくすることにより混合性を向上させている。   In Patent Document 1, two types of fluids are alternately introduced in the flow direction from the lower side of the mixing channel, and the flow is multilayered in the height direction of the channel to reduce the diffusion distance between the two fluids. Has improved.

特許文献2では、混合流路の上流に2種類の流れを幅方向に層状にして交互に流す複数の仕切壁を設けることにより、混合部で流れを多層化して2流体間の拡散距離を小さくして混合性を向上させている。   In Patent Document 2, by providing a plurality of partition walls that flow alternately in two layers in the width direction upstream of the mixing flow path, the flow is multilayered in the mixing section to reduce the diffusion distance between the two fluids. To improve mixing.

特許文献3では、第1流体が流入する混合部の下方に設けた複数の開口部から第2流体が流入し、各開口部には流れの下流方向に開口部のあるU字形ノズルを設置している。これにより、2種類の流れが交互に層状で流れ、2流体間の拡散距離を小さくして混合性を向上させている。   In Patent Document 3, the second fluid flows in from a plurality of openings provided below the mixing part into which the first fluid flows, and each opening is provided with a U-shaped nozzle having an opening in the downstream direction of the flow. ing. Thereby, two types of flows flow alternately in layers, and the diffusion distance between the two fluids is reduced to improve the mixing property.

特許文献4では、混合部につながる複数本の流路に2種類の流体が交互に流入し、さらに、混合部下流の流路幅が小さくなることにより、流れを多層化して2流体間の拡散距離を小さくして混合性を向上させている。   In Patent Document 4, two types of fluid alternately flow into a plurality of flow paths connected to the mixing unit, and further, the flow path width downstream of the mixing unit is reduced, so that the flow is multi-layered and diffused between the two fluids. The distance is reduced to improve mixing.

特開2002−45666号公報(全体)JP 2002-45666 A (Overall) 特開2003−1077公報(全体)JP 2003-1077 A (Overall) 特表2000−503894公報(全体)Special Table 2000-503894 (Overall) WO 02/16017 A2(全体)WO 02/16017 A2 (Overall)

特許文献1の従来技術では、混合流路の下方から2種類の流体を流れ方向に交互に流入させる導入流路の深さを導入流路の幅よりも大きくしている。このため、混合部に均一に流体を流入させ得るものの、マイクロミキサの厚みが増大し、構造物での熱抵抗が増大するため、温度制御性が低下する可能性がある。   In the prior art of Patent Document 1, the depth of the introduction channel for allowing two kinds of fluids to alternately flow in the flow direction from below the mixing channel is made larger than the width of the introduction channel. For this reason, although the fluid can be allowed to flow uniformly into the mixing portion, the thickness of the micromixer increases and the thermal resistance of the structure increases, so that the temperature controllability may decrease.

特許文献2の従来技術では、混合流路の上流の流路内に複数の仕切壁を設けるため、製造工程が複雑になり生産コストが増大する。また、仕切壁の強度を上げるためには、仕切壁の厚さを増大させる必要があるため、全体の流路幅が増大する。また、壁面が多いため圧力損失が増大する可能性がある。さらに、仕切壁が存在すると、各流路幅が狭くなるため、固体浮遊物又は反応による析出物が存在する場合には、流路が閉塞する可能性がある。   In the prior art of Patent Document 2, since a plurality of partition walls are provided in the flow channel upstream of the mixing flow channel, the manufacturing process becomes complicated and the production cost increases. Moreover, since it is necessary to increase the thickness of a partition wall in order to raise the intensity | strength of a partition wall, the whole flow path width increases. Moreover, since there are many wall surfaces, pressure loss may increase. Furthermore, if the partition wall exists, the width of each flow path becomes narrow, so that there is a possibility that the flow path may be blocked when solid suspended matters or precipitates due to reaction exist.

特許文献3の従来技術では、流路内に複数のノズルを設けるためには、製造工程が複雑になり生産コストが増大する。また、U字形ノズルの強度を上げるためには、ノズルの壁の厚さを増大させる必要があるため、全体の流路幅が増大してしまう。   In the prior art of Patent Document 3, in order to provide a plurality of nozzles in the flow path, the manufacturing process becomes complicated and the production cost increases. Further, in order to increase the strength of the U-shaped nozzle, it is necessary to increase the thickness of the wall of the nozzle, which increases the overall flow path width.

特許文献4の従来技術では、細い流路が多いため、圧力損失が増大する可能性があり、固体浮遊物又は反応による析出物が存在する場合には、流路が閉塞する可能性がある。   In the prior art of Patent Document 4, since there are many thin flow paths, there is a possibility that pressure loss may increase, and when solid suspended matters or precipitates due to reaction exist, the flow paths may be blocked.

本発明の目的は、簡便な構造で圧力損失を低減し、固体浮遊物による流路閉塞が防止できる流体混合器又は流体混合器を備えたマイクロリアクタシステムを提供することである。   An object of the present invention is to provide a fluid mixer or a microreactor system including a fluid mixer that can reduce pressure loss with a simple structure and prevent blockage of a solid suspension.

本発明の望ましい実施態様においては、複数の異種流体を導入する導入流路が形成された導入プレートと、混合流路が形成された混合プレートと、導入プレートの導入流路から混合プレートの混合流路へ連通するように、導入プレートと混合プレートを重ね合わせて形成した連通部を備え、複数の異種流体を幅方向にそれぞれ複数列に分割し、幅方向に交互に混合プレートの混合流路へ流入させるように、連通部を混合流路の上流端部直後に対応する位置に形成したことを特徴とする。   In a preferred embodiment of the present invention, an introduction plate in which an introduction flow path for introducing a plurality of different fluids is formed, a mixing plate in which a mixing flow path is formed, and a mixed flow of the mixing plate from the introduction flow path of the introduction plate A communication part formed by overlapping the introduction plate and the mixing plate so as to communicate with the channel is provided, and a plurality of different fluids are divided into a plurality of rows in the width direction, and alternately to the mixing channel of the mixing plate in the width direction. The communication portion is formed at a position corresponding to immediately after the upstream end portion of the mixing channel so as to flow in.

また、本発明の望ましい実施態様においては、混合流路下流の流路幅を1mm以上とし、異種流体の一方の流体を多層化した分割数で混合部下流の流路幅を除した値を1mm未満としている。   Further, in a preferred embodiment of the present invention, the value obtained by dividing the channel width downstream of the mixing unit by the division number obtained by dividing one of the different fluids into multiple layers is 1 mm. Less than.

本発明の望ましい実施態様によれば、簡便な構造により異種の流体を多層化して混合性を向上させながら、圧力損失が小さく、かつ流路閉塞が発生しにくい流体混合器又はマイクロミキサあるいはマイクロリアクタを提供できる。   According to a preferred embodiment of the present invention, a fluid mixer, a micromixer, or a microreactor that has a simple structure and multi-layers different types of fluids to improve mixing properties while reducing pressure loss and preventing channel blockage. Can be provided.

また、他の本発明の望ましい実施態様によれば、混合流路の流路幅を1mm以上と大きくしているため、生産量又は処理量が大きいマイクロリアクタを提供できる。   According to another desirable embodiment of the present invention, since the channel width of the mixing channel is increased to 1 mm or more, a microreactor having a large production amount or processing amount can be provided.

本発明によるその他の目的と特徴は以下に述べる実施例の説明で明らかにする。   Other objects and features of the present invention will become apparent from the following description of the embodiments.

以下に、図面を参照して本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の第1の実施例による流体混合器の構造を示す分解斜視図である。図2は、図1の流体混合器の構造を示す部分平面図とその断面図であり、同図(a)は流路10と混合部121の関係図で、同図(b)はそのb−b断面図、同図(c)は混合部121と流路11の関係図で、同図(d)はそのd−d断面図である。   FIG. 1 is an exploded perspective view showing the structure of a fluid mixer according to a first embodiment of the present invention. 2 is a partial plan view showing the structure of the fluid mixer shown in FIG. 1 and a sectional view thereof. FIG. 2A is a diagram showing the relationship between the flow path 10 and the mixing portion 121, and FIG. -B sectional drawing, the figure (c) is a related figure of mixing part 121 and channel 11, and the figure (d) is the dd sectional view.

流体混合器は、面同士が密着して重ね合わされて接合された5枚のプレート1〜5を備えている。一番上のプレートは上蓋1であり、2つの流入孔61,62及び1つの排出孔7が設けられている。一番下のプレートは下蓋5である。流体8を流す導入流路10が形成された導入プレート2と、流体9を流す導入流路11が形成された導入プレート4の間に、2種類の流体を混合させる混合流路12が形成された混合プレート3が積層されている。混合流路12の上流には混合部121が設けられ、この混合部121の下流の縮流部を介して流路122が形成されている。なお、縮流部を設けることなく、混合部121と下流の流路122の幅を同じとすることもできる。2つの導入流路10,11の下流端部には、流路凸部15(151,153,155)と、流路凸部16(162,164,166)とを設けている。図2の(a),(b)と(c),(d)に示すように、混合部上流端部20には、上部と下部に設置された導入流路10と11の流路凸部15(151,153,155)と16(162,164,166)とが、幅方向に交互に重なる。これにより、2種類の流体8と9とが、混合部121の上流端部20直後から互い違いに流入する。混合流路12の混合部121では、流体8及び流体9が幅方向に多層状態となり、混合部121の下流では、縮流部により混合流路12が縮流される。多層状態になった流体8及び流体9の間隔は、この流路が狭まる縮流部でさらに小さくなり混合が促進される。   The fluid mixer includes five plates 1 to 5 which are bonded to each other with the surfaces closely contacting each other. The uppermost plate is the upper lid 1 and is provided with two inflow holes 61 and 62 and one discharge hole 7. The lowermost plate is the lower lid 5. A mixing channel 12 for mixing two kinds of fluids is formed between the introduction plate 2 in which the introduction channel 10 for flowing the fluid 8 is formed and the introduction plate 4 in which the introduction channel 11 for flowing the fluid 9 is formed. The mixed plates 3 are stacked. A mixing section 121 is provided upstream of the mixing flow path 12, and a flow path 122 is formed via a contracted flow section downstream of the mixing section 121. In addition, the width of the mixing part 121 and the downstream flow path 122 can also be made the same, without providing a contraction part. At the downstream ends of the two introduction flow paths 10 and 11, a flow path convex portion 15 (151, 153, 155) and a flow path convex portion 16 (162, 164, 166) are provided. As shown in (a), (b), (c), and (d) of FIG. 2, the upstream end portion 20 of the mixing portion has the convex portions of the introduction passages 10 and 11 installed at the upper and lower portions. 15 (151, 153, 155) and 16 (162, 164, 166) alternately overlap in the width direction. As a result, the two types of fluids 8 and 9 flow alternately from immediately after the upstream end 20 of the mixing unit 121. In the mixing section 121 of the mixing flow path 12, the fluid 8 and the fluid 9 are in a multilayered state in the width direction, and the mixing flow path 12 is contracted by the contraction section downstream of the mixing section 121. The interval between the fluid 8 and the fluid 9 in the multilayer state is further reduced at the contracted portion where the flow path is narrowed, so that mixing is promoted.

ここで、混合流路12の幅(図1においては縮流後の流路122の幅)は1mm以上であり、かつ、これを流体8や9の分割数3で除した値を1mm未満とする。これにより、混合性能を向上させながら、反応生成物の生産量を増大させ、また、圧力損失を低減し、さらに固体浮遊物による流路閉塞を防止することができる。   Here, the width of the mixing channel 12 (the width of the channel 122 after contraction in FIG. 1) is 1 mm or more, and a value obtained by dividing this by the division number 3 of the fluids 8 and 9 is less than 1 mm. To do. Thereby, while improving the mixing performance, the production amount of the reaction product can be increased, the pressure loss can be reduced, and further, the blockage of the flow path due to the solid suspended matter can be prevented.

図3は、本発明の第2の実施例による流体混合器の構造を示す分解斜視図であり、図1の流体混合器の変形例を示す。図1及び図2の流体混合器の実施例と異なる点は、導入流路10と11の下流端部の流路凸部15と16が、流れ方向に長くなり、流路を形成していることである。この場合も、図2(b)と(d)の断面図については全く同一となり、第1の実施例と同様の効果が得られる。   FIG. 3 is an exploded perspective view showing the structure of the fluid mixer according to the second embodiment of the present invention, and shows a modification of the fluid mixer of FIG. 1 and FIG. 2 is different from the embodiment of the fluid mixer shown in FIG. 1 in that the flow path convex portions 15 and 16 at the downstream ends of the introduction flow paths 10 and 11 are elongated in the flow direction to form a flow path. That is. Also in this case, the sectional views of FIGS. 2B and 2D are exactly the same, and the same effect as the first embodiment can be obtained.

図4は、本発明の第3の実施例による流体混合器の構造を示す分解斜視図であり、図5は、図4の流体混合器の構造を図2に倣って示す部分平面図とその断面図である。   FIG. 4 is an exploded perspective view showing the structure of the fluid mixer according to the third embodiment of the present invention, and FIG. 5 is a partial plan view showing the structure of the fluid mixer of FIG. It is sectional drawing.

流体混合器は、面同士が密着して重ね合わされて接合された7枚のプレート1、2、3、4、5、21、23からなる。一番上のプレートは上蓋1であり、2つの流入孔61,62及び1つの排出孔7が設けられている。一番下のプレートは下蓋5である。流体8を流す導入流路10が形成された導入プレート2と、流体9を流す導入流路11が形成された導入プレート4の間に、混合流路12が形成された混合プレート3が積層されている。混合流路12の上流には混合部121が設けられている。混合プレート3と上部の導入プレート2の間には、連通孔22が設置された連通プレート21が積層されている。また、混合プレート3と下部の導入プレート4の間には、連通孔24が設置された連通プレート23が積層されている。混合流路の上流端部20の下流側直後の位置に対応して連通孔22及び24が幅方向に交互になるようにそれぞれの連通プレート21、23に設置されている。したがって、2つの導入流路10、11から異種の流体8と9が上下から連通孔22と24を経て混合流路の上流端部20の下流側直後に交互に流入する。混合部121では、流体8及び流体9が幅方向に多層状態となる。さらに、この実施例においても、混合部121の下流では混合流路12は縮流しており、幅方向に多層状態になった流体8と9の間隔はさらに小さくなり混合が促進される。その他の寸法は先の実施例と同じであり、混合性能を向上させると共に、反応生成物の生産量を増大させ、また、圧力損失を低減し、固体浮遊物による流路閉塞を防止することができる。   The fluid mixer is composed of seven plates 1, 2, 3, 4, 5, 21, and 23 that are bonded to each other with the surfaces closely contacting each other. The uppermost plate is the upper lid 1 and is provided with two inflow holes 61 and 62 and one discharge hole 7. The lowermost plate is the lower lid 5. A mixing plate 3 having a mixing channel 12 is laminated between an introducing plate 2 in which an introducing channel 10 for flowing the fluid 8 is formed and an introducing plate 4 in which an introducing channel 11 for flowing the fluid 9 is formed. ing. A mixing unit 121 is provided upstream of the mixing channel 12. A communication plate 21 provided with communication holes 22 is laminated between the mixing plate 3 and the upper introduction plate 2. Further, a communication plate 23 provided with a communication hole 24 is laminated between the mixing plate 3 and the lower introduction plate 4. Corresponding to the position immediately after the downstream side of the upstream end portion 20 of the mixing channel, the communication holes 22 and 24 are installed in the respective communication plates 21 and 23 so as to alternate in the width direction. Therefore, the different fluids 8 and 9 from the two introduction channels 10 and 11 alternately flow from the upper and lower sides through the communication holes 22 and 24 immediately after the downstream side of the upstream end 20 of the mixing channel. In the mixing unit 121, the fluid 8 and the fluid 9 are in a multilayer state in the width direction. Furthermore, also in this embodiment, the mixing flow path 12 is contracted downstream of the mixing section 121, and the interval between the fluids 8 and 9 that are in a multilayered state in the width direction is further reduced to facilitate mixing. Other dimensions are the same as in the previous example, which improves the mixing performance, increases the production of reaction products, reduces the pressure loss, and prevents the blockage of the solid suspension. it can.

図6は、本発明の第4の実施例による流体混合器の構造を示す分解斜視図である。図7は、図6の流体混合器の構造を示す部分平面図とその断面図であり、同図(a)は流路10と混合部121の関係図で、同図(b)はそのb−b断面図、同図(c)は混合部121と流路11の関係図で、同図(d)はそのd−d断面図である。   FIG. 6 is an exploded perspective view showing the structure of the fluid mixer according to the fourth embodiment of the present invention. 7 is a partial plan view showing the structure of the fluid mixer shown in FIG. 6 and a cross-sectional view thereof. FIG. 7A is a diagram showing the relationship between the flow path 10 and the mixing portion 121, and FIG. -B sectional drawing, the figure (c) is a related figure of mixing part 121 and channel 11, and the figure (d) is the dd sectional view.

流体混合器は、面同士が密着して重ね合わされて接合された5枚のプレート1〜5を備えている。一番上のプレートは上蓋1であり、2つの流入孔61,62及び1つの排出孔7が設けられている。一番下のプレートは下蓋5である。流体8を流す導入流路10が形成された導入プレート2と、流体9を流す導入流路11が形成された導入プレート4の間に、2種類の流体を混合させる混合流路12が形成された混合プレート3が積層されている。混合流路12の上流には混合部121が設けられ、この混合部121の下流の縮流部を介して流路122が形成されている。なお、縮流部を設けることなく、混合部121と下流の流路122の幅を同じとすることもできる。混合部121より上流には、流路凸部14が6個(141〜146)設けられている。一方、2つの導入流路10,11の下流端部には、前記混合流路12の1つ置きの流路凸部に対向するように、それぞれ半数の流路凸部15(151,153,155)と、流路凸部16(162,164,166)とを設けている。図7の(a),(b)と(c),(d)に示すように、混合部より上流の流路凸部14(141〜146)には、上部と下部に設置された導入流路10と11の流路凸部15(151,153,155)と16(162,164,166)とが、幅方向に交互に重なる。これにより、2種類の流体8と9とが、混合部121より上流の流路凸部141〜146から互い違いに流入する。混合流路12の混合部121では、流体8及び流体9が幅方向に多層状態となり、混合部121の下流では、縮流部により混合流路12が縮流される。多層状態になった流体8及び流体9の間隔は、この流路が狭まる縮流部でさらに小さくなり混合が促進される。   The fluid mixer includes five plates 1 to 5 which are bonded to each other with the surfaces closely contacting each other. The uppermost plate is the upper lid 1 and is provided with two inflow holes 61 and 62 and one discharge hole 7. The lowermost plate is the lower lid 5. A mixing channel 12 for mixing two kinds of fluids is formed between the introduction plate 2 in which the introduction channel 10 for flowing the fluid 8 is formed and the introduction plate 4 in which the introduction channel 11 for flowing the fluid 9 is formed. The mixed plates 3 are stacked. A mixing section 121 is provided upstream of the mixing flow path 12, and a flow path 122 is formed via a contracted flow section downstream of the mixing section 121. In addition, the width of the mixing part 121 and the downstream flow path 122 can also be made the same, without providing a contraction part. Six flow path convex portions 14 (141 to 146) are provided upstream of the mixing portion 121. On the other hand, at the downstream ends of the two introduction channels 10 and 11, half of the channel protrusions 15 (151, 153, respectively) are arranged so as to face every other channel protrusion of the mixing channel 12. 155) and flow path convex portions 16 (162, 164, 166). As shown in (a), (b), (c), and (d) of FIG. 7, the flow path convex portion 14 (141 to 146) upstream from the mixing portion is introduced into the upper and lower portions. The channel protrusions 15 (151, 153, 155) and 16 (162, 164, 166) of the paths 10 and 11 are alternately overlapped in the width direction. As a result, the two types of fluids 8 and 9 flow alternately from the flow path convex portions 141 to 146 upstream of the mixing portion 121. In the mixing section 121 of the mixing flow path 12, the fluid 8 and the fluid 9 are in a multilayered state in the width direction, and the mixing flow path 12 is contracted by the contraction section downstream of the mixing section 121. The interval between the fluid 8 and the fluid 9 in the multilayer state is further reduced at the contracted portion where the flow path is narrowed, so that mixing is promoted.

混合流路12より上流において、上下の導入流路10と11から導入した2つの流体は、流路凸部141〜146によって形成される仕切壁によりその進路が誘導される。これにより、混合部121では2つの流体が流路の上下方向へ2層に分かれることなく、流路の幅方向に多層状に流れるため、優れた混合性能が得られる。図7に示すように、混合部121より上流における流路凸部14の流れ方向長さは、導入流路10、11の下流端部における流路凸部15、16と流路凸部14とで形成された連通部の流れ方向長さLとほぼ等しく形成されている。混合部121において2つの流体が流路の上下方向で2層に分かれることを防止するには、流体の流れる方向を規制する仕切壁の役目を果たす流路凸部14の流れ方向長さが大きいほど効果は増大し、流路凸部14の流れ方向長さがLでほぼ防止でき、さらに大きくなるほど防止効果は完全となるが、次第にその効果は飽和し、逆に流体の圧力損失が増大する。したがって、混合部121において2つの流体が流路の上下方向へ2層に分かれることを防止すると共に流体の圧力損失を抑制するためには、流路凸部14の流れ方向長さを、連通部の流れ方向長さLの3倍以下に形成することが望ましい。これによって、簡便な構造により、異種の流体を多層化して混合性を向上させながら、圧力損失が小さく、かつ流路閉塞が発生しにくい流体混合器を実現できる。   Upstream from the mixing channel 12, the two fluids introduced from the upper and lower introduction channels 10 and 11 are guided by the partition walls formed by the channel convex portions 141 to 146. Thereby, in the mixing part 121, the two fluids flow in multiple layers in the width direction of the flow path without being divided into two layers in the vertical direction of the flow path, so that excellent mixing performance is obtained. As shown in FIG. 7, the flow direction length of the flow path convex portion 14 upstream from the mixing portion 121 is determined by the flow path convex portions 15 and 16 and the flow path convex portion 14 at the downstream end of the introduction flow paths 10 and 11. Is formed substantially equal to the length L in the flow direction of the communication portion formed in (1). In order to prevent two fluids from being separated into two layers in the vertical direction of the flow path in the mixing part 121, the flow direction length of the flow path convex part 14 serving as a partition wall that regulates the flow direction of the fluid is large. The effect increases, and the flow direction length of the flow path convex portion 14 can be almost prevented by L, and the prevention effect becomes complete as the flow length becomes larger, but the effect gradually becomes saturated, and conversely the pressure loss of the fluid increases. . Therefore, in order to prevent the two fluids from being divided into two layers in the vertical direction of the flow path in the mixing unit 121 and to suppress the pressure loss of the fluid, the flow direction length of the flow path convex part 14 is set to the communication part. It is desirable that the length be less than 3 times the length L in the flow direction. This makes it possible to realize a fluid mixer with a simple structure, in which different types of fluids are multi-layered to improve the mixing property, and the pressure loss is small and the blockage of the channel is less likely to occur.

その他の寸法は先の実施例と同じであり、混合性能を向上させると共に、反応生成物の生産量を増大させ、また、圧力損失を低減し、固体浮遊物による流路閉塞を防止することができる。   Other dimensions are the same as in the previous example, which improves the mixing performance, increases the production of reaction products, reduces the pressure loss, and prevents the blockage of the solid suspension. it can.

また、混合流路より上流の流路凸部の形状は、半楕円形等の任意形状が可能である。ここで、流れの分割数が多いほど混合性能は向上する。   Further, the shape of the channel convex portion upstream from the mixing channel can be an arbitrary shape such as a semi-elliptical shape. Here, the mixing performance improves as the number of flow divisions increases.

図8は、本発明の第5の実施例による流体混合器の構造を示す分解斜視図である。図9は、図8の流体混合器の構造を図2に倣って示す部分平面図とその断面図である。   FIG. 8 is an exploded perspective view showing the structure of the fluid mixer according to the fifth embodiment of the present invention. FIG. 9 is a partial plan view showing the structure of the fluid mixer shown in FIG.

流体混合器は、面同士が密着して重ね合わされて接合された7枚のプレート1〜5、21、23からなる。一番上のプレートは上蓋1であり、2つの流入孔61,62及び1つの排出孔7が設けられている。一番下のプレートは下蓋5である。流体8を流す導入流路10が形成された導入プレート2と、流体9を流す導入流路11が形成された導入プレート4の間に、2種類の流体を混合させるための混合流路12が形成された混合プレート3が積層されている。混合流路12の上流には混合部121が設けられ、混合部より上流には、図6と同様に上流側に向いた流路凸部14が6個設けられている。混合プレート3と上部の導入プレート2の間には、連通孔22が設置された連通プレート21が積層されている。また、混合プレート3と下部の導入プレート4の間には、連通孔24が設置された連通プレート23が積層されている。混合流路より上流の流路凸部14の位置に対応して流路凸部の大きさ以下の連通孔22及び連通孔24が、幅方向に交互になるようにそれぞれの連通プレート21、23に設置されている。したがって、2つの導入流路10、11から異種の流体8と9が、上下からそれぞれ連通孔22と24を経て、混合プレート3の混合流路12より上流に幅方向に並んだ6つの流路凸部14に交互に流入する。   The fluid mixer is composed of seven plates 1 to 5, 21, and 23 that are bonded to each other with the surfaces closely contacting each other. The uppermost plate is the upper lid 1 and is provided with two inflow holes 61 and 62 and one discharge hole 7. The lowermost plate is the lower lid 5. A mixing channel 12 for mixing two kinds of fluids is provided between the introduction plate 2 in which the introduction channel 10 for flowing the fluid 8 is formed and the introduction plate 4 in which the introduction channel 11 for flowing the fluid 9 is formed. The formed mixing plates 3 are stacked. A mixing unit 121 is provided upstream of the mixing channel 12, and six channel projections 14 facing the upstream side are provided upstream of the mixing unit, as in FIG. 6. A communication plate 21 provided with communication holes 22 is laminated between the mixing plate 3 and the upper introduction plate 2. Further, a communication plate 23 provided with a communication hole 24 is laminated between the mixing plate 3 and the lower introduction plate 4. Corresponding to the position of the flow path convex portion 14 upstream from the mixing flow path, the communication holes 21 and 23 having a size equal to or smaller than the size of the flow path convex portion are alternately arranged in the width direction. Is installed. Accordingly, the six flow paths in which the different fluids 8 and 9 from the two introduction flow paths 10 and 11 are arranged in the width direction upstream from the mixing flow path 12 of the mixing plate 3 through the communication holes 22 and 24 from above and below, respectively. It alternately flows into the convex portion 14.

混合流路12より上流において、上下の導入流路10と11から連通孔22と24を経て流入した2つの流体は、流路凸部14によって形成される仕切壁によりその進路が誘導される。これにより、混合部121では2つの流体が流路の上下方向へ2層に分かれることなく、流路の幅方向に多層状に流れるため、優れた混合性能が得られる。図9に示すように、混合部121より上流における流路凸部14の流れ方向長さは、連通孔22、24の流れ方向長さLとほぼ等しく形成されている。混合部121において2つの流体が流路の上下方向で2層に分かれることを防止するには、流体の流れる方向を規制する仕切壁の役目を果たす流路凸部14の流れ方向長さが大きいほど効果は増大し、流路凸部14の流れ方向長さがLでほぼ防止でき、さらに大きくなるほど防止効果は完全となるが、次第にその効果は飽和し、逆に流体の圧力損失が増大する。したがって、混合部121において2つの流体が流路の上下方向へ2層に分かれることを防止すると共に流体の圧力損失を抑制するためには、流路凸部14の流れ方向長さを、連通孔の流れ方向長さLの3倍以下に形成することが望ましい。これによって、簡便な構造により、異種の流体を多層化して混合性を向上させながら、圧力損失が小さく、かつ流路閉塞が発生しにくい流体混合器を実現できる。   Upstream of the mixing channel 12, the two fluids that have flowed in from the upper and lower introduction channels 10 and 11 through the communication holes 22 and 24 are guided by the partition walls formed by the channel convex portions 14. Thereby, in the mixing part 121, the two fluids flow in multiple layers in the width direction of the flow path without being divided into two layers in the vertical direction of the flow path, so that excellent mixing performance is obtained. As shown in FIG. 9, the flow direction length of the flow path convex portion 14 upstream from the mixing portion 121 is formed substantially equal to the flow direction length L of the communication holes 22 and 24. In order to prevent two fluids from being separated into two layers in the vertical direction of the flow path in the mixing part 121, the flow direction length of the flow path convex part 14 serving as a partition wall that regulates the flow direction of the fluid is large. The effect increases, and the flow direction length of the flow path convex portion 14 can be almost prevented by L, and the prevention effect becomes complete as the flow length becomes larger, but the effect gradually becomes saturated, and conversely the pressure loss of the fluid increases. . Therefore, in order to prevent the two fluids from being divided into two layers in the vertical direction of the flow path in the mixing portion 121 and to suppress the pressure loss of the fluid, the flow direction length of the flow path convex portion 14 is set to the communication hole. It is desirable that the length be less than 3 times the length L in the flow direction. This makes it possible to realize a fluid mixer with a simple structure, in which different types of fluids are multi-layered to improve the mixing property, and the pressure loss is small and the blockage of the channel is less likely to occur.

その他の寸法は先の実施例と同じであり、混合性能を向上させると共に、反応生成物の生産量を増大させ、また、圧力損失を低減し、固体浮遊物による流路閉塞を防止することができる。   Other dimensions are the same as in the previous example, which improves the mixing performance, increases the production of reaction products, reduces the pressure loss, and prevents the blockage of the solid suspension. it can.

図10は、本発明の第6の実施例による流体混合器の構造を示す分解斜視図であり、図11は、図10の流体混合器の構造を図2に倣って示す部分平面図とその断面図である。   FIG. 10 is an exploded perspective view showing the structure of a fluid mixer according to a sixth embodiment of the present invention. FIG. 11 is a partial plan view showing the structure of the fluid mixer of FIG. It is sectional drawing.

流体混合器は、面同士が密着して重ね合わされて接合された5枚のプレート1、2、25、3、5からなる。一番上のプレートは上蓋1であり、2つの流入孔61,62及び1つの排出孔7が設けられている。一番下のプレートは下蓋5である。流体8を流す導入流路10及び流体9を流す導入流路11が形成された1枚の導入プレート2と、2種類の流体を混合させる混合流路12が形成された混合プレート3が、連通プレート25を挟んで積層されている。混合流路12の上流には混合部121が設けられ、混合部121より上流には図6,8と全く同様に、上流に向いた流路凸部14が6個設けられている。2つの導入流路10,11の下流端部には、それぞれ混合流路の場合の半数づつ流路凸部15、16が設けられている。これらの流路凸部15、16の位置にそれぞれ対応させて、流路凸部の大きさ以下の連通孔22と24を、幅方向に交互になるように連通プレート25に配置している。また、これらの連通孔22と24は、混合プレート3の混合流路より上流の流路凸部14の位置に対応しており、したがって、2つの導入流路10、11からの異種の流体8と9は、それぞれ連通孔22と24を経て、混合流路より上流に幅方向に並んだ6つの流路凸部14に互い違いに流入する。   The fluid mixer is composed of five plates 1, 2, 25, 3, and 5 which are bonded to each other with the surfaces closely contacting each other. The uppermost plate is the upper lid 1 and is provided with two inflow holes 61 and 62 and one discharge hole 7. The lowermost plate is the lower lid 5. A single introduction plate 2 in which an introduction passage 10 for flowing fluid 8 and an introduction passage 11 for flowing fluid 9 are formed, and a mixing plate 3 in which a mixing passage 12 for mixing two kinds of fluids are formed communicate with each other. The plates 25 are stacked. A mixing unit 121 is provided upstream of the mixing channel 12, and six channel convex portions 14 facing upstream are provided upstream of the mixing unit 121, just like FIGS. At the downstream ends of the two introduction channels 10 and 11, channel projections 15 and 16 are provided in half each in the case of the mixing channel. Corresponding to the positions of these flow path convex portions 15 and 16, communication holes 22 and 24 having a size equal to or smaller than the size of the flow path convex portions are arranged in the communication plate 25 so as to alternate in the width direction. Further, these communication holes 22 and 24 correspond to the positions of the flow path convex portions 14 upstream from the mixing flow path of the mixing plate 3, and therefore, different fluids 8 from the two introduction flow paths 10 and 11. And 9 alternately flow into the six channel protrusions 14 arranged in the width direction upstream of the mixing channel through the communication holes 22 and 24, respectively.

混合流路12より上流において、導入流路10と11から連通孔22と24を経て流入した2つの流体は、流路凸部14によって形成される仕切壁によりその進路が誘導される。これにより、混合部121では2つの流体が流路の上下方向へ2層に分かれることなく、流路の幅方向に多層に流れるため、優れた混合性能が得られる。図11に示すように、混合部121より上流における流路凸部14の流れ方向長さは、連通孔22、24の流れ方向長さLとほぼ等しく形成されている。混合部121において2つの流体が流路の上下方向で2層に分かれることを防止するには、流体の流れる方向を規制する仕切壁の役目を果たす流路凸部14の流れ方向長さが大きいほど効果は増大し、流路凸部14の流れ方向長さがLでほぼ防止でき、さらに大きくなるほど防止効果は完全となるが、次第にその効果は飽和し、逆に流体の圧力損失が増大する。したがって、混合部121において2つの流体が流路の上下方向へ2層に分かれることを防止すると共に流体の圧力損失を抑制するためには、流路凸部14の流れ方向長さを、連通孔の流れ方向長さLの3倍以下に形成することが望ましい。これによって、簡便な構造により、異種の流体を多層化して混合性を向上させながら、圧力損失が小さく、かつ流路閉塞が発生しにくい流体混合器を実現できる。   Upstream from the mixing channel 12, the two fluids that have flowed in from the introduction channels 10 and 11 through the communication holes 22 and 24 are guided by the partition wall formed by the channel protrusions 14. Thereby, in the mixing part 121, since two fluid flows into a multilayer in the width direction of a flow path without dividing into two layers in the up-down direction of a flow path, the outstanding mixing performance is obtained. As shown in FIG. 11, the flow direction length of the flow path convex portion 14 upstream from the mixing portion 121 is formed to be substantially equal to the flow direction length L of the communication holes 22 and 24. In order to prevent two fluids from being separated into two layers in the vertical direction of the flow path in the mixing part 121, the flow direction length of the flow path convex part 14 serving as a partition wall that regulates the flow direction of the fluid is large. The effect increases, and the flow direction length of the flow path convex portion 14 can be almost prevented by L, and the prevention effect becomes complete as the flow length becomes larger, but the effect gradually becomes saturated, and conversely the pressure loss of the fluid increases. . Therefore, in order to prevent the two fluids from being divided into two layers in the vertical direction of the flow path in the mixing portion 121 and to suppress the pressure loss of the fluid, the flow direction length of the flow path convex portion 14 is set to the communication hole. It is desirable that the length be less than 3 times the length L in the flow direction. This makes it possible to realize a fluid mixer with a simple structure, in which different types of fluids are multi-layered to improve the mixing property, and the pressure loss is small and the blockage of the channel is less likely to occur.

その他の寸法は先の実施例と同じであり、混合性能を向上させると共に、反応生成物の生産量を増大させ、また、圧力損失を低減し、固体浮遊物による流路閉塞を防止することができる。   Other dimensions are the same as in the previous example, which improves the mixing performance, increases the production of reaction products, reduces the pressure loss, and prevents the blockage of the solid suspension. it can.

図12は、本発明の第7の実施例による流体混合器の構造を示す分解斜視図であり、図13は、図12の流体混合器の構造を図2に倣って示す部分平面図とその断面図である。   FIG. 12 is an exploded perspective view showing the structure of the fluid mixer according to the seventh embodiment of the present invention. FIG. 13 is a partial plan view showing the structure of the fluid mixer of FIG. It is sectional drawing.

流体混合器は、面同士が密着して重ね合わされて接合された6枚のプレート1〜5、21からなる。一番上のプレートは上蓋1であり、2つの流入孔61,62及び1つの排出孔7が設けられている。一番下のプレートは下蓋5である。上蓋1と下蓋5の間には、導入流路10が形成された導入プレート2と、連通孔22が形成された連通プレート21と、混合流路12が形成された混合プレート3と、導入流路11が形成された導入プレート4が積層されている。混合流路12の上流には混合部121が設けられ、混合部の上流には複数(図では3個)の流路凸部14が間隔を置いて設けられている。   The fluid mixer is composed of six plates 1 to 5 and 21 which are bonded to each other with the surfaces closely contacting each other. The uppermost plate is the upper lid 1 and is provided with two inflow holes 61 and 62 and one discharge hole 7. The lowermost plate is the lower lid 5. Between the upper lid 1 and the lower lid 5, the introduction plate 2 in which the introduction channel 10 is formed, the communication plate 21 in which the communication hole 22 is formed, the mixing plate 3 in which the mixing channel 12 is formed, and the introduction The introduction plate 4 in which the flow path 11 is formed is laminated. A mixing unit 121 is provided upstream of the mixing channel 12, and a plurality (three in the figure) of channel protrusions 14 are provided at intervals upstream of the mixing unit.

連通プレート21には、混合部上流端部20の下流直後の位置に対応して、混合部上流端部20の幅以下の幅を持つ連通孔22が幅方向に間隔を置いて3個並べて設置され、導入流路10は、連通孔22に重なるように設置される。これにより、流体8は連通孔22を経て混合部上流端部20の下流直後に流入する。一方、導入流路11は、混合流路12より上流の凸部14の流れ方向の長さの範囲内で重なることにより、流体9が混合部121より上流の凸部14に流入する。   In the communication plate 21, three communication holes 22 having a width equal to or less than the width of the mixing unit upstream end 20 are arranged side by side in the width direction so as to correspond to the position immediately downstream of the mixing unit upstream end 20. The introduction channel 10 is installed so as to overlap the communication hole 22. As a result, the fluid 8 flows through the communication hole 22 immediately after the downstream of the mixing portion upstream end portion 20. On the other hand, the introduction flow path 11 overlaps within the range of the length in the flow direction of the protrusion 14 upstream of the mixing flow path 12, so that the fluid 9 flows into the protrusion 14 upstream of the mixing section 121.

混合流路12の上流において、導入流路11から流入した流体9は、流路凸部14によって形成される仕切壁によりその進路が誘導される。一方、流体8は導入流路10から連通孔22を経て混合部上流端部20の下流直後に流入する。流体9は仕切壁により混合部下流方向に流れ、混合部上流端部20の下流直後には流れ込み難くなるため、混合部121では2つの流体が流路の上下方向へ2層に分かれることなく、流路の幅方向に多層状に流れることにより、優れた混合性能が得られる。図13に示すように、混合部121の上流における流路凸部14の流れ方向長さは、導入流路11と流路凸部14とで形成される連通部の流れ方向長さLとほぼ等しく形成されている。混合部121において2つの流体が流路の上下方向で2層に分かれることを防止するには、流体の流れる方向を規制する仕切壁の役目を果たす流路凸部14の流れ方向長さが大きいほど効果は増大し、流路凸部14の流れ方向長さがLでほぼ防止でき、さらに大きくなるほど防止効果は完全となるが、次第にその効果は飽和し、逆に流体の圧力損失が増大する。したがって、混合部121において2つの流体が流路の上下方向へ2層に分かれることを防止すると共に流体の圧力損失を抑制するためには、流路凸部14の流れ方向長さを、連通部の流れ方向長さLの3倍以下に形成することが望ましい。これによって、簡便な構造により、異種の流体を多層化して混合性を向上させながら、圧力損失が小さく、かつ流路閉塞が発生しにくい流体混合器を実現できる。   Upstream of the mixing channel 12, the fluid 9 flowing from the introduction channel 11 is guided by a partition wall formed by the channel protrusions 14. On the other hand, the fluid 8 flows from the introduction channel 10 through the communication hole 22 and immediately after the downstream of the mixing unit upstream end 20. The fluid 9 flows through the partition wall in the downstream direction of the mixing unit and is difficult to flow immediately after the downstream of the mixing unit upstream end portion 20. Therefore, in the mixing unit 121, the two fluids are not divided into two layers in the vertical direction of the flow path. By flowing in a multilayer shape in the width direction of the flow path, excellent mixing performance can be obtained. As shown in FIG. 13, the flow direction length of the flow path convex portion 14 upstream of the mixing portion 121 is substantially equal to the flow direction length L of the communication portion formed by the introduction flow path 11 and the flow path convex portion 14. Are equally formed. In order to prevent two fluids from being separated into two layers in the vertical direction of the flow path in the mixing part 121, the flow direction length of the flow path convex part 14 serving as a partition wall that regulates the flow direction of the fluid is large. The effect increases, and the flow direction length of the flow path convex portion 14 can be almost prevented by L, and the prevention effect becomes complete as the flow length becomes larger, but the effect gradually becomes saturated, and conversely the pressure loss of the fluid increases. . Therefore, in order to prevent the two fluids from being divided into two layers in the vertical direction of the flow path in the mixing unit 121 and to suppress the pressure loss of the fluid, the flow direction length of the flow path convex part 14 is set to the communication part. It is desirable that the length be less than 3 times the length L in the flow direction. This makes it possible to realize a fluid mixer with a simple structure, in which different types of fluids are multi-layered to improve the mixing property, and the pressure loss is small and the blockage of the channel is less likely to occur.

その他の寸法は先の実施例と同じであり、混合性能を向上させると共に、反応生成物の生産量を増大させ、また、圧力損失を低減し、固体浮遊物による流路閉塞を防止することができる。   Other dimensions are the same as in the previous example, which improves the mixing performance, increases the production of reaction products, reduces the pressure loss, and prevents the blockage of the solid suspension. it can.

図14は、本発明の第8の実施例による流体混合器の構造を示す分解斜視図である。流体混合器は、面同士が密着して重ね合わされて接合された5枚のプレート1、2、3、5、25からなる。一番上のプレートは上蓋1であり、2つの流入孔61,62及び1つの排出孔7が設けられている。一番下のプレートは下蓋5である。上蓋1と下蓋5の間には、流体8を流す導入流路10と流体9を流す導入流路11が形成された導入プレート2と、連通孔22と連通孔24が形成された連通プレート25と、混合流路12が形成された混合プレート3が積層されている。混合流路12の上流には混合部121が設けられ、混合部121より上流には先の実施例と同様に、流路凸部14と混合部上流端部20がそれぞれ交互に3個設けられている。連通プレート25には、混合流路より上流の流路凸部14の位置に対応して、流路凸部の幅以下の幅を持つ連通孔22が3個設置されている。また、混合部上流端部20の下流直後の位置に対応して混合部上流端部20の幅以下の幅を持つ連通孔24が3個設置され、導入流路10は連通孔22に、導入流路11は連通孔24に重なるように設置される。これにより、流体8は連通孔22を経て混合部より上流の流路凸部14に、流体9は連通孔24を経て混合部上流端部20の下流直後に流入する。混合部121では、流体8及び流体9が幅方向に多層状態となる。さらに、この実施例では、混合部121の下流で混合流路12を縮流しており、幅方向に多層状態になった流体8及び流体9の間隔はさらに小さくなり混合が促進される。   FIG. 14 is an exploded perspective view showing the structure of the fluid mixer according to the eighth embodiment of the present invention. The fluid mixer is composed of five plates 1, 2, 3, 5, and 25 that are bonded to each other with the surfaces closely contacting each other. The uppermost plate is the upper lid 1 and is provided with two inflow holes 61 and 62 and one discharge hole 7. The lowermost plate is the lower lid 5. Between the upper lid 1 and the lower lid 5, an introduction plate 2 in which an introduction channel 10 for flowing a fluid 8 and an introduction channel 11 for flowing a fluid 9 are formed, and a communication plate in which a communication hole 22 and a communication hole 24 are formed. 25 and the mixing plate 3 in which the mixing channel 12 is formed are laminated. The mixing unit 121 is provided upstream of the mixing channel 12, and the channel convex part 14 and the mixing unit upstream end 20 are alternately provided three upstream of the mixing unit 121, as in the previous embodiment. ing. In the communication plate 25, three communication holes 22 having a width equal to or smaller than the width of the channel protrusion are provided corresponding to the position of the channel protrusion 14 upstream of the mixing channel. In addition, three communication holes 24 having a width equal to or less than the width of the mixing unit upstream end 20 are provided corresponding to the position immediately after the mixing unit upstream end 20, and the introduction channel 10 is introduced into the communication hole 22. The flow path 11 is installed so as to overlap the communication hole 24. Thereby, the fluid 8 flows into the flow path convex portion 14 upstream of the mixing portion via the communication hole 22, and the fluid 9 flows immediately after the downstream of the mixing portion upstream end portion 20 via the communication hole 24. In the mixing unit 121, the fluid 8 and the fluid 9 are in a multilayer state in the width direction. Furthermore, in this embodiment, the mixing channel 12 is contracted downstream of the mixing unit 121, and the interval between the fluid 8 and the fluid 9 that are in a multilayered state in the width direction is further reduced, so that mixing is promoted.

その他の寸法は、先の実施例と同じであり、混合性能を向上させると共に、反応生成物の生産量を増大させ、また、圧力損失を低減し、固体浮遊物による流路閉塞を防止することができる。   Other dimensions are the same as in the previous examples, improve mixing performance, increase reaction product production, reduce pressure loss, and prevent blockage of solid suspension. Can do.

図15は、本発明の他の実施例による流体混合器の混合部121の構造を示す要部平面図である。図15(a)は、図1〜3の実施例に示す流体混合器の導入流路下流端部の流路凸部15、16の幅方向の寸法を変化させたものである。図15(b)は図4、5の実施例に示す流体混合器の連通孔22、24の幅方向の開口寸法を変化させたものである。ここでは、連通孔の形状は矩形としているがそれ以外の形状も可能である。図15(c)は図6〜11の実施例に示す流体混合器の混合部121より上流の流路凸部14の幅方向の寸法を変化させたものである。図15(d)は、図12〜14の実施例に示す流体混合器の混合部121より上流の流路凸部14及び混合部上流端部20の幅方向の寸法を変化させたものである。   FIG. 15 is a plan view of an essential part showing the structure of the mixing unit 121 of the fluid mixer according to another embodiment of the present invention. FIG. 15A is a diagram in which the width direction dimensions of the flow path convex portions 15 and 16 at the downstream end portion of the introduction flow path of the fluid mixer shown in the embodiment of FIGS. FIG. 15B is a diagram in which the opening dimensions in the width direction of the communication holes 22 and 24 of the fluid mixer shown in the embodiment of FIGS. Here, the shape of the communication hole is rectangular, but other shapes are also possible. FIG. 15C is a diagram in which the dimension in the width direction of the flow path convex portion 14 upstream of the mixing portion 121 of the fluid mixer shown in the embodiments of FIGS. FIG.15 (d) changes the dimension of the width direction of the flow-path convex part 14 upstream of the mixing part 121 of the fluid mixer shown in the Example of FIGS. 12-14, and the mixing part upstream end part 20. As shown in FIG. .

図15(a)、(b)、(c)、(d)において、図1〜14の実施例では異種流体の一方の流体の分割数は3であるが、ここでは分割数が4の場合を示す。混合部121の流路幅方向に関して、流路内の流速は流路中央で大きく壁面で零になるため、流路中央部ほど流路幅方向の物質の拡散が小さい。また、幅方向に交互に層状化した異種流体において、壁面に隣接する流体は、壁方向に拡散できない。図15(a)では、導入流路の下流端部の流路凸部15、16の幅方向の寸法は、流路中心から幅方向に進むにつれて増大し、また幅方向の両側の壁面に最も近い流路凸部の幅は、隣接する流路凸部の幅の半分以下である。図15(b)では、連通孔の幅方向の開口寸法は、混合流路上流端部の中心から幅方向に進むにつれて増大し、混合流路上流端部の幅方向の両側の壁面に最も近い連通孔の開口幅は、隣接する開口部の幅の半分以下である。図15(c)では、混合流路より上流の流路凸部14の幅方向の寸法は、流路中心から幅方向に進むにつれて増大し、また幅方向の両側の壁面に最も近い流路凸部の幅は、隣接する流路凸部の幅の半分以下である。図15(d)では、混合流路上流端部の流路凸部14又は混合部上流端部20の幅方向の寸法は、流路中心から流路幅方向進むにつれて増大し、また、幅方向の両側の壁面に最も近い流路凸部又は混合部上流端部の幅は、隣接する流路凸部又は混合部上流端部の幅の半分以下である。   15 (a), (b), (c) and (d), in the embodiment of FIGS. 1 to 14, the number of divisions of one of the different fluids is 3, but here the number of divisions is 4 Indicates. With respect to the channel width direction of the mixing unit 121, the flow velocity in the channel is large at the center of the channel and zero at the wall surface. Moreover, in the heterogeneous fluid layered alternately in the width direction, the fluid adjacent to the wall surface cannot diffuse in the wall direction. In FIG. 15 (a), the dimension in the width direction of the channel protrusions 15 and 16 at the downstream end of the introduction channel increases as it proceeds in the width direction from the center of the channel, and is the largest on the wall surfaces on both sides in the width direction. The width of the close channel convex portion is not more than half of the width of the adjacent channel convex portion. In FIG. 15 (b), the opening dimension in the width direction of the communication hole increases from the center of the upstream end of the mixing channel in the width direction, and is closest to the wall surfaces on both sides in the width direction of the upstream end of the mixing channel. The opening width of the communication hole is not more than half of the width of the adjacent opening. In FIG. 15 (c), the dimension in the width direction of the channel convex portion 14 upstream from the mixing channel increases as it proceeds in the width direction from the center of the channel, and the channel convexity closest to the wall surfaces on both sides in the width direction. The width of the part is not more than half of the width of the adjacent flow path convex part. In FIG. 15 (d), the dimension in the width direction of the flow path convex part 14 or the mixing part upstream end part 20 at the upstream end of the mixed flow channel increases from the flow channel center in the flow channel width direction, and the width direction. The width of the flow path convex part or the mixing part upstream end closest to the wall surfaces on both sides is less than half the width of the adjacent flow path convex part or mixing part upstream end.

これにより、流体8及び流体9の幅方向の拡散が均一化されるため、異種流体の混合が完了する流れ方向の距離を短縮できる。   Thereby, since the spreading | diffusion of the width direction of the fluid 8 and the fluid 9 is equalize | homogenized, the distance of the flow direction in which mixing of a dissimilar fluid is completed can be shortened.

図16は、本発明によるマイクロリアクタシステムの一実施例を示す分解斜視図である。図1〜15の実施例による流体混合器26の上面及び下面に、熱交換器27を面同士が密着するように重ね合わせて接合又はボルト締め等により固定したものである。熱交換器27の片方の面には、機械加工等により熱媒体30が流通する熱媒体流路31が形成されている。流体8及び流体9は異なる位置の流入孔61,62から流入し、流体混合器で混合され反応が終了した後に排出孔7から流出される。熱媒体30は、熱媒体流入孔28から流入し、熱交換器27の片面に形成された熱媒体流路31を流通しながら流体混合器26と熱交換した後、熱媒体流出孔29から流出される。   FIG. 16 is an exploded perspective view showing an embodiment of the microreactor system according to the present invention. The heat exchanger 27 is superposed on the upper and lower surfaces of the fluid mixer 26 according to the embodiment of FIGS. 1 to 15 so that the surfaces are in close contact with each other and fixed by joining or bolting. A heat medium passage 31 through which the heat medium 30 flows is formed on one surface of the heat exchanger 27 by machining or the like. The fluid 8 and the fluid 9 flow from the inflow holes 61 and 62 at different positions, are mixed by the fluid mixer, and are discharged from the discharge hole 7 after the reaction is completed. The heat medium 30 flows in from the heat medium inflow hole 28, exchanges heat with the fluid mixer 26 while flowing through the heat medium flow path 31 formed on one side of the heat exchanger 27, and then flows out from the heat medium outflow hole 29. Is done.

これにより、目的の反応温度で流体温度を制御することができるため、副反応を抑制して、反応収率を向上させることができる。ここで、図1〜15の実施例の流体混合器26は薄いため、熱交換効率が向上する。   Thereby, since the fluid temperature can be controlled at the target reaction temperature, side reactions can be suppressed and the reaction yield can be improved. Here, since the fluid mixer 26 of the embodiment of FIGS. 1 to 15 is thin, the heat exchange efficiency is improved.

以上の実施例によれば、簡便な構造で圧力損失を低減し、固体浮遊物による流路閉塞が防止できる流体混合器又は流体混合器を備えたマイクロリアクタシステムを提供することができる。   According to the above embodiment, it is possible to provide a fluid mixer or a microreactor system equipped with a fluid mixer that can reduce pressure loss with a simple structure and prevent a channel from being blocked by a solid suspended matter.

本発明による流体混合器は、医薬品、化学工業製品の合成プロセスにおける複数の流体の混合又は反応、また、分析化学、医療用分析のための分析装置における複数の試薬の混合又は反応を効率的に実施するために利用することができる。   The fluid mixer according to the present invention efficiently mixes or reacts a plurality of fluids in a synthesis process of pharmaceuticals and chemical industrial products, and also mixes or reacts a plurality of reagents in an analytical apparatus for analytical chemistry and medical analysis. Can be used to implement.

本発明の第1の実施例による流体混合器の構造を示す分解斜視図。The disassembled perspective view which shows the structure of the fluid mixer by the 1st Example of this invention. 図1の流体混合器の構造を示す部分平面図とその断面図。The partial top view which shows the structure of the fluid mixer of FIG. 1, and its sectional drawing. 本発明の第2の実施例による流体混合器の構造を示す分解斜視図。The disassembled perspective view which shows the structure of the fluid mixer by the 2nd Example of this invention. 本発明の第3の実施例による流体混合器の構造を示す分解斜視図。The disassembled perspective view which shows the structure of the fluid mixer by the 3rd Example of this invention. 図4の流体混合器の構造を示す部分平面図とその断面図。The partial top view which shows the structure of the fluid mixer of FIG. 4, and its sectional drawing. 本発明の第4の実施例による流体混合器の構造を示す分解斜視図。The disassembled perspective view which shows the structure of the fluid mixer by the 4th Example of this invention. 図6の流体混合器の構造を示す部分平面図とその断面図。The partial top view which shows the structure of the fluid mixer of FIG. 6, and its sectional drawing. 本発明の第5の実施例による流体混合器の構造を示す分解斜視図。The disassembled perspective view which shows the structure of the fluid mixer by the 5th Example of this invention. 図8の流体混合器の構造を示す部分平面図とその断面図。The partial top view which shows the structure of the fluid mixer of FIG. 8, and its sectional drawing. 本発明の第6の実施例による流体混合器の構造を示す分解斜視図。The disassembled perspective view which shows the structure of the fluid mixer by the 6th Example of this invention. 図10の流体混合器の構造を示す部分平面図とその断面図。FIG. 11 is a partial plan view and a cross-sectional view showing the structure of the fluid mixer of FIG. 10. 本発明の第7の実施例による流体混合器の構造を示す分解斜視図。The disassembled perspective view which shows the structure of the fluid mixer by the 7th Example of this invention. 図12の流体混合器の構造を示す部分平面図とその断面図。The partial top view which shows the structure of the fluid mixer of FIG. 12, and its sectional drawing. 本発明の第8の実施例による流体混合器の構造を示す分解斜視図。The disassembled perspective view which shows the structure of the fluid mixer by the 8th Example of this invention. 本発明の他の実施例による流体混合器の混合部の構造を示す要部平面図。The principal part top view which shows the structure of the mixing part of the fluid mixer by the other Example of this invention. 本発明によるマイクロリアクタシステムの一実施例を示す分解斜視図。The disassembled perspective view which shows one Example of the micro reactor system by this invention.

符号の説明Explanation of symbols

1…上蓋、2…導入プレート、3…混合プレート、4…導入プレート、5…下蓋、61,62…流入孔、7…排出孔、8,9…流体、10,11…導入流路、12…混合流路、121…混合部、122…流路、14(141〜146)…混合部より上流の流路凸部、15,16…導入流路の流路凸部、18,19…導入流路の下流端部、20…混合部上流端部、21,23,25…連通プレート、22,24…連通孔、26…流体混合器、27…熱交換器、28…熱媒体流入孔、29…熱媒体流出孔、30…熱媒体、31…熱媒体流路。   DESCRIPTION OF SYMBOLS 1 ... Upper lid, 2 ... Introduction plate, 3 ... Mixing plate, 4 ... Introduction plate, 5 ... Lower lid, 61, 62 ... Inflow hole, 7 ... Discharge hole, 8, 9 ... Fluid, 10, 11 ... Introduction flow path, DESCRIPTION OF SYMBOLS 12 ... Mixing flow path, 121 ... Mixing part, 122 ... Flow path, 14 (141-146) ... Flow path convex part upstream from mixing part, 15, 16 ... Flow path convex part of introduction flow path, 18, 19 ... Downstream end of introduction flow path, 20 ... mixing section upstream end, 21, 23, 25 ... communication plate, 22, 24 ... communication hole, 26 ... fluid mixer, 27 ... heat exchanger, 28 ... heat medium inflow hole 29 ... Heat medium outlet hole, 30 ... Heat medium, 31 ... Heat medium flow path.

Claims (18)

複数の異種流体を導入する導入流路が形成された導入プレートと、複数の異種流体を受入れ混合する混合流路が形成された混合プレートと、導入プレートの前記導入流路から混合プレートの前記混合流路へ連通するように、それぞれが平板状の導入プレート混合プレート,および上下の蓋プレートの面同士を密着して重ね合わせて形成した連通部を備え、複数の前記異種流体を幅方向にそれぞれ複数列に分割し、幅方向に交互に混合プレートの前記混合流路へ流入させるように、前記連通部は前記混合流路の上流端部直後に対応する位置に形成されていることを特徴とする流体混合器。 An introduction plate formed with an introduction channel for introducing a plurality of different fluids, a mixing plate formed with a mixing channel for receiving and mixing a plurality of different fluids, and the mixing of the mixing plate from the introduction channel of the introduction plate A plurality of different kinds of fluids in the width direction, each having a communication portion formed by closely contacting surfaces of a flat plate-like introduction plate , a mixing plate , and upper and lower lid plates so as to communicate with the flow path; The communication portion is formed at a position corresponding to immediately after the upstream end of the mixing flow path so as to be divided into a plurality of rows and alternately flow into the mixing flow path of the mixing plate in the width direction. Fluid mixer. 請求項1において、前記混合流路の上流端部に、前記流体の進路を誘導する仕切壁を形成する複数列の流路凸部を備え、前記流路凸部の流れ方向長さを、前記連通部の流れ方向長さLの3倍以下に形成したことを特徴とする流体混合器。 The flow path length of the flow path convex portion is defined in claim 1, comprising a plurality of rows of flow path convex portions forming partition walls for guiding the fluid path at the upstream end portion of the mixing flow path. A fluid mixer characterized by being formed to be three times or less the flow direction length L of the communicating portion . 請求項2において、前記仕切壁は、前記混合プレートの混合流路より上流に幅方向に間隔を置いて並列に並べられた隣接した流路凸部の間に形成された構造物から成ることを特徴とする流体混合器。   3. The partition wall according to claim 2, wherein the partition wall is formed of a structure formed between adjacent flow path protrusions arranged in parallel at an interval in the width direction upstream from the mixing flow path of the mixing plate. A fluid mixer characterized. 請求項1において、前記導入プレートを2枚備え、前記導入プレートの導入流路の下流端部に間隔を置いて並列に並べられた複数の流路凸部を備え、前記混合流路の上流端部直後に対応する位置に2つの導入流路の下流端部の前記流路凸部が、混合プレートの両面から混合流路の幅方向に交互に重なるように、2枚の前記導入プレートと前記混合プレートを積層したことを特徴とする流体混合器。   2. The upstream end of the mixing flow path according to claim 1, comprising two introduction plates, comprising a plurality of flow path protrusions arranged in parallel at intervals at the downstream end of the introduction flow path of the introduction plate. The two inlet plates and the two of the inlet plates so that the channel convex portions at the downstream ends of the two inlet channels alternately overlap in the width direction of the mixing channel from the both sides of the mixing plate A fluid mixer, wherein mixing plates are stacked. 請求項1において、前記導入プレートを2枚備え、前記混合プレートと第1の導入プレートの間及び前記混合プレートと第2の導入プレートとの間にそれぞれ1枚の連通プレートを積層し、これら2枚の連通プレートに前記混合流路の上流端部直後に対応する位置に幅方向に間隔を置いて複数の連通孔を配置し、かつ2枚の連通プレートの複数の前記連通孔を、幅方向に互い違いとなるように配置したことを特徴とする流体混合器。   2. The two introduction plates according to claim 1, wherein two communication plates are laminated between the mixing plate and the first introduction plate and between the mixing plate and the second introduction plate, respectively. A plurality of communication holes are disposed in a position corresponding to immediately after the upstream end portion of the mixing flow path in a single communication plate, and spaced apart in the width direction, and the plurality of communication holes of the two communication plates are arranged in the width direction. A fluid mixer characterized by being arranged in a staggered manner. 請求項3において、前記導入プレートを2枚備え、前記導入プレートの導入流路の下流端部に間隔を置いて並列に並べられた複数の流路凸部と、混合プレートの混合流路より上流に並列に並べられた複数の流路凸部を備え、前記混合流路より上流の複数の流路凸部に、2つの導入流路下流端部の前記流路凸部が、混合プレートの両面から混合流路の幅方向に交互に重なることにより連通部を形成するように、2枚の前記導入プレートと前記混合プレートを積層したことを特徴とする流体混合器。 The upstream side of the mixing plate of the mixing plate according to claim 3, comprising two introduction plates, a plurality of projections arranged in parallel at intervals at the downstream end of the introduction channel of the introduction plate, and a mixing channel of the mixing plate A plurality of flow path protrusions arranged in parallel to each other, and the flow path protrusions at the downstream end portions of the two introduction flow paths are disposed on both surfaces of the mixing plate. A fluid mixer, wherein the two introduction plates and the mixing plate are stacked so as to form a communication portion by alternately overlapping in the width direction of the mixing flow path. 請求項3において、前記導入プレートを2枚備え、これらの導入プレートと前記混合プレートとの間にそれぞれ1枚づつ連通プレートを積層し、これらの連通プレートに、前記混合流路より上流に並列に並べられた複数の流路凸部の位置に対応して、混合プレートの両面から混合流路の幅方向に交互に対向するように複数の連通孔を間隔を置いて設置したことを特徴とする流体混合器。   4. The two introduction plates according to claim 3, wherein one communication plate is laminated between each of the introduction plates and the mixing plate, and the communication plates are arranged in parallel upstream of the mixing flow path. Corresponding to the positions of the plurality of flow path protrusions arranged side by side, a plurality of communication holes are installed at intervals so as to alternately face the width direction of the mixing flow path from both surfaces of the mixing plate. Fluid mixer. 請求項3において、前記導入プレートに2つの導入流路を備え、導入流路の下流端部に幅方向に間隔を置いて並列に並べられた複数の流路凸部と、混合プレートの混合流路より上流に幅方向に並列に並べられた複数の流路凸部とが形成され、前記導入プレートと前記混合プレートの間に設けられた連通プレートに、前記導入プレート及び前記混合プレートに並んだ前記流路凸部の位置に対応して穿設され、混合流路より上流の複数の前記流路凸部に、異なる2つの導入流路からの流体が幅方向に交互に流入するように配置された連通孔を備えることを特徴とする流体混合器。   The mixed flow of the mixing plate according to claim 3, wherein the introduction plate includes two introduction flow paths, and a plurality of flow path protrusions arranged in parallel at intervals in the width direction at the downstream end of the introduction flow path. A plurality of flow path convex portions arranged in parallel in the width direction upstream from the path, and arranged in the communication plate provided between the introduction plate and the mixing plate, arranged in the introduction plate and the mixing plate It is drilled corresponding to the position of the flow path convex part, and is arranged so that fluids from two different introduction flow paths alternately flow into the plurality of flow path convex parts upstream from the mixing flow path in the width direction. A fluid mixer comprising a communication hole formed. 請求項1において、前記導入プレートを2枚備え、前記混合プレートの混合流路より上流に幅方向に間隔を置いて並列に並べられた複数の流路凸部と、2枚の前記導入プレートのうち1枚の導入流路の下流端部と前記混合プレートの混合流路より上流の流路凸部との重なりによって幅方向に間隔を置いて形成される第1流体の連通部と、他の1枚の前記導入プレートと前記混合プレートとの間に積層され、かつ前記導入流路の下流と混合プレートの前記混合流路の上流端部直後の流路が連通するように幅方向に間隔を置いて並べて配置した複数の連通孔を有し、第2流体の連通部を形成する連通プレートとを備えたことを特徴とする流体混合器。   In Claim 1, two said introduction plates are provided, the some flow path convex part arranged in parallel at intervals in the width direction upstream from the mixing flow path of the said mixing plate, and two said introduction plates A first fluid communication portion formed at an interval in the width direction by overlapping a downstream end portion of one introduction flow channel and a flow channel convex portion upstream of the mixing flow channel of the mixing plate; Laminated between one introduction plate and the mixing plate, and spaced in the width direction so that the downstream of the introduction flow channel and the flow channel immediately after the upstream end of the mixing flow channel of the mixing plate communicate with each other. A fluid mixer comprising a plurality of communication holes arranged side by side and a communication plate forming a communication portion for the second fluid. 請求項1において、前記導入プレートに2つの導入流路を備え、前記混合プレートの混合流路より上流に間隔を置いて並列に並べた複数の流路凸部と、前記導入プレートと前記混合プレートの間に設けられた連通プレートに、前記導入プレートの1つの導入流路の下流と前記混合プレートの混合流路より上流の前記流路凸部とを連通する複数の第1の連通孔と、前記導入プレートの他の導入流路の下流と前記混合プレートの混合流路の上流端部直後の流路とを連通する複数の第2の連通孔とを備えたことを特徴とする流体混合器。   In Claim 1, The said introduction plate is equipped with two introduction flow paths, The several flow path convex part arranged in parallel with the space | interval upstream from the mixing flow path of the said mixing plate, The said introduction plate, and the said mixing plate A plurality of first communication holes communicating with the communication plate provided between the downstream of one introduction channel of the introduction plate and the projection of the channel upstream of the mixing channel of the mixing plate; A fluid mixer comprising: a plurality of second communication holes that communicate a downstream of the other introduction flow path of the introduction plate and a flow path immediately after the upstream end of the mixing flow path of the mixing plate. . 請求項9又は10において、前記混合プレートの各々の流路凸部の流路方向の長さを、複数の流路凸部に臨む連通部の流れ方向長さLの3倍以下に形成したことを特徴とする流体混合器。 The length in the flow direction of each flow path protrusion of each of the mixing plates in claim 9 or 10 is less than or equal to three times the flow direction length L of the communication portion facing the plurality of flow path protrusions. A fluid mixer characterized by the above. 請求項1、4又は5において、前記導入プレートの導入流路の下流から前記混合プレートの混合流路の上流端部直後に連通するように並列に形成された複数の連通部は、それらの幅が流路中心から外側に向かうにつれて増大し、最側端の連通部の幅は、その内側に隣接する連通部の幅の半分以下であることを特徴とする流体混合器。   In Claim 1, 4 or 5, the plurality of communication portions formed in parallel so as to communicate from the downstream of the introduction flow path of the introduction plate to immediately after the upstream end portion of the mixing flow path of the mixing plate have their widths Is increased from the center of the flow path toward the outside, and the width of the communication portion at the outermost end is equal to or less than half the width of the communication portion adjacent to the inside thereof. 請求項2において、前記混合流路より上流に並列に並んだ隣接した2つの仕切壁の間隔は、流路中心から外側に向かうにつれて増大し、最側端の仕切壁と側壁との間隔は、その内側に隣接する仕切壁間の間隔の半分以下であることを特徴とする流体混合器。   In claim 2, the interval between two adjacent partition walls arranged in parallel upstream from the mixing channel increases from the center of the channel toward the outside, and the interval between the partition wall and the side wall at the outermost end is A fluid mixer characterized in that it is not more than half of the interval between partition walls adjacent to the inside. 請求項3、6〜8のいずれかにおいて、前記混合流路より上流に並列に並んだ複数の前記流路凸部は、それらの幅が、流路中心から外側に向かうにつれて増大し、最側端の流路凸部の幅は、その内側に隣接する流路凸部の幅の半分以下であることを特徴とする流体混合器。   In any one of Claims 3 and 6-8, as for the said several flow path convex part arranged in parallel upstream from the said mixing flow path, those width | variety increases as it goes outside from a flow path center, and is the outermost side. The fluid mixer, wherein the width of the channel convex portion at the end is equal to or less than half the width of the channel convex portion adjacent to the inside thereof. 請求項9〜11のいずれかにおいて、前記混合流路より上流に並列に並んだ複数の前記流路凸部または前記混合流路の上流端部は、それらの幅が、流路中心から外側に向かうにつれて増大し、最側端の流路凸部または混合流路の上流端部の幅は、その内側に隣接する流路凸部または混合流路の上流端部の幅の半分以下であることを特徴とする流体混合器。   In any one of Claims 9-11, as for the upstream edge part of the said several flow path convex part or the said mixed flow path which were arranged in parallel upstream from the said mixed flow path, those widths are outside from the flow path center. The width of the convex portion at the outermost end or the upstream end portion of the mixing channel is not more than half the width of the convex portion of the adjacent channel or the upstream end portion of the mixing channel. A fluid mixer characterized by the above. 請求項1〜15のいずれかにおいて、前記混合流路は、混合部下流で流路を縮流し、その上流端部に比べ狭く形成したことを特徴とする流体混合器。   16. The fluid mixer according to any one of claims 1 to 15, wherein the mixing channel is formed by narrowing the channel downstream of the mixing unit and narrower than the upstream end thereof. 請求項1〜16のいずれかにおいて、前記混合流路又は縮流後の流路幅は1mm以上であり、かつ、この流路幅を、異種流体の一方の流体を多層化した分割数で除した値が1mm未満となるように形成したことを特徴とする流体混合器。   17. The mixing channel or the channel width after contraction is 1 mm or more, and the channel width is divided by the number of divisions in which one of the different fluids is multilayered. A fluid mixer, characterized in that the formed value is less than 1 mm. 請求項1〜17のいずれかにおいて、流体混合器の上面及び/又は下面に熱交換器又は熱源を接触して設置したことを特徴とするマイクロリアクタシステム。   18. The microreactor system according to any one of claims 1 to 17, wherein a heat exchanger or a heat source is placed in contact with an upper surface and / or a lower surface of the fluid mixer.
JP2004294594A 2004-10-07 2004-10-07 Fluid mixer and microreactor system Expired - Fee Related JP4403943B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004294594A JP4403943B2 (en) 2004-10-07 2004-10-07 Fluid mixer and microreactor system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004294594A JP4403943B2 (en) 2004-10-07 2004-10-07 Fluid mixer and microreactor system

Publications (2)

Publication Number Publication Date
JP2006102681A JP2006102681A (en) 2006-04-20
JP4403943B2 true JP4403943B2 (en) 2010-01-27

Family

ID=36372978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004294594A Expired - Fee Related JP4403943B2 (en) 2004-10-07 2004-10-07 Fluid mixer and microreactor system

Country Status (1)

Country Link
JP (1) JP4403943B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150100323A (en) * 2014-02-25 2015-09-02 한국세라믹기술원 A mixer of microfluidic

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4771151B2 (en) * 2006-04-28 2011-09-14 公立大学法人大阪府立大学 Micro mixer
JP2008014791A (en) * 2006-07-05 2008-01-24 Nipro Corp Liquid mixing device, liquid mixing method, and measuring method of very small amount of specimen
JP4677969B2 (en) 2006-10-06 2011-04-27 株式会社日立プラントテクノロジー Microreactor
KR100898065B1 (en) 2007-10-19 2009-05-15 송상섭 Micro reactor
KR101127051B1 (en) 2007-10-29 2012-03-23 주식회사 엘지화학 Substrate and micro reactor comprising the same
KR101113727B1 (en) 2008-02-18 2012-02-27 주식회사 올메디쿠스 Vertical lamination micromixer
JP2009233514A (en) * 2008-03-26 2009-10-15 Hitachi Plant Technologies Ltd Microchemical reaction device and microchemical reaction system
KR101176175B1 (en) 2010-07-30 2013-05-09 광주과학기술원 Micro mixer and method for fabricating thereof
JPWO2012043557A1 (en) * 2010-09-30 2014-02-24 Dic株式会社 Micro mixer
JP5846412B2 (en) * 2010-09-30 2016-01-20 Dic株式会社 Method for producing pigment fine particles having anthraquinone structure and color filter
JP5712610B2 (en) * 2010-12-24 2015-05-07 Dic株式会社 Microreactor and mixed fluid manufacturing method
JP2012166172A (en) * 2011-02-16 2012-09-06 Dic Corp Fluid mixing device
JP2012170898A (en) * 2011-02-22 2012-09-10 Dic Corp Fluid mixing apparatus
JP5749987B2 (en) 2011-06-22 2015-07-15 株式会社神戸製鋼所 Liquid mixing method and apparatus
JP6006969B2 (en) * 2012-04-24 2016-10-12 東芝機械株式会社 Micromixer, micromixer element and manufacturing method thereof
EP2767831A1 (en) * 2013-02-19 2014-08-20 DST Diagnostische Systeme & Technologien GmbH New PoC test system and method
JP2022159960A (en) * 2021-04-05 2022-10-18 Ckd株式会社 Micro-mixer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150100323A (en) * 2014-02-25 2015-09-02 한국세라믹기술원 A mixer of microfluidic

Also Published As

Publication number Publication date
JP2006102681A (en) 2006-04-20

Similar Documents

Publication Publication Date Title
JP4403943B2 (en) Fluid mixer and microreactor system
JP6145851B2 (en) Multi-channel microreactor design
EP1997553B1 (en) Fluid mixer and method for forming mixed fluid
JP4677969B2 (en) Microreactor
US7641865B2 (en) Flow control through plural, parallel connecting channels to/from a manifold
JP5604038B2 (en) Reaction apparatus and reaction plant
JP5940970B2 (en) Laminate heat exchanger
US20120082601A1 (en) Honeycomb reactor or heat exchanger mixer
KR100666500B1 (en) Serpentine laminating chaotic micromixer
JP2005512760A (en) Apparatus for mixing and reacting at least two fluids
CA2650499A1 (en) Flow distribution channels to control flow in process channels
JP4257795B2 (en) Microreactor
KR100658361B1 (en) Micro channel reactor
CN211886766U (en) Rotational flow type micro-reaction channel, substrate, reactor and system
JP2004016870A (en) Micro-reactor and chemical reaction method using the same
JP3810778B2 (en) Flat plate static mixer
CN116550245A (en) Double-layer composite micro-reaction channel plate containing three-dimensional ladder channel and micro-channel reactor
JP4298671B2 (en) Micro device
KR101127051B1 (en) Substrate and micro reactor comprising the same
EP2506961B1 (en) Honeycomb body u-bend mixers
JP2012120962A (en) Flow channel structure
JP2005131503A (en) Extension flow passage module and fluid mixer
JP2009233514A (en) Microchemical reaction device and microchemical reaction system
WO2002047808A1 (en) Heat exchanger/chemical reactor
JP2006167527A (en) Micro-channel structure body, microchip using it, micro-reactor and counter flow contact method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070122

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070122

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20081127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091013

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091026

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees