JP4687238B2 - Micro channel structure - Google Patents

Micro channel structure Download PDF

Info

Publication number
JP4687238B2
JP4687238B2 JP2005145712A JP2005145712A JP4687238B2 JP 4687238 B2 JP4687238 B2 JP 4687238B2 JP 2005145712 A JP2005145712 A JP 2005145712A JP 2005145712 A JP2005145712 A JP 2005145712A JP 4687238 B2 JP4687238 B2 JP 4687238B2
Authority
JP
Japan
Prior art keywords
microchannel
fluid
channel
partition wall
laminar flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005145712A
Other languages
Japanese (ja)
Other versions
JP2006320829A (en
Inventor
朋裕 大川
達 二見
晃治 片山
恵一郎 西澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2005145712A priority Critical patent/JP4687238B2/en
Publication of JP2006320829A publication Critical patent/JP2006320829A/en
Application granted granted Critical
Publication of JP4687238B2 publication Critical patent/JP4687238B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、化学反応や液滴生成、分析などを行なう微小流路を有する微小流路構造体において、微小流路に導入した流体の化学反応および生成物の抽出、分離を行なうに好適な微小流路構造体に関する。   The present invention relates to a microchannel structure having a microchannel that performs chemical reaction, droplet generation, analysis, etc., and is suitable for performing chemical reaction of a fluid introduced into the microchannel and extraction and separation of products. The present invention relates to a channel structure.

近年、数cm角のガラス基板上に長さが数cm程度で、幅と深さがサブμmから数百μmの微小流路を有する微小流路構造体を用い、流体を微小流路へ導入することにより化学反応を行う研究が注目されている。このような微小流路では、微小空間での短い分子間距離および大きな比界面積の効果による分子のすみやかな拡散により、特別な攪拌操作を行なわなくとも効率の良い化学反応を行なうことができることや、反応によって生じた目的化合物が反応相から抽出相へすばやく抽出、分離されることによって、引き続いて起こる副反応が抑えられることが示唆されている(例えば、非特許文献1参照)。ここで微小流路とは一般に流路の幅が50〜300μm、流路の深さが10〜100μmの大きさの流路を意味する。   In recent years, a fluid is introduced into a microchannel using a microchannel structure having a microchannel having a length of about several centimeters on a glass substrate of several cm square and a width and depth of sub-μm to several hundred μm. Research that conducts chemical reactions is attracting attention. In such a microchannel, the rapid diffusion of molecules due to the effect of a short intermolecular distance and a large specific interfacial area in a microspace enables efficient chemical reaction without special stirring operation. It has been suggested that the side reaction that occurs subsequently is suppressed by rapidly extracting and separating the target compound produced by the reaction from the reaction phase to the extraction phase (see, for example, Non-Patent Document 1). Here, the microchannel generally means a channel having a channel width of 50 to 300 μm and a channel depth of 10 to 100 μm.

上記の例等では、図1に示すようにY字状の微小流路に原材料を溶かした水相(1)と有機相(2)を導入し、Y字の合流部分で形成される有機相と水相の層流界面(3)で反応を起こしている。一般的に、マイクロスケールの流路内ではレイノルズ数が1より小さいケースがほとんどであり、よほど流速を大きくしない限りは図1に示すような層流の状態となる。また、拡散時間は微小流路の幅(9)の2乗に比例するので、微小流路の幅(9)を小さくするほど反応液を能動的に混合しなくとも分子の拡散によって混合が進み、反応や抽出が起こりやすくなる。   In the above example, as shown in FIG. 1, an organic phase (1) and an organic phase (2) in which raw materials are dissolved are introduced into a Y-shaped microchannel, and an organic phase formed by a Y-shaped merged portion. Reaction occurs at the laminar interface (3) between the water phase and the water phase. In general, there are almost all cases where the Reynolds number is smaller than 1 in a micro-scale flow path, and a laminar flow state as shown in FIG. 1 is obtained unless the flow velocity is significantly increased. Moreover, since the diffusion time is proportional to the square of the width (9) of the microchannel, the smaller the microchannel width (9), the more the mixing proceeds by molecular diffusion without actively mixing the reaction solution. , Reaction and extraction are likely to occur.

また、図2に示すように、微小流路の流体排出口(12)をY字にしておくことで、水相と有機相を分離することができるということが一般的に言われている。このように流体排出口で導入した流体を完全に分離して排出することは、微小流路内で流体が接触することによって生じる反応や抽出を微小流路の分岐部(4)において完全に停止させたり、一度微小流路に導入した流体を再利用する上でも非常に重要な機能である。   In addition, as shown in FIG. 2, it is generally said that the water phase and the organic phase can be separated by making the fluid outlet (12) of the microchannel into a Y shape. In this way, completely separating and discharging the fluid introduced at the fluid discharge port completely stops the reaction and extraction caused by the contact of the fluid in the microchannel at the branch (4) of the microchannel. This is a very important function for reusing the fluid once introduced into the microchannel.

しかし実際には、層流界面の位置は不安定であり変動する。その第1の要因は、図3及び図4に示すように流体を送液するポンプなどに起因する送液速度の時間的変動等により層流界面の位置が変動することである。この現象を円管内層流における流体の内部摩擦にもとづく圧力損失を表す理論式であるハーゲン−ポアズイユの式を用いて説明する。図7に示すように、直径d[m](6)の水平円管内(7)を流体が線速度u[m/s](5)で層流を形成して流れている場合、両方の円管端面(8)に作用する圧力P1とP2の差である圧力損失ΔP[Pa]は、
ΔP=P2−P1=32μLu/d (式1)
となる。これをハーゲン−ポアズイユの式という。ここで、μ[Pa・s]は粘性係数、L[m]は流路長(10)である。今、図8に示すように微小流路に2つの流体A(13)と流体B(14)が層流となって層流界面を形成して流れている場合、それぞれの流体に(式1)が成り立ち、流体A(13)と流体B(14)の圧力損失ΔPおよびΔPは、それぞれ(式2)、(式3)で示される。
In practice, however, the position of the laminar interface is unstable and fluctuates. The first factor is that the position of the laminar flow interface fluctuates due to temporal fluctuations in the liquid feeding speed caused by a pump or the like that feeds fluid as shown in FIGS. This phenomenon will be described using the Hagen-Poiseuille equation, which is a theoretical equation representing the pressure loss based on the internal friction of the fluid in the laminar flow in the circular pipe. As shown in FIG. 7, when a fluid flows in a horizontal circular pipe (7) having a diameter d [m] (6) in a laminar flow at a linear velocity u [m / s] (5), The pressure loss ΔP [Pa], which is the difference between the pressures P1 and P2 acting on the circular pipe end face (8), is
ΔP = P2−P1 = 32 μLu / d 2 (Formula 1)
It becomes. This is called the Hagen-Poiseuille equation. Here, μ [Pa · s] is a viscosity coefficient, and L [m] is a flow path length (10). As shown in FIG. 8, when two fluids A (13) and B (14) flow in a laminar flow and form a laminar flow interface in the microchannel, each fluid is expressed by (formula 1 ), And the pressure losses ΔP A and ΔP B of the fluid A (13) and the fluid B (14) are expressed by (Expression 2) and (Expression 3), respectively.

ΔP=32μLu/d (式2)
ΔP=32μLu/d (式3)
ここで、μ、u、dは、それぞれ流体A(13)の粘性係数、線速度(5)、流体幅(33)であり、μ、u、dは、それぞれ流体B(14)の粘性係数、線速度(5)、流体幅(33)である。ここで、流体Aと流体Bは、流路幅D[m](22)の同一微小流路内を流れているので、ΔPとΔPはつりあっており(式4)が成立している。
ΔP A = 32μ A Lu A / d A 2 ( Equation 2)
ΔP B = 32μ B Lu B / d B 2 ( Equation 3)
Here, μ A , u A , and d A are the viscosity coefficient, linear velocity (5), and fluid width (33) of fluid A (13), respectively, and μ B , u B , and d B are fluid B (14) viscosity coefficient, linear velocity (5), fluid width (33). Here, since the fluid A and the fluid B are flowing in the same minute flow channel having the flow channel width D [m] (22), ΔP A and ΔP B are balanced and Expression 4 is established. .

μ/d =μ/d (式4)
さらに、送液速度v[μL/分]と線速度u[m/s]の関係は、流体の流れの方向に垂直な断面積をS[m]とすると、
u = 1.67×10−11・v/S (式5)
の関係にあり、この関係を(式4)に代入すれば
μ/S =μ/S (式6)
とな。ここでv、vは、それぞれ流体A、流体Bの送液速度、S、Sはそれぞれ流体A、流体Bの流れの方向に垂直な断面積である。さらに、断面積S[m]は、流体幅d[m]の2乗に比例する事から、
μ/d =μ/d (式7)
が成立し、流体Aと流体Bは、流路幅D[m](22)の同一微小流路内を流れているので、
D=d+d (式8)
が成立する。
μ A u A / d A 2 = μ B u B / d B 2 ( Equation 4)
Furthermore, the relationship between the liquid feeding speed v [μL / min] and the linear velocity u [m / s] is as follows: S [m 2 ] is a cross-sectional area perpendicular to the fluid flow direction.
u = 1.67 × 10 −11 · v / S (Formula 5)
There the relationship, this relationship by substituting the equation (4) μ A v A / S A d A 2 = μ B v B / S B d B 2 ( Formula 6)
And. Here, v A and v B are the feeding speeds of fluid A and fluid B, respectively, and S A and S B are cross-sectional areas perpendicular to the flow directions of fluid A and fluid B, respectively. Furthermore, since the cross-sectional area S [m 2 ] is proportional to the square of the fluid width d [m],
μ A v A / d A 4 = μ B v B / d B 4 ( Equation 7)
Since the fluid A and the fluid B are flowing in the same minute channel having the channel width D [m] (22),
D = d A + d B (Formula 8)
Is established.

ここで、流体A(13)と流体B(14)の粘性は変化しないとする。今、流体A(13)の送液速度が変化して大きくなると、vが大きくなると同時にdが大きくなり(式7)のバランスを保とうとする。dが大きくなると流路幅D(22)は一定であるためdが小さくなると同時にvが小さくなり(式7)のバランスが保たれる。従って、流体を送液するポンプなどに起因する送液速度の時間的変動等により層流界面の位置が変動する。また、上記の例では、流体A(13)と流体B(14)の粘性は変化しないと仮定したが、化学反応や抽出の進行にしたがって、流体A(13)と流体B(14)の粘性が変化した場合も、(式7)のバランスを保とうとするので同様にd、dが変化して層流界面の位置が変動する。 Here, it is assumed that the viscosity of the fluid A (13) and the fluid B (14) does not change. Now, when the feed rate of the fluid A (13) becomes larger changes, v A is increased at the same time d A tries to keep the balance of greater than (Equation 7). As d A increases, the flow path width D (22) is constant, so that d B decreases and v B decreases as well as the balance of (Equation 7) is maintained. Therefore, the position of the laminar flow interface varies due to a temporal variation in the liquid feeding speed caused by a pump or the like that feeds fluid. Further, in the above example, it is assumed that the viscosity of the fluid A (13) and the fluid B (14) does not change, but the viscosity of the fluid A (13) and the fluid B (14) according to the progress of the chemical reaction and extraction. Since the balance of (Equation 7) is tried to be maintained when d is changed, d A and d B are similarly changed to change the position of the laminar flow interface.

層流界面の位置が不安定であり変動する第2の要因は、図6に示すように微小流路内壁と送液する流体との親和性の違いによる流体の回り込み(15)が生じることにある。例えば、図4に示すようにガラス製の微小流路の中に水相(1)と有機相(2)を送液した場合、水相(1)は有機相(2)に比べてガラスの親和性が高いために、図4に示すように、水相(1)は次第に有機相(2)の外側を取り囲むように流路内壁から回り込んで流れる。この状態のまま微小流路の分岐部で分岐すると、有機相(2)に水相(1)が、水相(1)に有機相(2)が混入する。   The second factor that the position of the laminar flow interface is unstable and fluctuates is that, as shown in FIG. 6, fluid wraparound (15) occurs due to the difference in affinity between the inner wall of the microchannel and the fluid to be fed. is there. For example, as shown in FIG. 4, when the aqueous phase (1) and the organic phase (2) are fed into a glass microchannel, the aqueous phase (1) is made of glass compared to the organic phase (2). Since the affinity is high, as shown in FIG. 4, the aqueous phase (1) gradually flows around the inner wall of the flow path so as to surround the outside of the organic phase (2). If it branches in the branch part of a microchannel with this state, an aqueous phase (1) will mix in an organic phase (2), and an organic phase (2) will mix in an aqueous phase (1).

以上のような要因のため、微小流路内で図2に示すような層流界面(3)を安定して形成することは容易ではない。特に微小流路内での反応時間や抽出時間を長くする目的で、微小流路内での流体の滞在時間を長くするために低い流速で送液する場合は、送液速度変動や流体の回り込みが生じやすい。   Due to the above factors, it is not easy to stably form the laminar flow interface (3) as shown in FIG. In particular, in order to lengthen the reaction time and extraction time in the microchannel, when feeding at a low flow rate in order to lengthen the residence time of the fluid in the microchannel, fluctuations in the feeding speed or wraparound of the fluid Is likely to occur.

すなわち、流体を送液するポンプなどに起因する送液速度の時間的変動等により層流界面の位置が変動にすることで層流を維持できなくなること、かつ、微小流路内壁と送液する流体との親和性の違いによる流体の回り込みが生じることにより、微小流路の流体排出口から排出される各々の流体に他の流体が混入してしまい、微小流路内で流体が接触することによって生じる反応や抽出を微小流路の分岐部で完全に停止させることが不可能であり、また、一度微小流路に導入した流体を再利用するには排出口から排出された各々の流体に混入した流体を特別に分離する必要があり、流体の再利用を容易に実現することはできなかった。   That is, the laminar flow cannot be maintained by changing the position of the laminar flow interface due to temporal fluctuations in the liquid feeding speed caused by a pump for feeding fluid, etc., and the liquid is fed to the inner wall of the microchannel. When fluid wraparound occurs due to the difference in affinity with the fluid, other fluids are mixed into each fluid discharged from the fluid outlet of the microchannel, and the fluid contacts in the microchannel. It is impossible to completely stop the reaction and extraction caused by the flow at the branch portion of the microchannel, and to reuse the fluid once introduced into the microchannel, each fluid discharged from the discharge port It was necessary to separate the mixed fluid, and it was not possible to easily recycle the fluid.

微小流路に導入された流体間の層流界面の位置の変動を抑えるために、例えば図9に示すように、微小流路の底部(18)に流路深さ(17)の約20%程度以下のガイド条(16)を有する微小流路構造が提案されている(例えば、特許文献1参照)。このようなガイド条(16)を微小流路の底部(18)に形成することで、図3(a)に示す層流界面(3)の位置の変動をある程度抑えることできるが、図3(b)に示す微小流路内壁と送液する流体との親和性の違いによる流体の回り込み(15)を十分に抑えることはできない。
また、微小流路に導入された流体間の層流界面を安定化させるために、例えば図13〜図16に示すように、導入された流体間に形成される境界に沿って、導入された流体が互いに混入しないための、微小流路深さに実質的に等しい高さの1以上の仕切り壁を有する微小流路構造が提案されている(例えば特許文献2参照)。このような仕切り壁を微小流路内に形成することで、図3に示す層流界面(3)の位置の変動をある程度押さえること、また図4に示す微小流路内壁と送液する流体との親和性の違いによる流体の回り込み(15)をある程度抑えることはできる。しかしながら、図21に示すように、層流界面の変動幅が一定の値を超えると、一方の流体がもう一方の流体側へ仕切り壁の隙間から液滴の状態で混入し(37)、またこの液滴が生成される過程において生じる層流界面付近の圧力変動により、層流界面の位置がさらに大きく変動し、一定時間層流が維持できなくなるという問題があった。
以上のことから、微小流路の流体排出口から、各々の流体を他の流体が混入することなく排出することは非常に困難であり、ガイド条を形成した微小流路や、仕切り壁を形成した微小流路のさらなる改善が求められていた。
In order to suppress fluctuations in the position of the laminar flow interface between the fluids introduced into the microchannel, for example, as shown in FIG. 9, about 20% of the channel depth (17) at the bottom (18) of the microchannel. A microchannel structure having a guide strip (16) of less than or equal to the degree has been proposed (see, for example, Patent Document 1). By forming such a guide strip (16) on the bottom (18) of the microchannel, the variation in the position of the laminar flow interface (3) shown in FIG. 3 (a) can be suppressed to some extent. The flow of the fluid (15) due to the difference in affinity between the inner wall of the microchannel and the fluid to be fed shown in b) cannot be sufficiently suppressed.
Moreover, in order to stabilize the laminar flow interface between the fluids introduced into the microchannel, the fluid was introduced along the boundary formed between the introduced fluids, for example, as shown in FIGS. There has been proposed a microchannel structure having one or more partition walls having a height substantially equal to the microchannel depth so that fluids do not mix with each other (see, for example, Patent Document 2). By forming such a partition wall in the microchannel, the variation in the position of the laminar flow interface (3) shown in FIG. 3 can be suppressed to some extent, and the inner wall of the microchannel shown in FIG. The flow of the fluid (15) due to the difference in the affinity can be suppressed to some extent. However, as shown in FIG. 21, when the fluctuation width of the laminar flow interface exceeds a certain value, one fluid enters the other fluid side in the form of droplets from the gap of the partition wall (37). Due to the pressure fluctuation in the vicinity of the laminar flow interface generated in the process of generating the droplets, the position of the laminar flow interface fluctuates further, and there is a problem that the laminar flow cannot be maintained for a certain time.
From the above, it is very difficult to discharge each fluid from the fluid outlet of the microchannel without mixing other fluids, forming a microchannel with a guide strip and a partition wall. There was a need for further improvements in the microchannels.

H.Hisamoto et.al.(H.ひさもと ら著)「Fast and high conversion phase−transfer synthesis exploiting the liquid−liquid interface formed in a microchannel chip」, Chem.Commun., 2001年発行, 2662−2663頁H. Hisamoto et. al. (H. Hisamoto et al.) “Fast and high conversion phase-transfer synthesis exploitation the liquid-liquid interface formed in a microchannel chip”, Chem. Commun. , 2001, 2662-2663. 特開2002−1102号公報(第3−4頁、第1図)JP 2002-1102 A (page 3-4, FIG. 1) 特開2004−348453号公報(第35頁、第6図)JP 2004-348453 A (page 35, FIG. 6)

本発明の目的は、かかる従来の実状に鑑みて提案されたものであり、2以上の流体を微小流路に導入し、微小流路内で流体の進行方向に互いの流体境界で接触させて反応や抽出を実施し、各々の流体が実質的に他の流体の混入なしに別々に所定の排出口より排出することができる微小流路構造体を提供することにある。   The object of the present invention has been proposed in view of such a conventional situation, and two or more fluids are introduced into a microchannel, and are brought into contact with each other in the fluid traveling direction in the microchannel. An object of the present invention is to provide a micro flow channel structure that performs reaction and extraction, and allows each fluid to be separately discharged from a predetermined outlet without substantially mixing other fluids.

本発明は上記課題を解決するものとして、流体を導入する2以上の導入口及びそれらに連通する導入流路と、前記導入流路が合流する合流部と連通しかつ導入された流体を流す微小流路と、前記微小流路に連通しかつ導入される流体を分離する分岐部を有した2以上の排出流路及びそれらに連通する排出口と、を有した微小流路構造体であって、前記微小流路には、導入された2以上の流体により形成される層流界面の位置又はその近傍に前記微小流路の高さと実質的に等しい高さの不連続な仕切り壁が設けられているとともに、前記仕切り壁の両側の位置に連続した凸形状のガイド条が微小流路の底面に設けられている微小流路構造体を用いることにより、上記の従来技術による課題を解決することができ、遂に本発明を完成するに至った。以下、本発明を詳細に説明する。   In order to solve the above-described problems, the present invention provides two or more inlets for introducing a fluid, an introduction channel communicating with the inlet, a merging portion where the introduction channel merges, and a minute channel for flowing the introduced fluid. A microchannel structure having a channel, two or more discharge channels having a branch portion that communicates with the microchannel and separates a fluid to be introduced, and a discharge port that communicates with the two or more discharge channels. The microchannel is provided with a discontinuous partition wall having a height substantially equal to the height of the microchannel at or near a laminar flow interface formed by two or more introduced fluids. In addition, by using a micro-channel structure body in which convex guide strips that are continuous at positions on both sides of the partition wall are provided on the bottom surface of the micro-channel, the above-described problems due to the prior art are solved. Finally, the present invention was completedHereinafter, the present invention will be described in detail.

前記したように、微小流路の底部にガイド条を形成することによって微小流路に導入された流体間の層流界面の位置の変動をある程度抑えることができるが、微小流路内壁と送液する流体との親和性の違いによる流体の回り込みを押さえることは出来なかった。一方、導入された2以上の流体により形成される境界に沿って仕切り壁を形成することによって、微小流路内壁と送液する流体との親和性の違いによる流体の回り込みはある程度抑えることができるが、一定以上の層流界面の位置の変動に対しては層流の維持ができなくなるものであった。   As described above, by forming a guide strip at the bottom of the microchannel, fluctuations in the position of the laminar flow interface between the fluids introduced into the microchannel can be suppressed to some extent. It was not possible to suppress the wraparound of the fluid due to the difference in affinity with the fluid. On the other hand, by forming the partition wall along the boundary formed by two or more introduced fluids, the flow of fluid due to the difference in affinity between the inner wall of the microchannel and the fluid to be fed can be suppressed to some extent. However, the laminar flow cannot be maintained when the position of the laminar flow interface exceeds a certain level.

このことから、導入された2以上の流体により形成される層流界面の位置又はその近傍に設けられた仕切り壁と、微小流路の底面に設けられたガイド条の両方を形成させることによって、層流界面を安定に維持し、かつ流路内壁と送液する流体との親和性の違いによる流体の回り込みを防止して、さらに層流界面の大きな変動による仕切り壁の隙間からの液滴の発生を抑えることができ、微小流路の分岐部において、各々の流体に他の流体が混入することなく分離することがさらに効果的に達成できるのである。   From this, by forming both the partition wall provided at or near the position of the laminar flow interface formed by two or more introduced fluids and the guide strip provided on the bottom surface of the microchannel, Maintains a stable laminar flow interface, prevents the fluid from flowing in due to the difference in affinity between the flow path inner wall and the fluid to be pumped, and drops droplets from the gap in the partition wall due to large fluctuations in the laminar flow interface. Occurrence can be suppressed, and separation can be achieved more effectively without mixing other fluids into each fluid at the branch portion of the micro flow channel.

そこで本発明の微小流路構造体は、流体を導入する2以上の導入口及びそれらに連通する導入流路と、前記導入流路が合流する合流部と連通しかつ導入された流体を流す微小流路と、前記微小流路に連通しかつ導入される流体を分離する分岐部を有した2以上の排出流路及びそれらに連通する排出口と、を有した微小流路構造体であって、前記微小流路には、導入された2以上の流体により形成される層流界面の位置又はその近傍に前記微小流路の高さと実質的に等しい高さの不連続な仕切り壁が設けられているとともに、前記仕切り壁の両側の位置に連続した凸形状のガイド条が微小流路の底面に設けられているものである。   Therefore, the micro flow channel structure according to the present invention is a micro flow channel that communicates with two or more inlets for introducing a fluid, an introduction flow channel that communicates with them, and a merging portion where the introduction flow channel joins and flows the introduced fluid. A microchannel structure having a channel, two or more discharge channels having a branch portion that communicates with the microchannel and separates a fluid to be introduced, and a discharge port that communicates with the two or more discharge channels. The microchannel is provided with a discontinuous partition wall having a height substantially equal to the height of the microchannel at or near a laminar flow interface formed by two or more introduced fluids. In addition, convex guide strips continuous at positions on both sides of the partition wall are provided on the bottom surface of the microchannel.

ここで、導入された流体が互いに混入しないとは、各々の流体への他の流体の混入が実質的にないことを意味し、より具体的には混入率が10%未満である。   Here, that the introduced fluids do not mix with each other means that there is substantially no mixing of other fluids in each fluid, and more specifically, the mixing rate is less than 10%.

また、上記の微小流路とは、一般的に幅500μm以下、深さ300μm以下のサイズの流路である。また、導入流路と排出流路の幅と深さは特に制限はないが、微小流路と同様の幅と深さであっても良い。また、導入口と排出口の大きさも特に制限はないが、一般的に直径数0.1〜数mm程度の大きさであれば良い。   Moreover, said microchannel is a channel generally having a width of 500 μm or less and a depth of 300 μm or less. The width and depth of the introduction channel and the discharge channel are not particularly limited, but may be the same width and depth as the microchannel. The sizes of the introduction port and the discharge port are not particularly limited, but may generally be about 0.1 to several mm in diameter.

本発明の微小流路構造体は、水、有機溶媒等の媒体に目的とする反応物、あるいは抽出すべき物質を溶解した2以上の流体を、微小流路構造体に形成されている微小流路に導入し、導入された流体が微小流路空間内で層流を維持したまま送液することで、導入された流体間で接触させ化学反応や抽出処理が行われ、かつ、微小流路より排出流路へ送液させるにあたっても、導入された流体の各々が、所定の排出流路へ送液できる構造としたものである。   The microchannel structure according to the present invention is a microfluidic structure in which two or more fluids in which a target reactant or a substance to be extracted is dissolved in a medium such as water or an organic solvent are formed in the microchannel structure. Introduced into the channel, the introduced fluid is sent while maintaining a laminar flow in the microchannel space, so that the introduced fluid is brought into contact with each other for chemical reaction and extraction treatment, and the microchannel When the liquid is further sent to the discharge flow path, each of the introduced fluids can be supplied to the predetermined discharge flow path.

このため、本発明の微小流路構造体は、流体を導入するための2以上の導入口及びそれらに連通する導入流路と、この導入流路が合流する部分(合流部)に連通しかつ導入された流体を流すための微小流路と、微小流路に連通しかつ所定の流体を分離する分岐部を有した2以上の排出流路及びそれらに連通する排出口と、を有した構造としている。さらに、導入された流体の各々が、所定の排出流路へ送液できるように、微小流路には、導入された2以上の流体により形成される層流界面の位置又はその近傍に前記微小流路の高さと実質的に等しい高さの不連続な仕切り壁が設けられているとともに、前記仕切り壁の両側の位置に連続した凸形状のガイド条が微小流路の底面に設けられているのである。   For this reason, the microchannel structure of the present invention communicates with two or more inlets for introducing a fluid, an inlet channel communicating with them, and a portion (merging portion) where the inlet channel merges, and A structure having a micro flow channel for flowing an introduced fluid, two or more discharge flow channels having a branch portion that communicates with the micro flow channel and separates a predetermined fluid, and a discharge port that communicates with them It is said. Further, in order to allow each of the introduced fluids to be fed to a predetermined discharge channel, the microchannel has the microchannel at or near the position of the laminar interface formed by the two or more fluids introduced. Discontinuous partition walls having a height substantially equal to the height of the flow path are provided, and convex guide strips continuous at positions on both sides of the partition wall are provided on the bottom surface of the micro flow path. It is.

このガイド条は、導入された流体が圧力変動により層流界面の位置が移動するのを極力抑えるために設けられたものであるが、その形成される位置は図22に示すように、導入された各流体が合流し、層流界面を形成する箇所のみであってもよいが、図23に示すように層流界面を形成しない箇所、すなわち導入口及びそれらに連通する導入流路から微小流路を経由して、分岐部から排出流路及び排出口まで連通して存在していてもよい。またその高さは特に制限はないが、層流界面の位置が移動するのを抑える効果が得られるだけの高さであればよく、好ましくは、流路深さの20%程度とするのがよい。   This guide strip is provided in order to suppress the movement of the laminar flow interface position due to the pressure fluctuation of the introduced fluid as much as possible, but the formed position is introduced as shown in FIG. However, as shown in FIG. 23, only a part where the fluids merge and form a laminar flow interface may be used. However, as shown in FIG. It may exist through the path from the branch part to the discharge flow path and the discharge port. The height is not particularly limited, but may be high enough to obtain an effect of suppressing the movement of the position of the laminar flow interface, and preferably about 20% of the flow path depth. Good.

またガイド条は、仕切り壁の両側に流体進行方向に沿って連続して設けられるが、その形成される数としては、仕切り壁の両側に1ずつ設けられていてもよいが、仕切り壁の両側にあるいは片方に2以上のガイド条が互いに交差することなく実質的に平行して形成されていてもよく、さらに導入される流体の層流界面をより安定化させるために仕切り壁に対して対称の位置となるよう同数ずつ設けるとよい。その位置としては微小流路の側壁と前記仕切り壁との中心線の位置又はその近傍に設けられることが好ましい。   The guide strips are continuously provided along the fluid traveling direction on both sides of the partition wall. As the number of guide strips, one guide strip may be provided on both sides of the partition wall. Two or more guide strips may be formed substantially parallel to each other without crossing each other, and symmetrical with respect to the partition wall in order to further stabilize the laminar flow interface of the introduced fluid The same number may be provided so that the positions of The position is preferably provided at or near the center line between the side wall of the microchannel and the partition wall.

さらに図24および図25に示すように、微小流路に不連続な仕切り壁(22)が3以上設けられる場合には、ガイド条(16)が、微小流路の側壁と仕切り壁との中心線の位置もしくはその近傍、及び、仕切り壁の間の中心線の位置もしくはその近傍に設けられることが好ましい。   Further, as shown in FIGS. 24 and 25, when three or more discontinuous partition walls (22) are provided in the microchannel, the guide strip (16) is located at the center between the side wall of the microchannel and the partition wall. It is preferable to be provided at the position of the line or the vicinity thereof, and the position of the center line between the partition walls or the vicinity thereof.

以下、本発明の微小流路構造体について図面を参照しながらさらに詳しく説明する。   Hereinafter, the fine channel structure of the present invention will be described in more detail with reference to the drawings.

図13に示すように、微小流路(19)の内部において、2以上の流体境界(20)又はその近傍に、流体の進行方向(27)に沿って、微小流路深さ(17)以下の高さの流体進行方向(27)に対して不連続な仕切り壁(22)を複数形成することで、仕切り壁(22)のない所では流体を接触させ、また仕切り壁(22)のある所では流体を分離させることができ、この不連続な仕切り壁(22)を微小流路の流体進行方向(27)に沿って複数形成しておけば、流体の接触と分離が繰り返される。このようにすることで、流体を送液するポンプなどに起因する送液速度の時間的変動等による層流界面の位置の変動を抑制し、かつ、微小流路内壁と送液する流体との親和性の違いによる流体の回り込み(15)を防止することができる。   As shown in FIG. 13, within the microchannel (19), the microchannel depth (17) or less along the fluid traveling direction (27) at or near the two or more fluid boundaries (20). By forming a plurality of discontinuous partition walls (22) with respect to the fluid traveling direction (27) of the height of the fluid, the fluid is brought into contact with the partition wall (22) and there is a partition wall (22). In this case, the fluid can be separated, and if a plurality of the discontinuous partition walls (22) are formed along the fluid traveling direction (27) of the microchannel, contact and separation of the fluid are repeated. By doing so, the fluctuation of the position of the laminar flow interface due to the temporal fluctuation of the liquid feeding speed caused by the pump that feeds the fluid is suppressed, and the inner wall of the microchannel and the fluid to be fed Fluid wraparound (15) due to the difference in affinity can be prevented.

しかし層流界面の位置の変動幅がある一定量を超えると、図8に示すように隣り合う仕切り壁の間からはみ出した層流界面が仕切り壁によって剪断され、仕切り壁の隙間から液滴となって他の流体に混入する。さらに、液滴が生成する際に生じる圧力変動により、層流界面の位置が元に戻っても液滴が一定時間続き、混入率を悪化させる要因となっていた。   However, if the fluctuation range of the position of the laminar flow interface exceeds a certain amount, the laminar flow interface that protrudes between adjacent partition walls is sheared by the partition walls as shown in FIG. Become mixed with other fluids. Furthermore, due to pressure fluctuations that occur when droplets are generated, even if the position of the laminar flow interface returns to the original position, the droplets continue for a certain period of time, causing a deterioration in the mixing rate.

そこで本発明は図17〜図20に示すように、流体進行方向に沿った連続したガイド条(16)を形成することで、流体をより安定した層流として送液することが可能となり、仕切り壁の隙間からの液滴の発生を防止することができ、微小流路の流体排出口から、各々の流体を他の流体が混入することなく排出することができる。従って、微小流路内で流体が接触することによって生じる反応や抽出を流体排出口で完全に停止させたり、一度微小流路に導入した流体を再利用することが可能となる。   Therefore, in the present invention, as shown in FIGS. 17 to 20, by forming a continuous guide strip (16) along the fluid traveling direction, it becomes possible to send the fluid as a more stable laminar flow. The generation of droplets from the gaps in the walls can be prevented, and each fluid can be discharged from the fluid discharge port of the microchannel without mixing other fluids. Therefore, it is possible to completely stop the reaction or extraction caused by contact of the fluid in the microchannel at the fluid outlet, or to reuse the fluid once introduced into the microchannel.

ここで、微小流路の幅方向に対する仕切り壁(22)の位置は、特に制限されず、送液する流量や流速、粘性などの溶液の性質に応じて変更することができるが、導入される流体の層流界面をより安定化させるために微小流路の幅方向の中心位置又はその近傍に設けられることが好ましい。さらには、微小流路に不連続な仕切り壁が2以上設けられる場合には、導入される流体の送液する流量や流速、粘性などの溶液の性質によるものの、微小流路の幅方向の均等位置又はその近傍に設けられることが好ましい。   Here, the position of the partition wall (22) with respect to the width direction of the microchannel is not particularly limited, and can be changed according to the properties of the solution such as the flow rate, the flow rate, and the viscosity to be fed, but is introduced. In order to further stabilize the laminar flow interface of the fluid, it is preferably provided at the center position in the width direction of the microchannel or in the vicinity thereof. Furthermore, when two or more discontinuous partition walls are provided in the microchannel, the microchannels are even in the width direction, depending on the properties of the solution such as the flow rate, flow velocity, and viscosity of the fluid to be introduced. It is preferable to be provided at or near the position.

さらに微小流路に不連続な仕切り壁(22)が3以上設けられる場合には、前記したようにガイド条(16)は、微小流路の側壁と仕切り壁との中心線の位置もしくはその近傍、及び、仕切り壁の間の中心線の位置もしくはその近傍に設けられるが、図24および図25に示すように、不連続な仕切り壁(22)を設ける位置としては、微小流路の幅方向の一定間隔となる位置に平行して設けるとよく、また、流体進行方向に対しては不連続な仕切り壁の各々が相対する別の仕切り壁(22)との関係において図25に示されるように交互となる位置に設けるとよい。このような不連続な仕切り壁(22)を設けることで、本発明の効果が奏されるものとなる。   Further, when three or more discontinuous partition walls (22) are provided in the microchannel, the guide strip (16) is positioned at or near the center line between the side wall of the microchannel and the partition wall as described above. And the position of the center line between the partition walls or in the vicinity thereof, as shown in FIG. 24 and FIG. 25, the position where the discontinuous partition wall (22) is provided is the width direction of the microchannel. As shown in FIG. 25 in relation to another partition wall (22) each of which is discontinuous with respect to the fluid traveling direction. It is good to provide in the position which becomes alternately. By providing such a discontinuous partition wall (22), the effect of the present invention is exhibited.

逆に、仕切り壁を流路の幅方向に対して中央付近に形成した場合に粘性が異なる流体を流した場合は、(式7)から流体の粘性に逆比例した送液速度で流体を送液すれば層流界面を仕切り壁付近に形成することができる。また、仕切り壁の厚さ(23)は特に限定されないが、送液自体を妨げないように流路幅の3〜10%程度が好ましい。また、仕切り壁の高さ(24)は流路深さ以下であれば特に制限されないが、仕切り壁の高さ(24)が流路深さ(17)に等しい場合が最も好ましい。また、仕切り壁の間隔(25)の最小値は、仕切り壁(22)が不連続であれば特に制限はないが、あまり短すぎると流体の接触時間が短くなり反応や抽出を行うことができなくなるので、50μm程度以上が好ましい。   On the other hand, when fluids with different viscosities are flowed when the partition wall is formed near the center with respect to the width direction of the flow path, the fluid is fed at a liquid feeding speed inversely proportional to the fluid viscosity from (Equation 7). If liquefied, a laminar flow interface can be formed in the vicinity of the partition wall. Further, the thickness (23) of the partition wall is not particularly limited, but is preferably about 3 to 10% of the flow path width so as not to disturb the liquid feeding itself. Further, the height (24) of the partition wall is not particularly limited as long as it is equal to or less than the flow path depth, but it is most preferable that the height (24) of the partition wall is equal to the flow path depth (17). The minimum value of the partition wall interval (25) is not particularly limited as long as the partition wall (22) is discontinuous. However, if the partition wall (22) is too short, the contact time of the fluid is shortened and reaction or extraction can be performed. Since it disappears, about 50 micrometers or more are preferable.

また、図17に示す仕切り壁の長さ(26)は、隣り合う仕切り壁の間隔(25)以下であることがより好ましい。すなわち、仕切り壁の長さ(26)が隣り合う仕切り壁の間隔(25)より短いことで、その微小流路の長さにおいて流体の接触時間、すなわち反応時間や抽出時間をより長く設けることができる。なお、仕切り壁の長さ(25)は、50μm以上であることが、層流界面を安定に形成し、排出口において、各々の流体を他の流体が混入することなしに分離して排出するのにより好ましい。   In addition, the length (26) of the partition wall shown in FIG. 17 is more preferably equal to or less than the interval (25) between adjacent partition walls. That is, when the partition wall length (26) is shorter than the interval (25) between adjacent partition walls, the contact time of the fluid, that is, the reaction time and the extraction time can be set longer in the length of the minute channel. it can. Note that the length (25) of the partition wall is 50 μm or more, so that a laminar flow interface is stably formed, and each fluid is separated and discharged without being mixed with other fluids at the discharge port. Is more preferable.

また、微小流路の幅方向に対するガイド条(16)の位置は特に制限されず、流体進行方向に沿って連続して設けられていればよい。またガイド条の高さは、特に制限されないが、導入された流体が圧力変動により層流界面の位置が移動するのを抑え、流体をより安定した層流として送液するために設けられたものであるため、層流界面の位置が移動するのを抑える効果が得られるだけの高さが必要であり、少なくとも流路深さの10%程度以上が好ましい。またあまり高すぎると流体中の分子の拡散による移動が妨げられてしまうので、流路深さの50%程度以下が好ましい。   The position of the guide strip (16) with respect to the width direction of the microchannel is not particularly limited as long as it is continuously provided along the fluid traveling direction. The height of the guide strip is not particularly limited, but it is provided to prevent the introduced fluid from moving the position of the laminar flow interface due to pressure fluctuation and to send the fluid as a more stable laminar flow. Therefore, it is necessary to have a height sufficient to obtain the effect of suppressing the movement of the position of the laminar flow interface, and at least about 10% of the channel depth is preferable. On the other hand, if it is too high, movement due to the diffusion of molecules in the fluid is hindered, so about 50% or less of the channel depth is preferable.

以上のような微小流路を有する微小流路基板は、例えばガラスや石英、セラミック、シリコン、あるいは金属や樹脂等の基板材料を、機械加工やレーザー加工、エッチングなどにより直接加工することによって製作できる。また、基板材料がセラミックや樹脂の場合は、流路形状を有する金属等の鋳型を用いて成形することで製作することもできる。なお一般的に、前記微小流路基板は、流体導入口、流体排出口、および各微小流路の排出口に対応する位置に直径数mm程度の小穴を設けたカバー体と積層一体化させた微小流路構造体として使用する。カバー体と微小流路基板の接合方法としては、基板材料がセラミックスや金属の場合は、ハンダ付けや接着剤を用いたり、基板材料がガラスや石英、樹脂の場合は、百度〜千数百度の高温下で荷重をかけて熱接合させたり、基板材料がシリコンの場合は洗浄により表面を活性化させて常温で接合させるなどそれぞれの基板材料に適した接合方法が用いられる。   The microchannel substrate having the microchannel as described above can be manufactured by directly processing a substrate material such as glass, quartz, ceramic, silicon, or metal or resin by machining, laser processing, etching, or the like. . Further, when the substrate material is ceramic or resin, it can also be manufactured by molding using a mold such as a metal having a channel shape. Generally, the microchannel substrate is laminated and integrated with a cover body having a small hole with a diameter of about several millimeters at a position corresponding to the fluid inlet, the fluid outlet, and the outlet of each microchannel. Used as a microchannel structure. As a method for joining the cover body and the micro-channel substrate, when the substrate material is ceramics or metal, soldering or adhesive is used, or when the substrate material is glass, quartz, or resin, it is a hundred to several hundreds of degrees A bonding method suitable for each substrate material is used, such as thermal bonding by applying a load at a high temperature, or when the substrate material is silicon, by activating the surface by washing and bonding at room temperature.

本発明によれば、以下の効果を奏することができる。   According to the present invention, the following effects can be obtained.

本発明の微小流路構造体は、流体を導入する2以上の導入口及びそれらに連通する導入流路と、前記導入流路が合流する合流部と連通しかつ導入された流体を流す微小流路と、前記微小流路に連通しかつ導入される流体を分離する分岐部を有した2以上の排出流路及びそれらに連通する排出口と、を有した微小流路構造体であって、前記微小流路には、導入された2以上の流体により形成される層流界面の位置又はその近傍に前記微小流路の高さと実質的に等しい高さの不連続な仕切り壁が設けられているとともに、前記仕切り壁の両側の位置に連続した凸形状のガイド条が微小流路の底面に設けられている。このようにすることで、流体を送液するポンプなどに起因する送液速度の時間的変動等による層流界面の位置の変動を抑制し、かつ、微小流路内壁と送液する流体との親和性の違いによる流体の回り込みを防止することができ、微小流路の流体排出口から、各々の流体を他の流体が混入することなく排出することができる。   The microchannel structure of the present invention includes two or more inlets for introducing a fluid, an introduction channel communicating with the inlets, and a microstream that communicates with a merging portion where the introduction channel merges and flows the introduced fluid. A microchannel structure having a channel, two or more discharge channels having a branch portion that separates a fluid introduced and communicated with the microchannel, and a discharge port that communicates with the channel, The microchannel is provided with a discontinuous partition wall having a height substantially equal to the height of the microchannel at or near a laminar flow interface formed by two or more introduced fluids. In addition, convex guide strips that are continuous at positions on both sides of the partition wall are provided on the bottom surface of the microchannel. By doing so, the fluctuation of the position of the laminar flow interface due to the temporal fluctuation of the liquid feeding speed caused by the pump that feeds the fluid is suppressed, and the inner wall of the microchannel and the fluid to be fed Fluid wraparound due to the difference in affinity can be prevented, and each fluid can be discharged from the fluid discharge port of the microchannel without mixing with other fluid.

以下、本発明の実施の形態について詳細に説明する。なお本発明は、これらの実施例のみに限定されるものではなく、発明の要旨を逸脱しない範囲で、任意に変更が可能であることは言うまでもない。
(実施例1)
図18〜図20に第1の実施例に用いた微小流路構造体の概念図を示した。微小流路の形状は流体導入口側と流体排出口側がY字状に2本の微小流路に分岐しており、微小流路内には図17に示すように、微小流路の幅方向に対してほぼ中央に、微小流路の深さに等しい高さの流体進行方向に沿った不連続な仕切り壁(22)を形成した。さらに微小流路中、仕切り壁によって仕切られた、各流体が流れる各流路の幅方向に対してほぼ中央に、流体進行方向に沿った連続したガイド条(16)を1本ずつ形成した。製作した微小流路の幅(9)は100μm、深さ(17)は20μm、長さ30mmである。仕切り壁の間隔(25)及び仕切り壁の長さ(26)は、100μmである。仕切り壁の流路幅方向の厚さ(23)は約5μmである。ガイド条の高さは5μmである。微小流路は、70mm×38mm×1mm(厚さ)のパイレックス(登録商標)基板に一般的なフォトリソグラフィーとウエットエッチングにより形成し、2つの流体導入口と2つの流体排出口に相当する位置に、直径0.6mmの貫通した小穴を機械的加工手段により設けた同サイズのパイレックス(登録商標)基板をカバー体として熱融着により接合することで微小流路を密閉した。
Hereinafter, embodiments of the present invention will be described in detail. Needless to say, the present invention is not limited to these examples, and can be arbitrarily changed without departing from the scope of the invention.
Example 1
18 to 20 show conceptual diagrams of the microchannel structure used in the first embodiment. The shape of the microchannel is such that the fluid introduction port side and the fluid discharge port side are branched into two microchannels in a Y shape, and within the microchannel, as shown in FIG. On the other hand, a discontinuous partition wall (22) along the fluid traveling direction having a height equal to the depth of the microchannel was formed at substantially the center. Furthermore, one continuous guide strip (16) along the fluid traveling direction was formed at approximately the center in the width direction of each channel through which each fluid flows, which was partitioned by the partition wall in the micro channel. The manufactured microchannel has a width (9) of 100 μm, a depth (17) of 20 μm, and a length of 30 mm. The space | interval (25) of a partition wall and the length (26) of a partition wall are 100 micrometers. The thickness (23) of the partition wall in the channel width direction is about 5 μm. The height of the guide strip is 5 μm. The micro channel is formed on a Pyrex (registered trademark) substrate of 70 mm × 38 mm × 1 mm (thickness) by general photolithography and wet etching, and is located at a position corresponding to two fluid inlets and two fluid outlets. The micro flow path was sealed by joining the Pyrex (registered trademark) substrate of the same size provided with a small hole having a diameter of 0.6 mm by a mechanical processing means, and using a cover body by heat fusion.

この微小流路構造体に水とシクロヘキサンをそれぞれ、1μL/分〜100μL/分の間で等しい送液速度で送液した。なお、20℃における水の粘性は1.002[mPa・s]、シクロヘキサンの粘性は0.979[mPa・s]でありほぼ等しい。導入口A(28)から水を、導入口B(29)からシクロヘキサンを上記条件で送液し、排出口C(30)から排出された水の量と混入したシクロヘキサンの量を、排出口D(31)から排出されたシクロヘキサンの量と混入した水の量を、それぞれ、メスシリンダーにて秤量して測定し、その結果を表1に示した。   Water and cyclohexane were fed to the microchannel structure at an equal feeding rate between 1 μL / min and 100 μL / min, respectively. The viscosity of water at 20 ° C. is 1.002 [mPa · s], and the viscosity of cyclohexane is 0.979 [mPa · s], which are substantially equal. Water is fed from the inlet A (28) and cyclohexane is fed from the inlet B (29) under the above conditions, and the amount of water discharged from the outlet C (30) and the amount of mixed cyclohexane are determined as the outlet D. The amount of cyclohexane discharged from (31) and the amount of mixed water were weighed and measured with a graduated cylinder, and the results are shown in Table 1.

Figure 0004687238
Figure 0004687238

表1は、等速条件下で、各送液速度における混入率を、水相への有機相の混入率(%)、有機相への水相の混入率(%)として示したものであり、流速は1,3,5,8,10,20,50,100μL/分である。   Table 1 shows the mixing rate at each feeding speed under constant speed conditions as the mixing rate (%) of the organic phase into the aqueous phase and the mixing rate (%) of the aqueous phase into the organic phase. The flow rate is 1, 3, 5, 8, 10, 20, 50, 100 μL / min.

この結果から、少なくとも1〜100μL/分の広い範囲において混入率10%未満を実現した。
(実施例2)
実施例1で使用した微小流路構造体にシクロヘキサンを8μL/分の固定した送液速度で送液し、それに対して水を1μL/分〜50μL/分の間で送液速度を変えて送液した。すなわち、シクロヘキサンに対する水の送液速度比が0.125(=1[μL/分]/8[μL/分])〜6.250(=50[μL/分]/8[μL/分])の間で、導入口Aから水を、導入口Bからシクロヘキサンを上記条件で送液し、排出口Cから排出された水の量と混入したシクロヘキサンの量を、排出口Dから排出されたシクロヘキサンの量と混入した水の量を、それぞれ、メスシリンダーにて秤量して測定し、その結果を表2に示した。
From this result, a mixing rate of less than 10% was realized in a wide range of at least 1 to 100 μL / min.
(Example 2)
Cyclohexane was fed to the microchannel structure used in Example 1 at a fixed feed rate of 8 μL / min, and water was sent at 1 μL / min to 50 μL / min while changing the feed rate. Liquid. That is, the liquid feed rate ratio of water to cyclohexane is 0.125 (= 1 [μL / min] / 8 [μL / min]) to 6.250 (= 50 [μL / min] / 8 [μL / min]). In between, water is fed from the inlet A and cyclohexane is fed from the inlet B under the above conditions, and the amount of water discharged from the outlet C and the amount of mixed cyclohexane are discharged to the cyclohexane discharged from the outlet D. The amount of water and the amount of mixed water were weighed and measured with a graduated cylinder, and the results are shown in Table 2.

Figure 0004687238
Figure 0004687238

表2は、各送液速度比における混入率を、水相への有機相の混入率(%)、有機相への水相の混入率(%)として示したものであり、送液速度比は0.125、0.375、0.625、1.000、1.250、2.500、6.250である。   Table 2 shows the mixing ratio at each liquid feeding speed ratio as the mixing ratio (%) of the organic phase to the aqueous phase and the mixing ratio (%) of the aqueous phase to the organic phase. Are 0.125, 0.375, 0.625, 1.000, 1.250, 2.500, 6.250.

この結果から、送液速度比の範囲が少なくとも0.375〜2.500の広い範囲において混入率10%未満を実現した。
(比較例1)
図10〜図12に比較例に用いた微小流路構造体の概念図を示した。微小流路の形状は流体導入口側と流体排出口側がY字状に2本の微小流路に分岐しており、微小流路内には図9に示すように、微小流路の幅方向に対してほぼ中央に、微小流路の底部(18)に流路深さ(17)の約20%程度以下のガイド条(16)を形成した。製作した微小流路の幅(9)は100μm、深さ(17)は20μm、長さ30mmである。ガイド条の高さは4μmである。微小流路は、70mm×38mm×1mm(厚さ)のパイレックス(登録商標)基板に一般的なフォトリソグラフィーとウエットエッチングにより形成し、2つの流体導入口と2つの流体排出口に相当する位置に、直径0.6mmの貫通した小穴を機械的加工手段により設けた同サイズのパイレックス(登録商標)基板をカバー体として熱融着により接合することで微小流路を密閉した。
From this result, the mixing rate of less than 10% was realized in a wide range of at least 0.375 to 2.500.
(Comparative Example 1)
The conceptual diagram of the microchannel structure used for the comparative example was shown in FIGS. The shape of the microchannel is such that the fluid inlet port side and the fluid outlet port branch into two microchannels in a Y shape, and the microchannel has a width direction as shown in FIG. On the other hand, a guide strip (16) of about 20% or less of the channel depth (17) was formed at the bottom (18) of the microchannel almost at the center. The manufactured microchannel has a width (9) of 100 μm, a depth (17) of 20 μm, and a length of 30 mm. The height of the guide strip is 4 μm. The micro channel is formed on a Pyrex (registered trademark) substrate of 70 mm × 38 mm × 1 mm (thickness) by general photolithography and wet etching, and is located at a position corresponding to two fluid inlets and two fluid outlets. The micro flow path was sealed by joining the Pyrex (registered trademark) substrate of the same size provided with a small hole having a diameter of 0.6 mm by a mechanical processing means, and using a cover body by heat fusion.

この微小流路構造体に水とシクロヘキサンをそれぞれ、実施例1と同様にして1μL/分〜100μL/分の間で等しい送液速度で送液した。導入口A(28)から水を、導入口B(29)からシクロヘキサンを上記条件で送液し、排出口C(30)から排出された水の量と混入したシクロヘキサンの量を、排出口D(31)から排出されたシクロヘキサンの量と混入した水の量を、それぞれ、メスシリンダーにて秤量して測定し、測定結果を表1に示した。その結果、いずれの送液条件においても、混入率10%未満を達成することができなかった。   In the same manner as in Example 1, water and cyclohexane were fed into the microchannel structure at an equal liquid feed rate between 1 μL / min and 100 μL / min. Water is fed from the inlet A (28) and cyclohexane is fed from the inlet B (29) under the above conditions, and the amount of water discharged from the outlet C (30) and the amount of mixed cyclohexane are determined as the outlet D. The amount of cyclohexane discharged from (31) and the amount of mixed water were weighed and measured with a graduated cylinder, and the measurement results are shown in Table 1. As a result, it was not possible to achieve a mixing rate of less than 10% under any liquid feeding conditions.

また、この微小流路構造体に、実施例2と同様にして、シクロヘキサンを8μL/分の固定した送液速度で送液し、それに対して水を1μL/分〜50μL/分の間で送液速度を変えて送液した。すなわち、シクロヘキサンに対する水の送液速度比が0.125(=1[μL/分]/8[μL/分])〜6.250(=50[μL/分]/8[μL/分])の間で、導入口A(28)から水を、導入口B(29)からシクロヘキサンを上記条件で送液し、排出口C(30)から排出された水の量と混入したシクロヘキサンの量を、排出口D(31)から排出されたシクロヘキサンの量と混入した水の量を、それぞれ、メスシリンダーにて秤量して測定し、測定結果を表2に示した。その結果、いずれの送液条件においても、混入率10%未満を達成することができなかった。
(比較例2)
図14〜図16に比較例に用いた微小流路構造体の概念図を示した。微小流路の形状は流体導入口側と流体排出口側がY字状に2本の微小流路に分岐しており、微小流路内には図13に示すように、微小流路の幅方向に対してほぼ中央に、微小流路の深さに等しい高さの流体進行方向に沿った不連続な仕切り壁(22)を形成した。製作した微小流路の幅(9)は100μm、深さ(17)は20μm、長さ30mmである。仕切り壁の間隔(25)及び仕切り壁の長さ(26)は、100μmである。仕切り壁の流路幅方向の厚さ(23)は約5μmである。微小流路は、70mm×38mm×1mm(厚さ)のパイレックス(登録商標)基板に一般的なフォトリソグラフィーとウエットエッチングにより形成し、2つの流体導入口と2つの流体排出口に相当する位置に、直径0.6mmの貫通した小穴を機械的加工手段により設けた同サイズのパイレックス(登録商標)基板をカバー体として熱融着により接合することで微小流路を密閉した。
Further, in the same manner as in Example 2, the microchannel structure was fed at a liquid feed rate at which cyclohexane was fixed at 8 μL / min, and water was sent between 1 μL / min and 50 μL / min. The liquid was sent at a different liquid speed. That is, the liquid feed rate ratio of water to cyclohexane is 0.125 (= 1 [μL / min] / 8 [μL / min]) to 6.250 (= 50 [μL / min] / 8 [μL / min]). Between the inlet A (28) and cyclohexane from the inlet B (29) under the above conditions, the amount of water discharged from the outlet C (30) and the amount of mixed cyclohexane. The amount of cyclohexane discharged from the discharge port D (31) and the amount of mixed water were measured by measuring with a graduated cylinder, and the measurement results are shown in Table 2. As a result, it was not possible to achieve a mixing rate of less than 10% under any liquid feeding conditions.
(Comparative Example 2)
The conceptual diagram of the microchannel structure used for the comparative example was shown in FIGS. The shape of the microchannel is such that the fluid inlet port side and the fluid outlet port branch into two microchannels in a Y shape, and within the microchannel, as shown in FIG. On the other hand, a discontinuous partition wall (22) along the fluid traveling direction having a height equal to the depth of the microchannel was formed at substantially the center. The manufactured microchannel has a width (9) of 100 μm, a depth (17) of 20 μm, and a length of 30 mm. The space | interval (25) of a partition wall and the length (26) of a partition wall are 100 micrometers. The thickness (23) of the partition wall in the channel width direction is about 5 μm. The micro channel is formed on a Pyrex (registered trademark) substrate of 70 mm × 38 mm × 1 mm (thickness) by general photolithography and wet etching, and is located at a position corresponding to two fluid inlets and two fluid outlets. The micro flow path was sealed by joining the Pyrex (registered trademark) substrate of the same size provided with a small hole having a diameter of 0.6 mm by a mechanical processing means, and using a cover body by heat fusion.

この微小流路構造体に水とシクロヘキサンをそれぞれ、実施例1と同様にして1μL/分〜100μL/分の間で等しい送液速度で送液した。導入口A(28)から水を、導入口B(29)からシクロヘキサンを上記条件で送液し、排出口C(30)から排出された水の量と混入したシクロヘキサンの量を、排出口D(31)から排出されたシクロヘキサンの量と混入した水の量を、それぞれ、メスシリンダーにて秤量して測定し、測定結果を表1に示した。この結果から、混入率10%未満を達成する送液速度の範囲は、3〜50μL/分の狭い範囲に限られた。   In the same manner as in Example 1, water and cyclohexane were fed into the microchannel structure at an equal liquid feed rate between 1 μL / min and 100 μL / min. Water is fed from the inlet A (28) and cyclohexane is fed from the inlet B (29) under the above conditions, and the amount of water discharged from the outlet C (30) and the amount of mixed cyclohexane are determined as the outlet D. The amount of cyclohexane discharged from (31) and the amount of mixed water were weighed and measured with a graduated cylinder, and the measurement results are shown in Table 1. From this result, the range of the liquid feeding speed that achieves a mixing rate of less than 10% was limited to a narrow range of 3 to 50 μL / min.

また、この微小流路構造体に、実施例2と同様にして、シクロヘキサンを8μL/分の固定した送液速度で送液し、それに対して水を1μL/分〜50μL/分の間で送液速度を変えて送液した。すなわち、シクロヘキサンに対する水の送液速度比が0.125(=1[μL/分]/8[μL/分])〜6.250(=50[μL/分]/8[μL/分])の間で、導入口A(28)から水を、導入口B(29)からシクロヘキサンを上記条件で送液し、排出口C(30)から排出された水の量と混入したシクロヘキサンの量を、排出口D(31)から排出されたシクロヘキサンの量と混入した水の量を、それぞれ、メスシリンダーにて秤量して測定し、測定結果を表2に示した。その結果、混入率10%未満を達成する送液速度比の範囲は、0.625〜1.250の狭い範囲に限られた。   Further, in the same manner as in Example 2, the microchannel structure was fed at a liquid feed rate at which cyclohexane was fixed at 8 μL / min, and water was sent between 1 μL / min and 50 μL / min. The liquid was sent at a different liquid speed. That is, the liquid feed rate ratio of water to cyclohexane is 0.125 (= 1 [μL / min] / 8 [μL / min]) to 6.250 (= 50 [μL / min] / 8 [μL / min]). Between the inlet A (28) and cyclohexane from the inlet B (29) under the above conditions, the amount of water discharged from the outlet C (30) and the amount of mixed cyclohexane. The amount of cyclohexane discharged from the discharge port D (31) and the amount of mixed water were measured by measuring with a graduated cylinder, and the measurement results are shown in Table 2. As a result, the range of the liquid feeding speed ratio that achieves a mixing rate of less than 10% was limited to a narrow range of 0.625 to 1.250.

Y字状微小流路内における層流を示す概念図である。It is a conceptual diagram which shows the laminar flow in a Y-shaped microchannel. ダブルY字状微小流路内における層流を示す概念図である。It is a conceptual diagram which shows the laminar flow in a double Y-shaped microchannel. 層流界面の位置が変動する様子を示す概念図の一例である。It is an example of the conceptual diagram which shows a mode that the position of a laminar flow interface fluctuates. 層流界面の位置が変動する様子を示す概念図の一例である。It is an example of the conceptual diagram which shows a mode that the position of a laminar flow interface fluctuates. 層流界面の位置が変動する様子を示す概念図の一例である。It is an example of the conceptual diagram which shows a mode that the position of a laminar flow interface fluctuates. 図5における微小流路のA−A’断面図である。It is A-A 'sectional drawing of the micro channel in FIG. ハーゲン・ポアズイユの式を説明するための概念図である。It is a conceptual diagram for demonstrating Hagen-Poiseuille's formula. ハーゲン・ポアズイユの式を説明するための概念図である。It is a conceptual diagram for demonstrating Hagen-Poiseuille's formula. 比較例1に用いた微小流路構造体の概念図であり、図10の微小流路の破線円部分の拡大図である。It is a conceptual diagram of the microchannel structure used for the comparative example 1, and is an enlarged view of the broken-line circle part of the microchannel of FIG. 比較例1に用いた微小流路構造体の概念図であり、微小流路の構成を示した図である。It is the conceptual diagram of the microchannel structure used for the comparative example 1, and is the figure which showed the structure of the microchannel. 図10における微小流路のB−B’断面図である。It is B-B 'sectional drawing of the microchannel in FIG. 図10における微小流路のC−C’断面図である。It is C-C 'sectional drawing of the microchannel in FIG. 比較例2に用いた微小流路構造体の概念図であり、図14の微小流路の破線円部分の拡大図である。It is a conceptual diagram of the microchannel structure used for the comparative example 2, and is an enlarged view of the broken-line circle | round | yen part of the microchannel of FIG. 比較例2に用いた微小流路構造体の概念図であり、微小流路の構成を示した図である。It is the conceptual diagram of the microchannel structure used for the comparative example 2, and is the figure which showed the structure of the microchannel. 図14における微小流路のD−D’断面図である。It is D-D 'sectional drawing of the microchannel in FIG. 図14における微小流路のE−E’断面図である。It is E-E 'sectional drawing of the microchannel in FIG. 実施例に用いた微小流路構造体の概念図であり、図18の微小流路の破線円部分の拡大図である。It is a conceptual diagram of the microchannel structure used for the Example, It is an enlarged view of the broken-line circle | round | yen part of the microchannel of FIG. 実施例に用いた微小流路構造体の概念図であり、微小流路の構成を示した図である。It is the conceptual diagram of the microchannel structure used for the Example, and is the figure which showed the structure of the microchannel. 図18における微小流路のF−F’断面図である。It is F-F 'sectional drawing of the microchannel in FIG. 図18における微小流路のG−G’断面図である。It is G-G 'sectional drawing of the microchannel in FIG. 仕切り壁の隙間から液滴の状態で混入する様子を示す概念図である。It is a conceptual diagram which shows a mode that it mixes in the state of a droplet from the clearance gap between partition walls. 本発明の態様の一例を示す概念図であり、ガイド条が層流界面を形成する箇所に形成された例を示す図である。It is a conceptual diagram which shows an example of the aspect of this invention, and is a figure which shows the example formed in the location in which a guide stripe | line forms a laminar flow interface. 本発明の態様の一例を示す概念図であり、ガイド条が導入口及びそれらに連通する導入流路と微小流路、分岐部から排出口に連通する排出流路に至るまで連続して形成された例を示す図である。It is a conceptual diagram showing an example of an embodiment of the present invention, the guide strip is formed continuously from the inlet and the introduction channel and the micro channel communicating with them, from the branch part to the discharge channel communicating with the outlet. It is a figure which shows the example. 本発明の態様の一例を示す概念図であり、3以上の層流を安定に形成させる場合の流路構造の例を示す図である。It is a conceptual diagram which shows an example of the aspect of this invention, and is a figure which shows the example of the flow-path structure in the case of forming three or more laminar flows stably. 本発明の態様の一例を示す概念図であって、3以上の層流を安定に形成させる場合の流路構造の例を示す図であり、ガイド条が導入口及びそれらに連通する導入流路と微小流路、分岐部から排出口に連通する排出流路に至るまで連続して形成された例を示す図である。It is a conceptual diagram which shows an example of the aspect of this invention, Comprising: It is a figure which shows the example of the flow-path structure in the case of forming three or more laminar flows stably, An introduction flow path with which a guide strip | line communicates with them It is a figure which shows the example formed continuously from the micro flow path and the discharge flow path communicating from the branch part to the discharge port.

符号の説明Explanation of symbols

1:水相
2:有機相
3:層流界面
4:分岐部
5:線速度
6:直径
7:水平円管
8:円管端面
9:微小流路の幅
10:流路長
11:流体導入口
12:流体排出口
13:流体A
14:流体B
15:流体の回り込み
16:ガイド条
17:流路深さ
18:微小流路の底部
19:微小流路
20:流体境界
21:流路幅
22:仕切り壁
23:仕切り壁の厚さ
24:仕切り壁の高さ
25:仕切り壁の間隔
26:仕切り壁の長さ
27:流体進行方向
28:導入口A
29:導入口B
30:排出口C
31:排出口D
32:基板
33:流体幅
34:カバー対
35:小穴
36:ガイド条の厚さ
37:液滴
1: Water phase 2: Organic phase 3: Laminar flow interface 4: Branching part 5: Linear velocity 6: Diameter 7: Horizontal circular tube 8: End of circular tube 9: Width of micro flow channel 10: Channel length 11: Fluid introduction Port 12: Fluid discharge port 13: Fluid A
14: Fluid B
15: Circulation of fluid 16: Guide strip 17: Channel depth 18: Bottom of microchannel 19: Microchannel 20: Fluid boundary 21: Channel width 22: Partition wall 23: Partition wall thickness 24: Partition Wall height 25: Partition wall interval 26: Partition wall length 27: Fluid traveling direction 28: Inlet A
29: Introduction B
30: Discharge port C
31: Discharge port D
32: Substrate 33: Fluid width 34: Cover pair 35: Small hole 36: Thickness of guide strip 37: Droplet

Claims (4)

流体を導入する2以上の導入口及びそれらに連通する導入流路と、前記導入流路が合流する合流部と連通しかつ導入された流体を流す微小流路と、前記微小流路に連通しかつ導入される流体を分離する分岐部を有した2以上の排出流路及びそれらに連通する排出口と、を有した微小流路構造体であって、前記微小流路には、導入された2以上の流体により形成される層流界面の位置又はその近傍に前記微小流路の高さと実質的に等しい高さの不連続な仕切り壁が設けられているとともに、前記仕切り壁の両側の位置に連続した凸形状のガイド条が微小流路の底面に設けられている微小流路構造体。 Two or more inlets for introducing a fluid, an introduction channel communicating with them, a microchannel that communicates with a merging portion where the introduction channel merges and flows the introduced fluid, and communicates with the microchannel And a micro flow channel structure having two or more discharge flow channels having a branching portion for separating a fluid to be introduced and a discharge port communicating with the two or more discharge flow channels, wherein the micro flow channel is introduced into the micro flow channel. Discontinuous partition walls having a height substantially equal to the height of the microchannel are provided at or near the position of the laminar flow interface formed by two or more fluids, and positions on both sides of the partition wall A microchannel structure in which a convex guide strip that is continuous with the microchannel is provided on the bottom surface of the microchannel. ガイド条が、微小流路の側壁と仕切り壁との中心線の位置又はその近傍に設けられている請求項1記載の微小流路構造体。 The microchannel structure according to claim 1, wherein the guide strip is provided at a position of a center line between the side wall and the partition wall of the microchannel or in the vicinity thereof. ガイド条が、微小流路の側壁と仕切り壁との中心線の位置もしくはその近傍、及び、仕切り壁の間の中心線の位置もしくはその近傍に設けられている請求項1記載の微小流路構造体。 The microchannel structure according to claim 1, wherein the guide strip is provided at or near the center line between the side wall and the partition wall of the microchannel and at or near the centerline between the partition walls. body. ガイド条が、導入口及びそれらに連通する導入流路から微小流路を経由して排出流路及び排出口まで連続して設けられている請求項1〜3のいずれかに記載の微小流路構造体。
The microchannel according to any one of claims 1 to 3, wherein the guide strip is continuously provided from the introduction port and the introduction channel communicating with them to the discharge channel and the discharge port via the microchannel. Structure.
JP2005145712A 2005-05-18 2005-05-18 Micro channel structure Expired - Fee Related JP4687238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005145712A JP4687238B2 (en) 2005-05-18 2005-05-18 Micro channel structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005145712A JP4687238B2 (en) 2005-05-18 2005-05-18 Micro channel structure

Publications (2)

Publication Number Publication Date
JP2006320829A JP2006320829A (en) 2006-11-30
JP4687238B2 true JP4687238B2 (en) 2011-05-25

Family

ID=37540885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005145712A Expired - Fee Related JP4687238B2 (en) 2005-05-18 2005-05-18 Micro channel structure

Country Status (1)

Country Link
JP (1) JP4687238B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4767196B2 (en) * 2007-02-21 2011-09-07 シャープ株式会社 Channel reaction method and channel reactor
JP5151204B2 (en) * 2007-03-27 2013-02-27 富士ゼロックス株式会社 Microchannel device and method of manufacturing microchannel device
JP5159247B2 (en) 2007-10-26 2013-03-06 キヤノン株式会社 Detection method and detection apparatus
EP2366450A4 (en) * 2008-11-26 2016-03-23 Sumitomo Bakelite Co Microchannel device
JP6739739B2 (en) * 2016-03-08 2020-08-12 東京都公立大学法人 Particle sorting method and particle sorting apparatus for carrying out the method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004305940A (en) * 2003-04-08 2004-11-04 Tosoh Corp Microchannel structure and chemical reaction method using the same
JP2004358453A (en) * 2002-07-12 2004-12-24 Tosoh Corp Microchannel structure and method for chemical operation of liquid using the same
JP2005034679A (en) * 2003-07-15 2005-02-10 Tosoh Corp Method for practicing chemical operation and solvent extraction method using the method
JP2005034827A (en) * 2003-06-30 2005-02-10 Kanagawa Acad Of Sci & Technol Micro channel pillar structure
JP2006272231A (en) * 2005-03-30 2006-10-12 Hitachi Ltd Microchannel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004358453A (en) * 2002-07-12 2004-12-24 Tosoh Corp Microchannel structure and method for chemical operation of liquid using the same
JP2004305940A (en) * 2003-04-08 2004-11-04 Tosoh Corp Microchannel structure and chemical reaction method using the same
JP2005034827A (en) * 2003-06-30 2005-02-10 Kanagawa Acad Of Sci & Technol Micro channel pillar structure
JP2005034679A (en) * 2003-07-15 2005-02-10 Tosoh Corp Method for practicing chemical operation and solvent extraction method using the method
JP2006272231A (en) * 2005-03-30 2006-10-12 Hitachi Ltd Microchannel

Also Published As

Publication number Publication date
JP2006320829A (en) 2006-11-30

Similar Documents

Publication Publication Date Title
JP6674933B2 (en) Process-enhanced microfluidic device
Yagodnitsyna et al. Flow patterns of immiscible liquid-liquid flow in a rectangular microchannel with T-junction
Kumar et al. Single-phase fluid flow and mixing in microchannels
JP5604038B2 (en) Reaction apparatus and reaction plant
Yue et al. Gas–liquid–liquid three-phase flow pattern and pressure drop in a microfluidic chip: similarities with gas–liquid/liquid–liquid flows
Shui et al. Scalable attoliter monodisperse droplet formation using multiphase nano-microfluidics
JP2009000592A (en) Reactor and reaction system
US20100051543A1 (en) Fine channel device and a chemically operating method for fluid using the device
JP4687238B2 (en) Micro channel structure
JP2011504221A (en) Microfluidic self-excited oscillation mixer and apparatus and method of use thereof
US20210370303A1 (en) Pressure insensitive microfluidic circuit for droplet generation and uses thereof
JP5076742B2 (en) Microchannel structure and microparticle manufacturing method using the same
Sotowa Fluid behavior and mass transport characteristics of gas–liquid and liquid–liquid flows in microchannels
JP4470402B2 (en) Microchannel structure and fluid chemical operation method using the same
JP4910909B2 (en) Microreactor system
KR20150060082A (en) A Micro-Channel Reactor
JP5146562B2 (en) Microchannel structure and solvent extraction method using microchannel structure
JP4639624B2 (en) Micro channel structure
JP2005034679A (en) Method for practicing chemical operation and solvent extraction method using the method
JP4389559B2 (en) Microchannel structure
JP4453346B2 (en) Microchannel structure and chemical operation method using the same
Feng et al. Generation of water–ionic liquid droplet pairs in soybean oil on microfluidic chip
JP4356312B2 (en) Microchannel structure
JP2006055770A (en) Microchannel structure
JP4743165B2 (en) Micro channel structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110131

R151 Written notification of patent or utility model registration

Ref document number: 4687238

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees