JP2005074796A - Method for joining microchip substrate and microchip - Google Patents

Method for joining microchip substrate and microchip Download PDF

Info

Publication number
JP2005074796A
JP2005074796A JP2003307800A JP2003307800A JP2005074796A JP 2005074796 A JP2005074796 A JP 2005074796A JP 2003307800 A JP2003307800 A JP 2003307800A JP 2003307800 A JP2003307800 A JP 2003307800A JP 2005074796 A JP2005074796 A JP 2005074796A
Authority
JP
Japan
Prior art keywords
microchip
substrate
microchannel
bonding
joining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003307800A
Other languages
Japanese (ja)
Other versions
JP4367055B2 (en
Inventor
Susumu Arai
進 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2003307800A priority Critical patent/JP4367055B2/en
Publication of JP2005074796A publication Critical patent/JP2005074796A/en
Application granted granted Critical
Publication of JP4367055B2 publication Critical patent/JP4367055B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1635Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1696Laser beams making use of masks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/534Joining single elements to open ends of tubular or hollow articles or to the ends of bars
    • B29C66/5346Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially flat
    • B29C66/53461Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially flat joining substantially flat covers and/or substantially flat bottoms to open ends of container bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1664Laser beams characterised by the way of heating the interface making use of several radiators
    • B29C65/1667Laser beams characterised by the way of heating the interface making use of several radiators at the same time, i.e. simultaneous laser welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/756Microarticles, nanoarticles

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for joining microchip substrates which are formed from a plastic material and have micro-channels in the surfaces without deforming the cross sections of the micro-channels by heat, damaging a bioactive substance fixed to the microchip, blocking the micro-channels by an adhesive, and fouling the inner walls of the micro-channels, and the microchip produced by the method. <P>SOLUTION: In the method for joining the first microchip substrate having the micro-channel on the surface and the second microchip substrate having a surface adhered to the surface having the micro-channel of the first microchip substrate, the first microchip substrate and/or the second microchip substrate are formed from the plastic material, and a process for joining the microchip substrates by laser beam fusion bonding is included. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、マイクロチャネルを有するマイクロチップ基板の接合方法に関するものである。   The present invention relates to a method for bonding microchip substrates having microchannels.

最近はマイクロリアクターやマイクロアナリシスシステムと呼ばれる微細加工技術を利用した化学反応や分離システムの微小化の研究が盛んになっており、マイクロチャネルを持つマイクロチップ上で行う核酸、タンパク質、糖鎖などの分析や合成、微量化学物質の迅速分析、医薬品・薬物のハイスループットスクリーニングへの応用が期待されている。このようなシステムのマイクロ化の利点としては、サンプルや試薬の使用量あるいは廃液の排出量が軽減され、省スペースで持ち運び可能な安価なシステムの実現が考えられている。また体積に対する表面積の比率が向上することにより、熱移動・物質移動の高速化が実現でき、その結果、反応や分離の精密な制御、高速・高効率化、副反応の抑制が期待される。   Recently, research on the miniaturization of chemical reactions and separation systems using microfabrication technology called microreactors and microanalysis systems has been actively conducted, such as nucleic acids, proteins, sugar chains, etc. performed on microchips with microchannels. It is expected to be applied to analysis and synthesis, rapid analysis of trace chemical substances, and high-throughput screening of drugs and drugs. As an advantage of such a micro system, it is considered to realize an inexpensive system that can be carried in a small space because the amount of sample and reagent used or the amount of discharged waste liquid is reduced. Further, by increasing the ratio of the surface area to the volume, it is possible to increase the speed of heat transfer and mass transfer. As a result, precise control of reaction and separation, high speed and high efficiency, and suppression of side reactions are expected.

マイクロチャネルは一般的に少なくとも一方の部材に微細加工を有するマイクロチップ基板の部材の2つを張り合わせることにより製造されている。また、これまではマイクロチップの基板材料として、主にガラスが用いられてきた。ガラス基板でマイクロチャネルをつくるためには、例えば、基板に金属、フォトレジスト樹脂をコーティングしマイクロチャネルのパターンを露光、現像した後にエッチング処理を行う方法がある。その後、陽極接合などでガラス基板を接合する(非特許文献1)。
しかし、ガラスのエッチングにはフッ酸などの非常に危険な薬品を用いたり1枚ごとに露光、現像、エッチング処理を行うため非常に効率が悪く、高コストである。
A microchannel is generally manufactured by bonding two members of a microchip substrate having a microfabrication to at least one member. Until now, glass has been mainly used as a substrate material for microchips. In order to form a microchannel using a glass substrate, for example, there is a method in which a metal or a photoresist resin is coated on the substrate, a microchannel pattern is exposed and developed, and then an etching process is performed. Thereafter, the glass substrate is bonded by anodic bonding or the like (Non-Patent Document 1).
However, since very dangerous chemicals such as hydrofluoric acid are used for etching glass, and exposure, development, and etching are performed for each sheet, the efficiency is very low and the cost is high.

これらのマイクロチップは、種々のプラスチックを使用しても射出成形によって製造することが可能である。射出成形では型キャビティ内へ溶融した熱可塑性プラスチック材料を導入し、キャビティを冷却させて樹脂を硬化させることで、効率よく経済的にマイクロチップ基板を製造でき、大量生産に適している。基板を張り合わせる方法として熱プレス、超音波による熱融着や接着剤を用いる方法等が主に行われている(特許文献1)。しかし、熱プレスや超音波による熱融着では、熱によってプラスチック樹脂の溶解が過度になりマイクロチャネルの断面が変形したり、マイクロチップに固定化された生理活性物質にダメージを与えたりしやすく、正常に機能、動作を示さない可能性が高い。また、接着剤は基板の間より余剰分がでやすく、マイクロチャネルの封鎖、内壁への汚染が生じ易い。   These microchips can be manufactured by injection molding using various plastics. In injection molding, a molten thermoplastic material is introduced into a mold cavity, the cavity is cooled, and the resin is cured, whereby a microchip substrate can be manufactured efficiently and economically, and is suitable for mass production. As a method for laminating the substrates, a heat press, heat fusion using ultrasonic waves, a method using an adhesive, and the like are mainly performed (Patent Document 1). However, in heat fusion using heat press or ultrasonic waves, the plastic resin is excessively melted by heat and the cross section of the microchannel is easily deformed, or the physiologically active substance immobilized on the microchip is easily damaged. There is a high possibility that it will not function or operate normally. In addition, the adhesive is more likely to be surplus than between the substrates, and the microchannel is likely to be blocked and the inner wall is likely to be contaminated.

またプラスチック基板の少なくとも一方をキャスティングにより成形し、熱硬化性プラスチックの重合途中で離型し、基板を密着させてから重合反応を完了させて、マイクロチャネルを製造する方法も提案されている(特許文献2)。熱硬化性プラスチックでは低温で加工できるため、装置やディバイスに熱や振動によるダメージを与えずにマイクロチップ基板を接合することが可能であるが、冷却硬化時間が長いため大量生産には適しておらず、また型キャビティからの離型が困難でありマイクロチャネルを破損する可能性が高く、型キャビティ自身の破損も起こるため型の寿命も短く経済的に適していない。
本田宣昭、化学工学、第66巻、第2号、P71−74(2002) 特開2002−139419号公報 特開2002−207027号公報
Also proposed is a method of manufacturing a microchannel by forming at least one of a plastic substrate by casting, releasing the mold in the course of polymerization of a thermosetting plastic, bringing the substrate into close contact, and then completing the polymerization reaction (patent) Reference 2). Thermosetting plastics can be processed at low temperatures, so it is possible to bond microchip substrates without damaging equipment and devices due to heat and vibration, but they are not suitable for mass production due to the long cooling and curing time. In addition, it is difficult to release from the mold cavity and there is a high possibility of damaging the microchannel, and the mold cavity itself is also damaged, so that the mold life is short and not economically suitable.
Nobuaki Honda, Chemical Engineering, Vol. 66, No. 2, P71-74 (2002) JP 2002-139419 A JP 2002-207027 A

本発明の目的は、プラスチック材料により製造され表面にマイクロチャネルを有するマイクロチップ基板を熱によるマイクロチャネルの断面のが変形、マイクロチップに固定化された生理活性物質のダメージ、接着剤によるマイクロチャネルの封鎖、及び内壁の汚染を生じさせることなく接合する方法とこの方法によって製造しうるマイクロチップを提供するものである。   An object of the present invention is to deform a microchip substrate made of a plastic material and having a microchannel on the surface thereof, by deforming the cross section of the microchannel due to heat, damaging a physiologically active substance immobilized on the microchip, The present invention provides a method for bonding without causing blockage and contamination of the inner wall, and a microchip that can be manufactured by this method.

本発明は、
(1)表面にマイクロチャネルを有する第1のマイクロチップ基板と、第1のマイクロチップ基板のマイクロチャネルを有する面に密着する面を有する第2のマイクロチップ基板とを接合する方法であって、第1のマイクロチップ基板及び/又は第2のマイクロチップ基板がプラスチック材料からなり、レーザー融着にて接合する工程を有することを特徴とするマイクロチップ基板の接合方法、
(2)レーザー融着にて接合する工程において、マイクロチャネルと同じ形状にパターニングされたマスクを用いて、マイクロチャネル以外の接合部のみにレーザーを照射し接合する(1)のマイクロチップ基板の接合方法、
(3)マイクロチップ基板の接合部分がマイクロチャネルのエッジ部分から1μm〜2000μm離れて接合されている(1)又は(2)のマイクロチップ基板の接合方法、
(4)レーザー融着にて接合する工程の前に、マイクロチャネルの一部に生理活性物質を固定化する工程を有する(1)〜(3)いずれかのマイクロチップ基板の接合方法、
(5)生理活性物質が核酸、タンパク質、糖鎖、糖タンパクのうち少なくとも一つを含む(4)のマイクロチップ基板の接合方法、
(6)プラスチック材料が飽和環状ポリオレフィンである(1)〜(5)いずれかのマイクロチップ基板の接合方法、
(7)(1)〜(6)いずれかのマイクロチップ基板の接合方法にて接合されたマイクロチップ、
である。
The present invention
(1) A method of bonding a first microchip substrate having a microchannel on a surface thereof and a second microchip substrate having a surface closely attached to a surface of the first microchip substrate having a microchannel, A bonding method of a microchip substrate, wherein the first microchip substrate and / or the second microchip substrate is made of a plastic material and has a step of bonding by laser fusion,
(2) In the step of bonding by laser fusion, using a mask patterned in the same shape as the microchannel, bonding is performed by irradiating only the bonding portion other than the microchannel with laser (1). Method,
(3) The bonding method of the microchip substrate according to (1) or (2), wherein the bonding portion of the microchip substrate is bonded 1 μm to 2000 μm away from the edge portion of the microchannel,
(4) A method of bonding a microchip substrate according to any one of (1) to (3), including a step of immobilizing a physiologically active substance on a part of a microchannel before the step of bonding by laser fusion.
(5) The method for bonding microchip substrates according to (4), wherein the physiologically active substance contains at least one of nucleic acid, protein, sugar chain, and glycoprotein,
(6) The method for joining microchip substrates according to any one of (1) to (5), wherein the plastic material is a saturated cyclic polyolefin,
(7) (1) to (6) a microchip bonded by any one of the microchip substrate bonding methods,
It is.

本発明の接合方法を用いることで、プラスチック材料により製造され表面にマイクロチャネルを有するマイクロチップ基板を熱によるマイクロチャネルの断面の変形、マイクロチップに固定化された生理活性物質のダメージ、接着剤によるマイクロチャネルの封鎖、及び内壁の汚染を生じさせることなく接合できる。   By using the bonding method of the present invention, a microchip substrate made of a plastic material and having a microchannel on the surface is deformed by heat, the cross section of the microchannel is deformed, the physiologically active substance immobilized on the microchip is damaged, and the adhesive is used. Bonding can be performed without blocking the microchannel and causing contamination of the inner wall.

以下、本発明について詳細に説明する。
図1は、表面に少なくとも一つの生理活性物質が固定化されたマイクロチャネル3を有する第1のマクロチップ基板1と、第1のマクロチップ基板のマイクロチャネルを有する面に対しほぼ密着可能な面を少なくとも一つ有する第2のマクロチップ基板2を最終的に接合した状態のマイクロチップを示している。
本発明に使用する第1及び第2のマイクロチップ基板の材質は、少なくとも1方は、プラスチック材料である。種々のプラスチック材料を用いることが可能であるが、作製されるマクロチップの用途、処理、使用する溶媒、生理活性物質、検出方法の特性に合わせて、成形性、耐熱性、耐薬品性、吸着性等を考慮し適宜に選択される。
例えば、ポリスチレン、ポリエチレン、ポリ塩化ビニル、ポリプロピレン、ポリカーボネート、ポリエステル、ポリメチルメタクリレート、ポリビニルアセテート、ビニル−アセテート共重合体、スチレン−メチルメタアクリレート共重合体、アクリルニトリル−スチレン共重合体、アクリルニトリル−ブタジエン−スチレン共重合体、ナイロン、ポリメチルペンテン、シリコン樹脂、アミノ樹脂、ポリスルフォン、ポリエーテルスルフォン、ポリエーテルイミド、フッ素樹脂、飽和環状ポリオレフィン、ポリイミド等が挙げられる。
その中で加工性、経済性も含め、現在最も用いられている検出法が蛍光検出であるため自己蛍光の少ない環状ポリオレフィンが最も好ましい。また、これらのプラスチック材料に、顔料、染料、酸化防止剤、難燃剤等の添加物を適宜混合してもよい。
Hereinafter, the present invention will be described in detail.
FIG. 1 shows a first macrochip substrate 1 having a microchannel 3 having at least one physiologically active substance immobilized on the surface thereof, and a surface that can substantially adhere to a surface of the first macrochip substrate having a microchannel. 1 shows a microchip in a state where a second macrochip substrate 2 having at least one is finally bonded.
At least one of the first and second microchip substrates used in the present invention is a plastic material. Various plastic materials can be used, but moldability, heat resistance, chemical resistance, adsorption, etc. according to the characteristics of the application, processing, solvent used, bioactive substance, and detection method of the produced macrochip. It is appropriately selected in consideration of the properties and the like.
For example, polystyrene, polyethylene, polyvinyl chloride, polypropylene, polycarbonate, polyester, polymethyl methacrylate, polyvinyl acetate, vinyl-acetate copolymer, styrene-methyl methacrylate copolymer, acrylonitrile-styrene copolymer, acrylonitrile- Examples thereof include butadiene-styrene copolymer, nylon, polymethylpentene, silicone resin, amino resin, polysulfone, polyethersulfone, polyetherimide, fluororesin, saturated cyclic polyolefin, and polyimide.
Among them, a cyclic polyolefin with little autofluorescence is most preferable because the detection method currently used most, including processability and economy, is fluorescence detection. In addition, additives such as pigments, dyes, antioxidants, and flame retardants may be appropriately mixed with these plastic materials.

もう一方のマイクロチップ基板の材質は、ガラス、シリコンウェハー、プラスチックなど特に限定は無いが、レーザー融着する際に同じ材料の方が密着しやすく他方のマイクロチップ基板と同じ材料を用いることが好ましく、マイクロチップの特性はもちろんのこと、融着の相性を考慮して材料の選定を実施する。
また、素材同士の相性が悪い場合でも表面処理を実施することにより融着の相性が改善するため、接合面に対して表面改質、例えば官能基の導入、機能材料の固定化、親水性の付与、および疎水性の付与等を実施したりすることも可能である。
The material of the other microchip substrate is not particularly limited, such as glass, silicon wafer, and plastic, but it is preferable to use the same material as the other microchip substrate because the same material is more likely to adhere when laser welding. In addition to the characteristics of microchips, materials are selected in consideration of the compatibility of fusion.
In addition, even if the compatibility between the materials is poor, the compatibility of the fusion is improved by carrying out the surface treatment, so that surface modification, such as introduction of functional groups, fixation of functional materials, It is also possible to perform imparting and imparting hydrophobicity.

レーザーによる融着で接合する為、レーザーの吸収率が良い素材を用いたマイクロチップ基板の方が溶融接着の効率がよく、小さなレーザーパワー、少ない時間で接合ができる。レーザー吸収率が小さな材料でマイクロチップ基板を作製する必要がある場合は密着層としてマイクロチップ基板1、2の間にレーザーをよく吸収し溶融接着する材料を接合前にマイクロチップ基板の接合表面に加工し接合することも可能である。
プラスチック材料を使用するマイクロチップ基板は、マイクロチャンネルを加工するマイクロチップ基板1に使用する方が加工のしやすさの面から好ましい。プラスチック材料を使用したマイクロチップ基板にマイクロチャネルを加工する方法としては、マイクロチャネル加工した型キャビティを使用した射出成形が大量生産には好ましいが、ドリル等の機械加工、ホットエンボスによる加工、レーザーによる加工、ドライエッチングパターン加工、ウェットエッチングパターン加工等の加工方法が選択できる。
Since bonding is performed by laser fusion, a microchip substrate using a material with a high laser absorption rate has better fusion bonding efficiency, and can be bonded with less laser power and less time. When it is necessary to fabricate a microchip substrate with a material having a low laser absorption rate, a material that absorbs the laser well between the microchip substrates 1 and 2 and melts and adheres to the bonding surface of the microchip substrate before bonding as a close contact layer. Processing and joining are also possible.
A microchip substrate using a plastic material is preferably used for the microchip substrate 1 for processing a microchannel from the viewpoint of ease of processing. As a method of processing a microchannel on a microchip substrate using a plastic material, injection molding using a microcavity mold cavity is preferable for mass production, but machining such as a drill, processing by hot embossing, laser processing Processing methods such as processing, dry etching pattern processing, and wet etching pattern processing can be selected.

マイクロチャネルとしては、サンプルや試薬の使用量あるいは廃液の排出量、かつ、熱移動・物質移動の高速化の観点から、幅は1μm以上500μm以下が好ましく、更に好ましくは、10μm以上300μ以下であり、深さは1μm以上500μm以下が好ましく、更に好ましくは10μm以上300μm以下である。但し、これらマイクロチャネルの流路設計は検出対象物、利便性を考慮に適宜設計されるため上記に限定はしない。また、マイクロチャネルの機能としてマイクロディバイス、具体的には、膜、ポンプ、バルブ、センサー、モーター、ミキサー、ギア、クラッチ、マイクロレンズ、電気回路等を装備したり、複数本のマイクロチャネルを同一基板上に加工することにより複合化することが可能である。   The width of the microchannel is preferably 1 μm or more and 500 μm or less, more preferably 10 μm or more and 300 μm or less, from the viewpoint of the amount of sample or reagent used or the amount of waste liquid discharged and the speed of heat transfer / mass transfer. The depth is preferably from 1 μm to 500 μm, more preferably from 10 μm to 300 μm. However, the flow path design of these microchannels is not limited to the above because it is appropriately designed in consideration of the detection object and convenience. In addition, the microchannel function is equipped with microdevices, specifically membranes, pumps, valves, sensors, motors, mixers, gears, clutches, microlenses, electrical circuits, etc., or multiple microchannels on the same substrate It can be compounded by processing on top.

生理活性物質としては、核酸、タンパク質、糖鎖、糖タンパク等が挙げられるが検出対象物の特性により適宜、最適な生理活性物質を選択することができる。また、同一チャネル上に複数の生理活性物質を固定化してもよく、同じマイクロチップ基板上に違うマイクロチャネルを作製し別々に生理活性物質を固定しても良い。   Examples of the physiologically active substance include nucleic acids, proteins, sugar chains, glycoproteins and the like, and an optimal physiologically active substance can be appropriately selected depending on the characteristics of the detection target. A plurality of physiologically active substances may be immobilized on the same channel, or different microchannels may be formed on the same microchip substrate and the physiologically active substances may be separately immobilized.

図2にレーザー5を用いた場合の接合時の図を示す。
マイクロチップ基板2の上部にレーザーを吸収しない透明な押さえ板、例えばガラス板等で挟みこむことにより密着した状態にし、マイクロチップ基板1とマイクロチップ基板2の密着部分、つまりマイクロチャネル以外の部分にレーザーを照射することにより生じた熱でお互いが溶融し接着する。お互いの密着部分のみで溶融接着するためマイクロチャネルに固定化された生理活性物質にはほとんど熱ストレスが発生せず、機能を保った状態でマイクロチップが接合できる。
FIG. 2 shows a view at the time of joining when the laser 5 is used.
The microchip substrate 2 is brought into a close contact state by being sandwiched by a transparent pressing plate that does not absorb laser, for example, a glass plate or the like, and is attached to a close contact portion between the microchip substrate 1 and the microchip substrate 2, that is, a portion other than the microchannel. The heat generated by irradiating the laser melts and adheres to each other. Since the bioactive substance fixed to the microchannel is hardly thermally stressed because it is melt-bonded only at the close contact portions, the microchip can be joined while maintaining its function.

レーザー融着の条件であるレーザー波長、レーザーパワー、押し付け圧力、照射時間は上下のマイクロチップ基板の材質により適宜、最適化して決定する。最適化のポイントは、マイクロチャネル内に液体等を流した場合に接合面が剥離しない程度に密着しているか、マイクロチャネル以外の場所へ漏れていないか、マイクロチャネルの断面が変形していないか等である。
更に詳しくは、マイクロチップ基板の接合部分がマイクロチャネルのエッジ部分から1μm以上2000μm以下離れて接合されていることが好ましく、更に好ましくは、5μm以上1000μm以下離れて接合されていることである。エッジ部分から下限値未満であると溶融部がマイクロチャネルに融けだしマイクロ流路に影響を及ぼす危険性があり、上限値を超えると本来マイクロチャネル内を流れるべき液体等が流路からしみだしサンプル・試薬の切り替え等を実施する際に置き換わりの効率が悪くなるほか、検出精度も悪くなる。
The laser wavelength, laser power, pressing pressure, and irradiation time, which are conditions for laser fusion, are determined by optimizing appropriately according to the materials of the upper and lower microchip substrates. The point of optimization is whether the joint surface is in close contact with the liquid when it flows into the microchannel, does not leak to a place other than the microchannel, or the cross section of the microchannel is not deformed. Etc.
More specifically, the bonding portion of the microchip substrate is preferably bonded to be 1 μm or more and 2000 μm or less away from the edge portion of the microchannel, and more preferably 5 μm or more and 1000 μm or less. If it is less than the lower limit from the edge, the melted part may melt into the microchannel and affect the microchannel. If the upper limit is exceeded, the liquid that should flow through the microchannel will ooze out from the channel.・ In addition to the efficiency of replacement when switching reagents, etc., the detection accuracy also deteriorates.

図3にマイクロチャネルと同じ形状にパターニングされたマスク5を用いた場合の接合時の図を示す。
マイクロチャネルと同じ形状にパターニングされているため、マイクロチャネル上にレーザーが全く照射されない以外は図2と同様であり、接合の性能としては図2の接合方法と大差は無い。このヘッドのマスク5の利点は、マスクを使用せずに接合する場合、マイクロチャネル以外の密着部を精度よくレーザー照射する必要があるため位置あわせ等の作業が複雑であり、精度に狂いが生じた場合にはマイクロチャネル上にレーザーを照射して生理活性物質等の劣化を引き起こし、検出の際に感度が低下するといった問題を改善できることである。また、レーザーを帯状に広げることによりマイクロチップ基板上を一度照射するだけで接合が完結するといったタクトタイムの速さ、生産性の向上が利点として挙げられる。
FIG. 3 shows a view at the time of bonding when the mask 5 patterned in the same shape as the microchannel is used.
Since it is patterned in the same shape as the microchannel, it is the same as in FIG. 2 except that no laser is irradiated onto the microchannel, and the bonding performance is not significantly different from the bonding method of FIG. The advantage of the mask 5 of this head is that, when bonding without using a mask, it is necessary to accurately irradiate a contact portion other than the microchannel with a laser, so that the operations such as alignment are complicated and the accuracy is distorted. In such a case, it is possible to ameliorate the problem of irradiating the microchannel with a laser to cause degradation of the physiologically active substance and the like, resulting in a decrease in sensitivity during detection. In addition, the speed of tact time and the improvement of productivity are mentioned as the advantage that the bonding is completed only by irradiating the microchip substrate once by spreading the laser in a belt shape.

次に、実際の接合例について、流路中に予めある蛋白に対する抗体を固定化して接合する例について記載する。
25mm×75mm程度で、厚さ0.5〜1.5mm程度で、表面にマイクロチャネルを図4に示すように配置した基板を射出成形により成形し、本体基板とする。同じ大きさでマイクロチャネルがない基板を成形し、蓋基板とする。本体基板に低温酸素プラズマなどにより親水化処理を施した後、マイクロチャネル中の抗体固定部6にアミノシランを反応させ、さらにグルタルアルデヒドを反応させることによりアルデヒド基を導入する。PBS(−)等の緩衝液中に抗体を適当な濃度で溶解させ、抗体溶液を調製し、続いて、直径40μm程度のピンで抗体固定部に抗体溶液を点着し放置する。放置時間は室温で30分から2時間程度、4℃で6〜12時間程度である。放置の後純水等の中に浸漬し洗浄を行い、BSA等をPBS(-)中に溶解させたブロッキング溶液中に浸漬しブロッキングを施した後、洗浄液中に基板を浸漬し洗浄した後、室温で乾燥する。続いて、レーザー融着による接合を行う。最後に溶液の流通を行なうためのポート(7,8)を設ける。
以上のようにして、マイクロチャネルに検出用の抗体を固定化した接合基板を得ることができる。
Next, as an actual joining example, an example will be described in which an antibody against a protein in the flow path is immobilized and joined.
A substrate having a size of about 25 mm × 75 mm and a thickness of about 0.5 to 1.5 mm and having a microchannel on the surface as shown in FIG. 4 is formed by injection molding to obtain a main body substrate. A substrate having the same size and no microchannel is formed to form a lid substrate. After subjecting the main body substrate to a hydrophilization treatment using low-temperature oxygen plasma or the like, an aminosilane is reacted with the antibody fixing portion 6 in the microchannel, and an aldehyde group is introduced by further reacting with glutaraldehyde. The antibody is dissolved at an appropriate concentration in a buffer solution such as PBS (−) to prepare an antibody solution. Subsequently, the antibody solution is spotted on the antibody fixing portion with a pin having a diameter of about 40 μm and left to stand. The standing time is about 30 minutes to 2 hours at room temperature and about 6 to 12 hours at 4 ° C. After leaving and immersing in pure water and washing, after immersing in blocking solution in which BSA etc. is dissolved in PBS (-) and blocking, after immersing and washing the substrate in the washing solution, Dry at room temperature. Subsequently, bonding by laser fusion is performed. Finally, ports (7, 8) are provided for solution flow.
As described above, a bonded substrate having a detection antibody immobilized on a microchannel can be obtained.

(実施例1)
25mm×75mm 厚さ0.5mmの大きさで、表面に、幅100μm深さ50μmのマイクロチャネルを図4に示すように配置した基板を飽和環状ポリオレフィン樹脂で射出成形により成形し、本体基板とした。同じ大きさでマイクロチャネルがない基板を同じく飽和環状ポリオレフィン樹脂で成形し、蓋基板とした。本体基板に低温酸素プラズマにより親水化処理を施した後、マイクロチャネル中の抗体固定部6にアミノシランを反応させ、さらにグルタルアルデヒドを反応させ、アルデヒド基を導入した。PBS(−)中に抗ラットアルブミン抗体を1μg/mlの濃度で溶解させ、抗体溶液を調製した。続いて、直径40μmのピンで抗体固定部に点着した。30分間放置したのち純水中に浸漬し洗浄を行い、1%BSAをPBS(-)中に溶解させたブロッキング溶液中に浸漬しブロッキングを施した後、洗浄液中に基板を浸漬し洗浄した後、室温で乾燥した。続いて、蓋基板で覆った後、ガラス基板で挟み込みマイクロチャネルと同じ形状にパターニングされたマスクを用い、レーザー融着し接合を行なった。溶液の流通を行なうためのポート(7,8)を設け、ラットアルブミンを検出する生体由来物検出基板として、感度評価試験に供した。
Example 1
A substrate having a size of 25 mm × 75 mm, a thickness of 0.5 mm, and a microchannel having a width of 100 μm and a depth of 50 μm arranged on the surface as shown in FIG. 4 was molded by injection molding with a saturated cyclic polyolefin resin to obtain a main substrate. . A substrate having the same size and no microchannel was also molded with a saturated cyclic polyolefin resin to form a lid substrate. After subjecting the main body substrate to a hydrophilic treatment by low-temperature oxygen plasma, aminosilane was reacted with the antibody fixing part 6 in the microchannel, and glutaraldehyde was further reacted to introduce an aldehyde group. An anti-rat albumin antibody was dissolved at a concentration of 1 μg / ml in PBS (−) to prepare an antibody solution. Subsequently, the antibody fixing part was spotted with a pin having a diameter of 40 μm. After being left for 30 minutes and then immersed in pure water for cleaning, the substrate was immersed in a blocking solution in which 1% BSA was dissolved in PBS (-) for blocking, and then the substrate was immersed in the cleaning solution for cleaning. And dried at room temperature. Subsequently, after covering with a lid substrate, laser bonding was performed using a mask sandwiched between glass substrates and patterned in the same shape as the microchannel. Ports (7, 8) for circulating the solution were provided and used for a sensitivity evaluation test as a biological substance detection substrate for detecting rat albumin.

(実施例2)
25mm×75mm 厚さ0.5mmの大きさで、表面に、幅100μm深さ50μmのマイクロチャネルを図4に示すように配置した基板を飽和環状ポリオレフィン樹脂で射出成形により成形し、本体基板とした。同じ大きさでマイクロチャネルがない基板を同じく飽和環状ポリオレフィン樹脂で成形し、蓋基板とした。本体基板に低温酸素プラズマにより親水化処理を施した後、マイクロチャネル中の抗体固定部6にアミノシランを反応させ、さらにグルタルアルデヒドを反応させ、アルデヒド基を導入した。PBS(−)中に抗ラットアルブミン抗体を1μg/mlの濃度で溶解させ、抗体溶液を調製した。続いて、直径40μmのピンで抗体固定部に点着した。30分間放置したのち純水中に浸漬し洗浄を行い、1%BSAをPBS(-)中に溶解させたブロッキング溶液中に浸漬しブロッキングを施した後、洗浄液中に基板を浸漬し洗浄した後、室温で乾燥した。続いて、蓋基板で覆った後、ガラス基板で挟み込みマスクを使用せずにレーザー融着し接合を行なった。溶液の流通を行なうためのポート(7,8)を設け、ラットアルブミンを検出する生体由来物検出基板として、感度評価試験に供した。
(Example 2)
A substrate having a size of 25 mm × 75 mm, a thickness of 0.5 mm, and a microchannel having a width of 100 μm and a depth of 50 μm arranged on the surface as shown in FIG. 4 was molded by injection molding with a saturated cyclic polyolefin resin to obtain a main substrate. . A substrate having the same size and no microchannel was also molded with a saturated cyclic polyolefin resin to form a lid substrate. After subjecting the main body substrate to a hydrophilic treatment by low-temperature oxygen plasma, aminosilane was reacted with the antibody fixing part 6 in the microchannel, and glutaraldehyde was further reacted to introduce an aldehyde group. An anti-rat albumin antibody was dissolved at a concentration of 1 μg / ml in PBS (−) to prepare an antibody solution. Subsequently, the antibody fixing part was spotted with a pin having a diameter of 40 μm. After being left for 30 minutes and then immersed in pure water for cleaning, the substrate was immersed in a blocking solution in which 1% BSA was dissolved in PBS (-) for blocking, and then the substrate was immersed in the cleaning solution for cleaning. And dried at room temperature. Subsequently, after covering with a lid substrate, the glass substrate was sandwiched and laser fusion was performed without using a mask to perform bonding. Ports (7, 8) for circulating the solution were provided and used for a sensitivity evaluation test as a biological substance detection substrate for detecting rat albumin.

(比較例1)
25mm×75mm 厚さ0.5mmの大きさで、表面に、幅100μm深さ50μmのマイクロチャネルを図1に示すように配置した基板を飽和環状ポリオレフィン樹脂で射出成形により成形し、本体基板とした。同じ大きさでマイクロチャネルがない基板を同じく飽和環状ポリオレフィン樹脂で成形し、蓋基板とした。本体基板に低温酸素プラズマにより親水化処理を施した後、マイクロチャネル中の抗体固定部6にアミノシランを反応させ、さらにグルタルアルデヒドを反応させ、アルデヒド基を導入した。PBS(−)中に抗ラットアルブミン抗体を1μg/mlの濃度で溶解させ、抗体溶液を調製した。続いて、直径40μmのピンで抗体固定部に点着した。30分間放置したのち純水中に浸漬し洗浄を行い、1%BSAをPBS(-)中に溶解させたブロッキング溶液中に浸漬しブロッキングを施した後、洗浄液中に基板を浸漬し洗浄した後、室温で乾燥した。続いて、蓋基板で覆い熱板温度130℃で2分間圧力をかけ加熱を行い本体基板と蓋基板の接合を行い、溶液の流通を行なうためのポート(7,8)を設け、ラットアルブミンを検出する生体由来物検出基板として、感度評価試験に供した。
(Comparative Example 1)
A substrate having a size of 25 mm × 75 mm, a thickness of 0.5 mm, and a microchannel having a width of 100 μm and a depth of 50 μm arranged on the surface as shown in FIG. 1 is molded by injection molding with a saturated cyclic polyolefin resin to obtain a main body substrate. . A substrate having the same size and no microchannel was also molded with a saturated cyclic polyolefin resin to form a lid substrate. After subjecting the main body substrate to a hydrophilic treatment by low-temperature oxygen plasma, aminosilane was reacted with the antibody fixing part 6 in the microchannel, and glutaraldehyde was further reacted to introduce an aldehyde group. An anti-rat albumin antibody was dissolved at a concentration of 1 μg / ml in PBS (−) to prepare an antibody solution. Subsequently, the antibody fixing part was spotted with a pin having a diameter of 40 μm. After being left for 30 minutes and then immersed in pure water for cleaning, the substrate was immersed in a blocking solution in which 1% BSA was dissolved in PBS (-) for blocking, and then the substrate was immersed in the cleaning solution for cleaning. And dried at room temperature. Next, cover with a lid substrate and heat for 2 minutes at a hot plate temperature of 130 ° C. to join the body substrate and lid substrate, provide ports (7, 8) to distribute the solution, It used for the sensitivity evaluation test as a biological substance detection board | substrate to detect.

(蛋白検出試験)
PBS(−)中にラットアルブミンを0.1μg/mlおよび0.01μg/mlの濃度に溶解しラットアルブミン溶液を調製した。各濃度のラットアルブミン溶液を基板のポートから20μl/minの送液スピードで3分間、基板のポートから流した。次にTWEEN20を0.5%含む洗浄駅をポートから流路内に20μl/minの送液スピードで3分間流し洗浄を行なった。続いてローダミンを標識した抗ラットアルブミン抗体溶液(1μg/mlでPBS(−)に溶解)を、20μl/minの送液スピードで3分間流した後、TWEEN20を0.5%含む洗浄駅をポートから流路内に20μl/minの送液スピードで3分間流し洗浄を行なった。最後にポートから超純水を20μl/minの送液スピードで3分間流した。
共焦点レーザースキャナーで、抗体固定部6の蛍光スポットの強度を測定した。ラットアルブミン溶液の各濃度について実施例1の基板のスポット蛍光強度を100とした、相対強度を表1に示す。ラットアルブミン溶液の各濃度について、実施例1の基板上で測定されたスポットの蛍光強度のSN比を100としたSN比の比較を表2に示す。ここでS/N比とは、抗体固定部以外の蛍光強度で抗体固定部の蛍光スポット強度を除して算出した。
(Protein detection test)
Rat albumin was dissolved in PBS (−) to a concentration of 0.1 μg / ml and 0.01 μg / ml to prepare a rat albumin solution. Rat albumin solution of each concentration was allowed to flow from the substrate port for 3 minutes at a feeding speed of 20 μl / min. Next, a washing station containing 0.5% TWEEN 20 was washed by flowing from the port into the flow path for 3 minutes at a liquid feed speed of 20 μl / min. Subsequently, an anti-rat albumin antibody solution labeled with rhodamine (dissolved in PBS (−) at 1 μg / ml) was allowed to flow for 3 minutes at a feeding speed of 20 μl / min, and then the washing station containing 0.5% TWEEN 20 was ported. To the flow path for 3 minutes at a liquid feed speed of 20 μl / min for washing. Finally, ultrapure water was allowed to flow from the port at a liquid feed speed of 20 μl / min for 3 minutes.
The intensity of the fluorescent spot on the antibody fixing part 6 was measured with a confocal laser scanner. Table 1 shows the relative intensities of each concentration of the rat albumin solution, with the spot fluorescence intensity of the substrate of Example 1 being 100. For each concentration of the rat albumin solution, Table 2 shows a comparison of SN ratios with the SN ratio of the fluorescence intensity of the spots measured on the substrate of Example 1 being 100. Here, the S / N ratio was calculated by dividing the fluorescence spot intensity of the antibody immobilization part by the fluorescence intensity other than the antibody immobilization part.

Figure 2005074796
Figure 2005074796

Figure 2005074796
Figure 2005074796

本発明の接合方法は、マイクロチップ基板をマイクロチャネルの断面の変形、マイクロチップに固定化された生理活性物質のダメージ、接着剤によるマイクロチャネルの封鎖、及び内壁の汚染を生じさせることなく接合できるため、各種用途のマイクロチップに適用できる。   The bonding method of the present invention can bond a microchip substrate without causing deformation of the cross section of the microchannel, damage to the physiologically active substance immobilized on the microchip, blockage of the microchannel by the adhesive, and contamination of the inner wall. Therefore, it can be applied to microchips for various uses.

本発明のマイクロチップの一実施例となる断面概略図である。It is the cross-sectional schematic which becomes one Example of the microchip of this invention. 本発明のマイクロチップ基板の接合方法において、レーザー融着にて接合した場合の接合時の断面概略図である。In the joining method of the microchip board | substrate of this invention, it is a cross-sectional schematic diagram at the time of joining at the time of joining by laser fusion. 本発明のマイクロチップ基板の接合方法において、マイクロチャネルと同じ形状にパターニングされたマスクを用いた場合の接合時の断面概略図である。In the joining method of the microchip board | substrate of this invention, it is the cross-sectional schematic at the time of joining at the time of using the mask patterned by the same shape as a microchannel. 本発明に使用する表面にマイクロチャネルを有するマクロチップ基板の一実施例となる平面概略図であるFIG. 2 is a schematic plan view showing an embodiment of a macrochip substrate having a microchannel on the surface used in the present invention.

符号の説明Explanation of symbols

1 マイクロチャネルを有するマイクロチップ基板
2 マイクロチャネルの溝を有する面にほぼ密着する面を有するマイクロチップ基板
3 マイクロチャネル
4 レーザー
5 マイクロチャネルと同じ形状にパターニングされたマスク
6 抗体固定化部
7 注入ポート
8 排出ポート
DESCRIPTION OF SYMBOLS 1 Microchip board | substrate which has a microchannel 2 Microchip board | substrate which has the surface which closely_contact | adheres to the surface which has the microchannel groove | channel 3 Microchannel 4 Laser 5 Mask 6 patterned in the same shape as a microchannel 6 Antibody immobilization part 7 Injection port 8 Discharge port

Claims (7)

表面にマイクロチャネルを有する第1のマイクロチップ基板と、第1のマイクロチップ基板のマイクロチャネルを有する面に密着する面を有する第2のマイクロチップ基板とを接合する方法であって、第1のマイクロチップ基板及び/又は第2のマイクロチップ基板がプラスチック材料からなり、レーザー融着にて接合する工程を有することを特徴とするマイクロチップ基板の接合方法。 A method of bonding a first microchip substrate having a microchannel on a surface thereof and a second microchip substrate having a surface closely attached to a surface of the first microchip substrate having a microchannel, A method of joining microchip substrates, comprising: a step of joining the microchip substrate and / or the second microchip substrate made of a plastic material by laser fusion. レーザー融着にて接合する工程において、マイクロチャネルと同じ形状にパターニングされたマスクを用いて、マイクロチャネル以外の接合部のみにレーザーを照射し接合する請求項1記載のマイクロチップ基板の接合方法。 The method of bonding a microchip substrate according to claim 1, wherein, in the step of bonding by laser fusion, only a bonding portion other than the microchannel is irradiated with laser using a mask patterned in the same shape as the microchannel. マイクロチップ基板の接合部分がマイクロチャネルのエッジ部分から1μm〜2000μm離れて接合されている請求項1又は2記載のマイクロチップ基板の接合方法。 The method for bonding a microchip substrate according to claim 1 or 2, wherein the bonding portion of the microchip substrate is bonded 1 μm to 2000 μm away from the edge portion of the microchannel. レーザー融着にて接合する工程の前に、マイクロチャネルの一部に生理活性物質を固定化する工程を有する請求項1〜3いずれか記載のマイクロチップ基板の接合方法 The method for bonding a microchip substrate according to any one of claims 1 to 3, further comprising a step of immobilizing a physiologically active substance in a part of the microchannel before the step of bonding by laser fusion. 生理活性物質が核酸、タンパク質、糖鎖、糖タンパクのうち少なくとも一つを含む請求項4記載のマイクロチップ基板の接合方法。 The method for bonding microchip substrates according to claim 4, wherein the physiologically active substance contains at least one of nucleic acid, protein, sugar chain, and glycoprotein. プラスチック材料が飽和環状ポリオレフィンである請求項1〜5いずれか記載のマイクロチップ基板の接合方法。 The method for joining microchip substrates according to claim 1, wherein the plastic material is a saturated cyclic polyolefin. 請求項1〜6いずれか記載のマイクロチップ基板の接合方法にて接合されたマイクロチップ。 The microchip joined by the joining method of the microchip board | substrate in any one of Claims 1-6.
JP2003307800A 2003-08-29 2003-08-29 Microchip substrate bonding method and microchip Expired - Fee Related JP4367055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003307800A JP4367055B2 (en) 2003-08-29 2003-08-29 Microchip substrate bonding method and microchip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003307800A JP4367055B2 (en) 2003-08-29 2003-08-29 Microchip substrate bonding method and microchip

Publications (2)

Publication Number Publication Date
JP2005074796A true JP2005074796A (en) 2005-03-24
JP4367055B2 JP4367055B2 (en) 2009-11-18

Family

ID=34410482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003307800A Expired - Fee Related JP4367055B2 (en) 2003-08-29 2003-08-29 Microchip substrate bonding method and microchip

Country Status (1)

Country Link
JP (1) JP4367055B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006315313A (en) * 2005-05-13 2006-11-24 Japan Steel Works Ltd:The Transferring/joining method and transferring/joining apparatus
JP2006315312A (en) * 2005-05-13 2006-11-24 Japan Steel Works Ltd:The Joining method and joining apparatus
WO2007049332A1 (en) * 2005-10-25 2007-05-03 Shimadzu Corporation Flow cell and process for producing the same
JP2007144601A (en) * 2005-11-30 2007-06-14 Stlab Inc Microchip manufacturing method and microchip manufacturing device
WO2007119552A1 (en) 2006-03-29 2007-10-25 Zeon Corporation Process for production of resin composite molded article
JP2007307634A (en) * 2006-05-16 2007-11-29 Rohm Co Ltd Micro fluid circuit manufacturing method, and micro fluid circuit manufactured by the method
WO2008059848A1 (en) * 2006-11-14 2008-05-22 Japan Science And Technology Agency Structure of micro/nanoconstruction, bioinspection chip utilizing the same and process for producing them
WO2008065868A1 (en) 2006-12-01 2008-06-05 Konica Minolta Opto, Inc. Microchip substrate bonding method and microchip
JP2008126472A (en) * 2006-11-20 2008-06-05 Univ Of Electro-Communications Precision welding method for micro fluid chip
JP2008537146A (en) * 2005-04-19 2008-09-11 プレジデント・アンド・フエローズ・オブ・ハーバード・カレツジ Fluid structure with a serpentine wide channel
WO2008117717A1 (en) 2007-03-27 2008-10-02 Konica Minolta Opto, Inc. Bonding method of resin member
JP2008284782A (en) * 2007-05-17 2008-11-27 Hamamatsu Photonics Kk Resin-glass fused adhesion method and resin-glass fused adhesion apparatus
JP2009274369A (en) * 2008-05-15 2009-11-26 Ricoh Opt Ind Co Ltd Method for joining microchip substrate, and general-purpose microchip
US7901527B2 (en) 2007-03-02 2011-03-08 Konica Minolta Opto, Inc. Microchip manufacturing method
JP2012063366A (en) * 2011-12-13 2012-03-29 Rohm Co Ltd Method of manufacturing microfluid circuit, and microfluid circuit manufactured by the method
JP2015098054A (en) * 2013-11-19 2015-05-28 ロフィン−ジナール テクノロジーズ インコーポレイテッド Electro/mechanical microchips and method of making electro/mechanical microchips with burst ultrafast laser pulses
WO2015098719A1 (en) * 2013-12-27 2015-07-02 株式会社朝日Fr研究所 Thermally conductive microchemical chip
JP2016539828A (en) * 2013-11-27 2016-12-22 エフ ホフマン−ラ ロッシュ アクチェン ゲゼルシャフト Method for laser welding disposable test units
US20190126273A1 (en) * 2017-11-01 2019-05-02 Taiwan Green Point Enterprises Co., Ltd. Substrate assembly and method of bonding substrates
WO2023276455A1 (en) * 2021-06-28 2023-01-05 日亜化学工業株式会社 Resin component and production method therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000039420A (en) * 1998-07-21 2000-02-08 Asahi Chem Ind Co Ltd Microchip made of resin
JP2001191412A (en) * 2000-01-11 2001-07-17 Asahi Intecc Co Ltd Method for welding hot-melt synthetic resin
JP2002243734A (en) * 2001-02-14 2002-08-28 Inst Of Physical & Chemical Res Microchip
JP2003043052A (en) * 2001-08-02 2003-02-13 Mitsubishi Chemicals Corp Microchannel chip, microchannel system and circulation control method in microchannel chip
JP2003240755A (en) * 2002-01-31 2003-08-27 Ecole Polytechnique Federale De Lausanne Microchip comprising transparent hydrocarbon-based polymer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000039420A (en) * 1998-07-21 2000-02-08 Asahi Chem Ind Co Ltd Microchip made of resin
JP2001191412A (en) * 2000-01-11 2001-07-17 Asahi Intecc Co Ltd Method for welding hot-melt synthetic resin
JP2002243734A (en) * 2001-02-14 2002-08-28 Inst Of Physical & Chemical Res Microchip
JP2003043052A (en) * 2001-08-02 2003-02-13 Mitsubishi Chemicals Corp Microchannel chip, microchannel system and circulation control method in microchannel chip
JP2003240755A (en) * 2002-01-31 2003-08-27 Ecole Polytechnique Federale De Lausanne Microchip comprising transparent hydrocarbon-based polymer

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008537146A (en) * 2005-04-19 2008-09-11 プレジデント・アンド・フエローズ・オブ・ハーバード・カレツジ Fluid structure with a serpentine wide channel
JP2006315312A (en) * 2005-05-13 2006-11-24 Japan Steel Works Ltd:The Joining method and joining apparatus
JP2006315313A (en) * 2005-05-13 2006-11-24 Japan Steel Works Ltd:The Transferring/joining method and transferring/joining apparatus
WO2007049332A1 (en) * 2005-10-25 2007-05-03 Shimadzu Corporation Flow cell and process for producing the same
JP4656149B2 (en) * 2005-10-25 2011-03-23 株式会社島津製作所 Flow cell and manufacturing method thereof
JPWO2007049332A1 (en) * 2005-10-25 2009-04-30 株式会社島津製作所 Flow cell and manufacturing method thereof
JP2007144601A (en) * 2005-11-30 2007-06-14 Stlab Inc Microchip manufacturing method and microchip manufacturing device
US8287682B2 (en) 2006-03-29 2012-10-16 Zeon Corporation Process for production of resin composite molded article
WO2007119552A1 (en) 2006-03-29 2007-10-25 Zeon Corporation Process for production of resin composite molded article
US8377391B2 (en) 2006-05-16 2013-02-19 Rohm Co., Ltd. Fabrication method of microfluidic circuit, and microfluidic circuit fabricated by method thereof
US8377389B2 (en) 2006-05-16 2013-02-19 Rohm Co., Ltd. Microfluidic circuit
JP2007307634A (en) * 2006-05-16 2007-11-29 Rohm Co Ltd Micro fluid circuit manufacturing method, and micro fluid circuit manufactured by the method
WO2008059848A1 (en) * 2006-11-14 2008-05-22 Japan Science And Technology Agency Structure of micro/nanoconstruction, bioinspection chip utilizing the same and process for producing them
JP2008126472A (en) * 2006-11-20 2008-06-05 Univ Of Electro-Communications Precision welding method for micro fluid chip
WO2008065868A1 (en) 2006-12-01 2008-06-05 Konica Minolta Opto, Inc. Microchip substrate bonding method and microchip
US7901527B2 (en) 2007-03-02 2011-03-08 Konica Minolta Opto, Inc. Microchip manufacturing method
WO2008117717A1 (en) 2007-03-27 2008-10-02 Konica Minolta Opto, Inc. Bonding method of resin member
JP2008284782A (en) * 2007-05-17 2008-11-27 Hamamatsu Photonics Kk Resin-glass fused adhesion method and resin-glass fused adhesion apparatus
JP2009274369A (en) * 2008-05-15 2009-11-26 Ricoh Opt Ind Co Ltd Method for joining microchip substrate, and general-purpose microchip
JP2012063366A (en) * 2011-12-13 2012-03-29 Rohm Co Ltd Method of manufacturing microfluid circuit, and microfluid circuit manufactured by the method
JP2015098054A (en) * 2013-11-19 2015-05-28 ロフィン−ジナール テクノロジーズ インコーポレイテッド Electro/mechanical microchips and method of making electro/mechanical microchips with burst ultrafast laser pulses
JP2016539828A (en) * 2013-11-27 2016-12-22 エフ ホフマン−ラ ロッシュ アクチェン ゲゼルシャフト Method for laser welding disposable test units
US10190988B2 (en) 2013-11-27 2019-01-29 Roche Diabetes Care, Inc. Methods of laser welding disposable diagnostic test elements
WO2015098719A1 (en) * 2013-12-27 2015-07-02 株式会社朝日Fr研究所 Thermally conductive microchemical chip
JPWO2015098719A1 (en) * 2013-12-27 2017-03-23 株式会社朝日Fr研究所 Thermally conductive microchemical chip
US20190126273A1 (en) * 2017-11-01 2019-05-02 Taiwan Green Point Enterprises Co., Ltd. Substrate assembly and method of bonding substrates
TWI664045B (en) * 2017-11-01 2019-07-01 綠點高新科技股份有限公司 A bonding method and a substrate device,a microchannel device and its bonding method
US10940472B2 (en) 2017-11-01 2021-03-09 Taiwan Green Point Enterprises Co., Ltd. Substrate assembly and method of bonding substrates
WO2023276455A1 (en) * 2021-06-28 2023-01-05 日亜化学工業株式会社 Resin component and production method therefor

Also Published As

Publication number Publication date
JP4367055B2 (en) 2009-11-18

Similar Documents

Publication Publication Date Title
JP4367055B2 (en) Microchip substrate bonding method and microchip
US11292237B2 (en) Microfluidic assay assemblies and methods of manufacture
JP5661918B2 (en) PCR device including two thermal blocks
US9546932B2 (en) Microfluidic assay operating system and methods of use
US10786800B2 (en) Methods and systems for epi-fluorescent monitoring and scanning for microfluidic assays
JP2008008880A (en) Microchip made from plastic, manufacturing method therefor, and biochip or microanalytical chip using the same
US9700889B2 (en) Methods and systems for manufacture of microarray assay systems, conducting microfluidic assays, and monitoring and scanning to obtain microfluidic assay results
JP2005077239A (en) Joining method of microchip substrates and microchip
JP6589865B2 (en) Fluid device, fluid control method, inspection device, inspection method, and fluid device manufacturing method
JP2006030160A (en) Reaction container
US9855735B2 (en) Portable microfluidic assay devices and methods of manufacture and use
JP2008175795A (en) Microchip made of plastic, and manufacturing method thereof, biochip or microanalysis chip using the same
JP2007240461A (en) Plastic microchip, joining method therefor, and biochip or micro analytical chip using the same
JP2011214838A (en) Resin microchannel chip
JP5303976B2 (en) Microchip substrate bonding method and microchip
JP2008157644A (en) Plastic microchip, and biochip or micro analysis chip using the same
JP4752364B2 (en) Plastic bonding method, and biochip or microanalysis chip manufactured using the method
JP2013090586A (en) Microchip for nucleic acid amplification reaction and method of producing the same
JP4415612B2 (en) Bonding method and bonding substrate for plastic substrate
JP2008304352A (en) Channel device and method for bonding channel device-use board
JP2008076208A (en) Plastic microchip, biochip using it or microanalyzing chip
JP2010247056A (en) Microchip
JP4513626B2 (en) Method for producing a mold for producing a microchannel substrate
JP4581784B2 (en) Method for producing a mold for producing a microchannel substrate
JP2006133003A (en) Microchemical device and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090817

R150 Certificate of patent or registration of utility model

Ref document number: 4367055

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140904

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees