WO2008059848A1 - Structure of micro/nanoconstruction, bioinspection chip utilizing the same and process for producing them - Google Patents

Structure of micro/nanoconstruction, bioinspection chip utilizing the same and process for producing them Download PDF

Info

Publication number
WO2008059848A1
WO2008059848A1 PCT/JP2007/072034 JP2007072034W WO2008059848A1 WO 2008059848 A1 WO2008059848 A1 WO 2008059848A1 JP 2007072034 W JP2007072034 W JP 2007072034W WO 2008059848 A1 WO2008059848 A1 WO 2008059848A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
side substrate
flow path
antibody
original plate
Prior art date
Application number
PCT/JP2007/072034
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshihiko Hirai
Toshio Yao
Hiroaki Kawata
Naoyuki Niimi
Yasuhiro Tsukamoto
Original Assignee
Japan Science And Technology Agency
Osaka Prefecture University Public Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency, Osaka Prefecture University Public Corporation filed Critical Japan Science And Technology Agency
Publication of WO2008059848A1 publication Critical patent/WO2008059848A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/003Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/18Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. compression moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C99/00Subject matter not provided for in other groups of this subclass
    • B81C99/0075Manufacture of substrate-free structures
    • B81C99/0085Manufacture of substrate-free structures using moulds and master templates, e.g. for hot-embossing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/08Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a stream of discrete samples flowing along a tube system, e.g. flow injection analysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/021Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface
    • B29C2043/023Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface having a plurality of grooves
    • B29C2043/025Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface having a plurality of grooves forming a microstructure, i.e. fine patterning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/05Microfluidics
    • B81B2201/058Microfluidics not provided for in B81B2201/051 - B81B2201/054
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/06Bio-MEMS
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • G01N2035/00099Characterised by type of test elements
    • G01N2035/00158Elements containing microarrays, i.e. "biochip"

Definitions

  • the present invention relates to a structure having a nanostructure and a microstructure, a biosensing disk, and a method for manufacturing a biotest chip using the same.
  • microfabrication technology One of the basic technologies that support nano technology is microfabrication technology.
  • a typical example is a semiconductor microfabrication technique represented by lithography.
  • Ultra-fine structures can be formed using deep ultraviolet rays or electron beams, and devices and processes for next-generation nano-lithography have been widely studied.
  • FIG. 20 is a diagram for explaining such a conventional nanoimprint method.
  • a master 904 is prepared for a resin layer 902 formed on a substrate 900.
  • the master 904, the substrate 900, and the resin layer 902 are heated to a predetermined temperature, and the master 904 is pressed onto the resin layer 902 at a temperature higher than the Tg of the resin layer 902 (b).
  • the whole is cooled in the pressed state, and when the temperature becomes lower than Tg of the resin layer 902, the original 904 is removed. Through this process, the shape of the original is transferred to the resin layer.
  • This nanoimprint method does not require expensive equipment and ancillary processes, and can produce a transfer pattern with a resolution of 10 nm or less, so that integrated microstructures can be formed at once. Therefore, it is attracting attention as a next generation semiconductor ultrafine processing technology.
  • the material to be processed can be selected from thermoplastics such as acrylic, PET, PC, and PB, depending on the application, enabling micro and nano processing of a wide variety of materials.
  • thermoplastics such as acrylic, PET, PC, and PB, depending on the application, enabling micro and nano processing of a wide variety of materials.
  • Patent Document 2 discloses a method for distributing a sample to a microscale device, bringing the sample into contact with a target material, and detecting an interaction between the sample and the target material.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2006-219752
  • Patent Document 2 Special Table 2007—527784
  • an antibody is a protein
  • the N-terminal can form an amide bond and be adsorbed on the resin surface.
  • the carboxyl group is bound in the resin as described above, the antibody cannot be bound.
  • the conventional resin having a nano-structure has a problem in that it is difficult to determine the chromaticity of the reaction solution that has caused an enzyme reaction on the resin because it transmits light to some extent.
  • the present invention has been made in view of the force and the circumstances, and provides a simple method for producing a structure having a nanostructure and a microstructure.
  • a biosensing disk having an antibody adsorbed on the structure and a method for producing the same are provided.
  • a bio-test chip using the bio-sensing disc and a method for manufacturing the same are provided.
  • a method for producing a structure having a nanostructure and a microstructure of the present invention includes:
  • a material heating step of heating the original plate and the resin above the glass transition temperature and below the melting temperature of the resin
  • the resin in the material arranging step is preferably a thermoplastic resin!
  • a molding frame may be installed around the resin to surround the fine structure of the original plate.
  • the size of the powdery resin in the material arranging step is preferably a powder or particles smaller than the pattern size of the original plate.
  • the material placement step is preferably performed under reduced pressure or in a vacuum atmosphere.
  • a method for producing a biosensing disk in which an antibody is adsorbed to a structure having a nanostructure and a microstructure of the present invention includes:
  • a material heating step of heating the original plate and the resin above the glass transition temperature and below the melting temperature of the resin A pressing step of pressing the resin on the original plate;
  • the present invention also provides a method for producing a nanosensing disk comprising an antibody adsorption step of adsorbing an antibody to the micro / nano structure of the structure.
  • the present invention provides a method for producing a biotest chip using a structure in which an antibody is adsorbed to a structure having a micro-nano structure.
  • the present invention provides a method for manufacturing a biotest chip, which includes a bonding step of pressing the flow path side substrate and the lid side substrate.
  • biosensing disc of the present invention comprises:
  • a biosensing disk having an antibody adsorbed on the surface of the micro-nano structure is provided.
  • biotest chip of the present invention comprises:
  • a lid side substrate having an adhesive layer formed on the surface
  • the present invention provides a biotest chip comprising a structure having a micro / nano structure adsorbed with an antibody on its surface.
  • a polymer resin powder, an oligomer powder, or the like directly purified to an original plate (mold) is directly molded without being subjected to secondary processing. Therefore, efficient micro and nano structure can be manufactured.
  • the active group is not deactivated by the residual solvent.
  • the light-shielding layer is formed on the back surface of the biosensing disk of the present invention, the color of the reaction solution can be easily identified when assembled.
  • the disk when used in a bio-test chip, the disk can be bonded with ultraviolet light while being placed inside the chip.
  • the original plate 3 used in the production method of the present invention is provided with a micro and nano structure consisting of fine protrusions or grooves (FIG. 1 (a)).
  • the material of the original plate 3 is preferably silicon, quartz glass, sapphire, SiC, Ni, or super steel. This micro and nano structure corresponds to the nano structure on the structure to be molded using the original plate produced by this method.
  • micro, nanostructure means that the minimum size (for example, one side, height, and diameter) is a chromano-noskenore (if it is f line, 1 ⁇ m to 25 ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ m to 250 ⁇ m, or 100 ⁇ m to 2500 ⁇ m) or any one or more arbitrary shapes (eg, polygonal cylinder, cylinder, flat plate, nanometer scale (eg, 10 nm to 500 nm, 50 nm to 1000 nm, or 100 nm to 1000 nm), It is a structure having a polygonal cone and a cone.
  • the nanostructure may be a structure in which one shape or two or more shapes (including those different in size) are repeatedly arranged.
  • the microstructure is a cylindrical array arrangement IJ (eg, height 100 m to 500 m, repeat pitch 100 Hm to 300 11 m).
  • the microstructure is a plate array (eg, thickness 2 ⁇ m to 20 ⁇ m, height 10 ⁇ m to 500 ⁇ m, repeat pitch 3 ⁇ m to 40 ⁇ m).
  • the term "micro'nanostructure” includes both microstructure and nanostructure. Huh. Micro'nanostructures may include either microstructures or nanostructure forces, or both. Therefore, “micro, nanostructure” can also be called “micro'nanostructure”.
  • Micro'nanostructures are methods commonly used for microfabrication, for example in the field of semiconductor manufacturing, such as photolithographic techniques, electron beam (EB) lithography techniques, and / or etching techniques, particularly reactive ions. It can be produced using dry etching techniques such as etching (RIE) or plasma etching, and / or electron beam direct writing.
  • RIE etching
  • a metal mold 1 is provided for adjusting the thickness of the resin after molding.
  • the metal type 1 material include aluminum, tungsten, iron, and stainless steel.
  • the metal mold 1 here may be referred to as “molding frame 1”.
  • the material of the resin powder 2 is preferably a purified product of a thermoplastic resin such as acrylic, polycarbonate, or pet. It is desirable that the size of the powder be as small as possible or less than the pattern size of the original plate. Further, when a substance is actively adsorbed to the micro / nano structure, a resin that can be surface-modified so that the substance can be easily adsorbed may be used as the resin powder. For example, when trying to adsorb proteins, etc., if there are a lot of carboxyl groups on the surface of the micro-nano structure, the ability to create an amino group and amide bond with the protein and immediately adsorb strongly. Touch with S.
  • the amount of the resin powder 2 is the sum of the volume of the hollow pattern portion of the original 3 and the volume of the metal mold 1 surrounding the upper surface of the original when the resin reaches the glass transition temperature or higher. Larger amounts are preferred. More preferably, an amount exceeding 200% of the volume, more preferably an amount exceeding 120% of the volume, is placed on the master 3.
  • the atmosphere may be reduced in pressure or vacuum.
  • an inert gas atmosphere may be used.
  • the pressing surface of the original plate is pressed with a flat metal pressing plate 4 (aluminum, tungsten, iron, stainless steel, silicon, SiC, quartz, etc.) while the resin powder is softened by heating (Fig. L (b)).
  • a flat metal pressing plate 4 aluminum, tungsten, iron, stainless steel, silicon, SiC, quartz, etc.
  • This process uses a technology called “thermal nanoimprinting” Use.
  • thermal nanoimprinting Use.
  • the heating is preferably performed at a temperature from the glass transition temperature (Tg) or higher to the melting temperature of the thermoplastic resin. More preferably, the heating is performed up to a temperature 10 ° C to 100 ° C higher than the glass transition temperature, more preferably 10 ° C to 80 ° C higher, more preferably 30 ° C to 60 ° C higher.
  • the pressure at the time of pressing varies depending on the thermoplastic resin to be used, but is generally lMPa to lOOMPa, preferably lMPa to 50 MPa, more preferably IMPa to 10 MPa, more preferably 2 MPa to 5 MPa. .
  • the time is 30 seconds to 30 minutes, preferably 1 minute to 20 minutes, more preferably 2 minutes to 5 minutes.
  • the viscosity of the thermoplastic resin decreases, and the thermoplastic resin is filled along with the fine structure of the original plate (mold) with the passage of time, and the inverted structure of the micro and nano structures is temporarily fixed.
  • the resin is released from the original plate, the transferred inverted structure disappears due to the viscosity of the resin over time.
  • the pressing pressure is gradually released. At this time, the viscosity of the thermoplastic resin increases, and the inverted structure of the micro and nano structures is fixed.
  • an inert gas such as air or nitrogen may be introduced from the outside to return to atmospheric pressure.
  • the temperature of the resin is 10 ° C to 200 ° C, preferably 20 ° C to; 100 ° C, more preferably 40 ° C to 80 ° C below the glass transition temperature, (Fig. L (d)).
  • FIG. 2 shows a graph summarizing an example of temperature and pressure processes.
  • the horizontal axis is time (minutes), the left vertical axis is temperature (° C), and the right vertical axis is pressure (MPa).
  • First raise the pressure to 140 ° C over about 5 minutes without applying pressure. Then preheat at 140 ° C for about 2 minutes. Then apply lMPa pressure and maintain the pressure for 3 minutes. Cooling is performed after heating and pressurization.
  • the pressure is reduced from the start of cooling, and the pressure is gradually reduced. When the temperature reaches about 45 ° C, the pressure is reduced to zero.
  • the original plate may be subjected to a surface treatment such as application of a release agent composed of a fluororesin or the like in order to improve releasability.
  • the micro / nano structure is transferred by pressing the original plate against the polymer resin film.
  • pressing it is preferable to heat and soften the polymer resin film.
  • the polymer or polymer is applied to the original plate and then polymerized or cured to transfer the micro-nano structure to the polymer resin.
  • a resin generally used for molding for example, a thermoplastic resin, a thermosetting resin, or a photocurable resin can be used.
  • Such a structure having a micro'nano structure is useful as a microreactor, biochip, optical element, or micromachine.
  • a binding partner for example, an antigen and an antibody, an enzyme and a substrate, a receptor
  • a binding partner for example, an antigen and an antibody, an enzyme and a substrate, a receptor
  • one of the ligand, the polynucleotide strand and its complementary strand can be used to detect the other binding partner present in a small amount of sample, or the binding reaction can be accelerated to increase the time required for detection. It can be shortened.
  • Such microdevices can be used as immunoassay chips, DNA chips, diagnostic detection kits, chemical analysis chips, and microsensors.
  • the flow of fluid in the flow path is controlled by forming nanostructures in the flow path of a microreactor or microfluidic device formed of micro'nanostructures, or a plurality of fluids It can promote mixing or function as a size filter.
  • an antireflection structure with a conical nanostructure and a photonic crystal structure with an array of rectangular parallelepiped nanostructures can be used for IJ.
  • Biosensing refers to a method for detecting a substance using a biological product.
  • the substance to be detected is also called an antigen.
  • an enzyme linked immunosorbent assay hereinafter referred to as “ELISA”
  • ELISA enzyme linked immunosorbent assay
  • ELISA has also been performed for environmental substance testing and is a popular detection method.
  • a solution containing an antigen to be detected is directly brought into contact with a plastic tube or a microphone plate plate well, and the antigen is adsorbed on its wall surface. After that, the force that does not adsorb the antigen is covered, and the wall surface portion is covered with a protein unrelated to the antigen to be detected.
  • the solid surface on which the antigen or antibody is adsorbed is referred to as “solid surface”. This is called blocking.
  • an antibody that specifically adsorbs to the antigen to be detected is added. The antibody that did not bind to the antigen is washed away, and the antibody adsorbed to the antigen on the solid surface is quantified by an enzymatic reaction.
  • an antibody that specifically adsorbs to an antigen to be detected is first bound to a solid surface in advance. Next, after blocking the solid surface, a solution containing the antigen to be detected is added, and the antigen in the solution is bound to the antibody on the solid surface. After washing away unwanted proteins and antigens that did not bind to the antibody, add the labeled antibody and quantify the target antigen bound to the solid phase.
  • Biosensing using ELISA can detect only a protein to be detected even if a protein other than the protein to be detected is present in the solution. In this method, if as much antibody as possible can be adsorbed on the solid surface, a large amount of antigen can be captured, and the detection sensitivity becomes high. Since the resin structure having a micro / nano structure of the present invention can have a surface area higher than that of a flat structure, it can be used as a solid surface on which antibodies are adsorbed in ELISA. [0054] There are no particular limitations on the micro-nanostructure that can be used in the present invention. Shapes such as strips, cylinders, and triangular pyramids may be used. These patterns can also be mixed and used.
  • a material that can be used a material that can adsorb antibody preferentially as well as the materials described in Embodiment 1 can be used.
  • an antibody since an antibody is a protein, it has an amino group and a carboxyl group. It is possible to use materials having functional groups that actively adsorb these functional groups on the surface.
  • a copolymer of polymethyl methacrylate and methacrylic acid is shown. In the present specification, a copolymer of methyl methacrylate and methacrylic acid is referred to as a “PMMA copolymer”.
  • the overall shape is not limited.
  • the portion having a microphone opening 'nanostructure may also include a curved surface that is not only a flat surface.
  • a film-like one can be suitably used because it is easy to produce.
  • a film-like example will be described.
  • a film in which a micro-nano structure is formed on the surface of a resin is called a “resin disk”.
  • Resin disks using PMMA copolymers are called “copolymer resin disks”.
  • a resin disc in which an antibody is immobilized on the surface of a micro-nano structure is called an “antibody-immobilized resin disc”.
  • the antibody-fixing resin disc is
  • the antibody is obtained from an immune cell produced by introducing an antigen into the body of the organism and the organism produces against the antigen.
  • the antibody can be obtained even if the antigen is a non-protein substance. Therefore, a substance to be detected that can be detected by an antibody is not limited to a protein.
  • the substance to be detected is also called a specimen, and includes substances other than proteins.
  • the resin structure having a micro / nano structure of the present invention is very useful in biosensing because it has an excellent antibody adsorption ability as described in Embodiment 2. Therefore, an embodiment in which the resin disk having the micro'nano structure shown in the second embodiment is used for a biochip will be described.
  • the bio-test chip of the present invention has a flow path formed on a substrate, and a micro-nanostructured resin disk or an antibody-immobilized resin disk (hereinafter referred to as "antibody fixing") in the middle of the flow path. This is called a “resin disk”. In other words, these are simply resin discs and antibody-fixed resin discs using the terms already defined. This channel is further covered with another substrate to prevent contamination in the channel.
  • the substrate on which the flow path is formed is referred to as a flow path side substrate, and the other substrate is referred to as a lid side substrate. Note that it is preferable to form the flow path and the injection hole on one of the substrates because it saves the manufacturing effort. However, the flow path can be made on two substrates.
  • FIG. 3 shows the appearance of the biotest chip 20 of the present invention.
  • the bio-test chip 20 covers the flow path side substrate 21 formed with the flow path with the lid side substrate 22.
  • the biotest chip shown here is a square with a side of approximately 3cm.
  • An injection hole 23 is formed in the middle or end of the flow path. Necessary substances are supplied from the injection hole into the biotest chip.
  • the flow path is a passage formed between two closely contacting substrates, and an end of which is formed an induction hole or a liquid reservoir. It may be connected to another flow path via a passive valve.
  • the noble valve is a portion that is narrowed to the extent that a film can be formed by the surface tension of the liquid. Liquid normally cannot pass through the passive valve due to its surface tension, but can pass through the passive valve by applying air pressure.
  • At least one detection unit 24 is provided in the flow path. A resin disc or an antibody-fixed resin disc is disposed in the detection unit.
  • FIG. 4 shows an example of the flow path 30.
  • the flow path 30 includes a sample liquid injection part 32, an antibody 'labeled antibody injection part 35, a washing liquid injection part 34, a substrate injection part 31, a detection part 36, a drainage suction part 37, and a reaction liquid storage part 38.
  • the substrate injection part 31, the cleaning liquid injection part 34, and the antigen / labeled antibody injection part 35 have an air injection part 33.
  • a passive valve 39 is located between the flow path and the injection part.
  • An air hole for applying air pressure to pass through the passive valve is denoted by reference numeral 33.
  • the passage leading to the detection unit 36 is also referred to as a flow path 30.
  • Both the flow path side substrate and the lid side substrate are preferably made of resin.
  • the biopsy chip of the present invention since the purpose of the biopsy chip of the present invention is to assemble a sample by an enzyme reaction, it is preferable that the biopsy chip is a material that transmits light used for the assay.
  • the light used for both the flow path side substrate and the lid side substrate is a material through which light passes. Specifically, acryl, polycarbonate and the like are preferable.
  • one of the flow path side substrate and the lid side substrate may be light transmissive, and the other may be formed with a reflective surface that reflects light. That is, the flow path side substrate and the lid side substrate may not be entirely formed of the same material, and may be formed of a plurality of partially different materials. Further, the flow path side substrate and the lid side substrate may be made of different materials.
  • the respective softening temperatures are lower than the softening temperature of the resin disk. This is because when the flow path side substrate and the lid side substrate are subjected to thermocompression bonding, heating at a temperature higher than the Tg of the resin disk may cause the micronano structure of the resin disk to melt.
  • the softening temperature of one of the flow path side substrate and the lid side substrate is lower than the softening temperature of the other, the substrate with the higher softening temperature is embedded in the substrate with the lower softening temperature, so that the bonding is easier.
  • the resin disk used in the bio-test chip of the present invention those shown in Embodiments 1 and 2 and the examples thereof can be used.
  • the fine structure of the surface L / S type, pillar type and other appropriate patterns can be used as long as they are not particularly limited.
  • the antibody may or may not be immobilized. If the antibody is not immobilized, inject the antibody and cross-linking agent into the chip before use, and adsorb the antibody to the micro-nanostructure part. In this case, it is necessary to thoroughly clean the inside of the flow path after the adsorption.
  • the antibody-immobilized resin disk is used.
  • UV light ultraviolet rays
  • a light shielding layer may be formed below the resin disk.
  • the light-shielding layer may be formed by applying a reflective material after the resin disk is fabricated, and a reflective film may be formed by sputtering or other methods such as vapor deposition on the side. May be.
  • the light shielding layer on the back side of the resin disk may be a reflective layer.
  • a metal thin film such as gold (Au), silver (Ag), aluminum, and rhodium (Rh) can be suitably used as the reflective layer.
  • the thickness should be 5 nm or more, preferably lOnm or more. Further, if it becomes too thick, warping occurs and peeling occurs, so that it is preferably 1/10 or less of the thickness of the resin disk. This is to prevent UV light from transmitting.
  • a composition comprising a metal oxide such as titanium oxide or zinc oxide and a binding resin may be applied and formed as a reflective layer by a method such as screen printing. In the case of a paint-like composition, since a large stress is hardly generated by application, the thickness may be several meters.
  • the resin disk having such a light-shielding layer looks good in the color of the reaction solution of the enzyme reaction with the antibody bound to the micro'nano structure part, it can be used simply as an antibody-fixing resin disk for IJ. I can do it.
  • a transparent resin having a large number of functional groups on the resin surface such as the PMMA copolymer of the present invention, can be obtained by simply protecting the antibody from UV light during curing as described above. The presence of the light shielding layer is effective at the point where the degree of coloring is easy to check! /, And! /.
  • UV light does not pass through the surface of the flow path side substrate or the lid side substrate where the resin disk is disposed, or a light shielding layer may be formed.
  • a light emitting layer is formed on the surface of the substrate on which the UV light is irradiated.
  • the biotest chip of the present invention can be made as a whole with a size of about several centimeters square, and is used when assembling a small amount of specimen.
  • the antibody can be adsorbed to a small area with high density by the resin disk shown in Embodiment 2 and the example, and the detection sensitivity becomes very high.
  • FIG. 4 A resin disc on which an antibody that binds differently is adsorbed is provided.
  • the blocking liquid is injected from the blocking liquid injection section.
  • the blocking solution is injected for the purpose of binding a protein unrelated to the specimen to the portion where the protein binds on the wall surface from the flow path to the detection section.
  • a solution containing the sample is injected from the sample solution injection unit 32.
  • the sample solution passes through the flow path, reaches the detection unit 36, and touches the antibody bound to the resin disk.
  • the specimen in the specimen solution binds to the antibody on the resin disc.
  • the antigen 'labeled antibody is injected into the biotest chip from the antigen' labeled antibody injection unit 35 and further adsorbed to the specimen adsorbed to the antibody bound to the resin disk.
  • PBS or the like is injected from the cleaning liquid injection section 34 and thoroughly washed. Then, a colored solution such as TMBZ is introduced from the substrate introduction part 31. The colored solution reacts with the label of the antigen 'labeled antibody and changes its color. After a predetermined time, the reaction solution passes through the colorimeter introduction path and is taken out to the reaction solution reservoir 38 or the outside of the inspection chip as it is. The reaction solution is measured for luminescence with a colorimeter. As described above, the biotest chip of the present invention can detect and quantify the specimen with a single chip.
  • FIG. 5 is a conceptual diagram of the biotest chip as seen from the cross section.
  • an introduction portion 35 for a specimen, a labeled antigen, a washing liquid, and the like is provided here.
  • the introduction part passes through a narrower channel and reaches the detection part 36 where the antibody-immobilized resin disk is disposed. Although a part of the flow path is shown, it is indicated by reference numeral 30 here.
  • the detection unit further leads to a portion 37 for storing the reaction solution and drainage.
  • a flow path and an injection hole are formed in a transparent resin plate serving as a substrate, and then an antibody-immobilized resin disk is disposed on the surface of the substrate on the lid side. Are made by bonding.
  • the first production method is a method in which the lid side substrate on which the antibody-immobilized resin disk is disposed and the flow path side substrate are bonded to each other with a photocurable adhesive. is there.
  • the second production method is a method in which the lid side substrate on which the antibody-immobilized resin disk is disposed and the flow path side substrate are bonded together by thermocompression bonding.
  • the flow path original plate is for forming a flow path side substrate.
  • a channel is formed by forming a dent on one surface of the flow path side substrate material whose both surfaces are flat. At this time, it is the original flow path that makes the substrate material dent.
  • the flow path original plate is made of a metal material that is harder than the resin and has a property that is difficult to deform. Among metal materials, materials that are easily processed and inexpensive are suitable. Since the flow path is not an ultra-fine structure of nanometer order formed on the resin disk, the flow path original plate need not have so high accuracy. Specifically, nickel, iron, copper, zinc, ano-remium, etc. are preferably used. There is no particular limitation on how to make the flow path original plate. Processing methods such as forging, cutting and etching can be used as appropriate.
  • the press machine is used to apply pressure when the flow path side substrate and the lid side substrate are bonded. Therefore, it is preferable to have a mechanism capable of adjusting the temperature of both the upper board and the lower board. It is preferable that the pressure has a pressurizing capacity of about 1 OMPa. Further, at the time of bonding, it is preferable to have a function of depressurizing the space including the upper and lower boards while being pressurized and heated for the purpose of defoaming. In addition, it is preferable to use a photocurable adhesive when bonding the two substrates. Therefore, a press machine having a function of irradiating the sample with UV light while heating and pressing is suitable.
  • the original plate is fixed to the lower plate of the press, and a height control material for height control is placed around it.
  • the height regulating material is for preventing excessive deformation of the substrate material by pressing. When viewed from the side of the press machine, it pressurizes materials that are difficult to deform. Therefore, a sticky metal material is preferable so as not to increase the load on the press. Specifically, Aluminum Yu Muya copper.
  • the substrate material is placed on the original plate and pressed while being heated on the upper plate. If preheating is performed at this time, it is easy to process.
  • the processed flow path side substrate is generally sandwiched between two smooth surfaces, and the annealing process is performed.
  • other methods may be used depending on the characteristics of the resin used.
  • an injection hole is formed. From here, the sample is injected into the test chip.
  • the injection hole may be formed either before or after the smoothing process. More preferably, the injection hole is formed before the smoothing treatment.
  • the production of the flow path side substrate is not limited to this method.
  • it may be produced by injection molding using a mold.
  • the material for the lid side substrate a material whose surface is flat in advance is used. This is because even if either the flow path side substrate or the lid side substrate is warped, the respective substrates do not adhere to each other, and problems such as liquid leakage occur when performing the assembly.
  • an adhesive layer is formed on one surface of the lid side substrate.
  • the adhesive layer is a layer for bonding the flow path side substrate and the foot side substrate.
  • An antibody-fixing resin disk is disposed inside the two substrates bonded together. Since antibodies are proteins, the presence of a large amount of volatile solvent inside may lead to inactivation of antibodies. Therefore, it is preferable to bond the lid side substrate after sufficiently evaporating the solvent even if the adhesive contains a solvent.
  • a thermosetting adhesive can also be used, but at the time of bonding, the antibody is present inside, so that the antibody may be deactivated at a high temperature.
  • the photocurable adhesive contains a solvent when forming the adhesive layer! / Even after the adhesive layer is formed, The solvent can be sufficiently volatilized. In addition, since the curing is performed by light, the temperature rise during bonding is small. Therefore, it is preferable to use a photo-curable adhesive when the antibody is fixed to a resin disk with a micro-nano structure in advance.
  • the antibody-immobilized resin disk is disposed at a predetermined position.
  • the disk can be fixed to the adhesive layer by the tackiness of the adhesive layer itself. However, it can be fixed by other methods such as double-sided tape or instant adhesive.
  • the flow path side substrate is placed on the lid side substrate, and the pressure is applied while heating.
  • the adhesive layer is formed of a photo-curable adhesive, predetermined light may be irradiated.
  • the force S can be used to produce the biotest chip of the present invention using a photocurable adhesive.
  • the antibody-fixing resin disk is disposed on the lid side substrate
  • a resin disk on which the antibody is not fixed may be used. If the antibody is not fixed, the antibody and the cross-linking agent are injected into the chip after bonding the flow path side substrate and the lid substrate. This is because the antibody is adsorbed to the micro-nano structure of the resin disk within the chip. This method has the freedom that the antibody can be selected later, but on the other hand, it also increases the time and effort required to absorb the antibody in each chip. Examples relating to the present embodiment will be described later as Examples 7, 8, and 9.
  • UV irradiation is performed on the inside of the flow path side substrate and the lid side substrate. This is a biotest This is to disinfect the inner wall surface when it comes to the top, and to modify the bonding surface of the two substrates with UV light to facilitate bonding.
  • the antibody-immobilized resin disk is disposed on the flow path side substrate.
  • the bonding method is not particularly limited.
  • the antibody-immobilized resin disk may have a light shielding layer on the back surface.
  • the temperature of the press board on the lid side substrate is made higher than the temperature of the press board pushing the flow path side substrate.
  • the reason why the temperature gradient is applied in this way is to prevent the antibody-immobilized resin disk disposed on the flow path side substrate from being exposed to a high temperature, and to ensure that the flow path is formed because the flow path side substrate does not deform so much.
  • This example is an example according to the first embodiment.
  • a silicon crystal substrate was used as the original plate.
  • the micro-nano structure on the pressing surface of the original plate is a lattice-like groove structure with a width of 2 m, a depth of 12 m, and a repetition pitch of 3.5 ⁇ m.
  • This micro / nano structure was fabricated by UV exposure and plasma etching. The part with the pattern is within a circular shape with a diameter of 7mm.
  • An aluminum forming frame having a hole with an inner diameter of 7.5 mm was installed so as to surround the pattern portion of the original plate.
  • the thickness of the thin plate is 0.5mm.
  • PMMA polymethyl methacrylate
  • Aldrich a reagent sold by Aldrich
  • the original plate and the resin are heated to 140 to 145 ° C. here Installed the original plate on a hot plate.
  • An aluminum pressing plate was placed on the resin powder, and pressed with a pressure of 2 to 20 MPa for 3 to 10 minutes. Air was introduced with the original plate pressed, and cooling started at the same time. Cooling was performed by cooling the hot plate with water. After about 10 minutes, the pressure was released after cooling to 90 ° C.
  • the original plate was left as it was, and further cooling was continued to cool the resin temperature to 60-30 ° C. Thereafter, the resin structure having a micro-nano structure in which the pattern of the original plate was reversed was released from the original plate.
  • FIG. 6 shows a scanning electron microscope (hereinafter referred to as “SEM”) photograph of the obtained resin structure having a micro-nano structure.
  • Figure 6 (a) is an SEM photograph taken at a magnification of 850x and Figure 6 (b) at a magnification of 4000x. The arrows at the bottom left of the photo correspond to 11.7m and 2.5m respectively.
  • Fig. 6 (b) the plate-like structures are arranged in an orderly manner.
  • the plate-like structure appears to be slightly thicker near the substrate. However, other than this, it can be seen that the edges and corners are formed without sagging.
  • the thickness of this plate was approximately 2111, the height was 12 m, and the repeat pitch was 3.5 m. This coincided with the size of the lattice-like groove structure of the original silicon crystal substrate.
  • FIG. 6 (a) there was no pattern loss or sagging over a large area.
  • This example is an example according to the first embodiment.
  • Example 1 As in Example 1, an original plate and a metal frame were prepared. A Muckel plate was used as the original plate.
  • the micro-nano structure on the pressing surface of the original plate is a lattice-like groove structure with a width of 20 ⁇ m, a depth of 50 ⁇ m, and a repeating pitch of about 30 ⁇ m.
  • thermoplastic resin A polymethyl methacrylate-monomethacrylic acid copolymer was used as the thermoplastic resin. This was placed in the pattern on the nickel mold by 0.3-0.6 grams.
  • the original and the resin are heated to 150 ° C.
  • the original plate was placed on the hot plate.
  • An aluminum pressing plate was placed on the resin powder, and pressed against it at a pressure of 2 to 20 MPa for 3 to 10 minutes. Air was introduced with the original plate pressed, and cooling was started at the same time. Cooling was performed by cooling the hot plate with water. After about 10 minutes, the pressure was released after cooling to 90 ° C.
  • FIG. 7 shows an SEM photograph of the obtained resin structure having a micro-nano structure.
  • Figure 7 (a) is an SEM photograph taken at a magnification of 110
  • Figure 7 (b) is taken at a magnification of 500.
  • the arrows in the lower left of the photo correspond to 90 ⁇ 9 m and 20.0 m, respectively.
  • Fig. 7 (b) the plate-like structures are arranged in an orderly manner. It can be seen that the plate-like structure is formed without sagging at the edges or corners.
  • the thickness of the plate was approximately 20 mm 111, the height was 50 mm, and the repeat pitch was 30 Hm. This coincided with the size of the grid-like groove structure of the original nickel plate.
  • Fig. 7 (a) there was no pattern loss or sagging over a large area.
  • This example is an example according to the second embodiment.
  • a resin disk having a micro'nano structure having a diameter of 6 mm and a thickness of about 500 m was prepared by the method for manufacturing a structure having a micro'nano structure shown in the first embodiment.
  • Resin discs with micro / nano structures were called “resin discs”.
  • the resin used is PMMA.
  • the formed pattern has a lattice-like groove structure (hereinafter referred to as “L / S structure”) having a width of 2 m, a depth of 12 m, and a repeating pitch of 3.5 ⁇ m. This is the same as that created in Example 1.
  • HRP Haseradish Peroxidase
  • HRP-labeled antibody concentrations are 0.01, 0.1, 1.0, 1 It was changed to 0, 100, 1000, lOOOOng / mL.
  • the HRP-labeled antibody is an antibody modified with an HPR label, and is adsorbed on the solid phase surface of the groove structure of the resin disk.
  • the plate was washed 5 times with PBS (phosphate buffered saline), the resin disc was replaced with a new ELIS A plate well, and the color former (TMBZ: 3, 3, 5, 5, 5'-Tetramethylbe nzidine ).
  • TMBZ 3, 3, 5, 5, 5'-Tetramethylbe nzidine
  • the HRP-labeled antibody is adsorbed on the solid phase surface of the resin disc, and TMBZ is oxidized by the HRP label and turns blue.
  • Figure 8 shows the results.
  • Figure 8 shows the relationship between the antibody concentration (ng / mL) brought into contact with the solid surface and the absorbance of the reaction solution at a wavelength of 450 nm.
  • the circle 10 is a resin disk
  • the oblique square 11 is a flat resin plate
  • the square 12 is a direct case.
  • the most sensitive detection is from several (ng / mL) to several tens (ng / mU of antibody concentration)
  • This example is an example according to the second embodiment.
  • Fig. 9 shows the production reaction and rough structure of this copolymer.
  • This copolymer is a product formed by condensation reaction between methyl methacrylate and methacrylic acid at a ratio of M: N! The condensation reaction was 1.5 hours at 60 ° C. This copolymer has force carboxyl groups in the part that was methacrylic acid. This carboxyl group exists on the resin surface.
  • FIG. 10 shows a conceptual diagram of the surface state of this resin.
  • Figure 10 (a) shows the case of a general resin.
  • Common resins such as PMMA and PS (polystyrene) have few on the surface even if carboxyl groups 17 are present in the structure 16. Therefore, there are few antibodies 15 adsorbed on the resin surface!
  • FIG. 10 (b) is a conceptual diagram in the case of PMMA copolymer resin.
  • This copolymer has many carboxyl groups on the surface of the resin, which is only 18 in the resin.
  • the carboxyl group on the resin surface can be strongly bound by forming a peptide bond with the amino group of the amino acid forming the antibody 15. This embodiment will be described below.
  • EDC 1-Ethyl-3 (3-dimethylaminopropyl) carpositimide
  • the plate was thoroughly washed with PBS, the resin disc was replaced with a new ELISA plate well, and reacted with TMBZ. After 15 minutes, a stopper (sulfuric acid) was added, and only the reaction solution was placed in a well of a new ELISA plate, and the absorbance was measured with a plate reader. The measurement wavelength is 450 nm. As a result, the absorbance was confirmed to be 5 times that of the case where the wall of the well was directly used as the solid surface.
  • a stopper sulfuric acid
  • This example is an example according to the second embodiment.
  • the prepared samples are (1) No micro / nanostructure! /, PMMA resin flat plate, (2) PMMA resin disk with L / S structure formed on one side, (3) No micro / nanostructure! /, Copolymer resin plate, (4) copolymer resin disk with pillar structure formed on one side.
  • PMMA having a weight average molecular weight Mw of 996 k was used.
  • the pillar structure is a columnar continuous pattern. In this example, a pillar structure in which a columnar structure having a diameter of 2111 and a height of 4 m was formed at a pitch of 4.O ⁇ m was used.
  • the antibody adsorption ability was confirmed when a crosslinking agent was used during antibody adsorption and when it was not used.
  • Table 1 shows the values of the resin material, the antibody adsorption capacity in the case of a flat plate without micro structure, and the antibody adsorption capacity in the case of forming micro structure.
  • the magnification in the table indicates the detection intensity (absorbance) obtained from each sample, and the wall of the well is directly fixed. This is the value divided by the detected intensity obtained by the existing method for the phase surface (relative intensity; also referred to as “sensitization effect”).
  • a / R is the aspect ratio of the microstructure.
  • the figures for the surface area increase effect in the right column are the net effects due to the theoretically predicted surface area increase. In the microstructure column, SEM photographs of the microstructure are also shown.
  • This example is an example according to the second embodiment.
  • UV treatment is known to have a surface modification effect on the substance, and antibody adsorption ability was expected by performing UV treatment before adsorbing antibodies.
  • the prepared samples are (1) PMMA resin flat plate, (2) PMMA resin disc, (3) copolymer resin plate, and (4) copolymer resin disc.
  • an L / S structure with an aspect ratio of 6 was formed on the resin disc for both PMMA and PMMA copolymer.
  • Each sample was subjected to UV treatment, and then the crosslinker and antibody were adsorbed together on the sample surface.
  • the antibody adsorption procedure is the same as in Example 4.
  • a surface treatment device with an ultraviolet lamp was used, and a resin flat plate and a resin disc were placed on a sample table 62 mm below the lamp and irradiated for 6 minutes.
  • the ultraviolet lamp a synthetic quartz lamp that generates light having a wavelength of 184.9 and a wavelength of 253.7 nm was used.
  • Table 2 shows the results of antibody immobilization performance when using PMMA and PMMA-based resin plates and resin disks with micro-nanostructures.
  • sensitizing effects are considered to be a surface area increasing effect, an effect of a combination of a PMMA copolymer and a cross-linking agent (hereinafter referred to as “high density antibody fixing effect”), and a synergistic effect of UV ozone treatment.
  • high density antibody fixing effect an effect of a combination of a PMMA copolymer and a cross-linking agent
  • synergistic effect of UV ozone treatment The breakdown of each effect can be thought of as follows based on theoretical values and measured values.
  • the surface area increasing effect is approximately 2.5 times under the condition of an aspect ratio of 6.
  • the high-density antibody fixing effect is 4 to 5 times that of the PMMA copolymer used in the examples.
  • the UV ozone treatment effect is 1.4 to 1.8 times.
  • This example is an example according to the fourth embodiment.
  • Ni Denki's original flow channel plate 40 which is the prototype of the flow channel structure, is placed on the lower press plate 44 so that the flow channel structure is on top, and the flow channel is placed on it.
  • a substrate material acrylic plate 41 to be formed was placed. Note that the upper press plate 45 and the lower press plate 44 are omitted in FIG. 11 (a).
  • a stainless steel back plate 42 was placed on the acrylic plate 41 of the substrate material.
  • the back plate can be suitably used because it does not easily generate fine powder due to corrosion.
  • the present invention is not limited to this.
  • an aluminum height control material 43 was installed to adjust the thickness after molding.
  • pressing was performed at a pressure of 3 to 4 MPa for about 10 minutes. After pressing, cooling was performed while maintaining the caloric pressure state. The cooling was not forced cooling, but the heating power of the press was turned off and cooling was performed by natural cooling. When the temperature dropped to about 100 degrees, air was introduced and cooling was performed by blowing air. After that, when it reaches about 40-50 ° C, it is depressurized. The sample was taken out. By performing slow cooling at the time of molding, it was possible to greatly suppress the deformation of the substrate material in the subsequent heat process.
  • the flow path side substrate 21 formed the flow path by press working. For this reason, stress remains on the substrate immediately after the flow path is formed, which may warp the flow path forming surface side. It is also necessary to smooth the surface 25 where the flow path side substrate 21 adheres to the lid side substrate. Therefore, in this process, a process of relieving stress and eliminating warping was performed.
  • the smooth surface of silicon wafer 46 was placed on the lower press plate 44 with the smooth surface facing upward.
  • the flow path side substrate 21 was placed so that the surface to which the flow path was transferred faced down.
  • the upper and lower press plates 44 and 45 were heated to 90 ° C., and the inside of the container (chamber one: not shown) covering the upper and lower press plates 44 and 45 was decompressed.
  • an adhesive layer 49 was formed on the lid side substrate, and was bonded to the flow path side substrate.
  • the adhesive layer 49 was formed on the acrylic lid side substrate 22 with a photocurable resin (hereinafter also referred to as “UV curable adhesive”).
  • UV curable adhesive a photocurable resin
  • the lid side substrate 48 is vacuum-adsorbed and fixed to the spin coater sample stage, and a few drops of “Henkel LOCTITE Visible Cure Visible Light Curing Type 3105” are added, with a rotational speed of 1000 ( Rotation / minute) for 20 seconds, followed by spin coating by rotating for 2 seconds (rotation / minute) for 60 seconds
  • the lid side substrate coated with the UV curable adhesive was left on a hot plate set at 80 ° C and beta-treated for 20 minutes.
  • the beta lid-side substrate was placed under an ultraviolet light source and irradiated with ultraviolet light for 10 minutes to cure the adhesive.
  • the adhesive layer 49 having a thickness of 500 nm was formed on the surface of the acrylic lid side substrate 22.
  • an antibody-fixing resin disk 26 made of a PMMA copolymer is placed on the adhesive layer 49 of the lid-side substrate 22 so as not to destroy the micro-nano structure. Even pressed lightly on. It was easily fixed by the tackiness of UV curing adhesive.
  • the antibody-immobilized resin disk 26 was tested for adhesion using double-sided tape or instant adhesive.
  • the adhesive surface 25 of the flow path side substrate 21 and the adhesive layer 49 on the lid side substrate 22 were made to face each other and placed on the press lower platen 44.
  • a carbon foil 50 having a thickness of 0.5 mm was placed thereon. In this process, when carbon oil was used, it was possible to press uniformly.
  • Both the upper and lower press plates 44 and 45 were heated to 36 ° C, and the inside of the container (chamber one: not shown) covering the upper and lower press plates was depressurized. This is in order to eliminate the generation of bubbles during bonding, “suppression of contamination”.
  • This example is an example according to the fourth embodiment.
  • FIG. 14 shows an outline of the manufacturing method of this example.
  • the flow path side substrate 22 was prepared in the same manner as in Example 7. Thereafter, on the part directly above the antibody-fixing resin disc, a light-shielding film 52 was formed by screen-printing a paint in which titanium oxide and resin were dispersed in a solvent to a thickness of several meters.
  • the lid-side substrate 22 was produced in the same manner as in Example 7. However, the UV treatment performed at the end of the formation process of the adhesive layer 49 is not performed in this embodiment! Only the UV curing adhesive is spin coated on the lid side substrate 22. An antibody-fixing resin disk 26 made of PMMA copolymer was disposed on the UV curable adhesive layer 51.
  • the flow path side substrate 21 and the lid side substrate 22 were overlapped and pressed at the same pressure of 3 to 4 MPa as in Example 7 for 10 minutes.
  • side-force ultraviolet rays UV light
  • UV light side-force ultraviolet rays
  • the adhesive layer 49 was not completely formed on the lid-side substrate 22, and is shown in Fig. 14 (c).
  • the adhesive layer is cured while heating and pressing during the bonding process.
  • the bio-test chip of the present invention thus obtained was able to adhere more firmly than in Example 7.
  • the light shielding film 52 is formed on the force flow path side substrate 21 that has been subjected to UV treatment since the antibody-fixing resin disc is mounted, the antibody may not be deactivated by UV light!
  • This example is an example according to the fourth embodiment.
  • FIG. 15 shows an outline of this embodiment.
  • the flow path side substrate 21 was produced in the same manner as in Example 7.
  • the lid-side substrate 22 was produced in exactly the same way as in Example 8 (FIG. 15 (a)). That is, only the layer 51 of the UV curable adhesive was formed on the lid side substrate.
  • an antibody-fixing resin disk 26 made of PMMA copolymer was placed on the lid-side substrate 22.
  • a light shielding layer 56 for shielding ultraviolet light and visible light was previously formed on the resin disk bonding surface.
  • the light shielding layer 56 is a gold vapor-deposited film and has a thickness of 0.5 m. Then, the adhesive surface 25 of the flow path side substrate 21 and the lid side substrate 22 were opposed to each other and placed on the press lower plate 44.
  • both upper and lower press plates 44 and 45 were heated to 36 ° C, and the inside of the container (chamber one: not shown) covering the upper and lower press plates was depressurized. This is to suppress and eliminate the generation of bubbles during the crimping. Then, ultraviolet light was irradiated from the lid side substrate side, and pressing was performed at a pressure of 3 to 4 MPa for 10 minutes.
  • the UV curing adhesive layer 51 of the antibody-fixing resin disk can also be cured.
  • the light shielding layer 56 is formed on the back surface of the antibody-fixing resin disc, the antibody is not deactivated by UV light.
  • This example is an example according to the fifth embodiment.
  • FIG. 16 shows an overview of this example.
  • the flow path side substrate 21 was produced in the same procedure as in Example 7. Neither the adhesive layer nor the UV curable adhesive layer is formed on the lid side substrate 22. UV ozone treatment was applied to the inner surface of these two substrates including the bonding surface for 10 minutes.
  • An antibody-immobilized resin disk was attached to a predetermined position inside the flow path side substrate using an instantaneous adhesive. Adhesion was also possible with double-sided tape. And the adhesive surface of the flow path side substrate, The lid side substrate was placed on the press lower platen 44 so that the adhesive surfaces of the lid side substrate faced each other and the flow path side substrate faced up. A stainless steel back plate 42 was placed thereon, and a carbon oil 50 was placed thereon. By using carbon oil, it can be pressed uniformly.
  • the upper press plate 45 was set to 36 ° C and the lower press plate 44 was set to 120 ° C, and the inside of the container (chamber one: not shown) covering the upper and lower press plates was depressurized. This is to eliminate the generation of bubbles during the crimping process.
  • Pressing was performed at a pressure of 0 ⁇ 8 MPa for 10 minutes. After pressing for 10 minutes, it was cooled in the pressurized state, and when it reached about 70 degrees, it was introduced into the atmosphere, depressurized, and the sample was taken out.
  • an inspection chip was manufactured in the same manner with the upper and lower press plates at 100 ° C.
  • FIG. 17 is an SEM photograph of a cross section of the reaction part 36.
  • the production conditions are the case where the press upper plate 45 that pressed the flow path side substrate 21 is crimped at 36 ° C, and the press lower plate that pressed the lid side substrate 22 is pressed at 120 ° C, which is the sample of this example.
  • the magnifications are 30 times in Fig. 17 (a), 200 times in (b), and 1000 times in (c).
  • the arrows in the lower left of the photo correspond to 333 m and ⁇ ⁇ ⁇ ⁇ 10 m, respectively.
  • the reaction part 36 is visible in the center of the photograph.
  • the lid side substrate 22 is on the upper side
  • the flow path side substrate 21 is on the lower side.
  • the adhesion portion 60 between the lid side substrate 22 and the flow path side substrate 21 was observed.
  • magnification was increased to 200 times (b) and 1000 times (c)
  • the flow path side substrate was slightly indented into the lid side substrate.
  • the wall surface was a straight line or a gentle arc. That is, the lid side substrate was deformed by the flow path side substrate.
  • Fig. 18 is a cross-sectional SEM photograph of the reaction zone 36 of the comparative sample fabricated at 100 ° C for both the upper and lower presses.
  • the magnifications of (a), (b), and (c) and the size of the arrow at the lower left of the photograph are the same as in FIG.
  • the penetration of the channel side substrate 21 into the lid side substrate 22 was slightly shallow, and the side wall 62 was greatly bent in an arc shape.
  • FIG. 19 is a transmission microscope photograph showing the state of the passive valve 39 in the case of FIGS. 17 and 18.
  • This passive valve 39 is connected between the antibody-labeled antibody injection part 35 and the flow path 30.
  • Figure 19 (&) shows the case where the flow path side substrate is molded at 36 ° and the lid side substrate is molded at 120 ° C.
  • (B) shows the case where the flow path side substrate is molded at 100 ° C and the lid side substrate is molded at 100 ° C.
  • the arrow in Fig. 19 (a) shows the trajectory when the solution flows in the biotest chip.
  • FIG. 19 (a) when the flow path side substrate was 36 ° C and the lid side substrate was 120 ° C, the three passive valves 39 were firmly formed. In other words, three passages were created between the antibody-labeled antibody injection part 35 and the flow path 30. On the other hand, referring to FIG. 19 (b), when both the flow path side substrate and the lid side substrate were manufactured at 100 ° C., the passive valve 39 was crushed! /.
  • the present invention is useful as a microreactor, biochip, optical element, and micromachine.
  • FIG. 1 is a diagram for explaining a method for producing a structure having a micro and nano structure according to the present invention.
  • FIG. 2 is a diagram for explaining the time progression of temperature and pressing pressure in the method of the present invention.
  • FIG. 3 is a view showing a result of manufacturing a structure having a high aspect ratio micro'nano structure using an acrylic material.
  • FIG. 4 is a view showing a result of producing a structure having a high aspect ratio micro ′ nanostructure using a methyl methacrylate-methacrylic acid copolymer.
  • FIG. 5 is a graph showing the effect of the amount of antibody adsorbed on a structure having a micro'nano structure.
  • FIG. 6 is a conceptual diagram showing the production of a copolymer of methyl methacrylate-methacrylic acid.
  • FIG. 7 is a diagram for explaining how antibodies are adsorbed on the surface of a resin.
  • FIG. 8 is a photograph showing an example of a biotest chip of the present invention.
  • FIG. 9 is a diagram showing an example of a flow path of a biotest chip.
  • FIG. 10 is a view showing a cross section of the biopsy chip of the present invention.
  • FIG. 11 is a diagram illustrating a method for manufacturing a flow path side substrate.
  • FIG. 12 is a diagram for explaining smoothing of the flow path side substrate.
  • FIG. 13 is a diagram illustrating a method for manufacturing a biotest chip according to the present invention.
  • FIG. 14 is a diagram illustrating a method for manufacturing a biotest chip according to the present invention.
  • FIG. 15 is a diagram illustrating a method for manufacturing a biotest chip according to the present invention.
  • FIG. 16 is a diagram for explaining a method for manufacturing the biotest chip of the present invention by thermocompression bonding.
  • FIG. 17 is a photograph showing a cross section of a bio-test chip by thermocompression bonding with a temperature gradient.
  • FIG. 18 is a photograph showing a cross section of a bio-test chip by thermocompression bonding without applying a temperature gradient
  • FIG. 19 A photograph showing the effect of temperature gradient in the passive valve section.
  • FIG. 20 is a diagram for explaining a conventional nanoimprint method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optical Measuring Cells (AREA)
  • Micromachines (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

A simple and easy process for direct production molding of a structure of nanoconstruction or microconstruction from a synthesized resin material; and a biosensing disk utilizing the structure and a bioinspection chip utilizing the same. The process for producing a structure of nanoconstruction or microconstruction comprises the steps of placing a powdery resin on a surface of original plate; heating the original plate and the resin at a temperature of from the glass transition temperature of the resin to the melting temperature thereof; pressing the resin against the original plate; and cooling the resin to the glass transition temperaturethereof or below and removing the original plate to thereby form a reversal construction of nanoconstruction or microconstruction with respect to the original plate. Further, there is provided a biosensing chip obtained by causing the structure to adsorb an antibody and providing the backside thereof with a light shielding layer, and provided a bioinspection chip having the biosensing chip disposed inside a flow channel side substratum and inside a lid side substratum.

Description

明 細 書  Specification
マイクロ ·ナノ構造を有する構造体とそれを用レ、たバイオ検查チップとそれ らの製造方法  Micro / nano-structures and bio-detection chips and methods for producing them
技術分野  Technical field
[0001] 本発明は、ナノ構造及びマイクロ構造を有する構造体とバイオセンシングディスクお よびそれを用いたバイオ検査チップの製造方法に関する。  The present invention relates to a structure having a nanostructure and a microstructure, a biosensing disk, and a method for manufacturing a biotest chip using the same.
背景技術  Background art
[0002] ナノ'テクノロジーを支える基盤技術の一つに、微細加工技術がある。その代表的 なものとして、リソグラフィに代表される半導体微細加工技術がある。遠紫外線や電子 線などにより極微細構造の形成が可能で、次々世代のナノ'リソグラフィのための装 置、プロセスの研究が広く行われている。  [0002] One of the basic technologies that support nano technology is microfabrication technology. A typical example is a semiconductor microfabrication technique represented by lithography. Ultra-fine structures can be formed using deep ultraviolet rays or electron beams, and devices and processes for next-generation nano-lithography have been widely studied.
[0003] このような中、コンパクトディスク等の量産に用いられているプレス加工技術を、ナノ 構造体の形成に応用するナノインプリント法が提案されている(例えば、特許文献 1 参照)。これは、微細な構造を持つ金型 (以後「原版」若しくは「モールド」ともいう。)を 、高分子樹脂にプレスすることで、モールドの微細構造を基板上の樹脂に転写するも のである。図 20は、このような従来のナノインプリント法を説明するための図である。  Under such circumstances, a nanoimprint method has been proposed in which the press working technique used for mass production of compact discs or the like is applied to the formation of nanostructures (see, for example, Patent Document 1). This is a technique in which a mold having a fine structure (hereinafter also referred to as “original” or “mold”) is pressed onto a polymer resin, thereby transferring the fine structure of the mold onto the resin on the substrate. FIG. 20 is a diagram for explaining such a conventional nanoimprint method.
[0004] 図 20を参照して、基板 900上に形成した樹脂層 902に対して原版 904を用意する [0004] Referring to FIG. 20, a master 904 is prepared for a resin layer 902 formed on a substrate 900.
(a)。次に原版 904および基板 900と樹脂層 902を所定の温度に加熱し、樹脂層 90 2の Tgより高い温度で、原版 904を樹脂層 902にプレスする(b)。プレスした状態で 全体を冷却し、樹脂層 902の Tgよりも温度が低くなつた時点で原版 904を抜く。この ような工程を経ることで樹脂層に原版の形状を転写する。  (a). Next, the master 904, the substrate 900, and the resin layer 902 are heated to a predetermined temperature, and the master 904 is pressed onto the resin layer 902 at a temperature higher than the Tg of the resin layer 902 (b). The whole is cooled in the pressed state, and when the temperature becomes lower than Tg of the resin layer 902, the original 904 is removed. Through this process, the shape of the original is transferred to the resin layer.
[0005] このナノインプリント法は、高価な設備や付帯工程が不要で、 10nm以下の解像度 で転写パターンを作成できるため、集積化された微細構造体の一括形成が可能とな る。従って、次々世代の半導体超微細加工技術として注目されつつある。 [0005] This nanoimprint method does not require expensive equipment and ancillary processes, and can produce a transfer pattern with a resolution of 10 nm or less, so that integrated microstructures can be formed at once. Therefore, it is attracting attention as a next generation semiconductor ultrafine processing technology.
[0006] ナノインプリント法では、従来の微細加工では不可能であった感光性樹脂(レジスト )の露光、現像が不要となる。さらに樹脂自体が加工対象の場合、エッチングなどの 工程が不要となるため経済的で、かつ有害な廃棄 ·排出物が少なくなる利点もある。 さらに、一度作成したモールドを繰り返し用いるため、例えば曲面構造などの複雑な 構造でも、原版を一度用意すれば、そのレプリカを大量に作成することができる。また[0006] In the nanoimprint method, exposure and development of a photosensitive resin (resist), which was impossible with conventional fine processing, become unnecessary. In addition, when the resin itself is the object to be processed, there is an advantage that it is economical and harmful waste and discharge are reduced because steps such as etching are unnecessary. Furthermore, since the mold once created is repeatedly used, even if it has a complicated structure such as a curved surface structure, a large number of replicas can be created once the original plate is prepared. Also
、従来の射出成型では成型が困難であった高アスペクト比構造 (アスペクト比 3以上) の成型も可能である。 It is also possible to mold with a high aspect ratio structure (aspect ratio of 3 or more), which was difficult to mold with conventional injection molding.
[0007] そのため、従来の加工では効率的に作成できないマイクロ、ナノ構造の高ァスぺク ト比構造でも容易に転写作成できる特徴を備えている。また、加工対象材料は、ァク リル、 PET、 PC、 PBなどの熱可塑性樹脂を用途に応じて選択できるため、極めて多 様な材料のマイクロ、ナノ加工が可能となる。一方、ガラスや金属表面への微細格子 の作成も可能で、その工業的応用範囲は益々広がって!/、る。  [0007] Therefore, it has a feature that it can be easily transferred and produced even with a high aspect ratio structure of micro and nano structures that cannot be efficiently produced by conventional processing. In addition, the material to be processed can be selected from thermoplastics such as acrylic, PET, PC, and PB, depending on the application, enabling micro and nano processing of a wide variety of materials. On the other hand, it is also possible to create fine lattices on glass and metal surfaces, and its industrial application range is expanding!
[0008] その利用分野の一つとして、バイオアツセィの分野がある。これは樹脂上のマイクロ 、ナノ構造に抗体などの生体生成物を吸着させ、検体の有無や定量を行う技術であ る。例えば特許文献 2には、マイクロスケールデバイスにサンプルを配分し、サンプル を標的材料と接触させ、サンプルと標的材料の間の相互作用を検出する方法につい ての開示がある。  [0008] As one of the fields of use, there is a field of bioassays. This is a technique in which a biological product such as an antibody is adsorbed on a micro- or nano-structure on a resin to determine the presence or absence of a sample or quantification. For example, Patent Document 2 discloses a method for distributing a sample to a microscale device, bringing the sample into contact with a target material, and detecting an interaction between the sample and the target material.
特許文献 1 :特開 2006— 219752号公報  Patent Document 1: Japanese Unexamined Patent Publication No. 2006-219752
特許文献 2:特表 2007— 527784号公報  Patent Document 2: Special Table 2007—527784
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] しかしながら、従来のナノインプリント法では、溶剤に溶解させた高分子ポリマーを 基板上に塗布して使用して!/、るため、例えばカルボキシル基などの活性基を含む樹 脂では、溶剤をとおして互いに結合して失活し、樹脂の機能性を損なう場合がある。  [0009] However, in the conventional nanoimprint method, a polymer polymer dissolved in a solvent is applied on a substrate and used! /, Therefore, for a resin containing an active group such as a carboxyl group, the solvent is not used. In some cases, they bind to each other and deactivate, thereby impairing the functionality of the resin.
[0010] 例えば、抗体はたんぱく質であるので、樹脂表面にカルボキシル基があれば、 N末 端がアミド結合を形成して樹脂表面に吸着することができる。しかし、上記のように樹 脂内でカルボキシル基が結合してしまったのでは、抗体が結合できなくなる。  [0010] For example, since an antibody is a protein, if there is a carboxyl group on the resin surface, the N-terminal can form an amide bond and be adsorbed on the resin surface. However, if the carboxyl group is bound in the resin as described above, the antibody cannot be bound.
[0011] また、従来のナ入マイクロ構造を有する樹脂は、光をある程度透過させるため、樹 脂上で酵素反応を生じた反応液の色度を判断しにくいという問題点があった。  [0011] In addition, the conventional resin having a nano-structure has a problem in that it is difficult to determine the chromaticity of the reaction solution that has caused an enzyme reaction on the resin because it transmits light to some extent.
[0012] また、樹脂板を直接プレスするエンボス加工あるいは厚膜状の樹脂成型では、樹 脂の流動性が不足する場合には、特に高アスペクト比構造の原版 (モールド)を完全 に転写成型できず、高圧力が必要となる。 [0012] In addition, when embossing or thick-film resin molding that directly presses a resin plate is used, if the resin fluidity is insufficient, a master (mold) with a high aspect ratio structure is particularly perfect. However, high pressure is required.
[0013] 一方、溶融温度近くに加熱すると樹脂が溶融するため、流動性が増加し、流体抵 杭の大きな原版 (モールド)の深溝部分には樹脂が充填されず、周辺に拡がる状態と なる。 [0013] On the other hand, since the resin melts when heated close to the melting temperature, the fluidity increases, and the deep groove portion of the large master plate (mold) of the fluid coiling is not filled with the resin and spreads to the periphery.
[0014] 本発明は、力、かる事情に鑑みてなされたものであり、ナノ構造及びマイクロ構造を 有する構造体の簡便な製造方法を提供するものである。また、その構造体に抗体を 吸着させたバイオセンシングディスクとその製造方法を提供する。さらにそのバイオセ ンシングディスクを用いたバイオ検査チップとその製造方法を提供する。  [0014] The present invention has been made in view of the force and the circumstances, and provides a simple method for producing a structure having a nanostructure and a microstructure. In addition, a biosensing disk having an antibody adsorbed on the structure and a method for producing the same are provided. Furthermore, a bio-test chip using the bio-sensing disc and a method for manufacturing the same are provided.
課題を解決するための手段  Means for solving the problem
[0015] 上記課題を解決するために本発明のナノ構造及びマイクロ構造を有する構造体の 製造方法は、 [0015] In order to solve the above problems, a method for producing a structure having a nanostructure and a microstructure of the present invention includes:
粉末状の樹脂を、原版表面に配置する材料配置工程と、  A material placement step of placing a powdery resin on the surface of the original,
前記原版ならびに前記樹脂を、前記樹脂のガラス転移温度以上、溶融温度以下に 加熱する材料加熱工程と、  A material heating step of heating the original plate and the resin above the glass transition temperature and below the melting temperature of the resin;
前記原版に前記樹脂をプレスする加圧工程と、  A pressing step of pressing the resin on the original plate;
前記原版と前記樹脂を前記ガラス転移温度以下に冷却し、前記原版を取り除き、前 記原版のマイクロ ·ナノ構造の反転構造を形成する冷却工程とを含むことを特徴とす るマイクロ ·ナノ構造を有する構造体の製造方法を提供する。  Cooling the original plate and the resin to below the glass transition temperature, removing the original plate, and forming a reversal structure of the micro / nano structure of the original plate. Provided is a method for manufacturing a structure having a
[0016] 前記材料配置工程の樹脂は、熱可塑性樹脂であることが好まし!/、。また、前記材料 配置工程で、樹脂を設置する周辺に原版の微細構造を囲むように成型枠を設置す るとよい。さらに、前記材料配置工程の粉末状の樹脂の大きさが、原版のパターン寸 法より小さい粉末もしくは粒子であるとよい。また材料配置工程は、減圧もしくは真空 雰囲気で行うとよい。 [0016] The resin in the material arranging step is preferably a thermoplastic resin! In the material arranging step, a molding frame may be installed around the resin to surround the fine structure of the original plate. Furthermore, the size of the powdery resin in the material arranging step is preferably a powder or particles smaller than the pattern size of the original plate. The material placement step is preferably performed under reduced pressure or in a vacuum atmosphere.
[0017] また、本発明のナノ構造及びマイクロ構造を有する構造体に抗体を吸着させたバイ ォセンシングディスクの製造方法は、  [0017] Further, a method for producing a biosensing disk in which an antibody is adsorbed to a structure having a nanostructure and a microstructure of the present invention includes:
粉末状の樹脂を、原版表面に配置する材料配置工程と、  A material placement step of placing a powdery resin on the surface of the original,
前記原版ならびに前記樹脂を、前記樹脂のガラス転移温度以上、溶融温度以下に 加熱する材料加熱工程と、 前記原版に前記樹脂をプレスする加圧工程と、 A material heating step of heating the original plate and the resin above the glass transition temperature and below the melting temperature of the resin; A pressing step of pressing the resin on the original plate;
前記原版と前記樹脂をガラス転移温度以下に冷却する冷却工程と、  A cooling step for cooling the original plate and the resin to a glass transition temperature or lower;
前記原版を取り除き、前記原版の反転構造であるマイクロ ·ナノ構造を有する構造体 を得る工程と、  Removing the original plate to obtain a structure having a micro-nano structure which is an inverted structure of the original plate; and
前記構造体の裏面に遮光層を形成する遮光層形成工程と、  A light shielding layer forming step of forming a light shielding layer on the back surface of the structure,
前記構造体の前記マイクロ ·ナノ構造に抗体を吸着させる抗体吸着工程とを有する ノ^オセンシングディスクの製造方法を提供するものである。  The present invention also provides a method for producing a nanosensing disk comprising an antibody adsorption step of adsorbing an antibody to the micro / nano structure of the structure.
[0018] さらに、本発明は、マイクロ ·ナノ構造を有する構造体に抗体を吸着させた構造体を 用いたバイオ検査チップの製造方法として、 [0018] Further, the present invention provides a method for producing a biotest chip using a structure in which an antibody is adsorbed to a structure having a micro-nano structure.
基板に流路を形成し流路側基板を得る流路形成工程と、  A flow path forming step of forming a flow path on the substrate to obtain a flow path side substrate;
基板に接着層を形成しフタ側基板を得る接着層形成工程と、  An adhesive layer forming step of forming an adhesive layer on the substrate to obtain a lid side substrate;
前記フタ側基板の所定の位置にマイクロ 'ナノ構造に抗体が固定された構造体を配 設する配設工程と、  A disposing step of disposing a structure in which an antibody is fixed to a micro-nano structure at a predetermined position of the lid-side substrate;
前記流路側基板と前記フタ側基板を加圧する接着工程とを含むバイオ検査チップの 製造方法を提供するものである。  The present invention provides a method for manufacturing a biotest chip, which includes a bonding step of pressing the flow path side substrate and the lid side substrate.
[0019] また、本発明のバイオセンシングディスクは、 [0019] Further, the biosensing disc of the present invention comprises:
一方の表面にマイクロ 'ナノ構造を有し、  Has a micro 'nano structure on one surface,
他方の表面に遮光層が形成されたディスクと、  A disc having a light shielding layer formed on the other surface;
前記マイクロ 'ナノ構造の表面に吸着した抗体を有するバイオセンシングディスクを提 供するものである。  A biosensing disk having an antibody adsorbed on the surface of the micro-nano structure is provided.
[0020] また、本発明のバイオ検査チップは、 [0020] Further, the biotest chip of the present invention comprises:
流路を形成した流路側基板と、  A flow path side substrate in which a flow path is formed;
表面に接着層を形成したフタ側基板と、  A lid side substrate having an adhesive layer formed on the surface;
抗体が吸着したマイクロ ·ナノ構造を表面に有した構造体とを含むバイオ検査チップ を提供するものである。  The present invention provides a biotest chip comprising a structure having a micro / nano structure adsorbed with an antibody on its surface.
発明の効果  The invention's effect
[0021] 本発明のナノ構造及びマイクロ構造を有する構造体の製造方法では、原版 (モール ド)へ直接精製した高分子樹脂粉、オリゴマー粉など、二次加工を施さずに直接成型 するので、効率的なマイクロ、ナノ構造の製造が可能となる。 [0021] In the method for producing a structure having a nanostructure and a microstructure according to the present invention, a polymer resin powder, an oligomer powder, or the like directly purified to an original plate (mold) is directly molded without being subjected to secondary processing. Therefore, efficient micro and nano structure can be manufactured.
[0022] また、本発明の製造方法では、溶剤に樹脂を溶かすことなく成型するため、残留溶 剤による活性基の失活が生じない。 [0022] Further, in the production method of the present invention, since the resin is molded without dissolving the resin in the solvent, the active group is not deactivated by the residual solvent.
[0023] 本発明の製造方法では、樹脂粉の径を原版 (モールド)のパターン寸法より小さいも のを選ぶことにより、低圧力での成型が可能となる。また、高アスペクト比構造の成型 に対しても低圧力での成型が可能となる。 [0023] In the production method of the present invention, by selecting a resin powder having a diameter smaller than the pattern size of the original (mold), molding can be performed at a low pressure. In addition, molding with a low pressure is possible even for molding with a high aspect ratio structure.
[0024] 本発明のバイオセンシングディスクは、裏面に遮光層が形成されているので、アツ セィした際に反応液の色を容易に識別できる。また、バイオ検査チップに用いる場合 に、チップ内部に配置したまま紫外線でディスクの接着ができる。 発明を実施するための最良の形態 [0024] Since the light-shielding layer is formed on the back surface of the biosensing disk of the present invention, the color of the reaction solution can be easily identified when assembled. In addition, when used in a bio-test chip, the disk can be bonded with ultraviolet light while being placed inside the chip. BEST MODE FOR CARRYING OUT THE INVENTION
[0025] 本発明のナノ構造及びマイクロ構造を有する構造体の製造方法について図 1を参 照しながら以下に説明する。  [0025] A method for producing a structure having a nanostructure and a microstructure of the present invention will be described below with reference to FIG.
[0026] (実施の形態 1 )  (Embodiment 1)
本発明の製造方法に使用する原版 3は、微細突起あるいは溝からなるマイクロ、ナ ノ構造が設けられている(図 l (a) )。原版 3の材質は、シリコン、石英ガラス、サフアイ ァ、 SiC、 Ni、超鋼が好ましい。このマイクロ、ナノ構造は、本方法により製造する原 版を用いて成形しょうとする構造体上のナノ構造に対応する。  The original plate 3 used in the production method of the present invention is provided with a micro and nano structure consisting of fine protrusions or grooves (FIG. 1 (a)). The material of the original plate 3 is preferably silicon, quartz glass, sapphire, SiC, Ni, or super steel. This micro and nano structure corresponds to the nano structure on the structure to be molded using the original plate produced by this method.
[0027] ここで、「マイクロ、ナノ構造」とは、最小サイズ (例えば一辺、高さ及び直径)がマイ クロメートノレスケーノレ (f列えば 1 μ m〜25 μ ηι^ Ι Ο μ m〜250 μ m、又は 100 μ m〜 2500 μ m)もしくはナノメートルスケール(例えば 10nm〜500nm、 50nm~ 1000n m、又は 100nm〜1000nm)である 1又は複数の任意の形状(例えば多角柱、円柱 、平板、多角錘、円錐)を有する構造である。ナノ構造は、一種類の形状又は二種以 上の形状(サイズのみ異なるものを含む)が繰返し配置された構造であってもよレ、。 [0027] Here, "micro, nanostructure" means that the minimum size (for example, one side, height, and diameter) is a chromano-noskenore (if it is f line, 1 μm to 25 μ ηι ^ Ο Ο μm to 250 μm, or 100 μm to 2500 μm) or any one or more arbitrary shapes (eg, polygonal cylinder, cylinder, flat plate, nanometer scale (eg, 10 nm to 500 nm, 50 nm to 1000 nm, or 100 nm to 1000 nm), It is a structure having a polygonal cone and a cone. The nanostructure may be a structure in which one shape or two or more shapes (including those different in size) are repeatedly arranged.
[0028] 一態様では、マイクロ構造は円柱のアレイ状配歹 IJ (例えば高さ 100 m〜 500 m 、繰返しピッチ 100 H m〜300 11 m)である。別の態様では、マイクロ構造は平板列( 例えば厚さ 2 μ m〜20 μ m、高さ 10 ^ m〜500 μ m、繰返しピッチ 3 μ m〜40 μ m) である。本明細書ではマイクロ構造およびナノ構造を含めて「マイクロ 'ナノ構造」と呼 ぶ。マイクロ 'ナノ構造はマイクロ構造若しくはナノ構造の何れ力、、若しくは両方を含 んでよい。したがって、「マイクロ、ナノ構造」は「マイクロ 'ナノ構造」とも呼べる。 [0028] In one embodiment, the microstructure is a cylindrical array arrangement IJ (eg, height 100 m to 500 m, repeat pitch 100 Hm to 300 11 m). In another embodiment, the microstructure is a plate array (eg, thickness 2 μm to 20 μm, height 10 ^ m to 500 μm, repeat pitch 3 μm to 40 μm). In this specification, the term "micro'nanostructure" includes both microstructure and nanostructure. Huh. Micro'nanostructures may include either microstructures or nanostructure forces, or both. Therefore, “micro, nanostructure” can also be called “micro'nanostructure”.
[0029] マイクロ 'ナノ構造は、例えば半導体製造の分野で微細加工に通常用いられている 方法、例えば、光リソグラフィー技術、電子線 (EB)リソグラフィー技術、及び/又はェ ツチング技術、特に反応性イオンエッチング (RIE)やプラズマエッチングなどのドライ エッチング技術、及び/又は電子線直接描画法などを用いて作製することができる。  [0029] Micro'nanostructures are methods commonly used for microfabrication, for example in the field of semiconductor manufacturing, such as photolithographic techniques, electron beam (EB) lithography techniques, and / or etching techniques, particularly reactive ions. It can be produced using dry etching techniques such as etching (RIE) or plasma etching, and / or electron beam direct writing.
[0030] 原版 3の周囲には、成型後の樹脂の厚さを調整するための金属型 1が設置されて いる。金属型 1の材料は、アルミニウム、タングステン、鉄、ステンレスなどが挙げられ る。なお、ここでいう金属型 1は「成型枠 1」と言っても良い。  [0030] Around the original plate 3, a metal mold 1 is provided for adjusting the thickness of the resin after molding. Examples of the metal type 1 material include aluminum, tungsten, iron, and stainless steel. The metal mold 1 here may be referred to as “molding frame 1”.
[0031] 樹脂粉 2の材料としては、アクリル、ポリカーボネート、ペットなどの熱可塑性樹脂の 精製物が好ましい。また、粉体の大きさは可能な限り原版のパターン寸法以下である ことが望ましい。さらに、マイクロ 'ナノ構造に物質を積極的に吸着させる場合は、そ の物質が吸着しやすいように表面改質できる樹脂を樹脂粉としてもよい。例えば、た んぱく質などを吸着させようとした場合、マイクロ 'ナノ構造の表面にカルボキシル基 が多く存在していると、たんぱく質のアミノ基とアミド結合を作りやすぐ強固に吸着さ せること力 Sでさる。  [0031] The material of the resin powder 2 is preferably a purified product of a thermoplastic resin such as acrylic, polycarbonate, or pet. It is desirable that the size of the powder be as small as possible or less than the pattern size of the original plate. Further, when a substance is actively adsorbed to the micro / nano structure, a resin that can be surface-modified so that the substance can be easily adsorbed may be used as the resin powder. For example, when trying to adsorb proteins, etc., if there are a lot of carboxyl groups on the surface of the micro-nano structure, the ability to create an amino group and amide bond with the protein and immediately adsorb strongly. Touch with S.
[0032] 樹脂粉 2の量は、当該樹脂がガラス転移温度以上に達した際の体積が、原版 3の 中空パターン部分の体積と、前記の金属型 1が前記原版上面を囲む体積の総和より 多い量が好ましい。より好ましくは、前記体積の 200%を上回る量、より好ましくは、前 記体積の 120%を上回る量を原版 3上に設置する。  [0032] The amount of the resin powder 2 is the sum of the volume of the hollow pattern portion of the original 3 and the volume of the metal mold 1 surrounding the upper surface of the original when the resin reaches the glass transition temperature or higher. Larger amounts are preferred. More preferably, an amount exceeding 200% of the volume, more preferably an amount exceeding 120% of the volume, is placed on the master 3.
[0033] 樹脂粉 2を原版 3上に設置したのち、雰囲気を減圧もしくは真空にしてもよい。ある いは、非活性ガス雰囲気にしても良い。  [0033] After the resin powder 2 is placed on the original 3, the atmosphere may be reduced in pressure or vacuum. Alternatively, an inert gas atmosphere may be used.
[0034] 減圧もしくは真空にすることにより、成型中での気泡の発生を抑制、排除できる。ま た、雰囲気中のガス成分との化学反応を抑制、排除できる。あるいは、非活性ガス雰 囲気とすることにより、化学反応を抑制、排除できる。  [0034] Generation of bubbles during molding can be suppressed or eliminated by reducing the pressure or applying a vacuum. In addition, chemical reactions with atmospheric gas components can be suppressed and eliminated. Alternatively, the chemical reaction can be suppressed or eliminated by using an inert gas atmosphere.
[0035] 原版の押付け面は、平坦な金属製の押し付け板 4(アルミニウム、タングステン、鉄、 ステンレス、シリコン、 SiC、石英など)などにより、樹脂粉が加熱により軟化した状態で 押し付けられる(図 l (b) )。この工程は、「熱ナノインプリンティング」と呼ばれる技術を 利用する。よって、本工程 (及び関連する工程)で使用する技法、条件、装置などは、 一般には、熱ナノインプリンティングで通常に使用されるものと同様である力 以下に 簡潔に説明する。 [0035] The pressing surface of the original plate is pressed with a flat metal pressing plate 4 (aluminum, tungsten, iron, stainless steel, silicon, SiC, quartz, etc.) while the resin powder is softened by heating (Fig. L (b)). This process uses a technology called “thermal nanoimprinting” Use. Thus, the techniques, conditions, equipment, etc. used in this process (and related processes) will generally be described briefly below in the same way as those normally used in thermal nanoimprinting.
[0036] 加熱は、好ましくは熱可塑性樹脂のガラス転移温度 (Tg)以上から溶融温度までの 温度で行う。より好ましくは、加熱は、ガラス転移温度より 10°C〜100°C高い温度、よ り好ましくは 10°C〜80°C高い温度、より好ましくは 30°C〜60°C高い温度まで行う。  [0036] The heating is preferably performed at a temperature from the glass transition temperature (Tg) or higher to the melting temperature of the thermoplastic resin. More preferably, the heating is performed up to a temperature 10 ° C to 100 ° C higher than the glass transition temperature, more preferably 10 ° C to 80 ° C higher, more preferably 30 ° C to 60 ° C higher.
[0037] 押付け時の圧力は、使用する熱可塑性樹脂に応じて変化するが、一般に lMPa〜 lOOMPa,好ましくは lMPa〜50MPa、より好ましくは IMPa〜; 10MPa、より好まし くは 2MPa〜5MPaである。  [0037] The pressure at the time of pressing varies depending on the thermoplastic resin to be used, but is generally lMPa to lOOMPa, preferably lMPa to 50 MPa, more preferably IMPa to 10 MPa, more preferably 2 MPa to 5 MPa. .
[0038] 押付け時後、押付け時の圧力と温度を保持したまま放置する(図 l (c) )。一般にそ の時間は 30秒〜 30分間、好ましくは 1分〜 20分間、より好ましくは 2分〜 5分間であ る。このとき熱可塑性樹脂は粘性率が低下し、原版 (モールド)の微細構造に沿って時 間経過とともに充填され、マイクロ、ナノ構造の反転構造が一時的に固定化される。 ただし、この状態では、樹脂を原版から離型すると、時間の経過につれて、転写され た反転構造は樹脂の粘性により消失してしまう。  [0038] After pressing, leave the pressure and temperature at the time of pressing (Fig. L (c)). In general, the time is 30 seconds to 30 minutes, preferably 1 minute to 20 minutes, more preferably 2 minutes to 5 minutes. At this time, the viscosity of the thermoplastic resin decreases, and the thermoplastic resin is filled along with the fine structure of the original plate (mold) with the passage of time, and the inverted structure of the micro and nano structures is temporarily fixed. However, in this state, when the resin is released from the original plate, the transferred inverted structure disappears due to the viscosity of the resin over time.
[0039] 一定の放置時間経過後、押付け時の圧力を保持したまま原版と樹脂を冷却する。  [0039] After a certain period of time, the original and the resin are cooled while maintaining the pressure during pressing.
樹脂の温度がガラス転移温度を下回ると、押付け圧力を徐々に開放する。このとき熱 可塑性樹脂は粘性率が上昇し、マイクロ、ナノ構造の反転構造が固定化される。同 時に、外部から大気もしくは窒素などの非活性ガスを導入して大気圧に戻しても良い When the temperature of the resin falls below the glass transition temperature, the pressing pressure is gradually released. At this time, the viscosity of the thermoplastic resin increases, and the inverted structure of the micro and nano structures is fixed. At the same time, an inert gas such as air or nitrogen may be introduced from the outside to return to atmospheric pressure.
Yes
[0040] 樹脂の温度がガラス転移温度より 10°C〜200°C、好ましくは 20°C〜; 100°C、より好 ましくは 40°C〜80°C下回った時点で原版 3を樹脂から脱離する (図 l (d) )。  [0040] When the temperature of the resin is 10 ° C to 200 ° C, preferably 20 ° C to; 100 ° C, more preferably 40 ° C to 80 ° C below the glass transition temperature, (Fig. L (d)).
[0041] 図 2に温度と圧力の工程の一例をまとめたグラフを示す。横軸は時間(分)で左縦 軸は温度(°C)、右縦軸は圧力(MPa)である。まず圧力をかけない状態で、およそ 5 分かけて 140°Cまで上昇させる。その後 140°Cの温度で 2分ほど予備加熱を行う。そ の後 l lMPaの圧力をかけ、 3分間加圧を維持する。加熱加圧が終わると冷却を行う 。図 2の例では、冷却開始から減圧状態になり、圧力を徐徐に減圧する。そして、温 度が 45°C程度になったら、圧力をゼロにする。 [0042] 原版は、脱離性向上のために、フッ素樹脂などからなる離型剤塗布等の表面処理 を fiつてもよい。 FIG. 2 shows a graph summarizing an example of temperature and pressure processes. The horizontal axis is time (minutes), the left vertical axis is temperature (° C), and the right vertical axis is pressure (MPa). First, raise the pressure to 140 ° C over about 5 minutes without applying pressure. Then preheat at 140 ° C for about 2 minutes. Then apply lMPa pressure and maintain the pressure for 3 minutes. Cooling is performed after heating and pressurization. In the example of FIG. 2, the pressure is reduced from the start of cooling, and the pressure is gradually reduced. When the temperature reaches about 45 ° C, the pressure is reduced to zero. [0042] The original plate may be subjected to a surface treatment such as application of a release agent composed of a fluororesin or the like in order to improve releasability.
[0043] 好ましい一態様では、原版を高分子樹脂膜に押し付けてマイクロ ·ナノ構造を転写 する。押し付ける際には、高分子樹脂膜を加熱して軟化させることが好ましい。  In a preferred embodiment, the micro / nano structure is transferred by pressing the original plate against the polymer resin film. When pressing, it is preferable to heat and soften the polymer resin film.
別の態様では、モノマー又はプレボリマーを原版上に塗布した後に重合又は硬化 させてマイクロ ·ナノ構造が転写された高分子樹脂としてもょレ、。  In another embodiment, the polymer or polymer is applied to the original plate and then polymerized or cured to transfer the micro-nano structure to the polymer resin.
高分子樹脂としては、一般に成形に用いられる樹脂、例えば熱可塑性樹脂、熱硬 化性樹脂又は光硬化性樹脂を使用することができる。  As the polymer resin, a resin generally used for molding, for example, a thermoplastic resin, a thermosetting resin, or a photocurable resin can be used.
[0044] このようなマイクロ 'ナノ構造を有する構造体は、マイクロリアクター、バイオチップ、 光学素子、マイクロマシンとして有用である。  Such a structure having a micro'nano structure is useful as a microreactor, biochip, optical element, or micromachine.
[0045] 例えば、マイクロ 'ナノ構造でマイクロリアクター若しくはマイクロ流体デバイス又はマ イクロウェルを形成し、マイクロ ·ナノ構造上に、特異的結合をする結合パートナー(例 えば、抗原と抗体、酵素と基質、レセプターとリガンド、ポリヌクレオチド鎖とその相補 鎖)の一方を固定することにより、少量の検体中に存在する他方の結合パートナーを 検出することが可能となり、又は結合反応を促進して検出に要する時間を短縮するこ とができる。このようなマイクロデバイスは、免疫分析チップ、 DNAチップ、診断'検出 キット、化学分析チップ、マイクロセンサとして使用できる。  [0045] For example, a binding partner (for example, an antigen and an antibody, an enzyme and a substrate, a receptor) that forms a microreactor or a microfluidic device or a microwell with a micronanostructure and specifically binds to the micronanostructure. And one of the ligand, the polynucleotide strand and its complementary strand) can be used to detect the other binding partner present in a small amount of sample, or the binding reaction can be accelerated to increase the time required for detection. It can be shortened. Such microdevices can be used as immunoassay chips, DNA chips, diagnostic detection kits, chemical analysis chips, and microsensors.
[0046] 或いは、マイクロ 'ナノ構造で形成したマイクロリアクター又はマイクロ流体デバイス の流路中に、ナノ構造を形成することにより、流路中の流体の流れを制御したり、又 は複数の流体の混合を促進したり、或いはサイズフィルタ一として機能させることがで きる。  [0046] Alternatively, the flow of fluid in the flow path is controlled by forming nanostructures in the flow path of a microreactor or microfluidic device formed of micro'nanostructures, or a plurality of fluids It can promote mixing or function as a size filter.
[0047] その他に、円錐状のナノ構造による反射防止構造、直方体のアレイ状のナノ構造 によるフォトニック結晶構造としても禾 IJ用できる。  [0047] In addition, an antireflection structure with a conical nanostructure and a photonic crystal structure with an array of rectangular parallelepiped nanostructures can be used for IJ.
[0048] 本発明の実施に必要な技術の詳細は、教科書、学術文献、特許出願公開又は特 許などに記載されている (例えば、「ナノインプリントの基礎と技術開発 ·応用展開— ナノインプリントの基盤技術と最新の技術展開 」平井義彦編集 2006年 7月 3日発 行 株式会社フロンティア出版、 Stephen Y. Chou、 Peter R. Krauss and Preston J. Renstrom、 "Nanoimprint Lithography 、 J. Vac. Sci. Technol. B14 (6) , Nov/Dec 1996、 pp. 4129— 4133、米国特許第 5、 7 72、 905号明細書を参照)。 [0048] Details of the technology necessary for the implementation of the present invention are described in textbooks, academic literature, patent application publications or patents (for example, “Nanoimprint Basics and Technology Development / Application Deployment—Nanoimprint Fundamental Technologies”). And the latest technological developments "edited by Yoshihiko Hirai, issued July 3, 2006 Frontier Publishing Co., Ltd., Stephen Y. Chou, Peter R. Krauss and Preston J. Renstrom," Nanoimprint Lithography, J. Vac. Sci. Technol. B14 (6), Nov / Dec 1996, pp. 4129-4133, see US Pat. No. 5,772,905.
本実施の形態にかかわる実施例として実施例 1および 2を後述する。  Examples 1 and 2 will be described later as examples of the present embodiment.
[0049] (実施の形態 2)  [0049] (Embodiment 2)
本実施の形態では、実施の形態 1で示した製造方法を用いたマイクロ 'ナノ構造を 有する樹脂構造体をバイオセンシングへ応用した場合について説明する。  In this embodiment, a case where a resin structure having a micro'nano structure using the manufacturing method shown in Embodiment 1 is applied to biosensing will be described.
[0050] バイオセンシングとは、生体産生物を利用した物質の検出方法を指す。検出対象 の物質は抗原とも呼ぶ。特に酵素免疫測定法(Enzyme Linked Immuno Sorb ent Assay) (以下「ELISA」と呼ぶ)は、抗体若しくは抗原の濃度を検出したり定量 する際に用いられる方法である。 ELISAは近年環境物質検査にも行われており、普 及した検出方法である。 ELISAには、直接吸着法とサンドイッチ法の 2種類がある。  [0050] Biosensing refers to a method for detecting a substance using a biological product. The substance to be detected is also called an antigen. In particular, an enzyme linked immunosorbent assay (hereinafter referred to as “ELISA”) is a method used for detecting or quantifying the concentration of an antibody or antigen. In recent years, ELISA has also been performed for environmental substance testing and is a popular detection method. There are two types of ELISA: direct adsorption and sandwich.
[0051] 直説吸着法とは、検出対象の抗原を含む溶液を直接プラスチックチューブやマイク 口プレートウエルに接触させ、その壁面に抗原を吸着させる。その後、抗原が吸着し な力、つた壁面部分を検出対象の抗原とは無関係なタンパク質で覆う。以後、抗原又 は抗体が吸着する固体表面を「固相表面」と呼ぶ。これをブロッキングという。次に検 出対象の抗原に特異的に吸着するする抗体を加える。抗原に結合しなかった抗体を 洗い流し、固相表面の抗原に吸着した抗体を酵素反応により定量する。  [0051] In the direct adsorption method, a solution containing an antigen to be detected is directly brought into contact with a plastic tube or a microphone plate plate well, and the antigen is adsorbed on its wall surface. After that, the force that does not adsorb the antigen is covered, and the wall surface portion is covered with a protein unrelated to the antigen to be detected. Hereinafter, the solid surface on which the antigen or antibody is adsorbed is referred to as “solid surface”. This is called blocking. Next, an antibody that specifically adsorbs to the antigen to be detected is added. The antibody that did not bind to the antigen is washed away, and the antibody adsorbed to the antigen on the solid surface is quantified by an enzymatic reaction.
[0052] 一方、サンドイッチ法とは、まず固相表面に検出対象となる抗原に特異的に吸着す る抗体を予め結合させておく。次に固相表面をブロッキングした後、検出対象の抗原 を含む溶液を加え、溶液中の抗原を固相表面の抗体に結合させる。不要なタンパク 質や抗体に結合しなかった抗原を洗い流した後標識した抗体を加え、固相に結合し た目的の抗原を定量する。  [0052] On the other hand, in the sandwich method, an antibody that specifically adsorbs to an antigen to be detected is first bound to a solid surface in advance. Next, after blocking the solid surface, a solution containing the antigen to be detected is added, and the antigen in the solution is bound to the antibody on the solid surface. After washing away unwanted proteins and antigens that did not bind to the antibody, add the labeled antibody and quantify the target antigen bound to the solid phase.
[0053] ELISAを用いたバイオセンシングは検出対象となるタンパク質以外のタンパク質が 溶液中にあっても、検出対象のタンパク質だけを検出できる。この方法では、固相表 面にできるだけ多くの抗体を吸着させることができれば、多くの抗原を捕まえることが でき、検出感度が高くなる。本発明のマイクロ ·ナノ構造を有する樹脂構造体は、平 面構造より表面積を高くすることができるため、 ELISAにおいて抗体を吸着させる固 相表面として用いることができる。 [0054] 本発明で用いることのできるマイクロ 'ナノ構造には特に限定はない。短冊状、円柱 状、三角錐状などの形状を用いてよい。またこれらのパターンを混合して用いることも できる。また、使用できる材料は、実施の形態 1で説明した材料を使用できるだけで なぐ抗体を優位に吸着できる材料を用いることができる。例えば抗体はタンパク質で あるので、ァミノ基とカルボキシル基を有している。これらの官能基を積極的に吸着す る官能基が表面に存在する材料を使うことができる。本実施の形態にかかわる実施 例ではポリメタクリル酸メチルとメタクリル酸のコポリマーを示す。本明細書では、ポリメ タクリル酸メチルとメタクリル酸のコポリマーを「PMMA系コポリマー」と呼ぶ。 [0053] Biosensing using ELISA can detect only a protein to be detected even if a protein other than the protein to be detected is present in the solution. In this method, if as much antibody as possible can be adsorbed on the solid surface, a large amount of antigen can be captured, and the detection sensitivity becomes high. Since the resin structure having a micro / nano structure of the present invention can have a surface area higher than that of a flat structure, it can be used as a solid surface on which antibodies are adsorbed in ELISA. [0054] There are no particular limitations on the micro-nanostructure that can be used in the present invention. Shapes such as strips, cylinders, and triangular pyramids may be used. These patterns can also be mixed and used. In addition, as a material that can be used, a material that can adsorb antibody preferentially as well as the materials described in Embodiment 1 can be used. For example, since an antibody is a protein, it has an amino group and a carboxyl group. It is possible to use materials having functional groups that actively adsorb these functional groups on the surface. In the examples according to this embodiment, a copolymer of polymethyl methacrylate and methacrylic acid is shown. In the present specification, a copolymer of methyl methacrylate and methacrylic acid is referred to as a “PMMA copolymer”.
[0055] 本実施の形態によるバイオセンシングの応用では、全体の形状にも限定はない。マ イク口'ナノ構造を有する部分も平面だけでなぐ曲面が含まれていても良い。例えば [0055] In the application of biosensing according to the present embodiment, the overall shape is not limited. The portion having a microphone opening 'nanostructure may also include a curved surface that is not only a flat surface. For example
、膜状、方形状、円柱状などが挙げられるが、これらに限定されない。しかし、膜状の ものは作製しやすいので好適に用いることができる。本実施の形態では膜状の実施 例について説明を行う。本明細書において、膜状の樹脂の表面にマイクロ 'ナノ構造 を形成したものを「樹脂ディスク」と呼ぶ。また、 PMMA系コポリマーを用いた樹脂デ イスクは、「コポリマー樹脂ディスク」と呼ぶ。また、マイクロ 'ナノ構造の表面に抗体を 固定した樹脂ディスクを「抗体固定樹脂ディスク」と呼ぶ。抗体固定樹脂ディスクはバ
Figure imgf000012_0001
, Film shape, square shape, cylindrical shape, and the like, but are not limited thereto. However, a film-like one can be suitably used because it is easy to produce. In this embodiment, a film-like example will be described. In the present specification, a film in which a micro-nano structure is formed on the surface of a resin is called a “resin disk”. Resin disks using PMMA copolymers are called “copolymer resin disks”. A resin disc in which an antibody is immobilized on the surface of a micro-nano structure is called an “antibody-immobilized resin disc”. The antibody-fixing resin disc is
Figure imgf000012_0001
[0056] なお、抗体は、抗原を生物の体内に導入し、その生物が抗原に対して産生する免 疫細胞から得られる。ここで抗体は抗原をたんぱく質でない物質にしても得られる。し たがって、抗体によって検出できる検出対象となる物質はたんぱく質に限定されない 。以後検出対象物質を検体とも呼び、たんぱく質以外の物質も含む。  [0056] The antibody is obtained from an immune cell produced by introducing an antigen into the body of the organism and the organism produces against the antigen. Here, the antibody can be obtained even if the antigen is a non-protein substance. Therefore, a substance to be detected that can be detected by an antibody is not limited to a protein. Hereinafter, the substance to be detected is also called a specimen, and includes substances other than proteins.
本実施の形態にかかわる実施例として実施例 3、 4、 5、 6を後述する。  Examples 3, 4, 5, and 6 will be described later as examples according to the present embodiment.
(実施の形態 3) (Embodiment 3)
本発明のマイクロ ·ナノ構造を有する樹脂構造体は、実施の形態 2で示したように優 れた抗体吸着能を有するためバイオセンシングにおいて非常に有用である。そこで 実施の形態 2で示したマイクロ 'ナノ構造を有する樹脂ディスクをバイオチップに用い る形態を説明する。 [0057] 本発明のバイオ検査チップは、基板上に流路を形成し、その流路の途中にマイクロ •ナノ構造付き樹脂ディスク又は抗体固定されたマイクロ 'ナノ構造付き樹脂ディスク( 以後「抗体固定樹脂ディスク」と呼ぶ。)を配置し形成される。すなわち、これらはすで に定義された用語を用いて単に樹脂ディスクおよび抗体固定樹脂ディスクといえる。 この流路はさらに他の基板でカバーされ、流路内の汚染を防止する。また、バイオ検 查チップ内に物質を注入するために、いくつかのインジェクションホールが基板の表 面に形成されている。以後流路を形成された基板を流路側基板、他方の基板をフタ 側基板と呼ぶ。なお、流路およびインジェクションホールは一方の基板に形成するの が製造の手間を省けるので好適である。ただし、流路ゃインジェクションホールを 2つ の基板に作っても構わなレ、。 The resin structure having a micro / nano structure of the present invention is very useful in biosensing because it has an excellent antibody adsorption ability as described in Embodiment 2. Therefore, an embodiment in which the resin disk having the micro'nano structure shown in the second embodiment is used for a biochip will be described. [0057] The bio-test chip of the present invention has a flow path formed on a substrate, and a micro-nanostructured resin disk or an antibody-immobilized resin disk (hereinafter referred to as "antibody fixing") in the middle of the flow path. This is called a “resin disk”. In other words, these are simply resin discs and antibody-fixed resin discs using the terms already defined. This channel is further covered with another substrate to prevent contamination in the channel. In addition, several injection holes are formed on the surface of the substrate to inject the substance into the biodetection chip. Hereinafter, the substrate on which the flow path is formed is referred to as a flow path side substrate, and the other substrate is referred to as a lid side substrate. Note that it is preferable to form the flow path and the injection hole on one of the substrates because it saves the manufacturing effort. However, the flow path can be made on two substrates.
[0058] 図 3に本発明のバイオ検査チップ 20の外観を示す。バイオ検査チップ 20は、流路 を形成された流路側基板 21を、フタ側基板 22でカバーしている。ここで示したバイオ 検査チップは 1辺がおよそ 3cmの正方形である。流路の途中若しくは末端にはインジ ェクシヨンホール 23が形成される。このインジェクションホールからバイオ検査チップ 内に必要な物質が供給される。  FIG. 3 shows the appearance of the biotest chip 20 of the present invention. The bio-test chip 20 covers the flow path side substrate 21 formed with the flow path with the lid side substrate 22. The biotest chip shown here is a square with a side of approximately 3cm. An injection hole 23 is formed in the middle or end of the flow path. Necessary substances are supplied from the injection hole into the biotest chip.
[0059] 流路は 2つの密着した基板の間に形成された通路で、その末端にはインジエタショ ンホール若しくは液溜めが形成される。またパッシブバルブを介して別の流路と繋が つてもよい。ノ /シブバルブは、液体の表面張力によって膜ができる程度に狭くなつ た部分である。液体は通常その表面張力によってパッシブバルブを通過できないが 、空気圧をかける事でパッシブバルブを通過できる。流路には少なくとも 1つ以上の 検出部 24が設けられる。検出部には樹脂ディスク又は抗体固定樹脂ディスクが配設 される。  [0059] The flow path is a passage formed between two closely contacting substrates, and an end of which is formed an induction hole or a liquid reservoir. It may be connected to another flow path via a passive valve. The noble valve is a portion that is narrowed to the extent that a film can be formed by the surface tension of the liquid. Liquid normally cannot pass through the passive valve due to its surface tension, but can pass through the passive valve by applying air pressure. At least one detection unit 24 is provided in the flow path. A resin disc or an antibody-fixed resin disc is disposed in the detection unit.
[0060] 図 4には、流路 30の一例を示す。流路 30は検体液注入部 32、抗体'標識抗体注 入部 35、洗浄液注入部 34、基質注入部 31、検出部 36、排液吸引部 37、反応液貯 留部 38を含む。基質注入部 31、洗浄液注入部 34、抗原 ·標識抗体注入部 35には、 エア注入部 33を有する。また、流路と注入部の間にあるのがパッシブバルブ 39であ る。パッシブバルブを通過させるための空気圧をかける空気孔を符号 33で示した。な お、本明細書では、検出部 36に至る通路を流路 30とも呼ぶ。 [0061] 流路側基板、フタ側基板とも樹脂製であるのが好適である。樹脂製であれば、加工 が容易であり量産性も高いからである。また本発明のバイオ検査チップは酵素反応 による検体のアツセィが目的であるので、アツセィに用いる光が透過する材料である ことが好ましい。特に反応溶液を観察する反応液貯留部を設けた場合は、流路側基 板、フタ側基板とも使用する光が通過する材料であるのが好ましい。具体的にはァク リル、ポリカーボネートなどが好ましい。 FIG. 4 shows an example of the flow path 30. The flow path 30 includes a sample liquid injection part 32, an antibody 'labeled antibody injection part 35, a washing liquid injection part 34, a substrate injection part 31, a detection part 36, a drainage suction part 37, and a reaction liquid storage part 38. The substrate injection part 31, the cleaning liquid injection part 34, and the antigen / labeled antibody injection part 35 have an air injection part 33. A passive valve 39 is located between the flow path and the injection part. An air hole for applying air pressure to pass through the passive valve is denoted by reference numeral 33. In the present specification, the passage leading to the detection unit 36 is also referred to as a flow path 30. [0061] Both the flow path side substrate and the lid side substrate are preferably made of resin. This is because if it is made of resin, it is easy to process and has high productivity. In addition, since the purpose of the biopsy chip of the present invention is to assemble a sample by an enzyme reaction, it is preferable that the biopsy chip is a material that transmits light used for the assay. In particular, when a reaction solution reservoir for observing the reaction solution is provided, it is preferable that the light used for both the flow path side substrate and the lid side substrate is a material through which light passes. Specifically, acryl, polycarbonate and the like are preferable.
[0062] ただし、反応液貯留部の部分だけが光透過性を有して!/、てもよ!/、。また、流路側基 板もしくはフタ側基板の一方に光透過性があり、他方に光を反射する反射面が形成 されていてもよい。すなわち、流路側基板、フタ側基板とも全体を同一の材料で形成 しなくてもよく、部分的に異なる複数の材料で構成されてもよい。また、流路側基板、 フタ側基板のそれぞれが異なる材料であってもよい。  [0062] However, only the part of the reaction liquid storage part has optical transparency! /, May! / Further, one of the flow path side substrate and the lid side substrate may be light transmissive, and the other may be formed with a reflective surface that reflects light. That is, the flow path side substrate and the lid side substrate may not be entirely formed of the same material, and may be formed of a plurality of partially different materials. Further, the flow path side substrate and the lid side substrate may be made of different materials.
[0063] 流路側基板、フタ側基板を熱圧着で形成する場合は、さらに、それぞれの軟化温 度が樹脂ディスクの軟化温度より低いことが望ましい。流路側基板、フタ側基板を熱 圧着する際に樹脂ディスクの Tgより高い温度で加熱すると樹脂ディスクのマイクロ'ナ ノ構造が溶融する場合もあるからである。  [0063] When the flow path side substrate and the lid side substrate are formed by thermocompression bonding, it is desirable that the respective softening temperatures are lower than the softening temperature of the resin disk. This is because when the flow path side substrate and the lid side substrate are subjected to thermocompression bonding, heating at a temperature higher than the Tg of the resin disk may cause the micronano structure of the resin disk to melt.
[0064] また、流路側基板、フタ側基板の一方の軟化温度が他方の軟化温度より低ければ 、軟化温度の低い側の基板に軟化温度の高い方の基板がめり込むため、より圧着し やすい。  [0064] If the softening temperature of one of the flow path side substrate and the lid side substrate is lower than the softening temperature of the other, the substrate with the higher softening temperature is embedded in the substrate with the lower softening temperature, so that the bonding is easier.
[0065] 本発明のバイオ検査チップに用いる樹脂ディスクは、実施の形態 1、 2およびその 実施例で示したものを利用する事が出来る。表面の微細構造も L/S型、ピラー型を 始め、特に制限されることなぐ適宜適当なパターンを利用できる。抗体は固定されて いてもいなくてもよい。抗体が固定されていない場合は、使用するまえに、チップ内に 抗体と架橋剤を注入しマイクロ 'ナノ構造部分に抗体を吸着させる。この場合は、吸 着させた後、流路内をよく洗浄しておく必要がある。  [0065] As the resin disk used in the bio-test chip of the present invention, those shown in Embodiments 1 and 2 and the examples thereof can be used. As for the fine structure of the surface, L / S type, pillar type and other appropriate patterns can be used as long as they are not particularly limited. The antibody may or may not be immobilized. If the antibody is not immobilized, inject the antibody and cross-linking agent into the chip before use, and adsorb the antibody to the micro-nanostructure part. In this case, it is necessary to thoroughly clean the inside of the flow path after the adsorption.
[0066] ただし、流路側基板、フタ側基板を光硬化性接着剤で接着し、その接着の際に紫 外線 (以後「UV光」とも言う。)を照射する場合で、抗体固定樹脂ディスクを使う場合 は、 UV光が直接抗体が固定された部分に照射されないようにするのが望ましい。抗 体はたんぱく質であり、 UV光によって構造が破壊されると、検出対象のたんぱく質に 対する結合力が失活する場合もあるからである。 [0066] However, in the case where the flow path side substrate and the lid side substrate are bonded with a photo-curable adhesive and irradiated with ultraviolet rays (hereinafter also referred to as "UV light"), the antibody-immobilized resin disk is used. When used, it is desirable to prevent UV light from directly irradiating the area where the antibody is immobilized. The antibody is a protein, and when the structure is destroyed by UV light, the protein is detected. This is because the binding force to the case may be deactivated.
[0067] 従って、実施の形態 1や 2およびその実施例で示した樹脂ディスクに加えて、樹脂 ディスクの下側に遮光層を形成してもよい。遮光層は樹脂ディスクを作製した後、マイ クロ ·ナノ構造がなレ、方の側に蒸着ゃスパッタなどの方法で反射膜を形成してもよレ、 し、反射材料を塗布などで形成してもよい。言い換えると、樹脂ディスクの裏側の遮 光層は、反射層であってもよい。  Therefore, in addition to the resin disks shown in the first and second embodiments and the examples, a light shielding layer may be formed below the resin disk. The light-shielding layer may be formed by applying a reflective material after the resin disk is fabricated, and a reflective film may be formed by sputtering or other methods such as vapor deposition on the side. May be. In other words, the light shielding layer on the back side of the resin disk may be a reflective layer.
[0068] より具体的には、金 (Au)、銀 (Ag)、アルミニウムお 、ロジウム(Rh)などの金属 薄膜が反射層として好適に利用する事が出来る。金属薄膜の場合は 5nm以上、好 ましくは lOnm以上の厚みがあればよい。また、余り厚くなりすぎると、反りが生じたり 剥離するので、樹脂ディスクの厚みの 1/10以下であるのが好ましい。 UV光を透過 させないためである。また、酸化チタン、酸化亜鉛などの金属酸化物と結合樹脂から なる組成物をスクリーン印刷などの方法で反射層として塗布形成してもよレ、。塗料状 の組成物の場合は塗布によって大きな応力が発生することも少ないため、数 mの 厚さでもよい。  More specifically, a metal thin film such as gold (Au), silver (Ag), aluminum, and rhodium (Rh) can be suitably used as the reflective layer. In the case of a metal thin film, the thickness should be 5 nm or more, preferably lOnm or more. Further, if it becomes too thick, warping occurs and peeling occurs, so that it is preferably 1/10 or less of the thickness of the resin disk. This is to prevent UV light from transmitting. Alternatively, a composition comprising a metal oxide such as titanium oxide or zinc oxide and a binding resin may be applied and formed as a reflective layer by a method such as screen printing. In the case of a paint-like composition, since a large stress is hardly generated by application, the thickness may be several meters.
[0069] このような遮光層を有する樹脂ディスクは、マイクロ 'ナノ構造部分に結合した抗体 による酵素反応の反応溶液の着色度がよく見えるため、単に抗体固定樹脂ディスクと しても禾 IJ用すること力できる。特に本発明の PMMA系コポリマーなどのように官能基 が樹脂表面に多く存在している樹脂で透明なものは、上記に説明したように硬化時 の UV光から抗体を守るだけでなぐ反応溶液の着色度が確認しやす!/、と!/、う点で遮 光層の存在は有効である。  [0069] Since the resin disk having such a light-shielding layer looks good in the color of the reaction solution of the enzyme reaction with the antibody bound to the micro'nano structure part, it can be used simply as an antibody-fixing resin disk for IJ. I can do it. In particular, a transparent resin having a large number of functional groups on the resin surface, such as the PMMA copolymer of the present invention, can be obtained by simply protecting the antibody from UV light during curing as described above. The presence of the light shielding layer is effective at the point where the degree of coloring is easy to check! /, And! /.
[0070] また、樹脂ディスクを配設した部分の流路側基板若しくはフタ側基板の表面に UV 光が通過しなレ、遮光層を形成してもよレ、。この場合 UV光を照射する側の基板表面 に射光層を形成するのは言うまでもない。  [0070] Further, UV light does not pass through the surface of the flow path side substrate or the lid side substrate where the resin disk is disposed, or a light shielding layer may be formed. In this case, it goes without saying that a light emitting layer is formed on the surface of the substrate on which the UV light is irradiated.
[0071] 本発明のバイオ検査チップは全体が数 cm四方程度の大きさで作ることができ、少 量の検体をアツセィする際に用いる。特に実施の形態 2及びその実施例で示した樹 脂ディスクにより抗体を小さな面積に高密度で吸着させることができ、検出感度が非 常に高くなる。  [0071] The biotest chip of the present invention can be made as a whole with a size of about several centimeters square, and is used when assembling a small amount of specimen. In particular, the antibody can be adsorbed to a small area with high density by the resin disk shown in Embodiment 2 and the example, and the detection sensitivity becomes very high.
[0072] 次にバイオ検査チップの使い方を説明する。図 4を参照して、検出部には検体に特 異的に結合する抗体が吸着した樹脂ディスクが配設されている。ここにブロッキング 液注入部からブロッキング液を注入する。ブロッキング液は、流路から検出部に至る までの壁面でたんぱく質が結合する部分に検体とは無関係のたんぱく質を結合させ ておく目的で注入される。 [0072] Next, how to use the bio-test chip will be described. Refer to Fig. 4. A resin disc on which an antibody that binds differently is adsorbed is provided. The blocking liquid is injected from the blocking liquid injection section. The blocking solution is injected for the purpose of binding a protein unrelated to the specimen to the portion where the protein binds on the wall surface from the flow path to the detection section.
[0073] 次に検体液注入部 32から検体を含む溶液を注入する。検体溶液は流路を通り、検 出部 36に至り、樹脂ディスクに結合している抗体に触れる。検体溶液の中の検体は 樹脂ディスク上の抗体と結合する。そして、抗原'標識抗体を抗原'標識抗体注入部 35からバイオ検査チップ内に注入して樹脂ディスクに結合した抗体に吸着している 検体にさらに吸着する。  Next, a solution containing the sample is injected from the sample solution injection unit 32. The sample solution passes through the flow path, reaches the detection unit 36, and touches the antibody bound to the resin disk. The specimen in the specimen solution binds to the antibody on the resin disc. Then, the antigen 'labeled antibody is injected into the biotest chip from the antigen' labeled antibody injection unit 35 and further adsorbed to the specimen adsorbed to the antibody bound to the resin disk.
[0074] 洗浄液注入部 34から PBSなどを注入してよく洗浄する。そして、基質導入部 31か ら TMBZ等の着色溶液を導入する。着色液は抗原'標識抗体の標識と反応し、色を 変える。所定時間経過後反応液を比色計導入パスを通り反応液貯留部 38、若しくは そのまま検査チップの外側に取り出す。反応液は比色計で発光量を測定する。この ように本発明のバイオ検査チップは、検体の検出 ·定量を 1つのチップで行なう事が 可能である。  [0074] PBS or the like is injected from the cleaning liquid injection section 34 and thoroughly washed. Then, a colored solution such as TMBZ is introduced from the substrate introduction part 31. The colored solution reacts with the label of the antigen 'labeled antibody and changes its color. After a predetermined time, the reaction solution passes through the colorimeter introduction path and is taken out to the reaction solution reservoir 38 or the outside of the inspection chip as it is. The reaction solution is measured for luminescence with a colorimeter. As described above, the biotest chip of the present invention can detect and quantify the specimen with a single chip.
[0075] 図 5はバイオ検査チップを断面から見た概念図である。接着層 49で接着された流 路側基板 21とフタ側基板 22の間に検体、標識抗原、洗浄液などの導入部 35がある 。ここにはインジェクションホールが設けられている。導入部からさらに狭い流路を通り 、抗体固定樹脂ディスクが配設された検出部 36に至る。流路は一部を示したがここ では符号 30で示した。検出部からはさらに反応液や排液等を貯留する部分 37に通 じている。  FIG. 5 is a conceptual diagram of the biotest chip as seen from the cross section. Between the flow path side substrate 21 and the lid side substrate 22 adhered by the adhesive layer 49, there is an introduction portion 35 for a specimen, a labeled antigen, a washing liquid, and the like. An injection hole is provided here. The introduction part passes through a narrower channel and reaches the detection part 36 where the antibody-immobilized resin disk is disposed. Although a part of the flow path is shown, it is indicated by reference numeral 30 here. The detection unit further leads to a portion 37 for storing the reaction solution and drainage.
[0076] (実施の形態 4)  [Embodiment 4]
次に本発明のバイオ検査チップの製造方法について説明する。本発明のバイオ検 查チップは基板となる透明樹脂板に流路とインジェクションホールを形成した後、フタ 側となる基板表面に抗体固定樹脂ディスクを配設し、流路形成側基板とフタ側基板 を接着させ作製する。  Next, a method for manufacturing the biotest chip of the present invention will be described. In the biodetection chip of the present invention, a flow path and an injection hole are formed in a transparent resin plate serving as a substrate, and then an antibody-immobilized resin disk is disposed on the surface of the substrate on the lid side. Are made by bonding.
[0077] これには 2通りの基本的な製造方法がある。第 1の製造方法は、抗体固定樹脂ディ スクを配設したフタ側基板と流路側基板を光硬化性の接着剤で張り合わせる方法で ある。次に第 2の製造方法は、抗体固定樹脂ディスクを配設したフタ側基板と流路側 基板を熱圧着によって張り合わせる方法である。以下、それぞれの形態とその実施 例について説明する。 [0077] There are two basic manufacturing methods. The first production method is a method in which the lid side substrate on which the antibody-immobilized resin disk is disposed and the flow path side substrate are bonded to each other with a photocurable adhesive. is there. Next, the second production method is a method in which the lid side substrate on which the antibody-immobilized resin disk is disposed and the flow path side substrate are bonded together by thermocompression bonding. Hereinafter, each form and its Example are demonstrated.
[0078] まず、抗体付き樹脂ディスクを配設したフタ側基板と流路側基板を光硬化性の接着 剤で張り合わせる方法につ!/、て説明する。  First, a method for bonding a lid side substrate on which a resin disc with an antibody is disposed and a flow path side substrate with a photocurable adhesive will be described.
[0079] 1.流路原版  [0079] 1. Channel master
流路原版は流路側基板を形成するためのものである。両面が平面の流路側基板 材料の一方の面に凹みを形成し流路とする。この際基板材料に凹みをつけるのが流 路原版である。基板材料には樹脂を用いるのがコスト、量産性などの点で好適である ので、流路原版は樹脂より硬く変形しにくい特性を有する金属材料で作製するのが 好適である。金属材料の中では加工しやすぐ安価な材料が好適である。流路は樹 脂ディスクに形成するナノメートルオーダーの超微細な構造ではなレ、ので、流路原版 にもそれほど高い精度を求めなくてもよい。具体的には、ニッケル、鉄、銅、亜鉛、ァ ノレミニゥム等が好適に用いられる。流路原版の作り方は特に限定されない。铸造、削 りだし、エッチングなどの加工方法を適宜利用する事ができる。  The flow path original plate is for forming a flow path side substrate. A channel is formed by forming a dent on one surface of the flow path side substrate material whose both surfaces are flat. At this time, it is the original flow path that makes the substrate material dent. Since it is preferable to use a resin as the substrate material in terms of cost, mass productivity, and the like, it is preferable that the flow path original plate is made of a metal material that is harder than the resin and has a property that is difficult to deform. Among metal materials, materials that are easily processed and inexpensive are suitable. Since the flow path is not an ultra-fine structure of nanometer order formed on the resin disk, the flow path original plate need not have so high accuracy. Specifically, nickel, iron, copper, zinc, ano-remium, etc. are preferably used. There is no particular limitation on how to make the flow path original plate. Processing methods such as forging, cutting and etching can be used as appropriate.
[0080] 2.プレス機  [0080] 2.Press machine
プレス機は流路側基板とフタ側基板を接着する際に、圧力を加えるために用いる。 そのため上盤、下盤ともに温度が調整できる機構を有するものが好ましい。圧力は 1 OMPa程度の加圧能力があるのが好ましい。また、接着の際には、脱泡する目的で 加圧および加熱した状態のまま上盤、下盤を含めた空間を減圧する機能を有するの が好ましい。また、 2つの基板を接着させる際に光硬化性接着剤を用いると好適であ る。従って、加熱 '加圧しながら UV光をサンプルに照射できる機能を有しているプレ ス機が好適である。  The press machine is used to apply pressure when the flow path side substrate and the lid side substrate are bonded. Therefore, it is preferable to have a mechanism capable of adjusting the temperature of both the upper board and the lower board. It is preferable that the pressure has a pressurizing capacity of about 1 OMPa. Further, at the time of bonding, it is preferable to have a function of depressurizing the space including the upper and lower boards while being pressurized and heated for the purpose of defoaming. In addition, it is preferable to use a photocurable adhesive when bonding the two substrates. Therefore, a press machine having a function of irradiating the sample with UV light while heating and pressing is suitable.
[0081] 3、流路側基板の作製  [0081] 3. Fabrication of flow path side substrate
プレス下盤に原版を固定し、その周囲に高さ規制のための高さ規制材を配置する。 高さ規制材は、プレスによって基板材料の過変形を防止するためのものである。プレ ス機の側からみると変形しにくい材料を加圧することになる。従ってプレス機への負 荷を大きくしないために、ねばりのある金属材料が好ましい。具体的には、アルミユウ ムゃ銅などである。 The original plate is fixed to the lower plate of the press, and a height control material for height control is placed around it. The height regulating material is for preventing excessive deformation of the substrate material by pressing. When viewed from the side of the press machine, it pressurizes materials that are difficult to deform. Therefore, a sticky metal material is preferable so as not to increase the load on the press. Specifically, Aluminum Yu Muya copper.
次に原版の上に基板材料を置き、上盤で加熱しながら加圧する。この際に予備加 熱を行なうと加工しやすい。  Next, the substrate material is placed on the original plate and pressed while being heated on the upper plate. If preheating is performed at this time, it is easy to process.
[0082] 冷却は急冷は行なうべきではな!/、。加工歪の入った流路側基板を急冷すると応力 の影響で大きな反りを生じたり、割れを生じたりするからである。 自然冷却と送風冷却 を組み合わせるのが好ましい。また、このような徐冷を行なったとしても、基板内に応 力が残留する。その応力を緩和するために平滑化処理をおこなってもよい。  [0082] Cooling should not be rapid! /. This is because if the flow path side substrate with processing strain is rapidly cooled, a large warp or cracking occurs due to the stress. It is preferable to combine natural cooling and air cooling. Even if such slow cooling is performed, stress remains in the substrate. A smoothing process may be performed to relieve the stress.
[0083] 平滑化処理は、加工した流路側基板を平滑な 2面の間に挟み、ァニール処理を行 うのが一般的である。しかし、使用する樹脂の特性によっては他の方法を用いてもよ い。  [0083] In the smoothing process, the processed flow path side substrate is generally sandwiched between two smooth surfaces, and the annealing process is performed. However, other methods may be used depending on the characteristics of the resin used.
[0084] 流路を形成した後、インジェクションホールを形成しておく。ここから検体などを検査 チップ内に注入する。インジェクションホールの形成は、平滑化処理の前後どちらで もよい。し力、し、平滑化処理を行う前にインジェクションホールは形成しておくのがより 好ましい。  [0084] After forming the flow path, an injection hole is formed. From here, the sample is injected into the test chip. The injection hole may be formed either before or after the smoothing process. More preferably, the injection hole is formed before the smoothing treatment.
なお、流路側基板の作製はこの方法に限定されるものではなぐ例えば金型を用い た射出成型加工で作製してもよレ、。  The production of the flow path side substrate is not limited to this method. For example, it may be produced by injection molding using a mold.
[0085] 4.フタ側基板の準備  [0085] 4.Preparation of lid side substrate
フタ側基板となる材料は予め表面が平面になって!/、る材料を用いる。流路側基板と フタ側基板の何れかに反りなどがあっても、それぞれの基板は密着せず、アツセィを 行なう際に液漏れなどの不具合が生じるからである。  As the material for the lid side substrate, a material whose surface is flat in advance is used. This is because even if either the flow path side substrate or the lid side substrate is warped, the respective substrates do not adhere to each other, and problems such as liquid leakage occur when performing the assembly.
[0086] そして、フタ側基板の一方の面に、接着層を形成する。接着層は、流路側基板とフ タ側基板を接着するための層である。両基板を接着した内部には抗体固定樹脂ディ スクが配設される。抗体はたんぱく質であるため、内部に揮発性の溶剤が多く残留す ると、抗体の失活に繋がる場合もある。従って、溶剤を含む接着剤であっても十分に 溶剤を揮発させてからフタ側基板を接着するのが好ましい。また、熱硬化性の接着剤 も用いる事ができるが、接着の際には、抗体が内部に存在するので、高い温度にす るとやはり抗体が失活する場合もある。  Then, an adhesive layer is formed on one surface of the lid side substrate. The adhesive layer is a layer for bonding the flow path side substrate and the foot side substrate. An antibody-fixing resin disk is disposed inside the two substrates bonded together. Since antibodies are proteins, the presence of a large amount of volatile solvent inside may lead to inactivation of antibodies. Therefore, it is preferable to bond the lid side substrate after sufficiently evaporating the solvent even if the adhesive contains a solvent. A thermosetting adhesive can also be used, but at the time of bonding, the antibody is present inside, so that the antibody may be deactivated at a high temperature.
[0087] 光硬化性の接着剤は、接着層形成時には溶剤を含んで!/、ても、接着層形成後に 溶剤を十分に揮発させることができる。また、硬化が光によって行なわれるため、接着 時の温度上昇が少ない。従って、予めマイクロ 'ナノ構造付き樹脂ディスクに抗体を 固定してある場合は光硬化性の接着剤を用いるのが好ましレ、。 [0087] The photocurable adhesive contains a solvent when forming the adhesive layer! / Even after the adhesive layer is formed, The solvent can be sufficiently volatilized. In addition, since the curing is performed by light, the temperature rise during bonding is small. Therefore, it is preferable to use a photo-curable adhesive when the antibody is fixed to a resin disk with a micro-nano structure in advance.
[0088] 接着層を形成した後に、抗体固定樹脂ディスクを所定の位置に配設する。接着層 へのディスクの固定は、接着層自身の有するタック性で固定することができる。ただし 、両面テープや瞬間接着剤など他の方法で固定してもよレ、。  [0088] After forming the adhesive layer, the antibody-immobilized resin disk is disposed at a predetermined position. The disk can be fixed to the adhesive layer by the tackiness of the adhesive layer itself. However, it can be fixed by other methods such as double-sided tape or instant adhesive.
[0089] 5.基板同士の接着  [0089] 5. Adhesion between substrates
フタ側基板上に流路側基板を載せ、加熱しながら加圧する。接着層を光硬化性接 着剤で形成した場合は、所定の光を照射してもよい。  The flow path side substrate is placed on the lid side substrate, and the pressure is applied while heating. When the adhesive layer is formed of a photo-curable adhesive, predetermined light may be irradiated.
以上のようにして、光硬化性接着剤を用いて本発明のバイオ検査チップを作製する こと力 Sでさる。  As described above, the force S can be used to produce the biotest chip of the present invention using a photocurable adhesive.
[0090] なお、フタ側基板に抗体固定樹脂ディスクを配設する例を示したが、抗体が固定さ れていない樹脂ディスクであってもよい。抗体が固定されていない場合は、流路側基 板とフタ基板を接着した後に、抗体と架橋剤をチップ内に注入する。チップ内で樹脂 ディスクのマイクロ 'ナノ構造に抗体を吸着させるためである。この方法は、抗体を後 から選択できるという自由性があるが、一方で、検査チップごとに抗体をチップ内で吸 着させなければならないという手間も増える。本実施の形態にかかわる実施例を実施 例 7、 8、 9として後述する。  [0090] Although an example in which the antibody-fixing resin disk is disposed on the lid side substrate has been shown, a resin disk on which the antibody is not fixed may be used. If the antibody is not fixed, the antibody and the cross-linking agent are injected into the chip after bonding the flow path side substrate and the lid substrate. This is because the antibody is adsorbed to the micro-nano structure of the resin disk within the chip. This method has the freedom that the antibody can be selected later, but on the other hand, it also increases the time and effort required to absorb the antibody in each chip. Examples relating to the present embodiment will be described later as Examples 7, 8, and 9.
[0091] (実施の形態 5) [0091] (Embodiment 5)
次に抗体固定樹脂ディスクを配設したフタ側基板と流路側基板を熱圧着によって 接着する方法による製造方法について説明する。  Next, a manufacturing method by a method in which the lid side substrate on which the antibody-immobilized resin disk is disposed and the flow path side substrate are bonded by thermocompression bonding will be described.
1.原版、 2.プレス機、 3、流路側基板の作製は実施の形態 3と全く同じでよい。  1. The original plate, 2. Press machine, 3. Production of the flow path side substrate may be exactly the same as in the third embodiment.
[0092] 4.フタ側基板の準備 [0092] 4. Preparation of lid side substrate
本実施の形態では、フタ側基板は表面が平面になっている材料を用意するだけで よぐ接着層を形成しなくてよい。フタ側基板が用意できれば、両基板を接着するェ 程に移れる。  In this embodiment, it is not necessary to form an adhesive layer simply by preparing a material having a flat surface on the lid side substrate. If the lid side substrate is prepared, it is possible to move to bonding both substrates.
[0093] 5.基板同士の接着 [0093] 5. Adhesion between substrates
流路側基板とフタ側基板の内側になる部分に UV照射を行う。これはバイオ検査チ ップになった際に、内側の壁面となる部分を消毒する意味と、 2つの基板の接着面を UV光で改質し接着し易くするためである。 UV irradiation is performed on the inside of the flow path side substrate and the lid side substrate. This is a biotest This is to disinfect the inner wall surface when it comes to the top, and to modify the bonding surface of the two substrates with UV light to facilitate bonding.
[0094] 次に流路側基板に抗体固定樹脂ディスクを配設する。接着方法は特に限定されな い。抗体固定樹脂ディスクは裏面に遮光層があってもよい。  Next, the antibody-immobilized resin disk is disposed on the flow path side substrate. The bonding method is not particularly limited. The antibody-immobilized resin disk may have a light shielding layer on the back surface.
[0095] 次にこれらをプレス機で加熱しながら加圧する。この場合に、フタ側基板の方のプ レス盤の温度を流路側基板を押すプレス盤の温度より高くする。このように温度勾配 をつけるのは、流路側基板に配設した抗体固定樹脂ディスクを高温に曝さないため であり、また、流路側基板があまり変形しないため流路を確実に形成するためである Next, these are pressurized while being heated by a press. In this case, the temperature of the press board on the lid side substrate is made higher than the temperature of the press board pushing the flow path side substrate. The reason why the temperature gradient is applied in this way is to prevent the antibody-immobilized resin disk disposed on the flow path side substrate from being exposed to a high temperature, and to ensure that the flow path is formed because the flow path side substrate does not deform so much.
Yes
[0096] 2つの基板を共に樹脂溶融温度近くまで加熱すると、接着は容易になる力 基板全 体が形状を保持できなくなり、流路の一部が詰まってしまうこともあるからである。した がって、温度を高くするほうは、流路が形成されていないフタ側基板であるのが好ま しい。本実施の形態にかかわる実施例として実施例 10を後述する。  [0096] When both the two substrates are heated close to the resin melting temperature, the adhesion becomes easy. The entire substrate cannot retain its shape, and part of the flow path may be clogged. Therefore, it is preferable to increase the temperature on the lid side substrate in which no flow path is formed. Example 10 will be described later as an example according to the present embodiment.
実施例  Example
[0097] 以下、実施例を挙げて本発明の実施の形態の一例を説明するが、本発明は以下 の実施例に限定されるものではない。  [0097] Hereinafter, an example of an embodiment of the present invention will be described with reference to examples, but the present invention is not limited to the following examples.
[0098] <実施例 1〉 <Example 1>
本実施例は実施の形態 1にかかわる実施例である。  This example is an example according to the first embodiment.
原版としてシリコン結晶基板を用いた。原版の押付け面上のマイクロ 'ナノ構造は、 幅 2 m、深さ 12 m、繰返しピッチ 3· 5 μ mの格子状の溝構造である。このマイクロ •ナノ構造は、紫外線露光とプラズマエッチングにより作製した。パターンのある部分 は直径 7mmの円形状の範囲内である。  A silicon crystal substrate was used as the original plate. The micro-nano structure on the pressing surface of the original plate is a lattice-like groove structure with a width of 2 m, a depth of 12 m, and a repetition pitch of 3.5 μm. This micro / nano structure was fabricated by UV exposure and plasma etching. The part with the pattern is within a circular shape with a diameter of 7mm.
[0099] 原版のパターン部を囲うように、内径 7. 5mmの穴のあいたアルミニウム製の成型 枠を設置した。薄板の板厚は 0. 5mmである。  [0099] An aluminum forming frame having a hole with an inner diameter of 7.5 mm was installed so as to surround the pattern portion of the original plate. The thickness of the thin plate is 0.5mm.
[0100] 熱可塑性樹脂として PMMA (ポリメタクリル酸メチル)(アルドリッチ社より販売試薬) を使用した。重量平均分子量 Mwは 996, 000または 350, 000を使用した。これを 原版上のパターン部分に、 0. 3〜0. 6グラムを設置した。  [0100] PMMA (polymethyl methacrylate) (a reagent sold by Aldrich) was used as the thermoplastic resin. The weight average molecular weight Mw was 996,000 or 350,000. 0.3 to 0.6 gram was placed on the pattern on the original.
[0101] 続いて、真空雰囲気にしたのち、原版と樹脂を 140〜145°Cまで加熱する。ここで は、ホットプレート上に原版を設置した。樹脂粉の上にアルミニウム製の押さえ板をの せ、これを 2〜20MPaの圧力で 3〜; 10分間押付けた。原版を押付けた状態で大気 を導入し、同時に冷却を開始した。冷却はホットプレートを水冷することによって行つ た。約 10分経過後に 90°Cまで冷却した時点で押し付け圧力を開放した。 [0101] Subsequently, after making a vacuum atmosphere, the original plate and the resin are heated to 140 to 145 ° C. here Installed the original plate on a hot plate. An aluminum pressing plate was placed on the resin powder, and pressed with a pressure of 2 to 20 MPa for 3 to 10 minutes. Air was introduced with the original plate pressed, and cooling started at the same time. Cooling was performed by cooling the hot plate with water. After about 10 minutes, the pressure was released after cooling to 90 ° C.
[0102] 続いて、原版はそのまま設置した状態でさらに冷却を続け、樹脂温度が 60〜30°C まで冷却した。その後、原版から離型して、原版のパターンを反転したマイクロ 'ナノ 構造を有する樹脂構造体が得られた。  [0102] Subsequently, the original plate was left as it was, and further cooling was continued to cool the resin temperature to 60-30 ° C. Thereafter, the resin structure having a micro-nano structure in which the pattern of the original plate was reversed was released from the original plate.
[0103] 図 6に得られたマイクロ 'ナノ構造を有する樹脂構造体の走査電子顕微鏡(Scanni ng Electron Microscope:以後「SEM」という)写真を示す。図 6 (a)は 850倍、図 6 (b)は 4000倍の倍率で撮影された SEM写真である。写真左下の矢印がそれぞれ 11. 7〃mと 2. 5〃mに相当する。図 6 (b)より板状の構造が整然と並んでいるのが 観察できる。板状の構造体は基板付近の厚みが少し厚くなつているように見える。し かし、それ以外はエッジや角の部分にダレが生じることもなく形成されているのがわか る。この板状の厚みは、ほぼ 2 111、高さは 12 m、繰り返しピッチが 3· 5 mであつ た。これは原版のシリコン結晶基板の格子状の溝構造のサイズと一致した。また、図 6 (a)より、広い面積においても、パターンの欠損やダレもなかった。  FIG. 6 shows a scanning electron microscope (hereinafter referred to as “SEM”) photograph of the obtained resin structure having a micro-nano structure. Figure 6 (a) is an SEM photograph taken at a magnification of 850x and Figure 6 (b) at a magnification of 4000x. The arrows at the bottom left of the photo correspond to 11.7m and 2.5m respectively. It can be observed from Fig. 6 (b) that the plate-like structures are arranged in an orderly manner. The plate-like structure appears to be slightly thicker near the substrate. However, other than this, it can be seen that the edges and corners are formed without sagging. The thickness of this plate was approximately 2111, the height was 12 m, and the repeat pitch was 3.5 m. This coincided with the size of the lattice-like groove structure of the original silicon crystal substrate. In addition, as shown in FIG. 6 (a), there was no pattern loss or sagging over a large area.
[0104] <実施例 2〉  <Example 2>
本実施例は実施の形態 1にかかわる実施例である。  This example is an example according to the first embodiment.
本実施例では、本発明の製造方法における機能性樹脂膜としてのポリメタクリル酸 メチルーメタクリル酸コポリマーとの使用可能性を検討した。なお、このコポリマーは 出願人が合成したものである。このコポリマーは、膜状に成形した際に表面にカルボ キシル基を多く存在させることができる。従って、生体産生物であるたんぱく質などを 強固に吸着させることができる。  In this example, the possibility of using a polymethyl methacrylate-methacrylic acid copolymer as a functional resin film in the production method of the present invention was examined. This copolymer was synthesized by the applicant. This copolymer can have many carboxyl groups on the surface when formed into a film. Therefore, proteins such as biological products can be strongly adsorbed.
[0105] 実施例 1と同様に、原版と金属枠を用意した。原版としてュッケル板を用いた。原版 の押付け面上のマイクロ 'ナノ構造は、幅 20 μ m、深さ 50 μ m、繰返しピッチ約 30 μ mの格子状の溝構造である。  [0105] As in Example 1, an original plate and a metal frame were prepared. A Muckel plate was used as the original plate. The micro-nano structure on the pressing surface of the original plate is a lattice-like groove structure with a width of 20 μm, a depth of 50 μm, and a repeating pitch of about 30 μm.
[0106] 熱可塑性樹脂としてポリメタクリル酸メチル一メタクリル酸コポリマーを使用した。こ れをニッケルモールド上のパターン部分に、 0. 3— 0. 6グラムを設置した。 [0107] 続いて、真空雰囲気にしたのち、原版と樹脂を 150°Cまで加熱する。ここでは、ホッ トプレート上に原版を設置した。樹脂粉の上にアルミニウム製の押さえ板をのせ、これ に 2〜20MPaの圧力で 3〜; 10分間押付けた。原版を押付けた状態で大気を導入し 、同時に冷却を開始した。冷却はホットプレートを水冷することによって行った。約 10 分経過後に 90°Cまで冷却した時点で押し付け圧力を開放した。 [0106] A polymethyl methacrylate-monomethacrylic acid copolymer was used as the thermoplastic resin. This was placed in the pattern on the nickel mold by 0.3-0.6 grams. [0107] Subsequently, after making a vacuum atmosphere, the original and the resin are heated to 150 ° C. Here, the original plate was placed on the hot plate. An aluminum pressing plate was placed on the resin powder, and pressed against it at a pressure of 2 to 20 MPa for 3 to 10 minutes. Air was introduced with the original plate pressed, and cooling was started at the same time. Cooling was performed by cooling the hot plate with water. After about 10 minutes, the pressure was released after cooling to 90 ° C.
[0108] 続いて、原版はそのまま設置した状態でさらに冷却を続け、樹脂温度が 60〜30°C まで冷却した。  [0108] Subsequently, the original plate was left as it was, and further cooling was continued to cool the resin temperature to 60-30 ° C.
その後、原版から離型して、原版のパターンを反転したマイクロ 'ナノ構造を有する 樹脂構造体が得られた。  Thereafter, a resin structure having a micro-nano structure in which the pattern of the original plate was reversed was released from the original plate.
[0109] 図 7に得られたマイクロ 'ナノ構造を有する樹脂構造体の SEM写真を示す。図 7 (a )は 110倍、図 7 (b)は 500倍の倍率で撮影された SEM写真である。写真左下の矢 印がそれぞれ 90· 9 mと 20. 0 mに相当する。図 7 (b)より板状の構造が整然と並 んでいるのが観察できる。板状の構造体はエッジや角の部分にダレが生じることもな く形成されているのがわかる。この板状の厚みは、ほぼ 20〃111、高さは 50〃 m、繰り 返しピッチが 30 H mであった。これは原版のニッケル板の格子状の溝構造のサイズ と一致した。また、図 7 (a)より、広い面積においても、パターンの欠損やダレもなかつ た。 [0109] FIG. 7 shows an SEM photograph of the obtained resin structure having a micro-nano structure. Figure 7 (a) is an SEM photograph taken at a magnification of 110, and Figure 7 (b) is taken at a magnification of 500. The arrows in the lower left of the photo correspond to 90 · 9 m and 20.0 m, respectively. It can be observed from Fig. 7 (b) that the plate-like structures are arranged in an orderly manner. It can be seen that the plate-like structure is formed without sagging at the edges or corners. The thickness of the plate was approximately 20 mm 111, the height was 50 mm, and the repeat pitch was 30 Hm. This coincided with the size of the grid-like groove structure of the original nickel plate. In addition, as shown in Fig. 7 (a), there was no pattern loss or sagging over a large area.
[0110] <実施例 3〉  [0110] <Example 3>
本実施例は実施の形態 2にかかわる実施例である。  This example is an example according to the second embodiment.
実施の形態 1で示したマイクロ 'ナノ構造を有する構造体の製造方法により、直径 6 mm、厚さ約 500 mのマイクロ 'ナノ構造を有する樹脂ディスクを作成した。マイクロ •ナノ構造を有する樹脂ディスクは「樹脂ディスク」と呼んだ。用いた樹脂は PMMAで ある。形成したパターンは、幅 2 m、深さ 12 m、繰り返しピッチ 3· 5 μ mの格子状 の溝構造 (以下「L/S構造」という)である。これは実施例 1で作成したものと同じもの である。  A resin disk having a micro'nano structure having a diameter of 6 mm and a thickness of about 500 m was prepared by the method for manufacturing a structure having a micro'nano structure shown in the first embodiment. Resin discs with micro / nano structures were called “resin discs”. The resin used is PMMA. The formed pattern has a lattice-like groove structure (hereinafter referred to as “L / S structure”) having a width of 2 m, a depth of 12 m, and a repeating pitch of 3.5 μm. This is the same as that created in Example 1.
[0111] この樹脂ディスクを敷きこんだ ELISA用 96穴プレートのゥエル(直径約 7mm)に、 HRP (Horseradish Peroxidase)標識抗体を濃度を変化させた溶液に作用と架橋 剤を注入し、 37度で 2時間放置した。 HRP標識抗体の濃度は 0. 01、 0. 1、 1. 0、 1 0、 100、 1000、 lOOOOng/mLと変化させた。 HRP標識抗体は、 HPR標識で修飾 された抗体であり、樹脂ディスクの溝構造の固相表面に吸着する。 [0111] A 96-well plate for ELISA (diameter: about 7 mm) with this resin disc spread was injected with a solution of HRP (Horseradish Peroxidase) -labeled antibody in varying concentrations and a cross-linking agent at 37 degrees. Left for 2 hours. HRP-labeled antibody concentrations are 0.01, 0.1, 1.0, 1 It was changed to 0, 100, 1000, lOOOOng / mL. The HRP-labeled antibody is an antibody modified with an HPR label, and is adsorbed on the solid phase surface of the groove structure of the resin disk.
[0112] その後、 PBS (燐酸緩衝生理食塩水)にて 5回洗浄し、樹脂ディスクを新しい ELIS A用プレートのゥエルに入れ替え、発色剤(TMBZ : 3, 3,, 5, 5 ' -Tetramethylbe nzidine)と反応させた。樹脂ディスクの固相表面には HRP標識抗体が吸着しており 、 TMBZは HRP標識によって酸化され青色に変色する。  [0112] Thereafter, the plate was washed 5 times with PBS (phosphate buffered saline), the resin disc was replaced with a new ELIS A plate well, and the color former (TMBZ: 3, 3, 5, 5, 5'-Tetramethylbe nzidine ). The HRP-labeled antibody is adsorbed on the solid phase surface of the resin disc, and TMBZ is oxidized by the HRP label and turns blue.
[0113] 30分後に停止剤(硫酸: H SO )を入れ TMBZの反応を停止させた。 TMBZは反  [0113] After 30 minutes, a stopper (sulfuric acid: H 2 SO 4) was added to stop the reaction of TMBZ. TMBZ is anti
2 4  twenty four
応が停止すると黄色に変色する。そして、反応溶液のみを新しい ELISA用プレート のゥエルに入れ、プレートリーダにて吸光度を測定した。測定波長は 450nmである。 なお、これとは別にマイクロ 'ナノ構造を形成しない平坦な樹脂板と、樹脂ディスクを 用いずに ELISA用 96穴プレートのゥエルの壁面を固相表面として用いた比較例も 作成した。 ELISA用 96穴プレートのゥエルは、ポリスチレン製であった。  When response stops, it turns yellow. Then, only the reaction solution was put into a well of a new ELISA plate, and the absorbance was measured with a plate reader. The measurement wavelength is 450 nm. Separately, a flat resin plate that does not form micro-nano structures and a comparative example using the wall of the well of the 96-well plate for ELISA as a solid phase surface without using a resin disc were also prepared. The ELISA 96-well plate was made of polystyrene.
[0114] 図 8に結果を示す。図 8は固相表面に接触させた抗体濃度 (ng/mL)と反応溶液 の波長 450nmでの吸光度の関係を表す。グラフ中で丸印 10は樹脂ディスクであり、 斜立四角 11は平坦な樹脂板であり、四角 12はゥエル直接の場合である。  [0114] Figure 8 shows the results. Figure 8 shows the relationship between the antibody concentration (ng / mL) brought into contact with the solid surface and the absorbance of the reaction solution at a wavelength of 450 nm. In the graph, the circle 10 is a resin disk, the oblique square 11 is a flat resin plate, and the square 12 is a direct case.
[0115] 抗体濃度が低い時は吸光度はほとんど差はなぐまた、抗体濃度が高くなつてもそ れぞれのサンプルの差はなくなる。抗体濃度が低い時は、吸光度を測定できないほ ど少ない量しか吸着しないからである。また、抗体濃度が高い時は TMBZの反応が 飽和してしま!/ヽサンプル間の差がでな!/、ためである。  [0115] When the antibody concentration is low, there is almost no difference in absorbance, and even when the antibody concentration is high, there is no difference between the samples. This is because when the antibody concentration is low, only a small amount cannot be adsorbed. Also, when the antibody concentration is high, the TMBZ reaction is saturated!
[0116] 最も感度良く検出できるのは、数 (ng/mL)から数十 (ng/mUの抗体濃度のとき  [0116] The most sensitive detection is from several (ng / mL) to several tens (ng / mU of antibody concentration)
(領域 13)であり、特に抗体濃度が 10 (ng/mUの時はゥエルへ直接抗体を吸着さ せる場合と比較して約 3倍の吸光度であった。  This was (region 13). In particular, when the antibody concentration was 10 (ng / mU), the absorbance was about 3 times that of the case where the antibody was directly adsorbed to the well.
[0117] <実施例 4〉  [0117] <Example 4>
本実施例は実施の形態 2にかかわる実施例である。  This example is an example according to the second embodiment.
次に実施例 2で用いたポリメタクリル酸メチルーメタクリル酸コポリマーの抗体吸着 能を確認した。ポリメタクリル酸メチルーメタクリル酸コポリマーを PMMA系コポリマー と呼んだ。 PMMA系コポリマーは、膜状に成形した際にカルボキシル基を表面に多 く存在さること力 Sできる。したがって、抗体吸着能が高くなると考えられた。 [0118] 図 9にこのコポリマーの製造反応と大まかな構造を示す。このコポリマーは、メタタリ ル酸メチルとメタクリル酸が M: Nの比率で縮合反応を行!/、生成されたものである。縮 合反応は 60°Cで 1. 5時間であった。このコポリマーはメタクリル酸であった部分に力 ノレボキシル基ができている。このカルボキシル基は、樹脂表面に存在する。 Next, the antibody adsorption ability of the polymethyl methacrylate-methacrylic acid copolymer used in Example 2 was confirmed. Polymethyl methacrylate-methacrylic acid copolymer was called PMMA copolymer. PMMA-based copolymers have the ability to have many carboxyl groups on the surface when formed into a film. Therefore, it was considered that the antibody adsorption capacity was increased. [0118] Fig. 9 shows the production reaction and rough structure of this copolymer. This copolymer is a product formed by condensation reaction between methyl methacrylate and methacrylic acid at a ratio of M: N! The condensation reaction was 1.5 hours at 60 ° C. This copolymer has force carboxyl groups in the part that was methacrylic acid. This carboxyl group exists on the resin surface.
[0119] 図 10にこの樹脂の表面状態の概念図を示す。図 10 (a)は、一般的な樹脂の場合 である。一般的な樹脂である PMMAや PS (ポリスチレン)などは、その構造 16中に カルボキシル基 17が存在しても、表面に存在するものは少ない。そのため、樹脂表 面に吸着する抗体 15も少な!/、。  FIG. 10 shows a conceptual diagram of the surface state of this resin. Figure 10 (a) shows the case of a general resin. Common resins such as PMMA and PS (polystyrene) have few on the surface even if carboxyl groups 17 are present in the structure 16. Therefore, there are few antibodies 15 adsorbed on the resin surface!
[0120] 一方、図 10 (b)は PMMA系コポリマーの樹脂の場合の概念図である。このコポリマ 一は樹脂中 18だけでなぐ樹脂表面にカルボキシル基が多数存在する。この樹脂表 面のカルボキシル基は、抗体 15を形成するアミノ酸のァミノ基とペプチド結合を形成 することで、強力に結合することができる。以下に本実施例について説明する。  On the other hand, FIG. 10 (b) is a conceptual diagram in the case of PMMA copolymer resin. This copolymer has many carboxyl groups on the surface of the resin, which is only 18 in the resin. The carboxyl group on the resin surface can be strongly bound by forming a peptide bond with the amino group of the amino acid forming the antibody 15. This embodiment will be described below.
[0121] 本発明のモールド製造方法を用い、ポリメタクリル酸メチルーメタクリル酸コポリマー  [0121] Polymethyl methacrylate-methacrylic acid copolymer using the mold production method of the present invention
(: PMMA系コポリマー)にマイクロ .ナノ構造のな!/、平板成型した樹脂板(以後「コポ リマー樹脂板」と呼ぶ)を入れた ELISA用 96穴プレートのゥエルに、 HRP標識抗体( lOng/mL)と架橋剤を注入し、 37度で 1時間放置した。  (: PMMA-based copolymer) with micro / nanostructure! /, Plate-shaped resin plate (hereinafter referred to as “copolymer resin plate”) to the well of ELISA 96-well plate, HRP labeled antibody (lOng / mL) and a crosslinking agent were injected and left at 37 ° C. for 1 hour.
[0122] 架橋剤は、 1—ェチル— 3 (3—ジメチルァミノプロピル)カルポジイミド(以後「EDC」 という。)を用いた。 EDCはコポリマー樹脂板の表面のカルボキシル基と抗体の N末 端とのアミド結合を促進させる。  [0122] 1-Ethyl-3 (3-dimethylaminopropyl) carpositimide (hereinafter referred to as “EDC”) was used as the crosslinking agent. EDC promotes the amide bond between the carboxyl group on the surface of the copolymer resin plate and the N-terminus of the antibody.
[0123] その後、 PBSにて十分に洗浄し、樹脂ディスクを新しい ELISA用プレートのゥエル に入れ替え、 TMBZと反応させた。 15分後に停止剤 (硫酸)を入れ、反応溶液のみ を新しい ELISA用プレートのゥエルに入れ、プレートリーダにて吸光度を測定した。 測定波長は 450nmである。この結果ゥエルの壁面を直接固相表面とした場合と比較 して、 5倍の吸光度を確認できた。  [0123] Thereafter, the plate was thoroughly washed with PBS, the resin disc was replaced with a new ELISA plate well, and reacted with TMBZ. After 15 minutes, a stopper (sulfuric acid) was added, and only the reaction solution was placed in a well of a new ELISA plate, and the absorbance was measured with a plate reader. The measurement wavelength is 450 nm. As a result, the absorbance was confirmed to be 5 times that of the case where the wall of the well was directly used as the solid surface.
[0124] <実施例 5〉  [0124] <Example 5>
本実施例は実施の形態 2にかかわる実施例である。  This example is an example according to the second embodiment.
次にコポリマー樹脂板にマイクロ 'ナノ構造を形成した場合の抗体吸着能について の実施例を説明する。コポリマー樹脂板にマイクロ 'ナノ構造を形成した樹脂ディスク をコポリマー樹脂ディスクと呼んだ。 Next, an example of antibody adsorption ability when a micro'nano structure is formed on a copolymer resin plate will be described. Resin disk with micro 'nano structure formed on copolymer resin plate Was called a copolymer resin disk.
作成したサンプルは(1)マイクロ ·ナノ構造のな!/、PMMA製の樹脂平板、 (2)片面 に L/S構造を形成した PMMA製の樹脂ディスク、 (3)マイクロ ·ナノ構造のな!/、コポ リマー樹脂板、 (4)片面にピラー構造を形成したコポリマー樹脂ディスクの 4種類であ る。 PMMAは重量平均分子量 Mwが 996kのものを使用した。ピラー構造とは柱状 の連続パターンであり、本実施例では、直径 2 111、高さ 4 mの柱状構造をピッチ 4 . O ^ mで形成したピラー構造を用いた。また、 PMMA系コポリマー樹脂を用いたコ ポリマー樹脂板とコポリマー樹脂ディスクに関しては、抗体吸着時に架橋剤を使用し た場合と使用しな力 た場合についても抗体吸着能を確認した。  The prepared samples are (1) No micro / nanostructure! /, PMMA resin flat plate, (2) PMMA resin disk with L / S structure formed on one side, (3) No micro / nanostructure! /, Copolymer resin plate, (4) copolymer resin disk with pillar structure formed on one side. PMMA having a weight average molecular weight Mw of 996 k was used. The pillar structure is a columnar continuous pattern. In this example, a pillar structure in which a columnar structure having a diameter of 2111 and a height of 4 m was formed at a pitch of 4.O ^ m was used. For copolymer resin plates and copolymer resin disks using PMMA copolymer resins, the antibody adsorption ability was confirmed when a crosslinking agent was used during antibody adsorption and when it was not used.
抗体吸着能の測定の手順は実施例 4と同じである。結果を表 1に示す。  The procedure for measuring the antibody adsorption capacity is the same as in Example 4. The results are shown in Table 1.
[表 1] [table 1]
Figure imgf000025_0001
Figure imgf000025_0001
表 1には、左列から樹脂の材質、マイクロ 'ナノ構造がない平板状態の場合の抗体 吸着能、マイクロ 'ナノ構造を形成した場合の抗体吸着能の値を示した。表中の倍率 は、それぞれのサンプルから得られた検出強度(吸光度)を、ゥエルの壁面を直接固 相表面とする既存法で得られた検出強度で除した値 (相対強度。以下「増感効果」と も呼ぶ。)である。 A/Rは微細構造のアスペクト比である。右列の表面積増大効果の 数値は、理論的に予測される表面積増大に起因する純効果である。微細構造の欄 には微細構造の SEM写真も示した。 Table 1 shows the values of the resin material, the antibody adsorption capacity in the case of a flat plate without micro structure, and the antibody adsorption capacity in the case of forming micro structure. The magnification in the table indicates the detection intensity (absorbance) obtained from each sample, and the wall of the well is directly fixed. This is the value divided by the detected intensity obtained by the existing method for the phase surface (relative intensity; also referred to as “sensitization effect”). A / R is the aspect ratio of the microstructure. The figures for the surface area increase effect in the right column are the net effects due to the theoretically predicted surface area increase. In the microstructure column, SEM photographs of the microstructure are also shown.
[0126] 表 1の上段を参照して、 PMMAについてみると、樹脂平板を用いた場合、既存法と 同程度の感度となる力 アスペクト比 6の L/S構造を転写した樹脂ディスクを用いる と、 3倍の増感効果が見られた。表面積増大効果は、 2. 5倍である。  [0126] Referring to the upper part of Table 1, when looking at PMMA, if a resin flat plate is used, a resin disc that has an L / S structure with a force aspect ratio of 6 that has the same sensitivity as the existing method is used. 3 times the sensitization effect was observed. The surface area increasing effect is 2.5 times.
次に表 1の中段を参照する。ここは PMMA系コポリマーを用い、抗体吸着時に架 橋剤を用いなかった場合の結果である。なお、表中では PMMA系コポリマーを「PM MAベース Co— polymer」と記載した。まず、マイクロ 'ナノ構造のないコポリマー樹 脂平板を用いた場合は、既存法と同程度の抗体吸着能であった。また、ァスぺ外比 2のピラー構造を転写したコポリマー樹脂ディスクを用いた場合は、 2倍の増感効果と なった。これらの検証では、架橋剤を用いていないので、単純な表面積増大効果(1. 8倍)のみが現れることになり、その理論的予想値に実測値はよく一致した。  Next, refer to the middle row of Table 1. This is the result when a PMMA copolymer is used and no crosslinking agent is used during antibody adsorption. In the table, the PMMA copolymer is described as “PMMA base Co-polymer”. First, when using a copolymer resin plate with no micro-nano structure, the antibody adsorption capacity was comparable to that of the existing method. In addition, when a copolymer resin disk to which a pillar structure with an external ratio of 2 was transferred was used, the sensitization effect was doubled. In these verifications, since no cross-linking agent was used, only a simple surface area increasing effect (1.8 times) appeared, and the measured values agreed well with the theoretical expected values.
[0127] 次に表 1の下段を参照する。ここは、ここは PMMA系コポリマーを用い、抗体吸着 時に架橋剤を使用した場合の結果である。架橋剤を用いることで PMMA系コポリマ 一の表面と抗体が強固に吸着するので、この樹脂の抗体固定性能を最大限発揮さ せること力 Sできると考えられた。まず、コポリマー樹脂平板を用いた場合、既存法の 5 倍の増感効果を示した。さらに、アスペクト比 2のピラー構造を転写したコポリマー樹 脂ディスクを用いた場合、 8倍の増感効果が確認された。この結果から、既存法に比 ベてより高密度に抗体が固定化されることが示された。表面積増大効果は 1. 8倍で ある。  [0127] Next, refer to the lower part of Table 1. This is the result of using a PMMA copolymer and using a crosslinking agent during antibody adsorption. By using a cross-linking agent, the surface of the PMMA copolymer and the antibody are strongly adsorbed, so it was thought that the ability to maximize the antibody fixing performance of this resin could be achieved. First, when the copolymer resin plate was used, the sensitizing effect was 5 times that of the existing method. Furthermore, when copolymer resin discs with transferred aspect ratio 2 pillar structures were used, a sensitizing effect of 8 times was confirmed. From this result, it was shown that the antibody was immobilized at a higher density than the existing method. The surface area increasing effect is 1.8 times.
[0128] <実施例 6〉  <Example 6>
本実施例は実施の形態 2にかかわる実施例である。  This example is an example according to the second embodiment.
次にさらに抗体吸着能を高めるために、マイクロ ·ナノ構造を形成した樹脂ディスク に UVオゾン処理を行った実施例を説明する。 UV処理は物質の表面改質効果があ ることが知られており、抗体を吸着させる前に UV処理を行うことで抗体吸着能が期待 できた。 作成したサンプルは、(1) PMMA製の樹脂平板、(2) PMMA製の樹脂ディスク、 ( 3)コポリマー樹脂板、(4)コポリマー樹脂ディスクの 4種類である。なお、本実施例に おいては、樹脂ディスクには PMMA製、 PMMA系コポリマー製ともアスペクト比 6の L/S構造を形成した。それぞれのサンプルは、 UV処理を行ってから、架橋剤と抗 体を一緒にしてサンプル表面に吸着させた。抗体の吸着手順は実施例 4と同じであ る。 UV処理は、紫外線ランプをもつ表面処理装置を用い、ランプ下 62mmの試料台 に樹脂平板および樹脂ディスクを載せ、 6分間照射を行なった。紫外線ランプは、波 長 184. 9と波長 253. 7nmの光を発生する合成石英製ランプを用いた。 Next, in order to further enhance the antibody adsorption capacity, an example in which UV ozone treatment was performed on a resin disk having a micro-nano structure will be described. UV treatment is known to have a surface modification effect on the substance, and antibody adsorption ability was expected by performing UV treatment before adsorbing antibodies. The prepared samples are (1) PMMA resin flat plate, (2) PMMA resin disc, (3) copolymer resin plate, and (4) copolymer resin disc. In this example, an L / S structure with an aspect ratio of 6 was formed on the resin disc for both PMMA and PMMA copolymer. Each sample was subjected to UV treatment, and then the crosslinker and antibody were adsorbed together on the sample surface. The antibody adsorption procedure is the same as in Example 4. For the UV treatment, a surface treatment device with an ultraviolet lamp was used, and a resin flat plate and a resin disc were placed on a sample table 62 mm below the lamp and irradiated for 6 minutes. As the ultraviolet lamp, a synthetic quartz lamp that generates light having a wavelength of 184.9 and a wavelength of 253.7 nm was used.
表 2に PMMAと PMMA系コポリマーそれぞれの樹脂平板およびマイクロ 'ナノ構 造付き樹脂ディスク使用時の抗体固定性能の結果を示した。  Table 2 shows the results of antibody immobilization performance when using PMMA and PMMA-based resin plates and resin disks with micro-nanostructures.
[表 2] [Table 2]
Figure imgf000027_0001
Figure imgf000027_0001
表 2上段を参照して、 PMMAについてみる。ここでは、微細構造は同じパターンな ので、表面積増大効果は、すべて同じ値 (2. 5倍)となる。まず、樹脂平板を用いた 場合で、既存法の 3倍の増感効果となった。さらに、アスペクト比 6の L/S構造を転 写した樹脂ディスクを用いた場合は、 7倍の増感効果となった。これに対し、表 2下段 を参照して、 PMMA系コポリマーでは、樹脂平板を用いた場合で 7倍、アスペクト比 6の L/S構造を転写したディスクを用いた場合では、 20倍もの増感効果が得られた 。これらの増感効果は、表面積増大効果、 PMMA系コポリマーと架橋剤の組み合わ せによる効果(以後「高密度抗体固定効果」と呼ぶ。)、 UVオゾン処理の相乗効果で あると考えられる。それぞれの効果の内訳は理論値と実測値に基づいて次のように 想、定すること力 Sでさる。 Look at PMMA, referring to the upper part of Table 2. Here, since the fine structure is the same pattern, the surface area increasing effect is all the same value (2.5 times). First, using a resin flat plate, the sensitization effect was three times that of the existing method. Furthermore, when using a resin disc that was copied from an L / S structure with an aspect ratio of 6, the sensitization effect was 7 times higher. On the other hand, referring to the lower part of Table 2, PMMA-based copolymers have an aspect ratio of 7 times when resin flat plates are used. In the case of using a disk to which the L / S structure of 6 was transferred, a 20-fold sensitization effect was obtained. These sensitizing effects are considered to be a surface area increasing effect, an effect of a combination of a PMMA copolymer and a cross-linking agent (hereinafter referred to as “high density antibody fixing effect”), and a synergistic effect of UV ozone treatment. The breakdown of each effect can be thought of as follows based on theoretical values and measured values.
[0130] 表面積増大効果は、アスペクト比 6という条件の下、およそ 2. 5倍である。高密度抗 体固定効果は、実施例で用いた PMMA系コポリマーで 4乃至 5倍である。また UVォ ゾン処理効果は、 1. 4倍乃至 1. 8倍である。  [0130] The surface area increasing effect is approximately 2.5 times under the condition of an aspect ratio of 6. The high-density antibody fixing effect is 4 to 5 times that of the PMMA copolymer used in the examples. The UV ozone treatment effect is 1.4 to 1.8 times.
[0131] 以上より、本発明のマイクロ 'ナノ構造を有する樹脂構造体はバイオセンシングへ応 用した場合非常に有効であることがわかった。  [0131] From the above, it was found that the resin structure having a micro-nano structure of the present invention is very effective when applied to biosensing.
[0132] <実施例 7〉  [0132] <Example 7>
本実施例は実施の形態 4にかかわる実施例である。  This example is an example according to the fourth embodiment.
図 11 (a)を参照して、まず流路構造の原型となる Ni電鍀製の流路原版 40を流路 構造が上になるようにプレス下盤 44に置き、その上に流路を形成する基板材アクリル 板 41を載せた。なお、プレス上盤 45とプレス下盤 44は図 11 (a)では省略している。  Referring to Fig. 11 (a), first, Ni Denki's original flow channel plate 40, which is the prototype of the flow channel structure, is placed on the lower press plate 44 so that the flow channel structure is on top, and the flow channel is placed on it. A substrate material acrylic plate 41 to be formed was placed. Note that the upper press plate 45 and the lower press plate 44 are omitted in FIG. 11 (a).
[0133] 次に、基板材のアクリル板 41の上にステンレス鋼製の背板 42を載せた。背板は腐 食による微粉末が発生しにくいので好適に用いることができる。しかし、これに限定さ れるものではない。原版の周囲には、成型後の厚さを調整するためアルミニウム製の 高さ規制材 43を設置した。  [0133] Next, a stainless steel back plate 42 was placed on the acrylic plate 41 of the substrate material. The back plate can be suitably used because it does not easily generate fine powder due to corrosion. However, the present invention is not limited to this. Around the original plate, an aluminum height control material 43 was installed to adjust the thickness after molding.
[0134] 図 11 (b)を参照して、次にプレス上 ·下盤ともに 160°Cまで昇温した。このときプレス 盤を囲む容器 (チャンバ一:図示せず)内を減圧した。成型中での気泡の発生を抑制 、排除するためである。プレス上下盤がともに 160°Cに達した後、予備加熱のため 10 分間程度保持した。この予備加熱により、アクリル板を軟化させ、基板材の変形'流 動性を高め、原版の微細構造への充填を促進することができた。  [0134] Referring to Fig. 11 (b), the temperature was then raised to 160 ° C for both the upper and lower presses. At this time, the pressure in the container (chamber one: not shown) surrounding the press board was reduced. This is to suppress and eliminate the generation of bubbles during molding. After both the press upper and lower plates reached 160 ° C, they were held for about 10 minutes for preheating. By this preheating, it was possible to soften the acrylic plate, improve the deformation and fluidity of the substrate material, and promote the filling of the original plate into the microstructure.
[0135] 予備加熱終了後、圧力 3〜4MPaで 10分間程度プレスを行なった。プレス後、カロ 圧状態を保持したまま冷却を行なった。冷却は強制冷却ではなく、プレス機の加熱 用電源をオフにし、自然放冷にて冷却を行なった。約 100度に低下したところで、大 気導入し、送風にて冷却を行なった。その後、約 40〜50°Cに達したところで、脱圧し 、試料を取り出した。成型時に徐冷を行うことにより、その後の熱工程にて基板材の 変形を大幅に抑制することができた。 [0135] After preheating was completed, pressing was performed at a pressure of 3 to 4 MPa for about 10 minutes. After pressing, cooling was performed while maintaining the caloric pressure state. The cooling was not forced cooling, but the heating power of the press was turned off and cooling was performed by natural cooling. When the temperature dropped to about 100 degrees, air was introduced and cooling was performed by blowing air. After that, when it reaches about 40-50 ° C, it is depressurized. The sample was taken out. By performing slow cooling at the time of molding, it was possible to greatly suppress the deformation of the substrate material in the subsequent heat process.
[0136] 最後にドリル加工により、溶液を導入するためのインジェクションホールをあけた。以 上のようにして流路とインジェクションホールが形成された流路側基板 21を得た。  [0136] Finally, an injection hole for introducing the solution was drilled. In this way, a flow path side substrate 21 having a flow path and an injection hole was obtained.
[0137] 以上のように、流路側基板 21はプレス加工によって流路を形成した。そのため、流 路形成直後の基板には応力が残留し、流路形成面側に反る場合もある。また流路側 基板 21がフタ側基板と接着する面 25を平滑にしておく必要もある。そこでこの工程 で応力を緩和し、また反りを解消する工程を行った。  [0137] As described above, the flow path side substrate 21 formed the flow path by press working. For this reason, stress remains on the substrate immediately after the flow path is formed, which may warp the flow path forming surface side. It is also necessary to smooth the surface 25 where the flow path side substrate 21 adheres to the lid side substrate. Therefore, in this process, a process of relieving stress and eliminating warping was performed.
[0138] 図 12を参照して、プレス下盤 44に、シリコンゥエーハ 46の滑らかな面を上に向けて 載せた。このシリコンゥエーハ 46の上に、流路を転写された面が下になるように流路 側基板 21を載せた。次に上'下プレス盤 44、 45を 90°Cに加熱し、上下プレス盤 44、 45を覆う容器 (チャンバ一:図示せず)内を減圧した。  [0138] Referring to Fig. 12, the smooth surface of silicon wafer 46 was placed on the lower press plate 44 with the smooth surface facing upward. On the silicon wafer 46, the flow path side substrate 21 was placed so that the surface to which the flow path was transferred faced down. Next, the upper and lower press plates 44 and 45 were heated to 90 ° C., and the inside of the container (chamber one: not shown) covering the upper and lower press plates 44 and 45 was decompressed.
[0139] プレス上 ·下盤ともに 90°Cに達した後、圧力 0. 8MPaで 20〜30分間プレスを行な つた。プレス終了後、加圧状態を保持したまま加熱装置の電源を切り冷却を行なった 。冷却は風を当て、強制的に冷却を行った。約 70°Cに達したところで、大気を導入し 、脱圧し、試料を取り出した。この工程を行なう事で、接着面 25が平滑で反りのない 流路側基板を得た。  [0139] After reaching 90 ° C for both upper and lower presses, pressing was performed at a pressure of 0.8 MPa for 20-30 minutes. After the press, the heating device was turned off and cooled while maintaining the pressurized state. Cooling was forcibly performed by applying wind. When the temperature reached about 70 ° C, air was introduced, the pressure was released, and the sample was taken out. By performing this step, a flow path side substrate having a smooth adhesive surface 25 and no warpage was obtained.
[0140] 次にフタ側基板に接着層 49を形成し、流路側基板と接合した。  [0140] Next, an adhesive layer 49 was formed on the lid side substrate, and was bonded to the flow path side substrate.
図 13 (a)を参照する。まず、アクリル製のフタ側基板 22に光硬化型樹脂(以下「UV 硬化接着剤」ともいう。)で接着層 49を形成した。具体的には、スピンコーター試料台 にフタ側基板 48を真空吸着固定し、「Henkel (ヘンケル)社製 LOCTITE (ロックタ イト)ビジブルキュア可視光硬化型 3105」を数滴滴下し、回転速度 1000 (回転/分) で 20秒間、続!/、て 2800 (回転/分)で 60秒間の順で回転させスピンコートを行った Refer to Figure 13 (a). First, the adhesive layer 49 was formed on the acrylic lid side substrate 22 with a photocurable resin (hereinafter also referred to as “UV curable adhesive”). Specifically, the lid side substrate 48 is vacuum-adsorbed and fixed to the spin coater sample stage, and a few drops of “Henkel LOCTITE Visible Cure Visible Light Curing Type 3105” are added, with a rotational speed of 1000 ( Rotation / minute) for 20 seconds, followed by spin coating by rotating for 2 seconds (rotation / minute) for 60 seconds
Yes
[0141] UV硬化接着剤を塗布したフタ側基板を、 80°Cに設定したホットプレート上に放置 し、 20分間ベータした。ベータしたフタ側基板を紫外光光源下に静置し、紫外光を 1 0分間照射し、接着剤を硬化させた。以上により、アクリル製フタ側基板 22の表面に 厚さ 500nmの接着層 49を形成した。 [0142] 次に、図 13 (b)を参照して、フタ側基板 22の接着層 49の上に、 PMMA系コポリマ 一製の抗体固定樹脂ディスク 26を載せ、マイクロ 'ナノ構造を破壊しないように軽く押 さえつけた。 UV硬化接着剤のタック性で容易に固定された。また、抗体固定樹脂デ イスク 26は両面テープや瞬間接着剤を用いた接着を試したが、ともに問題なく接着 すること力 Sでさた。 [0141] The lid side substrate coated with the UV curable adhesive was left on a hot plate set at 80 ° C and beta-treated for 20 minutes. The beta lid-side substrate was placed under an ultraviolet light source and irradiated with ultraviolet light for 10 minutes to cure the adhesive. In this way, the adhesive layer 49 having a thickness of 500 nm was formed on the surface of the acrylic lid side substrate 22. [0142] Next, referring to FIG. 13 (b), an antibody-fixing resin disk 26 made of a PMMA copolymer is placed on the adhesive layer 49 of the lid-side substrate 22 so as not to destroy the micro-nano structure. Even pressed lightly on. It was easily fixed by the tackiness of UV curing adhesive. The antibody-immobilized resin disk 26 was tested for adhesion using double-sided tape or instant adhesive.
[0143] 次に図 13 (c)を参照して、流路側基板 21の接着面 25と、フタ側基板 22上の接着 層 49を対向させ、プレス下盤 44に載せた。その上に厚さ 0. 5mmのカーボンフォイ ル 50を載せた。この工程では、カーボンフオイルを用いると、均一にプレスすることが できた。  Next, with reference to FIG. 13 (c), the adhesive surface 25 of the flow path side substrate 21 and the adhesive layer 49 on the lid side substrate 22 were made to face each other and placed on the press lower platen 44. A carbon foil 50 having a thickness of 0.5 mm was placed thereon. In this process, when carbon oil was used, it was possible to press uniformly.
[0144] 上 ·下プレス盤 44、 45ともに 36°Cに加熱し、上下プレス盤を覆う容器(チャンバ一: 図示せず)内を減圧した。接着中の気泡の発生'混入を抑制'排除するためである。  [0144] Both the upper and lower press plates 44 and 45 were heated to 36 ° C, and the inside of the container (chamber one: not shown) covering the upper and lower press plates was depressurized. This is in order to eliminate the generation of bubbles during bonding, “suppression of contamination”.
[0145] 圧力 3〜4MPaで、 10分間プレスを行なった。プレス終了後、外気導入、脱圧を行 い、試料を取り出した。このようにして本発明のバイオ検査チップを得ることができた。  [0145] Pressing was performed at a pressure of 3 to 4 MPa for 10 minutes. After the press, the outside air was introduced and the pressure was released, and the sample was taken out. In this way, the biotest chip of the present invention could be obtained.
[0146] <実施例 8〉  <Example 8>
本実施例は実施の形態 4にかかわる実施例である。  This example is an example according to the fourth embodiment.
図 14に本実施例の製造方法の概略を示す。図 14 (a)を参照して、流路側基板 22 を実施例 7と全く同じように作成した。その後、抗体固定樹脂ディスクの真上になる部 分に、酸化チタンと樹脂を溶剤中に分散した塗料を数 mの厚みになるようにスクリ ーン印刷をして遮光膜 52を形成した。  FIG. 14 shows an outline of the manufacturing method of this example. Referring to FIG. 14 (a), the flow path side substrate 22 was prepared in the same manner as in Example 7. Thereafter, on the part directly above the antibody-fixing resin disc, a light-shielding film 52 was formed by screen-printing a paint in which titanium oxide and resin were dispersed in a solvent to a thickness of several meters.
図 14 (b)を参照して、フタ側基板 22については、同じく実施例 7と同じに作成した。 ただし、接着層 49の形成工程の最後に行った UV処理を本実施例では行って!/、な い。 UV硬化接着剤をフタ側基板 22にスピンコートしただけである。この UV硬化接 着層 51に PMMA系コポリマー製の抗体固定樹脂ディスク 26を配設した。  Referring to FIG. 14 (b), the lid-side substrate 22 was produced in the same manner as in Example 7. However, the UV treatment performed at the end of the formation process of the adhesive layer 49 is not performed in this embodiment! Only the UV curing adhesive is spin coated on the lid side substrate 22. An antibody-fixing resin disk 26 made of PMMA copolymer was disposed on the UV curable adhesive layer 51.
[0147] 図 14 (c)を参照して、流路側基板 21とフタ側基板 22を重ねて実施例 7と同じ圧力 3 〜4MPaで、 10分間プレスを行なった。なお、このプレス工程の間流路側基板の側 力 紫外線 (UV光)を照射した。プレス終了後外気導入、脱圧を行い、試料を取り出 した。 Referring to FIG. 14 (c), the flow path side substrate 21 and the lid side substrate 22 were overlapped and pressed at the same pressure of 3 to 4 MPa as in Example 7 for 10 minutes. During the pressing process, side-force ultraviolet rays (UV light) were applied to the flow path side substrate. After the press was completed, outside air was introduced and pressure was released, and the sample was taken out.
[0148] 本実施例では、フタ側基板 22上に接着層 49を完全に形成せず、図 14 (c)で示し た接着工程の際に加熱 ·加圧しながら接着層を硬化させる。このようにして得た本発 明のバイオ検査チップは実施例 7の場合より強固に接着することができた。また、抗 体固定樹脂ディスクが搭載されてから UV処理を行っている力 流路側基板 21に遮 光膜 52を形成してあるので、抗体が UV光で失活することもな!/、。 [0148] In this example, the adhesive layer 49 was not completely formed on the lid-side substrate 22, and is shown in Fig. 14 (c). The adhesive layer is cured while heating and pressing during the bonding process. The bio-test chip of the present invention thus obtained was able to adhere more firmly than in Example 7. In addition, since the light shielding film 52 is formed on the force flow path side substrate 21 that has been subjected to UV treatment since the antibody-fixing resin disc is mounted, the antibody may not be deactivated by UV light!
[0149] <実施例 9〉 <Example 9>
本実施例は実施の形態 4にかかわる実施例である。  This example is an example according to the fourth embodiment.
図 15に本実施例の概略を示す。流路側基板 21は実施例 7と全く同じように作製し た。フタ側基板 22は、実施例 8と全く同じに作製した(図 15 (a) )。すなわち、フタ側基 板上には UV硬化接着剤の層 51を形成しただけである。  FIG. 15 shows an outline of this embodiment. The flow path side substrate 21 was produced in the same manner as in Example 7. The lid-side substrate 22 was produced in exactly the same way as in Example 8 (FIG. 15 (a)). That is, only the layer 51 of the UV curable adhesive was formed on the lid side substrate.
図 15 (b)を参照して、フタ側基板 22に、 PMMA系コポリマー製の抗体固定樹脂デ イスク 26を載せた。このとき、樹脂ディスク接着面は予め紫外'可視光を遮蔽する遮 光層 56を形成しておいた。遮光層 56は、金の蒸着膜で厚みは 0. 5 mである。そし て、流路側基板 21の接着面 25と、フタ側基板 22を対向させ、プレス下盤 44に置い た。  Referring to FIG. 15 (b), an antibody-fixing resin disk 26 made of PMMA copolymer was placed on the lid-side substrate 22. At this time, a light shielding layer 56 for shielding ultraviolet light and visible light was previously formed on the resin disk bonding surface. The light shielding layer 56 is a gold vapor-deposited film and has a thickness of 0.5 m. Then, the adhesive surface 25 of the flow path side substrate 21 and the lid side substrate 22 were opposed to each other and placed on the press lower plate 44.
[0150] 図 15 (c)を参照して、上 ·下プレス盤 44、 45をともに 36°Cに加熱し、上下プレス盤 を覆う容器 (チャンバ一:図示せず)内を減圧した。圧着中の気泡の発生'混入を抑 制-排除するためである。そして、紫外光をフタ側基板の側より照射し、圧力 3〜4MP aで、 10分間プレスを行なった。  [0150] Referring to Fig. 15 (c), both upper and lower press plates 44 and 45 were heated to 36 ° C, and the inside of the container (chamber one: not shown) covering the upper and lower press plates was depressurized. This is to suppress and eliminate the generation of bubbles during the crimping. Then, ultraviolet light was irradiated from the lid side substrate side, and pressing was performed at a pressure of 3 to 4 MPa for 10 minutes.
[0151] このようにすることで、抗体固定樹脂ディスクの UV硬化接着層 51も硬化させること 力 Sできる。また、このとき抗体固定樹脂ディスクの裏面には遮光層 56が形成してある ので、抗体が UV光によって失活することもない。  [0151] By doing so, the UV curing adhesive layer 51 of the antibody-fixing resin disk can also be cured. At this time, since the light shielding layer 56 is formed on the back surface of the antibody-fixing resin disc, the antibody is not deactivated by UV light.
[0152] <実施例 10〉  [0152] <Example 10>
本実施例は実施の形態 5にかかわる実施例である。  This example is an example according to the fifth embodiment.
図 16に本実施例の概要を示す。図 16 (a)を参照して、流路側基板 21は実施例 7と 同じ手順で作製した。フタ側基板 22には接着層も UV硬化接着剤の層も形成されて いない。この 2つの基板の接着面を含め内側面に 10分間 UVオゾン処理を施した。  Figure 16 shows an overview of this example. Referring to FIG. 16 (a), the flow path side substrate 21 was produced in the same procedure as in Example 7. Neither the adhesive layer nor the UV curable adhesive layer is formed on the lid side substrate 22. UV ozone treatment was applied to the inner surface of these two substrates including the bonding surface for 10 minutes.
[0153] 流路側基板の内側の所定位置に抗体固定樹脂ディスクを瞬間接着剤を用いて接 着した。なお、両面テープでも接着が可能であった。そして流路側基板の接着面と、 フタ側基板の接着面を対向させ、流路側基板が上になるようにプレス下盤 44に載せ た。その上にステンレス製の背板 42を載せ、さらにその上にカーボンフオイル 50を載 せた。カーボンフオイルを用いることにより、均一にプレスすることができる。 [0153] An antibody-immobilized resin disk was attached to a predetermined position inside the flow path side substrate using an instantaneous adhesive. Adhesion was also possible with double-sided tape. And the adhesive surface of the flow path side substrate, The lid side substrate was placed on the press lower platen 44 so that the adhesive surfaces of the lid side substrate faced each other and the flow path side substrate faced up. A stainless steel back plate 42 was placed thereon, and a carbon oil 50 was placed thereon. By using carbon oil, it can be pressed uniformly.
[0154] プレス上盤 45を 36°C、プレス下盤 44を 120°Cに設定し、上下プレス盤を覆う容器( チャンバ一:図示せず)内を減圧した。圧着中の気泡の発生'混入を抑制'排除する ためである。 [0154] The upper press plate 45 was set to 36 ° C and the lower press plate 44 was set to 120 ° C, and the inside of the container (chamber one: not shown) covering the upper and lower press plates was depressurized. This is to eliminate the generation of bubbles during the crimping process.
[0155] 圧力 0· 8MPaで、 10分間プレスを行なった。 10分間プレス後、加圧状態のまま冷 却を行い、約 70度になったところで、大気導入、脱圧し、試料を取り出した。なお、比 較例として上下プレス盤を 100°Cにして同様の方法で検査チップを作製した。  [0155] Pressing was performed at a pressure of 0 · 8 MPa for 10 minutes. After pressing for 10 minutes, it was cooled in the pressurized state, and when it reached about 70 degrees, it was introduced into the atmosphere, depressurized, and the sample was taken out. As a comparative example, an inspection chip was manufactured in the same manner with the upper and lower press plates at 100 ° C.
[0156] 図 17、 18にその結果を示す。図 17は反応部 36の断面を撮影した SEM写真であ る。作成条件は流路側基板 21を押したプレス上盤 45を 36°C、フタ側基板 22を押し たプレス下盤を 120°Cにして圧着した場合であり、本実施例のサンプルのものである 。倍率はそれぞれ、図 17 (a)は 30倍、(b)は 200倍、(c)は 1000倍の倍率である。 写真の左下にある矢印がそれぞれ 333 m、 δθ μ ΐ ^ 10 mに相当する。  [0156] Figures 17 and 18 show the results. FIG. 17 is an SEM photograph of a cross section of the reaction part 36. The production conditions are the case where the press upper plate 45 that pressed the flow path side substrate 21 is crimped at 36 ° C, and the press lower plate that pressed the lid side substrate 22 is pressed at 120 ° C, which is the sample of this example. . The magnifications are 30 times in Fig. 17 (a), 200 times in (b), and 1000 times in (c). The arrows in the lower left of the photo correspond to 333 m and δθ μ ΐ ^ 10 m, respectively.
[0157] 図 17 (a)を参照して、写真中央の喑く写っているのが反応部 36である。その上側 にはフタ側基板 22があり、下側が流路側基板 21である。ここで、フタ側基板 22と流 路側基板 21の接着部 60を観察した。 200倍 (b)、 1000倍 (c)と倍率をあげてゆくと 、流路側基板がフタ側基板にわずかにめり込んでいるのがわかった。接合部分 60で は壁面は直線若しくは緩やかな弧状になっていた。すなわち、フタ側基板は流路側 基板によって変形を受けていた。  [0157] Referring to FIG. 17 (a), the reaction part 36 is visible in the center of the photograph. The lid side substrate 22 is on the upper side, and the flow path side substrate 21 is on the lower side. Here, the adhesion portion 60 between the lid side substrate 22 and the flow path side substrate 21 was observed. As the magnification was increased to 200 times (b) and 1000 times (c), it was found that the flow path side substrate was slightly indented into the lid side substrate. At the joint 60, the wall surface was a straight line or a gentle arc. That is, the lid side substrate was deformed by the flow path side substrate.
[0158] 図 18はプレス上盤、下盤ともに 100°Cにして作製した比較サンプルの反応部 36の 断面 SEM写真である。 (a)、(b)、(c)の倍率および写真左下の矢印の大きさは図 1 7と同じである。図 18 (a)の観察から、流路側基板 21のフタ側基板 22への食い込み がやや浅く,側壁 62が弧状に大きくたわんでいた。これより成形時に基板材であるァ クリルの軟化による変形が進行しており、ノ /シブバルブ等の微細構造をもつ流路の 接着には適切な温度条件でないことがわかった。  [0158] Fig. 18 is a cross-sectional SEM photograph of the reaction zone 36 of the comparative sample fabricated at 100 ° C for both the upper and lower presses. The magnifications of (a), (b), and (c) and the size of the arrow at the lower left of the photograph are the same as in FIG. From the observation in Fig. 18 (a), the penetration of the channel side substrate 21 into the lid side substrate 22 was slightly shallow, and the side wall 62 was greatly bent in an arc shape. As a result, it was found that deformation due to softening of the acrylic material, which is the substrate material, progressed during molding, and that it was not an appropriate temperature condition for bonding a flow path having a fine structure such as a noble valve.
[0159] 図 19はさらに図 1 7と図 18の場合のパッシブバルブ 39の状態を示す透過顕微鏡写 真である。このパッシブバルブ 39は、抗体'標識抗体注入部 35と流路 30との間のも のである。図 19 (&)は流路側基板を36°じ、フタ側基板を 120°Cで成形した場合を示 す。また (b)は流路側基板を 100°C、フタ側基板を 100°Cで成形した場合を示す。図 19 (a)中の矢印はバイオ検査チップ内で溶液が流れた場合の軌跡を示す。 FIG. 19 is a transmission microscope photograph showing the state of the passive valve 39 in the case of FIGS. 17 and 18. This passive valve 39 is connected between the antibody-labeled antibody injection part 35 and the flow path 30. It is. Figure 19 (&) shows the case where the flow path side substrate is molded at 36 ° and the lid side substrate is molded at 120 ° C. (B) shows the case where the flow path side substrate is molded at 100 ° C and the lid side substrate is molded at 100 ° C. The arrow in Fig. 19 (a) shows the trajectory when the solution flows in the biotest chip.
[0160] 図 19 (a)を参照して、流路側基板を 36°C、フタ側基板を 120°Cにして圧着した場 合は、 3つのパッシブバルブ 39はしつかりと形成されていた。つまり、抗体'標識抗体 注入部 35と流路 30の間には 3つの通路が出来上がつていた。一方、図 19 (b)を参 照して、流路側基板およびフタ側基板ともに 100°Cにして作製した場合は、パッシブ バルブ 39は潰れてしまって!/、た。  [0160] Referring to Fig. 19 (a), when the flow path side substrate was 36 ° C and the lid side substrate was 120 ° C, the three passive valves 39 were firmly formed. In other words, three passages were created between the antibody-labeled antibody injection part 35 and the flow path 30. On the other hand, referring to FIG. 19 (b), when both the flow path side substrate and the lid side substrate were manufactured at 100 ° C., the passive valve 39 was crushed! /.
[0161] すなわち、アクリル板を基板材として用い、接着層を形成せず、熱圧着だけで流路 側基板とフタ側基板を接着する場合は、少なくとも流路側基板とフタ側基板の間で温 度勾配を設定しなければならない。逆にいうと、接着層がなぐ熱圧着だけで流路側 基板とフタ側基板を接着したバイオ検査チップで、パッシブバルブが潰れることなく 成形できて!/、る場合は、流路側基板とフタ側基板の間で温度勾配をつけたものとみ なすこと力 Sできる。なお、プレス盤上下ともに 80°Cの場合、および 90°Cの場合は、い ずれも未接着部が残った。  [0161] That is, when an acrylic plate is used as a substrate material and a flow path side substrate and a lid side substrate are bonded only by thermocompression bonding without forming an adhesive layer, the temperature is at least between the flow path side substrate and the lid side substrate. A degree gradient must be set. In other words, a bio-test chip in which the flow path side substrate and the lid side substrate are bonded only by thermocompression bonding between the adhesive layers, and the passive valve can be molded without collapsing! It is possible to assume that there is a temperature gradient between the substrates. In both cases where the upper and lower sides of the press panel were 80 ° C and 90 ° C, unbonded portions remained.
[0162] 上記の実施形態および実施例は、本発明の理解を容易にするために例示として記 載されたものであって、本発明は本明細書または添付図面に記載された具体的な構 成のみに限定されるものではないことに留意すべきである。本明細書に記載した具 体的構成、手段、及び方法は、本発明の精神および範囲を逸脱することなぐ同等 物に変更可能である。  [0162] The above embodiments and examples are described as examples for easy understanding of the present invention, and the present invention is not limited to the specific configurations described in this specification or the accompanying drawings. It should be noted that the present invention is not limited only to the composition. The specific configurations, means, and methods described herein may be changed to equivalents without departing from the spirit and scope of the present invention.
産業上の利用可能性  Industrial applicability
[0163] 本発明はマイクロリアクター、バイオチップ、光学素子、マイクロマシンとして有用で ある。 [0163] The present invention is useful as a microreactor, biochip, optical element, and micromachine.
図面の簡単な説明  Brief Description of Drawings
[0164] [図 1]本発明のマイクロ、ナノ構造を有する構造体の製造方法を説明する図である。  FIG. 1 is a diagram for explaining a method for producing a structure having a micro and nano structure according to the present invention.
[図 2]本発明の方法において、温度と押し付け圧力の時間進行を説明する図である。  FIG. 2 is a diagram for explaining the time progression of temperature and pressing pressure in the method of the present invention.
[図 3]アクリル材を使用して高アスペクト比のマイクロ 'ナノ構造を有する構造体を製造 した結果を示す図である。 [図 4]メタクリル酸メチルーメタクリル酸のコポリマーを使用して高アスペクト比マイクロ' ナノ構造を有する構造体を製造した結果を示す図である。 FIG. 3 is a view showing a result of manufacturing a structure having a high aspect ratio micro'nano structure using an acrylic material. FIG. 4 is a view showing a result of producing a structure having a high aspect ratio micro ′ nanostructure using a methyl methacrylate-methacrylic acid copolymer.
[図 5]マイクロ 'ナノ構造を有する構造体に対する抗体の吸着量の効果を示すグラフ である。  FIG. 5 is a graph showing the effect of the amount of antibody adsorbed on a structure having a micro'nano structure.
[図 6]メタクリル酸メチルーメタクリル酸のコポリマーの製造の概念図を示す図である。  FIG. 6 is a conceptual diagram showing the production of a copolymer of methyl methacrylate-methacrylic acid.
[図 7]樹脂の表面に抗体が吸着する様子を説明する図である。  FIG. 7 is a diagram for explaining how antibodies are adsorbed on the surface of a resin.
[図 8]本発明のバイオ検査チップの一例を示す写真である。  FIG. 8 is a photograph showing an example of a biotest chip of the present invention.
[図 9]バイオ検査チップの流路の一例を示す図である。  FIG. 9 is a diagram showing an example of a flow path of a biotest chip.
[図 10]本発明のバイオ検査チップの断面を示す図である。  FIG. 10 is a view showing a cross section of the biopsy chip of the present invention.
[図 11]流路側基板の製造方法を説明する図である。  FIG. 11 is a diagram illustrating a method for manufacturing a flow path side substrate.
[図 12]流路側基板の平滑化を説明する図である。  FIG. 12 is a diagram for explaining smoothing of the flow path side substrate.
[図 13]本発明のバイオ検査チップの製造方法を説明する図である。  FIG. 13 is a diagram illustrating a method for manufacturing a biotest chip according to the present invention.
[図 14]本発明のバイオ検査チップの製造方法を説明する図である。  FIG. 14 is a diagram illustrating a method for manufacturing a biotest chip according to the present invention.
[図 15]本発明のバイオ検査チップの製造方法を説明する図である。  FIG. 15 is a diagram illustrating a method for manufacturing a biotest chip according to the present invention.
[図 16]本発明のバイオ検査チップの熱圧着による製造方法を説明する図である。  FIG. 16 is a diagram for explaining a method for manufacturing the biotest chip of the present invention by thermocompression bonding.
[図 17]温度勾配をかけた熱圧着によるバイオ検査チップの断面を示す写真である。  FIG. 17 is a photograph showing a cross section of a bio-test chip by thermocompression bonding with a temperature gradient.
[図 18]温度勾配をかけない熱圧着によるバイオ検査チップの断面を示す写真である  FIG. 18 is a photograph showing a cross section of a bio-test chip by thermocompression bonding without applying a temperature gradient
[図 19]温度勾配の影響をパッシブバルブ部分で確認した写真である。 [Fig. 19] A photograph showing the effect of temperature gradient in the passive valve section.
[図 20]従来のナノインプリント法を説明するための図である。 FIG. 20 is a diagram for explaining a conventional nanoimprint method.
符号の説明 Explanation of symbols
1 金属型  1 Metal mold
2 樹脂粉  2 Resin powder
3 原版  3 Original edition
4 押し付け板  4 Pressing plate
20 バイオ検査チップ  20 Bio test chip
21 流路側基板  21 Channel substrate
22 フタ側基板 インジェクションホール 検出部 22 Lid side substrate Injection hole detector
流路 Flow path
抗体 ·標識抗体注入部 検出部 流路原版 Antibody · Labeled antibody injection part Detection part Flow path master
プレス下盤 Lower press
プレス上盤 Press top
シリコンゥエーノヽ 接着層 Silicone adhesive layer
遮光膜 Light shielding film
遮光層 Shading layer

Claims

請求の範囲 The scope of the claims
[1] 粉末状の樹脂を、原版表面に配置する材料配置工程と、  [1] A material placement step of placing powdered resin on the surface of the original plate,
前記原版ならびに前記樹脂を、前記樹脂のガラス転移温度以上、溶融温度以下に 加熱する材料加熱工程と、  A material heating step of heating the original plate and the resin above the glass transition temperature and below the melting temperature of the resin;
前記原版に前記樹脂をプレスする加圧工程と、  A pressing step of pressing the resin on the original plate;
前記原版と前記樹脂を前記ガラス転移温度以下に冷却し、前記原版を取り除き、前 記原版のマイクロ ·ナノ構造の反転構造を形成する冷却工程とを含むことを特徴とす るマイクロ ·ナノ構造を有する構造体の製造方法。  Cooling the original plate and the resin below the glass transition temperature, removing the original plate, and forming a reversal structure of the micro / nano structure of the original plate, A method for producing a structure having the same.
[2] 前記材料配置工程の前記樹脂が、熱可塑性樹脂である請求項 1に記載の製造方 法。  [2] The method according to claim 1, wherein the resin in the material arranging step is a thermoplastic resin.
[3] 前記材料配置工程で、前記樹脂を設置する周辺に前記原版の微細構造を囲むよ うに成型枠を設置する請求項 1または 2の何れかの請求項に記載された構造体の製 造方法。  [3] The manufacturing of the structure according to any one of claims 1 and 2, wherein in the material arranging step, a molding frame is installed so as to surround the fine structure of the original plate around the resin. Method.
[4] 前記材料配置工程の前記粉末状の樹脂の大きさが、前記原版のパターン寸法より 小さい粉末もしくは粒子である請求項 1乃至 3の何れか 1の請求項に記載された構造 体の製造方法。  [4] The manufacturing of the structure according to any one of claims 1 to 3, wherein a size of the powdery resin in the material arranging step is a powder or particles smaller than a pattern size of the original plate. Method.
[5] 前記加圧工程を減圧もしくは真空雰囲気で行う請求項 1乃至 4の何れ力、 1の請求項 に記載された構造体の方法。  [5] The method according to any one of claims 1 to 4, wherein the pressurizing step is performed under reduced pressure or in a vacuum atmosphere.
[6] 前記材料配置工程の前記樹脂はポリメタクリル酸メチルとメタクリル酸のコポリマーで ある請求項 1乃至 4の何れ力、 1の請求項に記載された構造体の製造方法。 6. The method for producing a structure according to any one of claims 1 to 4, wherein the resin in the material arranging step is a copolymer of polymethyl methacrylate and methacrylic acid.
[7] 粉末状の樹脂を、原版表面に配置する材料配置工程と、 [7] A material placement step of placing powdered resin on the surface of the original plate,
前記原版ならびに前記樹脂を、前記樹脂のガラス転移温度以上、溶融温度以下に 加熱する材料加熱工程と、  A material heating step of heating the original plate and the resin above the glass transition temperature and below the melting temperature of the resin;
前記原版に前記樹脂をプレスする加圧工程と、  A pressing step of pressing the resin on the original plate;
前記原版と前記樹脂をガラス転移温度以下に冷却する冷却工程と、  A cooling step for cooling the original plate and the resin to a glass transition temperature or lower;
前記原版を取り除き、前記原版の反転構造であるマイクロ ·ナノ構造を有する構造体 を得る工程と、 前記構造体の裏面に遮光層を形成する遮光層形成工程と、 Removing the original plate to obtain a structure having a micro-nano structure which is an inverted structure of the original plate; and A light shielding layer forming step of forming a light shielding layer on the back surface of the structure,
前記構造体の前記マイクロ ·ナノ構造に抗体を吸着させる抗体吸着工程とを有する ノ ィォセンシングディスクの製造方法。  A method for producing a nano-sensing disk, comprising: an antibody adsorption step of adsorbing an antibody to the micro / nano structure of the structure.
[8] 前記材料配置工程の前記樹脂が、熱可塑性樹脂である請求項 7に記載のバイオ センシングディスクの製造方法。 8. The method for manufacturing a biosensing disk according to claim 7, wherein the resin in the material arranging step is a thermoplastic resin.
[9] 前記材料配置工程で、前記樹脂を設置する周辺に前記原版の微細構造を囲むよ うに成型枠を設置する請求項 7または 8のいずれかの請求項に記載されたバイオセ ンシングディスクの製造方法。 [9] The manufacturing of the bio-sensing disk according to any one of claims 7 and 8, wherein in the material arranging step, a molding frame is installed so as to surround the fine structure of the original plate around the resin. Method.
[10] 前記材料配置工程の前記粉末状の樹脂の大きさが、前記原版のパターン寸法より 小さい粉末もしくは粒子である請求項 7乃至 9の何れか 1の請求項に記載されたバイ ォセンシングディスクの製造方法。 [10] The biosensing disk according to any one of claims 7 to 9, wherein the size of the powdery resin in the material arranging step is powder or particles smaller than the pattern size of the original plate. Manufacturing method.
[11] 前記加圧工程を減圧もしくは真空雰囲気で行う請求項 7乃至 10の何れか 1の請求 項に記載されたバイオセンシングディスクの製造方法。 [11] The method of manufacturing a biosensing disk according to any one of [7] to [10], wherein the pressurizing step is performed in a reduced pressure or a vacuum atmosphere.
[12] 前記材料配置工程の前記樹脂はポリメタクリル酸メチルとメタクリル酸のコポリマーで ある請求項 7乃至 11の何れ力、 1の請求項に記載されたバイオセンシングディスクの製 造方法。 [12] The process for producing a biosensing disk according to any one of claims 7 to 11, wherein the resin in the material arranging step is a copolymer of polymethyl methacrylate and methacrylic acid.
[13] 前記遮光層は光を反射する反射層である請求項 7乃至 12の何れ力、 1の請求項に記 載されたバイオセンシングディスクの製造方法。  [13] The method for manufacturing a biosensing disk according to any one of [7] to [12], wherein the light shielding layer is a reflective layer that reflects light.
[14] 前記抗体吸着工程は、架橋剤と抗体を含む溶液と前記構造体を接触させる工程で ある請求項 7乃至 13の何れか 1の請求項に記載されたバイオセンシングディスクの製 造方法。 [14] The method for producing a biosensing disk according to any one of [7] to [13], wherein the antibody adsorption step is a step of bringing a solution containing a cross-linking agent and an antibody into contact with the structure.
[15] 前記架橋剤は、 1ーェチルー 3 (3—ジメチルァミノプロピル)カルポジイミドである請 求項 14記載のバイオセンシングディスクの製造方法。  [15] The method for producing a biosensing disk according to claim 14, wherein the cross-linking agent is 1-ethyl-3- (3-dimethylaminopropyl) carpositimide.
[16] 前記前記抗体吸着工程は、前記構造体に UV光を照射する工程と、前記構造体に 架橋剤と抗体を含む溶液を接触させる工程を有する請求項 7乃至 14の何れか 1の請 求項に記載されたバイオセンシングディスクの製造方法。 [16] The request according to any one of claims 7 to 14, wherein the antibody adsorption step includes a step of irradiating the structure with UV light, and a step of bringing the structure into contact with a solution containing a crosslinking agent and an antibody. A method for producing a biosensing disk described in the claim.
[17] 前記前記抗体吸着工程は、前記構造体に UV光を照射する工程と、 [17] The antibody adsorption step includes irradiating the structure with UV light;
前記構造体に架橋剤と抗体を含む溶液を接触させる工程を有する請求項 16に記載 されたバイオセンシングディスクの製造方法。 17. The step of bringing the structure into contact with a solution containing a crosslinking agent and an antibody. Manufacturing method of the manufactured biosensing disc.
[18] 一方の表面にマイクロ 'ナノ構造を有し、 [18] has a micro 'nanostructure on one surface,
他方の表面に遮光層が形成されたディスクと、  A disc having a light shielding layer formed on the other surface;
前記マイクロ 'ナノ構造の表面に吸着した抗体を有するバイオセンシングディスク。  A biosensing disc having an antibody adsorbed on the surface of the micro'nano structure.
[19] 前記バイオセンシングディスクは樹脂製である請求項 18に記載されたバイオセンシ ングディスク構造体。 19. The biosensing disc structure according to claim 18, wherein the biosensing disc is made of resin.
[20] 前記樹脂は表面にカルボキシル基が存在する請求項 18または 19の何れかの請求 項に記載されたバイオセンシングディスク。  20. The biosensing disk according to claim 18, wherein the resin has a carboxyl group on the surface.
[21] 前記樹脂はポリメタクリル酸メチルとメタクリル酸のコポリマーである請求項 18乃至 20 の何れ力、 1の請求項に記載されたバイオセンシングディスク。 21. The biosensing disk according to any one of claims 18 to 20, wherein the resin is a copolymer of polymethyl methacrylate and methacrylic acid.
[22] マイクロ 'ナノ構造は L/S構造若しくはピラー構造である請求項 18乃至 21の何れか[22] The micro 'nano structure is any one of L / S structure and pillar structure.
1の請求項に記載されたバイオセンシングディスク。 A biosensing disk according to claim 1.
[23] 前記遮光層は厚みが 10nm以上の金属薄膜である請求項 18乃至 22の何れか 1の 請求項に記載されたバイオセンシングディスク。 23. The biosensing disk according to any one of claims 18 to 22, wherein the light shielding layer is a metal thin film having a thickness of 10 nm or more.
[24] 前記遮光層は金属酸化物の微粒子と樹脂からなる組成物の膜である請求項 18乃至24. The light shielding layer is a film of a composition comprising metal oxide fine particles and a resin.
23の何れ力、 1の請求項に記載されたバイオセンシングディスク。 Any one of 23 forces, The biosensing disk described in claim 1.
[25] 前記ディスクは透過性である請求項 18乃至 24の何れか 1の請求項に記載されたバ [25] The disk according to any one of claims 18 to 24, wherein the disk is transparent.
[26] 基板に流路を形成し流路側基板を得る流路形成工程と、 [26] a flow path forming step of forming a flow path on the substrate to obtain a flow path side substrate;
基板に接着層を形成しフタ側基板を得る接着層形成工程と、  An adhesive layer forming step of forming an adhesive layer on the substrate to obtain a lid side substrate;
前記フタ側基板の所定の位置に抗体が固定されたマイクロ 'ナノ構造を有する構造 体を配設する配設工程と、  A disposing step of disposing a structure having a micro-nano structure in which an antibody is fixed at a predetermined position of the lid-side substrate;
前記流路側基板と前記フタ側基板を加圧する接着工程とを含むバイオ検査チップの 製造方法。  A method for producing a biotest chip, comprising a bonding step of pressing the flow path side substrate and the lid side substrate.
[27] 前記接着層に UV光を照射する工程を含む請求項 26に記載されたバイオ検査チッ プの製造方法。 [27] The method for producing a biotest chip according to [26], further comprising a step of irradiating the adhesive layer with UV light.
[28] 基板に流路を形成し流路側基板を得る流路形成工程と、 [28] a flow path forming step of forming a flow path on the substrate to obtain a flow path side substrate;
基板に接着層を形成しフタ側基板を得る接着層形成工程と、  An adhesive layer forming step of forming an adhesive layer on the substrate to obtain a lid side substrate;
前記フタ側基板の所定の位置に請求項 18乃至 25の何れ力、 1の請求項に記載され たバイオセンシングディスクを配設する配設工程と、  An arrangement step of arranging the biosensing disk according to any one of claims 18 to 25 at a predetermined position of the lid-side substrate,
前記流路側基板と前記フタ側基板を加圧する接着工程とを含むバイオ検査チップの 製造方法。  A method for producing a biotest chip, comprising a bonding step of pressing the flow path side substrate and the lid side substrate.
[29] 前記接着工程では前記流路側基板と前記フタ側基板を加圧しながら前記フタ側基 板の側から UV光を照射する工程である請求項 28に記載されたバイオ検査チップの 製造方法。  29. The method for producing a biotest chip according to claim 28, wherein the bonding step is a step of irradiating UV light from the lid side substrate side while pressing the flow path side substrate and the lid side substrate.
[30] 前記流路側基板の表面にお!/、て、前記フタ側基板に前記構造体が配設された位置 に対応する位置に遮光層を形成する工程を含み、  [30] including a step of forming a light shielding layer on the surface of the flow path side substrate at a position corresponding to the position where the structure is disposed on the lid side substrate;
前記接着工程では前記流路側基板と前記フタ側基板を加圧しながら前記流路側基 板の側から UV光を照射する工程である請求項 26に記載されたバイオ検査チップの 製造方法。  27. The method for manufacturing a biotest chip according to claim 26, wherein the bonding step is a step of irradiating UV light from the side of the flow path side substrate while pressurizing the flow path side substrate and the lid side substrate.
[31] 基板に流路を形成し流路側基板を得る流路形成工程と、  [31] a flow path forming step of forming a flow path on the substrate to obtain a flow path side substrate;
前記流路側基板の所定の位置に抗体が固定されたマイクロ 'ナノ構造を有する構造 体を配設する配設工程と、  A disposing step of disposing a structure having a micro-nano structure in which an antibody is fixed at a predetermined position of the flow path side substrate;
前記流路側基板とフタ側基板を突き合わせ、前記フタ側基板の温度を前記流路側 基板の温度より高くして加圧する工程を含むバイオ検査チップの製造方法。  A method for manufacturing a biotest chip, comprising a step of bringing the flow path side substrate and the lid side substrate into contact with each other and pressurizing the lid side substrate at a temperature higher than the temperature of the flow path side substrate.
[32] 前記流路側基板と前記フタ側基板がアクリル製であって、前記フタ側基板の温度を 1[32] The flow path side substrate and the lid side substrate are made of acrylic, and the temperature of the lid side substrate is set to 1
20° にし、前記流路側基板の温度を 38° 以下とする請求項 31に記載されたバイオ 検査チップの製造方法。 32. The method for producing a bio-test chip according to claim 31, wherein the temperature of the flow path side substrate is set to 20 °, and the temperature of the flow path side substrate is 38 ° or less.
[33] 前記流路形成工程は、 [33] The flow path forming step includes:
基板に流路原版を押し当てて加圧成型し流路側基板を得る工程と、  A process of obtaining a flow path side substrate by pressing the flow path original plate against the substrate and performing pressure molding;
前記流路側基板を平滑化処理する工程を含む請求項 26乃至 32の何れか 1の請求 項に記載されたバイオ検査チップの製造方法。  The method for producing a biotest chip according to any one of claims 26 to 32, comprising a step of smoothing the flow path side substrate.
[34] 流路を形成した流路側基板と、 表面に接着層を形成したフタ側基板と、 [34] a channel-side substrate on which a channel is formed; A lid side substrate having an adhesive layer formed on the surface;
抗体が吸着したマイクロ ·ナノ構造を表面に有した構造体とを含むバイオ検査チップ  A bio-test chip comprising a micro / nano structure having an antibody adsorbed on its surface
[35] 前記構造体は前記フタ側基板に配設されて!/、る請求項 34に記載されたバイオ検査 [35] The biotest according to claim 34, wherein the structure is disposed on the lid side substrate!
[36] 前記接着層は光硬化性接着剤である請求項 34に記載されたバイオ検査チップ。 36. The biotest chip according to claim 34, wherein the adhesive layer is a photocurable adhesive.
[37] 流路を形成した流路側基板と、 [37] a channel substrate on which a channel is formed;
前記流路側基板によって変形されたフタ側基板と、  A lid side substrate deformed by the flow path side substrate;
抗体が吸着したマイクロ ·ナノ構造を表面に有した構造体とを含むバイオ検査チップ  A bio-test chip comprising a micro / nano structure having an antibody adsorbed on its surface
[38] 前記構造体は前記流路側基板に配設されて!/、る請求項 37に記載されたバイオ検査 38. The biotest according to claim 37, wherein the structure is disposed on the flow path side substrate!
[39] 前記流路にはパッシブバルブが形成された請求項 34乃至 38の何れか 1の請求項に 記載されたバイオ検査チップ。 [39] The biotest chip according to any one of claims 34 to 38, wherein a passive valve is formed in the flow path.
[40] 前記流路側基板にはインジェクションホールが形成された請求項 34乃至 39の何れ 力、 1の請求項に記載されたバイオ検査チップ。 [40] The biotest chip according to any one of claims 34 to 39, wherein an injection hole is formed in the flow path side substrate.
[41] 前記流路側基板と前記フタ側基板は少なくとも特定の光の波長を通過させる請求項41. The flow path side substrate and the lid side substrate pass at least a specific wavelength of light.
34乃至 40の何れか 1の請求項に記載されたバイオ検査チップ。 The biotest chip according to any one of claims 34 to 40.
[42] 前記構造体は請求項 18乃至 25の何れか 1の請求項に記載されたバイオセンシング ディスクである請求項 34乃至 41の何れか 1の請求項に記載されたバイオ検査チップ [42] The bio-test chip according to any one of claims 34 to 41, wherein the structure is the biosensing disk according to any one of claims 18 to 25.
PCT/JP2007/072034 2006-11-14 2007-11-13 Structure of micro/nanoconstruction, bioinspection chip utilizing the same and process for producing them WO2008059848A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006307338A JP2010030045A (en) 2006-11-14 2006-11-14 Method for producing structure having nano-formation and micro formation
JP2006-307338 2006-11-14

Publications (1)

Publication Number Publication Date
WO2008059848A1 true WO2008059848A1 (en) 2008-05-22

Family

ID=39401655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/072034 WO2008059848A1 (en) 2006-11-14 2007-11-13 Structure of micro/nanoconstruction, bioinspection chip utilizing the same and process for producing them

Country Status (2)

Country Link
JP (1) JP2010030045A (en)
WO (1) WO2008059848A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011129165A1 (en) * 2010-04-14 2011-10-20 ウシオ電機株式会社 Surface treatment method and device for micro tas substrate, and mask for surface treatment of micro tas substrate
WO2013008442A1 (en) * 2011-07-14 2013-01-17 株式会社エンプラス Fluid handling device, fluid handling method, and fluid handling system

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101678057B1 (en) * 2010-10-04 2016-12-06 삼성전자 주식회사 Patterning mold and manufacturing method thereof
US9744698B2 (en) 2010-12-22 2017-08-29 The Japan Steel Works, Ltd. Method for manufacturing microscopic structural body
JP6310719B2 (en) * 2014-02-13 2018-04-11 学校法人近畿大学 Manufacturing method of microstructure
KR101694605B1 (en) * 2015-01-15 2017-01-09 재단법인 멀티스케일 에너지시스템 연구단 HIERARCHIAL FINE STRUCTURES, A MOLD fOR FORMING SAME, AND A METHOD FOR MANUFACTURING THE MOLD
KR101597210B1 (en) * 2015-03-23 2016-02-24 가천대학교 산학협력단 Method for forming microchannels of lab-on-a-chip
CN109110728A (en) * 2018-07-25 2019-01-01 江西理工大学 Micro-nano structure clone method based on centrifugal force and the polymer micro-nano structure being prepared

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5595522A (en) * 1979-01-17 1980-07-19 Tokyo Seat Kk Pattern molding method
JP2000218698A (en) * 1999-01-28 2000-08-08 Leister Process Technologies Method and apparatus for bonding resins by laser
JP2003200491A (en) * 2001-11-28 2003-07-15 Tesa Ag Manufacture of nanofabrication and microstructure polymer film
JP2005074796A (en) * 2003-08-29 2005-03-24 Sumitomo Bakelite Co Ltd Method for joining microchip substrate and microchip
WO2005103670A1 (en) * 2004-04-21 2005-11-03 Toray Industries, Inc. Substrate for labo-on-a-chip
JP2006136990A (en) * 2004-11-15 2006-06-01 Kawamura Inst Of Chem Res Microfluid device having valve
JP2006170853A (en) * 2004-12-16 2006-06-29 Sekisui Chem Co Ltd Analysis device, reading device and information management system
JP2006201080A (en) * 2005-01-21 2006-08-03 Osaka Prefecture Biosensor chip
JP2006237312A (en) * 2005-02-25 2006-09-07 Yoshihiko Hirai Molding imprint method
JP2006256195A (en) * 2005-03-18 2006-09-28 Towa Corp Compression-molding method of electronic component and resin material

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5595522A (en) * 1979-01-17 1980-07-19 Tokyo Seat Kk Pattern molding method
JP2000218698A (en) * 1999-01-28 2000-08-08 Leister Process Technologies Method and apparatus for bonding resins by laser
JP2003200491A (en) * 2001-11-28 2003-07-15 Tesa Ag Manufacture of nanofabrication and microstructure polymer film
JP2005074796A (en) * 2003-08-29 2005-03-24 Sumitomo Bakelite Co Ltd Method for joining microchip substrate and microchip
WO2005103670A1 (en) * 2004-04-21 2005-11-03 Toray Industries, Inc. Substrate for labo-on-a-chip
JP2006136990A (en) * 2004-11-15 2006-06-01 Kawamura Inst Of Chem Res Microfluid device having valve
JP2006170853A (en) * 2004-12-16 2006-06-29 Sekisui Chem Co Ltd Analysis device, reading device and information management system
JP2006201080A (en) * 2005-01-21 2006-08-03 Osaka Prefecture Biosensor chip
JP2006237312A (en) * 2005-02-25 2006-09-07 Yoshihiko Hirai Molding imprint method
JP2006256195A (en) * 2005-03-18 2006-09-28 Towa Corp Compression-molding method of electronic component and resin material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011129165A1 (en) * 2010-04-14 2011-10-20 ウシオ電機株式会社 Surface treatment method and device for micro tas substrate, and mask for surface treatment of micro tas substrate
WO2013008442A1 (en) * 2011-07-14 2013-01-17 株式会社エンプラス Fluid handling device, fluid handling method, and fluid handling system
JPWO2013008442A1 (en) * 2011-07-14 2015-02-23 株式会社エンプラス Fluid handling device, fluid handling method and fluid handling system
US9901924B2 (en) 2011-07-14 2018-02-27 Enplas Corporation Fluid handling device, fluid handling method, and fluid handling system

Also Published As

Publication number Publication date
JP2010030045A (en) 2010-02-12

Similar Documents

Publication Publication Date Title
WO2008059848A1 (en) Structure of micro/nanoconstruction, bioinspection chip utilizing the same and process for producing them
Lipomi et al. 7.11: soft lithographic approaches to nanofabrication
JP6085035B2 (en) Coded polymer particles
Zhu et al. Label-free detection of live cancer cells and DNA hybridization using 3D multilayered plasmonic biosensor
You et al. Surface‐Tension‐Confined Microfluidics and Their Applications
JP2008507114A (en) Composite patterning device for soft lithography
KR100799267B1 (en) Micro or nanofluidic chip fabricated by using the norland optical adhesive and bioanalysis platform prepared by using the same
JP2004288804A (en) Nano-printer and microstructure transfer method
Sánchez et al. Photoembossing of periodic relief structures using polymerization‐induced diffusion: a combinatorial study
Lin et al. Multilength-scale chemical patterning of self-assembled monolayers by spatially controlled plasma exposure: nanometer to centimeter range
JP2007525681A (en) Covalent immobilization of biomolecules on organic surfaces
JP4936519B2 (en) Method for producing mold for molding structure having nanostructure and microstructure, and method for producing the structure using the mold
JP2007271609A (en) Biosensor
RU2748273C9 (en) Nano-imprinted substrate
TWI420105B (en) Microdissical wafer adhesive tape and microanalysis wafer and its manufacturing method
Chen et al. Microcontact deprinting: A technique to pattern gold nanoparticles
JP2006237312A (en) Molding imprint method
JP2007326296A (en) Pattern forming method
US20210379561A1 (en) Optical system for displaying three dimensional image
Liang et al. One-step selective-wettability modification of PMMA microfluidic devices by using controllable gradient UV irradiation (CGUI)
US20100207301A1 (en) Method of forming fine channel using electrostatic attraction and method of forming fine structure using the same
Oberdick et al. Patterned surface energy in elastomeric molds as a generalized approach to polymer particle fabrication
WO2014168237A1 (en) Structure replication method, localized surface plasmon resonance sensor chip manufacturing method including this replication method, structure, localized surface plasmon resonance sensor chip, and localized surface plasmon resonance sensor
JP4065801B2 (en) Nano pillar sensor
Lu et al. Fabrication of Ag nanorods on micropost array for a metal-enhanced fluorescence substrate with a high signal-to-background ratio

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07831764

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07831764

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP