WO2018216673A1 - Microchip - Google Patents

Microchip Download PDF

Info

Publication number
WO2018216673A1
WO2018216673A1 PCT/JP2018/019577 JP2018019577W WO2018216673A1 WO 2018216673 A1 WO2018216673 A1 WO 2018216673A1 JP 2018019577 W JP2018019577 W JP 2018019577W WO 2018216673 A1 WO2018216673 A1 WO 2018216673A1
Authority
WO
WIPO (PCT)
Prior art keywords
microchip
substrate
bonding
microchip substrate
sealed space
Prior art date
Application number
PCT/JP2018/019577
Other languages
French (fr)
Japanese (ja)
Inventor
真 和佐本
基裕 酒井
鈴木 信二
Original Assignee
ウシオ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウシオ電機株式会社 filed Critical ウシオ電機株式会社
Publication of WO2018216673A1 publication Critical patent/WO2018216673A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/08Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a stream of discrete samples flowing along a tube system, e.g. flow injection analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N37/00Details not covered by any other group of this subclass

Definitions

  • the present invention relates to a microchip, and more specifically, a first microchip substrate and a second microchip substrate are bonded to each other, and between the first microchip substrate and the second microchip substrate.
  • the present invention relates to a microchip in which a flow path is formed.
  • This microreactor is composed of a microchip in which a microscale analysis channel or the like is formed on a small substrate made of, for example, silicon, silicone resin or glass by a semiconductor microfabrication technique.
  • a reaction analysis system using such a microreactor is called a micro total analysis system (hereinafter referred to as “ ⁇ TAS”).
  • ⁇ TAS micro total analysis system
  • the microchip used for ⁇ TAS typically has a structure in which a pair of microchip substrates are bonded to face each other.
  • a fine channel groove is provided on the bonding surface of at least one of the microchip substrates, and the channel groove forms a micro channel (for example, a width of about 10 to several thousand ⁇ m and a depth of about 10 to several thousand ⁇ m). Is formed.
  • a microchip substrate a glass substrate is mainly used because it is easy to manufacture and can be optically detected. Recently, development of a microchip using a resin substrate that is lightweight but is less likely to be damaged than a glass substrate and that is inexpensive.
  • a method using an adhesive or a method using thermal fusion may be considered.
  • these methods have the following problems.
  • the adhesive oozes out into the space constituting the microchannel and the microchannel is blocked, or a part of the space constituting the microchannel is narrow.
  • the diameter of the micro flow path becomes non-uniform, and the uniform characteristics of the flow path wall surface are disturbed.
  • the obtained microchip (joint) has a problem that peeling occurs between both substrates in a high temperature and high humidity environment.
  • the flow channel groove is crushed in the heating stage when the fusion is performed at a temperature higher than the heat melting temperature, or the flow channel groove has a predetermined cross-sectional shape. Therefore, there is a problem that it is difficult to increase the functionality of the microchip. Therefore, in recent years, a method has been proposed in which the bonding surface of the microchip substrate is activated by irradiating the bonding surface of the microchip substrate with ultraviolet rays, and then bonded by bonding the microchip substrates (for example, Patent Document 1 to Patent Document 4).
  • the known method for joining two substrates using ultraviolet rays has the following problems. That is, even if the conditions such as the illuminance of ultraviolet rays irradiated to the bonding surfaces of the substrates, the pressure applied when bonding the substrates, the heating temperature, and the heating time are managed with high accuracy, the bonded state of the obtained bonded body is obtained. Variation has occurred. Therefore, depending on the bonded body, the bonding force between the substrates is weak, and both the substrates may be easily peeled off. In particular, when microchips are obtained by joining microchip substrates having flow channel grooves formed on at least one microchip substrate using ultraviolet rays, the bonding force is weak depending on the obtained microchips. It is also conceivable that a problem that the liquid passing through the micro flow channel leaks from the portion occurs. Such a problem is remarkable when the joined body is stored in a high temperature and high humidity environment.
  • the bonding surfaces of two substrates 31, 32 are irradiated with ultraviolet light L (for example, vacuum ultraviolet light having a wavelength of 172 nm) in an atmosphere containing oxygen (for example, in the air).
  • ultraviolet light L for example, vacuum ultraviolet light having a wavelength of 172 nm
  • the bonding surfaces 31A and 32A of the substrates 31 and 32 irradiated with the ultraviolet light L are activated.
  • the following states (1) to (3) are obtained. That is, the bonding surfaces 31A and 32A of the substrates 31 and 32 are in a state where a chemical reaction is likely to occur.
  • the bonding surfaces 31A and 32A of the substrates 31 and 32 have a hydroxy group (—OH), a carboxy group (—COOH). ) And an aldehyde group (—CHO).
  • both the substrates are laminated so that the activated bonding surfaces 31A and 32A of the substrates 31 and 32 are in close contact with each other.
  • a dehydration condensation reaction occurs in the region where the bonding surfaces 31A and 32B are in contact with each other as shown in FIG.
  • a covalent bond of (O) is generated, and both workpieces are firmly joined by the covalent bond of oxygen.
  • water (H 2 O) and carbon dioxide (C 2 O) are generated as shown in FIG.
  • the boundary layer described above is not formed with good reproducibility, the irradiance of ultraviolet rays applied to the bonding surfaces 31A and 32A of the substrates 31 and 32, and the added value when bonding the substrates 31 and 32 to each other. Even if the conditions such as the pressure and pressure, the heating temperature, and the heating time are managed with high accuracy, it is considered that the joining state of the obtained joined body has varied.
  • the microchip 40 is provided with an inlet 43A for injecting a sample and an outlet 44A for discharging the sample on the surface (the upper surface in FIG. 12).
  • a minute channel R communicating with the inlet 43A and the outlet 44A is provided inside.
  • the microchip 40 includes a first microchip substrate 41 formed with an inlet through hole 43, an outlet through hole 44, and a flow channel 42 communicating with these through holes, and a flat plate-like second hole. This is obtained by bonding the microchip substrate 46.
  • the microchip 40 when the boundary layer described above is formed in the joint portion 48 (joint interface) between the first microchip substrate 41 and the second microchip substrate 46, FIG. (a), the water W present in the gas constituting the atmosphere surrounding environmental atmosphere and fine channel R (H 2 O molecules), as well as water constituting the liquid flowing through the fine channel R are, As shown in FIG. 13B, it penetrates into the boundary layer. In some cases, as shown in FIG. 13C, the microchip 40 may be separated into the first microchip substrate 41 and the second microchip substrate 46.
  • the present invention has been made in view of the circumstances as described above, and the object thereof is to achieve a high-strength bonding state at a bonding portion of two substrates and maintain the bonded state for a long period of time. It is to provide a possible microchip.
  • the first microchip substrate and the second microchip substrate are joined, and the first microchip substrate communicates with the inlet and the outlet provided on the surface of the first microchip substrate.
  • a microchip having a flow path formed by a flow path groove formed in at least one of the first microchip substrate and the second microchip substrate Between the first microchip substrate and the second microchip substrate, an inner joint formed along the flow path, the first microchip substrate, and the second microchip substrate. And an outer joint formed along each outer peripheral edge of each of the first and second outer joints, and a sealed space is formed between the inner joint and the outer joint so as to surround the flow path. It is characterized by being.
  • the sealed space is filled with a hygroscopic agent.
  • the sealed space is in a reduced pressure state.
  • the pressure in the sealed space is preferably 50 kPa or less.
  • the sealed space is filled with a dry inert gas.
  • the pressure in the sealed space may be 0.1 MPa to 0.5 MPa, and more preferably 0.1 MPa to 0.2 MPa.
  • a sealed space is provided between the first microchip substrate and the second microchip substrate so as to surround the flow channel together with the flow channel. It joins by the junction part and the outside junction part. Therefore, when the outer dimension of the microchip is constant, the bonding area can be controlled by the size of the sealed space.
  • the substrates are laminated and then pressed, or pressurized and heated.
  • the entire surface of both substrates is a bonding region, the entire surface of both substrates is pressurized.
  • the bonding area is appropriately set and pressurized as described above, the bonding area is controlled.
  • the microchip of the present invention the occurrence of peeling between the two substrates due to the increased amount of moisture at the joint between the first microchip substrate and the second microchip substrate. Since it can suppress, the joining state of a high intensity
  • FIG. 2 is a cross-sectional view showing a cross section taken along line AA of FIG.
  • the microchip of this invention it is explanatory drawing which shows the state which a water
  • suction function was provided to the sealed space in the microchip of this invention.
  • moisture-content block function was provided to the sealed space in the microchip of this invention.
  • FIG. 1 is an explanatory view showing an example of the configuration of the microchip of the present invention as viewed from the first microchip substrate side.
  • 2 is a cross-sectional view showing a cross section taken along line AA of FIG.
  • the microchip 10 has a substantially flat plate shape in which a first microchip substrate 11 and a second microchip substrate 16 are joined in a stacked state in the thickness direction.
  • One surface (the upper surface in FIG. 2) is the surface of the microchip 10.
  • a micro flow path R is formed that includes a flow path groove 12 formed on the bonding surface (the lower surface in FIG. 2) of the first microchip substrate 11.
  • a minute flow path R extending in the surface direction of the first microchip substrate 11 and the second microchip substrate 16 is formed between the first microchip substrate 11 and the second microchip substrate 16. ing.
  • the minute channel R communicates with an inlet 13A provided on one surface of the first microchip substrate 11 (the surface of the microchip 10) at one end, and communicates with the surface of the first microchip substrate 11 at the other end. It communicates with the provided outlet 14A.
  • the first microchip substrate 11 and the second microchip substrate 16 are plate-like bodies made of a light transmissive material. Examples of the light transmissive material constituting the first microchip substrate 11 and the second microchip substrate 16 include a light transmissive plastic material such as an acrylic resin such as COP or polymethyl methacrylate (PMMA).
  • the first microchip substrate 11 and the second microchip substrate 16 may be made of the same constituent material, or may be made of different constituent materials. In the example of this figure, both the first microchip substrate 11 and the second microchip substrate 16 are made of COP.
  • the first microchip substrate 11 is formed with a channel groove 12 having a rectangular cross section that extends in a straight line at the center portion of the bonding surface, and has a cylindrical shape that communicates with the channel groove 12. It has a substantially rectangular flat plate shape in which an inlet through hole 13 and a cylindrical outlet through hole 14 are formed.
  • the second microchip substrate 16 has a rectangular flat plate shape having a bonding surface (upper surface in FIG. 2) having the same vertical and horizontal dimensions as the bonding surface of the first microchip substrate 11. Then, the flow channel 12 formed in the first microchip substrate 11 is closed by the second microchip substrate 16 to form the micro flow channel R.
  • annular sealed space S is formed inside the microchip 10 so as to surround the minute flow path R.
  • the sealed space S is formed between the first microchip substrate 11 and the second microchip substrate 16, and has an annular inner joint portion 21 extending along the microchannel R and the outer periphery of the microchip 10. It is located between the annular outer joint 26 extending along the surface 10A.
  • the outer bonding portion 26 is formed by bonding the outer peripheral edge portions of the bonding surfaces of the first microchip substrate 11 and the second and microchip substrates 16.
  • the sealed space S is separated from the minute flow path R by the inner barrier portion 22.
  • a rectangular annular sealed space recess 15 is formed on the bonding surface of the first microchip substrate 11 so as to surround the flow channel groove 12, and this sealed space recess 15. Is closed by the second microchip substrate 16 to form a sealed space S.
  • the inner barrier portion 22 that separates the microchannel R and the sealed space S is an inner bank formed between the channel groove 12 and the sealed space recess 15 in the joint surface of the first microchip substrate 11. It is composed of parts.
  • the inner side junction part 21 is formed by joining the inner bank part and the joining surface of the 2nd microchip board
  • an outer bank portion is formed on the outer side of the recessed portion 15 for the sealed space, that is, the outer peripheral edge portion, on the bonding surface of the first microchip substrate 11, and the outer bank portion and the second microchip are formed.
  • the outer bonding portion 26 is formed by bonding the bonding surface of the substrate 16 (specifically, the outer peripheral edge portion of the bonding surface of the second microchip substrate 16).
  • the outer side barrier part 27 is comprised by the outer side bank part. In FIG. 2, the inner joint portion 21 and the outer joint portion 26 are surrounded by a broken line.
  • the volume of the sealed space S depends on the bonding area required in the microchip 10 (specifically, the total area of the bonding area related to the inner bonding portion 21 and the bonding area related to the outer bonding portion 26). These are determined appropriately in consideration of the constituent materials of the microchip substrate 11 and the second microchip substrate 16.
  • the bonding area is the area of the bonding surface (specifically, the area of the bonding surfaces of the first microchip substrate 11 and the second microchip substrate 16 from the viewpoint of bonding properties (bonding strength). ) Is preferably 10% or more, more preferably 10 to 40%. When the bonding area is less than 10% of the area of the bonding surface, the bonding property may not necessarily be good. Further, when the bonding area exceeds 40% of the area of the bonding surface, the volume of the sealed space S becomes relatively small, and as a result, the moisture control function may be insufficient.
  • the thickness (width dimension) of the inner barrier portion 22, that is, the separation distance between the micro flow path R and the sealed space S is preferably at least 0.5 mm or more.
  • the thickness of the inner barrier portion 22 is too small, fine processing in a mold for forming a microchip substrate is required, resulting in an increase in manufacturing cost.
  • the thickness of the inner barrier portion 22 is 0.5 mm.
  • the thickness (width dimension) of the outer barrier portion 27 is preferably 0.5 mm or more, similarly to the thickness of the inner barrier portion 22.
  • the thickness of the outer barrier portion 27 is too small, the bonding area becomes very small. Therefore, as in the case of the inner barrier portion 26, the mechanical strength (bonding strength) of the microchip manufactured by bonding is small. In addition to the reduction, there is a risk that the quality of the microchip may be problematic, such as no more room for resistance to breakage of the outer barrier portion.
  • the thickness of the outer barrier portion 27 is 0.5 mm.
  • the sealed space S includes moisture (H 2 O molecules) present in the gas constituting the ambient atmosphere of the microchip 10 and the atmosphere of the microchannel R, and the microchannel in the inner joint portion 21 and the outer joint portion 26. It is used as a moisture control space for suppressing an increase in the amount of moisture due to the penetration of moisture constituting the liquid flowing through R.
  • This moisture control space has a moisture adsorption function or a moisture blocking function.
  • the sealed space S By making the sealed space S a moisture control space, the amount of moisture in the inner joint portion 21 and the outer joint portion 26 is increased, resulting in a space between the first microchip substrate 11 and the second microchip substrate 16. Generation
  • production of peeling can be suppressed. More specifically, when the microchip 10 is bonded through a process of closely contacting the bonding surfaces of the first microchip substrate 11 and the second microchip substrate 16 irradiated with ultraviolet rays, A boundary layer may be formed at the bonding interface (specifically, the inner bonding portion 21 and the outer bonding portion 26).
  • the boundary layer includes a part of functional groups (specifically, hydroxy group (—OH), carboxy group (—COOH), aldehyde group (—CHO), etc.) present on the activated bonding surface. , Which is formed due to dehydration condensation reaction, that is, it does not contribute to the formation of covalent bonds of oxygen and remains at the bonding interface, and is susceptible to moisture, specifically, moisture easily penetrates It is.
  • the sealed space S is a moisture control space, an increase in the amount of moisture in the boundary layer can be suppressed by the moisture adsorption function or the moisture blocking function, so that the amount of moisture in the boundary layer increases. The occurrence of peeling between the first microchip substrate 11 and the second microchip substrate 16 can be suppressed.
  • the moisture adsorption function in the moisture control space is a function of adsorbing moisture that has penetrated into the inner joint portion 21 and moisture that has penetrated into the outer joint portion 26.
  • moisture that has penetrated into the inner joint portion 21 and the outer joint portion 26 is adsorbed to the moisture control space.
  • the moisture control space has a moisture adsorption function
  • moisture W present in the gas constituting the ambient atmosphere of the microchip 10 penetrates the outer joint portion 26 (boundary layer).
  • moisture W present in the gas constituting the atmosphere of the minute flow path R and moisture constituting the liquid flowing through the minute flow path R permeate the inner joint portion 21 (boundary layer).
  • a technique for providing a moisture adsorption function to the sealed space S and using the sealed space S as a moisture control space for example, a technique of filling the sealed space S with a hygroscopic agent, That is, there is a method of reducing the pressure (vacuum atmosphere).
  • various desiccants can be used as the hygroscopic agent.
  • the desiccant include silica gel.
  • the shape of the desiccant may be a powdery body, a fiber body, a film body, and other shapes, and the desiccant may be filled in a state of being contained in the coating film in the sealed space S. Good.
  • the atmospheric pressure in the reduced pressure atmosphere is preferably 50 kPa or less.
  • the pressure in the sealed space S in a reduced pressure state is sufficiently set in the sealed space S. It was found that separation between microchip substrates due to moisture can be sufficiently reduced.
  • the moisture blocking function in the moisture control space refers to the moisture (H 2 O) present in the gas constituting the ambient environment atmosphere of the microchip 10 and the atmosphere of the microchannel R at the inner joint portion 21 and the outer joint portion 26. Molecule), and a function of suppressing the penetration of moisture constituting the liquid flowing through the microchannel R.
  • the moisture control space has a moisture blocking function, as shown in FIG. 5, the moisture W or the minute channel present in the gas constituting the atmosphere of the minute channel R at the inner joint portion 21. It is possible to prevent or sufficiently suppress the penetration of moisture W constituting the liquid flowing through R. In addition, it is possible to prevent or sufficiently suppress the penetration of moisture W present in the gas constituting the ambient environment atmosphere of the microchip 10 in the outer joint portion 26.
  • the sealed space S is filled with a dry inert gas having a remarkably low moisture content.
  • a method in which the dry inert gas is sealed in the sealed space S at an atmospheric pressure or a pressure higher than the atmospheric pressure (positive pressure) can be mentioned.
  • nitrogen gas is an example of the inert gas constituting the dry inert gas.
  • the water content in the dry inert gas is preferably a dew point temperature of ⁇ 40 ° C. or lower.
  • the pressure in the sealed space S in which the dry inert gas is sealed may be 0.1 MPa to 0.5 MPa, More preferably, it is -0.2 MPa. If the pressure in the sealed space S filled with the dry inert gas is too low, the moisture blocking function may be lowered. On the other hand, when the pressure in the sealed space S filled with the dry inert gas is excessive, the bonding force between the microchip substrates may be weakened.
  • the microchip 10 having such a configuration can be manufactured by an appropriate method according to the function to be imparted to the sealed space S.
  • the first manufacturing method is a method of manufacturing the microchip 10 that uses the sealed space S as a moisture control space having a moisture adsorption function by filling a hygroscopic agent.
  • the second manufacturing method is a method of manufacturing the microchip 10 that is used as a moisture control space having a moisture adsorption function by making the sealed space S into a reduced pressure state.
  • the third manufacturing method manufactures the microchip 10 using the sealed space S as a moisture control space having a moisture blocking function by enclosing the dry inert gas in the sealed space S at atmospheric pressure or positive pressure. It is a method to do.
  • a first microchip substrate 11 made of, for example, COP, a second microchip substrate 16 made of, for example, COP, and a hygroscopic agent 29 made of, for example, silica gel are prepared.
  • the first microchip substrate 11 has a channel groove 12 and a sealed space recess 15 formed on a bonding surface (upper surface in FIGS. 6A, 6B, and 6D). It has a substantially rectangular flat plate shape in which the inlet through hole 13 and the outlet through hole 14 are formed.
  • the second microchip substrate 16 has a joint surface (an upper surface in FIG. 6C and a lower surface in FIG. 6D) having the same vertical and horizontal dimensions as the joint surface of the first microchip substrate 11. It is a rectangular flat plate.
  • the hygroscopic agent 29 is filled in the sealed space recess 15 in the first microchip substrate 11.
  • a powdery desiccant powder is dispersed in ethanol, and this dispersion is used for tweezers, brushes, dispensers
  • the method of filling the recessed space 15 with the hygroscopic agent 29 by applying ethanol on the surface of the sealed space recess 15 and drying and removing ethanol as a solvent in the drying process after the coating process. It is done.
  • UV irradiation process In the ultraviolet irradiation process, as shown in FIG. 6B and FIG. 6C, the bonding surface of the first microchip substrate 11 and the bonding surface of the second microchip substrate 16 that have undergone the hygroscopic agent filling step. Each is irradiated with vacuum ultraviolet rays L1 and L2 having a wavelength of 200 nm or less in an oxygen-containing atmosphere (for example, in the air). Through this ultraviolet irradiation process, the bonding surface of the first microchip substrate 11 and the bonding surface of the second microchip substrate 16 irradiated with the vacuum ultraviolet rays L1 and L2 are activated.
  • organic substances adhering to the bonding surface are decomposed and removed, radicals are generated on the bonding surface, and highly reactive functional groups (specifically, functional groups containing oxygen atoms). Is generated.
  • the bonding surface of the first microchip substrate 11 and the bonding surface of the second microchip substrate 16 are ultraviolet rays.
  • functional groups such as a hydroxy group (—OH), a carboxy group (—COOH), and an aldehyde group (—CHO) are bonded.
  • an excimer lamp such as a xenon excimer lamp that emits a vacuum ultraviolet ray having a central wavelength at a wavelength of 172 nm can be suitably used as a light source that emits the vacuum ultraviolet rays L1 and L2.
  • the irradiance of the vacuum ultraviolet rays L1 and L2 applied to each of the bonding surface of the first microchip substrate 11 and the bonding surface of the second microchip substrate 16 is, for example, 10 to 100 mW / cm 2 , particularly 40 mW / cm 2. cm 2 is preferred.
  • the irradiation time of the vacuum ultraviolet rays L1 and L2 on each of the bonding surface of the first microchip substrate 11 and the bonding surface of the second microchip 16 is determined by the first microchip substrate 11 and the second macrochip substrate 16.
  • the type of the hygroscopic agent 29 is appropriately set. In particular, 60 seconds is preferable.
  • the first microchip substrate 11 and the second microchip substrate 16 that have undergone the ultraviolet irradiation step are brought into a state in which their respective bonding surfaces are in close contact with each other. Laminate. Thereafter, the laminated body of the first microchip substrate 11 and the second microchip substrate 16 is pressurized or heated. Or the laminated body of the 1st microchip board
  • the pressurizing condition and heating condition are appropriately set in consideration of the type of the moisture absorbent 29 according to the constituent material of the first microchip substrate 11 and the constituent material of the second microchip substrate 16. Further, the pressurizing time and the heating time are set to a predetermined time according to the pressurizing condition and the heating condition.
  • the predetermined time is basically the time required for the dehydration condensation reaction to proceed at the bonding interface between the two microchip substrates and sufficient bonding between the two microchip substrates.
  • the laminate of the first microchip substrate 11 and the second microchip substrate 16 is pressurized, the laminate is pressurized for a predetermined time as necessary, and then further predetermined. You may heat for hours. Specifically, the pressurization state of the laminate is maintained for a predetermined time, and thereafter, the pressurization state is released, the temperature of the laminate is increased to a predetermined temperature, and the desired bonding state is obtained. You may make it maintain until it is done.
  • the predetermined temperature is a temperature at which the laminated body (the first microchip substrate 11 and the second microchip substrate 16) is not deformed.
  • a part where a sufficient bonding state is obtained and a part where a sufficient bonding state is not obtained are mixed in the bonding interface in the laminated body after pressing. Even if it is the case where it is doing, the joining state can be made into an intended state in the part in which sufficient joining state was not obtained by heating.
  • the time from the completion of the ultraviolet irradiation process to the start of the bonding process exceeds 10 minutes, moisture (on the bonding surface of the first microchip substrate 11 and the bonding surface of the second microchip substrate 16) There is a risk that excess water) and impurities will re-adhere. Therefore, in the obtained microchip 10, it may be difficult to reliably achieve a high-strength bonding state between the first microchip substrate 11 and the second microchip substrate 16.
  • a first microchip substrate 11 made of, for example, COP and a second microchip substrate 16 made of, for example, COP are prepared.
  • the first microchip substrate 11 has a channel groove 12 and a sealed space recess 15 formed in the joint surface (the upper surface in FIGS. 7A and 7C), and the inlet through-hole 13 and It has a substantially rectangular flat plate shape in which the discharge port through hole 14 is formed.
  • the second microchip substrate 16 has a bonding surface (the upper surface in FIG. 7B and the lower surface in FIG. 7C) having the same vertical and horizontal dimensions as the bonding surface of the first microchip substrate 11. It is a rectangular flat plate.
  • UV irradiation process In the ultraviolet irradiation process, as shown in FIGS. 7A and 7B, oxygen is applied to each of the bonding surface of the first microchip substrate 11 and the bonding surface of the second microchip substrate 16.
  • an atmosphere including the atmosphere for example, in the atmosphere
  • vacuum ultraviolet rays L1 and L2 having a wavelength of 200 nm or less are irradiated.
  • the bonding surface of the first microchip substrate 11 and the bonding surface of the second microchip substrate 16 irradiated with the vacuum ultraviolet rays L1 and L2 are activated.
  • organic substances adhering to the bonding surface are decomposed and removed, radicals are generated on the bonding surface, and highly reactive functional groups (specifically, functional groups containing oxygen atoms). Is generated.
  • an excimer lamp such as a xenon excimer lamp that emits a vacuum ultraviolet ray having a central wavelength at a wavelength of 172 nm can be suitably used as a light source that emits the vacuum ultraviolet rays L1 and L2.
  • the irradiance of the vacuum ultraviolet rays L1 and L2 applied to each of the bonding surface of the first microchip substrate 11 and the bonding surface of the second microchip substrate 16 is, for example, 10 to 100 mW / cm 2 , particularly 40 mW / cm 2. cm 2 is preferred.
  • the irradiation time of the vacuum ultraviolet rays L1 and L2 on each of the bonding surface of the first microchip substrate 11 and the bonding surface of the second microchip 16 is determined by the first microchip substrate 11 and the second macrochip substrate 16. Depending on the constituent materials and the state of the bonding surfaces of the first microchip substrate 11 and the second microchip substrate 16, etc., it is appropriately set. For example, it is 5 to 120 seconds, and particularly preferably 60 seconds.
  • the bonding step first, the atmosphere in which the first microchip substrate 11 and the second microchip substrate 16 that have undergone the ultraviolet irradiation step exist, that is, the bonding between the first microchip substrate 11 and the second microchip 16.
  • the atmosphere in which is performed is a reduced pressure atmosphere (vacuum atmosphere).
  • the first microchip substrate 11 and the second microchip substrate 16 are laminated so that their bonding surfaces are in close contact with each other.
  • the laminated body of the first microchip substrate 11 and the second microchip substrate 16 is pressurized or heated. Or the laminated body of the 1st microchip board
  • the atmospheric pressure of the atmosphere for performing the bonding (reduced pressure atmosphere) is set to 50 kPa or less.
  • the atmospheric pressure of the reduced-pressure atmosphere is excessive, there is a possibility that the desired moisture adsorption function cannot be imparted to the sealed space S in the obtained microchip 10.
  • the pressurizing condition and heating condition are appropriately set according to the constituent material of the first microchip substrate 11 and the constituent material of the second microchip substrate 16. Further, the pressurizing time and the heating time are set to a predetermined time according to the pressurizing condition and the heating condition.
  • the laminate of the first microchip substrate 11 and the second microchip substrate 16 is pressurized, the laminate is pressurized for a predetermined time as necessary, and then further predetermined. You may heat for hours. Specifically, the pressurization state of the laminate is maintained for a predetermined time, and thereafter, the pressurization state is released, the temperature of the laminate is increased to a predetermined temperature, and the desired bonding state is obtained. You may make it maintain until it is done.
  • the predetermined temperature is a temperature at which the laminated body (the first microchip substrate 11 and the second microchip substrate 16) is not deformed.
  • a part where a sufficient bonding state is obtained and a part where a sufficient bonding state is not obtained are mixed in the bonding interface in the laminated body after pressing. Even if it is the case where it is doing, the joining state can be made into an intended state in the part in which sufficient joining state was not obtained by heating.
  • the time from the completion of the ultraviolet irradiation process to the start of the bonding process exceeds 10 minutes, moisture (on the bonding surface of the first microchip substrate 11 and the bonding surface of the second microchip substrate 16) There is a risk that excess water) and impurities will re-adhere. Therefore, in the obtained microchip 10, it may be difficult to reliably achieve a high-strength bonding state between the first microchip substrate 11 and the second microchip substrate 16.
  • a first microchip substrate 11 made of COP, for example, and a second microchip substrate 16 made of COP, for example, are prepared.
  • the first microchip substrate 11 has a channel groove 12 and a sealed space recess 15 formed in the bonding surface (upper surface in FIGS. 8A and 8C), and the inlet through-hole 13 and It has a substantially rectangular flat plate shape in which the discharge port through hole 14 is formed.
  • the second microchip substrate 16 has a bonding surface (the upper surface in FIG. 8B and the lower surface in FIG. 8C) having the same vertical and horizontal dimensions as the bonding surface of the first microchip substrate 11. It is a rectangular flat plate.
  • UV irradiation process In the ultraviolet irradiation process, as shown in FIGS. 8A and 8B, oxygen is applied to each of the bonding surface of the first microchip substrate 11 and the bonding surface of the second microchip substrate 16.
  • atmosphere in the atmosphere
  • vacuum ultraviolet rays L1 and L2 having a wavelength of 200 nm or less are irradiated.
  • the bonding surface of the first microchip substrate 11 and the bonding surface of the second microchip substrate 16 irradiated with the vacuum ultraviolet rays L1 and L2 are activated.
  • organic substances adhering to the bonding surface are decomposed and removed, radicals are generated on the bonding surface, and highly reactive functional groups (specifically, functional groups containing oxygen atoms). Is generated.
  • an excimer lamp such as a xenon excimer lamp that emits a vacuum ultraviolet ray having a central wavelength at a wavelength of 172 nm can be suitably used as a light source that emits the vacuum ultraviolet rays L1 and L2.
  • the irradiance of the vacuum ultraviolet rays L1 and L2 applied to each of the bonding surface of the first microchip substrate 11 and the bonding surface of the second microchip substrate 16 is, for example, 10 to 100 mW / cm 2 , particularly 40 mW / cm 2. cm 2 is preferred.
  • the irradiation time of the vacuum ultraviolet rays L1 and L2 on each of the bonding surface of the first microchip substrate 11 and the bonding surface of the second microchip 16 is determined by the first microchip substrate 11 and the second macrochip substrate 16. Depending on the constituent materials and the state of the bonding surfaces of the first microchip substrate 11 and the second microchip substrate 16, etc., it is appropriately set. For example, it is 5 to 120 seconds, and particularly preferably 60 seconds.
  • the bonding step first, the atmosphere in which the first microchip substrate 11 and the second microchip substrate 16 that have undergone the ultraviolet irradiation step exist, that is, the bonding between the first microchip substrate 11 and the second microchip 16.
  • the atmosphere to perform is a dry inert gas atmosphere made of a dry inert gas having a remarkably low water content.
  • the first microchip substrate 11 and the second microchip substrate 16 are laminated so that their bonding surfaces are in close contact with each other. Thereafter, the laminated body of the first microchip substrate 11 and the second microchip substrate 16 is pressurized or heated.
  • substrate 16 is heated, pressing.
  • a dehydration condensation reaction occurs in the region where the bonding surfaces of the first microchip substrate 11 and the second microchip substrate 16 are in contact with each other, that is, the bonding interface, so that oxygen (O) is covalently bonded.
  • the microchip substrates are firmly bonded to each other by the covalent bond of oxygen.
  • the first microchip substrate 11 and the second microchip substrate 16 are joined, and the sealed space S is made into a moisture control space having a moisture blocking function by being filled with a dry inert gas.
  • a microchip 10 is obtained.
  • a gas having a moisture content of ⁇ 40 ° C. or lower is suitably used as the dry inert gas.
  • the inert gas constituting the dry inert gas include, for example, nitrogen gas.
  • the atmospheric pressure of the atmosphere in which the bonding is performed is set to atmospheric pressure or a pressure higher than atmospheric pressure (positive pressure), specifically, 0.1 MPa to 0.5 MPa may be sufficient. More preferably, the pressure is 0.1 MPa to 0.2 MPa.
  • the pressurizing condition and heating condition are appropriately set according to the constituent material of the first microchip substrate 11 and the constituent material of the second microchip substrate 16. Further, the pressurizing time and the heating time are set to a predetermined time according to the pressurizing condition and the heating condition.
  • the laminate of the first microchip substrate 11 and the second microchip substrate 16 is pressurized, the laminate is pressurized for a predetermined time as necessary, and then further predetermined. You may heat for hours. Specifically, the pressurized state is maintained for a predetermined time with respect to the laminated body, and then the pressurized state is released, and the temperature of the laminated body is increased to a predetermined temperature. It may be maintained until it is obtained.
  • the predetermined temperature is a temperature at which the laminated body (the first microchip substrate 11 and the second microchip substrate 16) is not deformed.
  • a part where a sufficient bonding state is obtained and a part where a sufficient bonding state is not obtained are mixed in the bonding interface in the laminated body after pressing. Even if it is the case where it is doing, the joining state can be made into an intended state in the part in which sufficient joining state was not obtained by heating.
  • the time from the completion of the ultraviolet irradiation process to the start of the bonding process exceeds 10 minutes, moisture (on the bonding surface of the first microchip substrate 11 and the bonding surface of the second microchip substrate 16) There is a risk that excess water) and impurities will re-adhere. Therefore, in the obtained microchip 10, it may be difficult to reliably achieve a high-strength bonding state between the first microchip substrate 11 and the second microchip substrate 16.
  • a sealed space S is provided between the first microchip substrate 11 and the second microchip substrate 16 so as to surround the microchannel R together with the microchannel R. Both substrates are joined by the inner joint 21 and the outer joint 26. Therefore, since the bonding area can be controlled by the size of the sealed space S, both substrates can be bonded with high uniformity by bonding both substrates using ultraviolet rays. That is, in the manufacturing process (bonding process) in which both substrates are stacked after ultraviolet irradiation, when the laminate of both substrates is pressed, it is added to the areas related to the inner bank portion and the outer bank portion at the time of pressing.
  • the function (moisture adsorption function and moisture block function) of the sealed space S as the moisture control space is limited, and the function is obtained after a certain time (finite time) has elapsed. Disappear.
  • the microchip 10 is normally a disposable product and is disposable within a time shorter than the finite time, there is no practical problem.
  • the sealed space S when the sealed space S is used as a moisture control space having a moisture adsorption function by bringing the sealed space S into a decompressed state, the first microchip substrate is brought about by the suction action of the sealed space S in the decompressed state. The occurrence of peeling between the first microchip substrate 11 and the second microchip substrate 16 is further suppressed.
  • moisture easily enters the sealed space S through the inner joint portion 21 and the outer joint portion 26
  • the sealed space S enters through the moisture inner joint portion 21 and the outer joint portion 26 that has entered the sealed space S. Will not be discharged outside.
  • the second microchip substrate may be a film-like body made of a light transmissive material.
  • the thickness is preferably small from the viewpoint of bondability (bonding strength) and moisture controllability (moisture adsorption function).
  • the thickness of the film-like body is 50 to 200 ⁇ m.
  • the sealed space is used as a moisture control space by being provided with a moisture adsorption function by a method of reducing the sealed space to a reduced pressure state. In this microchip, as shown in FIG.
  • the second microchip substrate 19 (film-like body) is formed in the sealed space recess 15 by the action of the difference between the pressure in the sealed space S and the ambient pressure in the surrounding environment. Is bent in the direction toward the bottom surface 15A, and the bonding surface of the second microchip substrate 19 is in contact with the bottom surface 15A. Therefore, the sealed space S extends in a ring shape along the wall surface formed by the inner barrier portion 22, and the cross section extends in a ring shape along the wall surface formed by the outer barrier portion 27. It will be comprised by this annular space.
  • the maximum separation distance between the inner barrier portion 22 or the outer barrier portion 27 and the second microchip substrate 19 is, for example, about 0.1 to 2 mm according to the thickness of the second microchip substrate 19. . According to the microchip having such a configuration, moisture controllability (moisture adsorption function) can be obtained in the sealed space S, and even higher joint strength can be obtained in the inner joint portion 21 and the outer joint portion 26. it can.
  • the micro flow path may be formed of a flow path groove formed on at least one of the first microchip substrate and the second microchip substrate. That is, the channel groove may be formed only on the second microchip substrate, or may be formed on both microchip substrates.
  • Example 1 (Microchip production example 1) A microchip was fabricated based on the configuration shown in FIGS. Specifically, first, a first microchip substrate, a second microchip substrate, and a hygroscopic agent were prepared. Further, as the first microchip substrate, a channel groove, a through hole communicating with the channel groove (a through hole for an inlet and a through hole for a discharge port), and a concave for a sealed space are formed on one surface as a bonding surface. A substantially rectangular flat plate-shaped COP substrate (longitudinal dimension: 75.5 mm ⁇ horizontal dimension: 25.5 mm ⁇ thickness: 3 mm) was prepared.
  • the channel groove has a rectangular cross section with a width of 800 ⁇ m, a length of 9000 ⁇ m, and a depth of 200 ⁇ m, and is formed at the center of the joint surface.
  • the recess for the sealed space is a rectangular ring formed so as to surround the channel groove between the inner bank portion having a width of 1000 ⁇ m and the outer bank portion having a width of 1000 ⁇ m, and the cross-sectional shape thereof is rectangular.
  • the shape is 50 ⁇ m deep.
  • a rectangular flat plate-shaped COP substrate (longitudinal dimension 75.5 mm ⁇ horizontal dimension 25.5 mm ⁇ thickness 1 mm) is prepared, and as the hygroscopic agent (desiccant), a powder form is prepared.
  • Silica gel that is, silica gel fine particles (average particle size 5.0 ⁇ m) were prepared.
  • a silica gel dispersion liquid is prepared by dispersing silica gel fine particles in ethanol, and the silica gel dispersion liquid is applied to the recessed area for the sealed space of the first microchip substrate and dried to thereby form the recessed space for the sealed space.
  • the place was filled with silica gel (a hygroscopic agent filling step).
  • vacuum ultraviolet rays are applied to the bonding surface of the first microchip substrate that has undergone the hygroscopic agent filling step and the bonding surface of the second microchip substrate using an ultraviolet irradiation device in the atmosphere, respectively.
  • Irradiation ultraviolet irradiation process
  • the ultraviolet irradiation device used is configured to irradiate vacuum ultraviolet rays having a wavelength of 172 nm through a ultraviolet transmission window to a square irradiation area having a side of 300 mm.
  • the window surface illuminance (irradiance) was confirmed using an ultraviolet illuminance meter “UIT-205 + VUV-S172” (manufactured by USHIO INC.), It was about 40 mW / cm 2 .
  • the irradiation time was 60 seconds.
  • the separation distance (irradiation distance) between the ultraviolet transmission window and the bonding surface (specifically, the bonding surface of the first microchip substrate and the second microchip substrate) in the ultraviolet irradiation apparatus is: In consideration of absorption of vacuum ultraviolet rays by atmospheric oxygen, the thickness is set to 3 mm.
  • the processing atmosphere between the ultraviolet transmission window and the joint surface in the ultraviolet irradiation apparatus uses the intake air of the exhaust duct disposed on the back surface of the irradiation space related to the ultraviolet irradiation apparatus, and the ambient environment. It comprised by taking in the gas (air) which comprises atmosphere.
  • substrate were joined using the bonding apparatus by an ad tech engineering company. More specifically, the first microchip substrate that has been subjected to the ultraviolet irradiation step and the second microchip substrate that has been subjected to the ultraviolet irradiation step have a bonding surface facing each other, and a size suitable for the sealed space therebetween.
  • cobalt chloride paper cobalt chloride (II) hexahydrate test paper). Cobalt chloride paper that had been dried in advance was used. Then, the obtained laminated body is placed on the pressure stage of the bonding apparatus, and in order to remove moisture from the two microchip substrates constituting the laminated body on the pressure stage, 200 is used.
  • microchip (1) in which cobalt chloride paper is disposed in the sealed space.
  • a sealed space is filled with a hygroscopic agent so that the sealed space is a moisture control space having a moisture adsorption function. The reason why cobalt chloride paper is provided in the sealed space is to evaluate the microchip as described below.
  • the prepared microchip (1) is placed in a constant temperature and humidity chamber and left to stand for two weeks at maximum in an environment of a temperature of 40 ° C. and a humidity of 95% RH.
  • the distribution of the color reaction occurrence locations and the presence or absence of peeling were confirmed visually. The results are shown in Table 1.
  • Example 2 (Microchip production example 2) In microchip production example 1 of Example 1, the hygroscopic agent filling process was not performed, and the bonding process was performed except that the atmosphere in the processing space of the bonding apparatus was changed to a vacuum atmosphere (atmospheric pressure 100 Pa).
  • a microchip (hereinafter also referred to as “microchip (2)”) was produced in the same manner as in Microchip Production Example 1.
  • the sealed space is made into a moisture control space having a moisture adsorption function by bringing the sealed space into a reduced pressure state (vacuum state with an atmospheric pressure of 100 Pa).
  • Example 3 (Production example 3 of microchip)
  • the atmosphere in the processing space of the bonding apparatus is a positive pressure atmosphere (atmospheric pressure) of dry nitrogen gas whose moisture content is ⁇ 40 ° C. in terms of dew point temperature.
  • a microchip (hereinafter also referred to as “microchip (3)”) was produced in the same manner as in Microchip Production Example 2 except that the pressure was 0.15 MPa.
  • dry nitrogen gas is sealed in a sealed space at a positive pressure (atmospheric pressure 0.15 MPa), whereby the sealed space is made into a moisture control space having a moisture blocking function.
  • Example 4 (Microchip production example 4)
  • a COP film-like body having a thickness of 100 ⁇ m was used as the second microchip substrate.
  • a microchip (hereinafter also referred to as “microchip (4)”) was manufactured.
  • the sealed space is made into a moisture control space having a moisture adsorption function by bringing the sealed space into a reduced pressure state (vacuum state with an atmospheric pressure of 100 Pa).
  • the environmental conditions are a temperature of 40 ° C. and a humidity of 95% RH. Even when left for 2 weeks, no color reaction occurred in the cobalt chloride paper. Moreover, peeling was not confirmed.
  • Microchip 10A Outer peripheral surface 11 First microchip substrate 12 Channel groove 13 Inlet through hole 13A Inlet 14 Outlet through hole 14A Outlet 15 Sealed recess 15A Bottom surface 16 Second microchip substrate 19 Second microchip substrate 21 Inner bonding portion 22 Inner barrier portion 26 Outer bonding portion 27 Outer barrier portion 29 Hygroscopic agent 31 Substrate 31A Bonding surface 32 Substrate 32A Bonding surface 40 Microchip 41 First microchip substrate 42 Channel groove 43 Inlet through hole 43A Inlet 44 Outlet through hole 44A Outlet 46 Second microchip substrate 48 Joint R Micro flow path S Sealed space

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Micromachines (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

The objective of the present invention is to provide a microchip in which a high-strength joining state is achieved in a joint portion of two substrates. A microchip (10) is formed by joining a first microchip substrate (11) and a second microchip substrate (16) together, and internally includes a flow passage (R) which allows an injection port and a discharge port, provided in a top surface of the first microchip substrate, to communicate with one another, and which comprises a flow passage channel formed in at least one of the first microchip substrate and the second microchip substrate. The microchip (10) is characterized in that between the first microchip substrate and the second microchip substrate are formed inside joint portions (21, 22) formed along the flow passage, and an outside joint portion formed along outer peripheral edge portions of each of the first microchip substrate and the second microchip substrate, and in that a sealed space (S) is formed between the inside joint portions and the outside joint portion in such a way as to surround the flow passage.

Description

マイクロチップMicrochip
 本発明は、マイクロチップに関し、さらに詳しくは、第1のマイクロチップ基板と第2のマイクロチップ基板とが接合されてなり、当該第1のマイクロチップ基板と当該第2のマイクロチップ基板との間に流路が形成されたマイクロチップに関する。 The present invention relates to a microchip, and more specifically, a first microchip substrate and a second microchip substrate are bonded to each other, and between the first microchip substrate and the second microchip substrate. The present invention relates to a microchip in which a flow path is formed.
 近年、生化学分野において、マイクロリアクタを用いて微量の試薬の分離、合成、抽出または分析などを行う手法が注目されている。このマイクロリアクタは、例えばシリコン、シリコーン樹脂またはガラスなどよりなる小さな基板上に、半導体微細加工技術によってマイクロスケールの分析用チャネルなどが形成されたマイクロチップよりなるものである。
 このようなマイクロリアクタを用いた反応分析システムは、マイクロ・トータル・アナリシス・システム(以下、「μTAS」という。)と称されている。このμTASによれば、試薬の体積に対する表面積の比が大きくなることなどから高速かつ高精度の反応分析を行うことが可能となり、また、コンパクトで自動化されたシステムを実現することが可能となる。
In recent years, in the biochemical field, a technique for separating, synthesizing, extracting or analyzing a trace amount of reagent using a microreactor has attracted attention. This microreactor is composed of a microchip in which a microscale analysis channel or the like is formed on a small substrate made of, for example, silicon, silicone resin or glass by a semiconductor microfabrication technique.
A reaction analysis system using such a microreactor is called a micro total analysis system (hereinafter referred to as “μTAS”). According to this μTAS, since the ratio of the surface area to the volume of the reagent is increased, it is possible to perform reaction analysis with high speed and high accuracy, and it is possible to realize a compact and automated system.
 また、μTASに用いられるマイクロチップは、典型的には一対のマイクロチップ基板が対向して接合された構造を有する。そして、少なくとも一方のマイクロチップ基板の接合面に微細な流路溝が設けられており、その流路溝によって微小流路(例えば、幅10~数1000μm、深さ10~数千μm程度)が形成されている。マイクロチップ基板としては、製造が容易であり、光学的な検出も可能であることから、主にガラス基板が用いられている。また、最近では、軽量でありながらガラス基板に比べて破損しにくく、かつ、安価な樹脂基板を用いたマイクロチップの開発が進められている。 In addition, the microchip used for μTAS typically has a structure in which a pair of microchip substrates are bonded to face each other. A fine channel groove is provided on the bonding surface of at least one of the microchip substrates, and the channel groove forms a micro channel (for example, a width of about 10 to several thousand μm and a depth of about 10 to several thousand μm). Is formed. As a microchip substrate, a glass substrate is mainly used because it is easy to manufacture and can be optically detected. Recently, development of a microchip using a resin substrate that is lightweight but is less likely to be damaged than a glass substrate and that is inexpensive.
 マイクロチップの製造において、2枚のマイクロチップ基板を接合する方法としては、接着剤を使用する方法、熱融着による方法が考えられる。しかしながら、これらの方法は、以下のような問題がある。
 接着剤によって2枚のマイクロチップ基板を接合する方法においては、接着剤が微小流路を構成する空間に染みだして微小流路が閉塞したり、微小流路を構成する空間の一部が狭くなって微小流路の径が不均一となったり、また、流路壁面の均質な特性に乱れが生じたりする、という問題がある。しかも、得られたマイクロチップ(接合体)において、高温高湿環境下にて両基板の間に剥離が生じる、という問題もある。
 また、熱融着によって2枚のマイクロチップ基板を接合する方法においては、加熱溶融温度以上で融着した場合には加熱段階で流路溝がつぶれてしまったり、流路溝が所定の断面形状に保持されなかったりするため、マイクロチップの高機能化が困難となる、という問題がある。
 そこで、近年、紫外線をマイクロチップ基板の接合面に照射することによって、当該マイクロチップ基板の接合面を活性化させ、その後、マイクロチップ基板を貼り合わせることによって接合する方法が提案されている(例えば、特許文献1乃至特許文献4参照)。
In manufacturing a microchip, as a method for joining two microchip substrates, a method using an adhesive or a method using thermal fusion may be considered. However, these methods have the following problems.
In the method of joining two microchip substrates with an adhesive, the adhesive oozes out into the space constituting the microchannel and the microchannel is blocked, or a part of the space constituting the microchannel is narrow. Thus, there is a problem that the diameter of the micro flow path becomes non-uniform, and the uniform characteristics of the flow path wall surface are disturbed. In addition, the obtained microchip (joint) has a problem that peeling occurs between both substrates in a high temperature and high humidity environment.
Also, in the method of joining two microchip substrates by thermal fusion, the flow channel groove is crushed in the heating stage when the fusion is performed at a temperature higher than the heat melting temperature, or the flow channel groove has a predetermined cross-sectional shape. Therefore, there is a problem that it is difficult to increase the functionality of the microchip.
Therefore, in recent years, a method has been proposed in which the bonding surface of the microchip substrate is activated by irradiating the bonding surface of the microchip substrate with ultraviolet rays, and then bonded by bonding the microchip substrates (for example, Patent Document 1 to Patent Document 4).
特開2006-187730号公報JP 2006-187730 A 特開2008-19348号公報JP 2008-19348 A 国際公開第2008/087800号International Publication No. 2008/087800 特許第5152361号公報Japanese Patent No. 5152361
 しかしながら、紫外線を利用して2枚の基板を接合する公知の方法について、以下のような問題があることが判明した。
 すなわち、基板の接合面に照射される紫外線の照度、基板同士を接合する際における加圧圧力、加熱温度および加熱時間などの条件を高い精度で管理しても、得られる接合体の接合状態にばらつきが生じている。そのため、接合体によっては、基板同士の接合力が弱く、両基板が容易に剥離することがある。
 特に、紫外線を利用して、少なくとも一方のマイクロチップ基板に流路溝が設けられたマイクロチップ基板同士を接合してマイクロチップを得る場合には、得られたマイクロチップによっては、接合力が弱い部分から微小流路を通過する液体が漏出するという不具合が発生することも考えられる。
 このような問題は、接合体を高温高湿環境下において保管した場合に顕著である。
However, it has been found that the known method for joining two substrates using ultraviolet rays has the following problems.
That is, even if the conditions such as the illuminance of ultraviolet rays irradiated to the bonding surfaces of the substrates, the pressure applied when bonding the substrates, the heating temperature, and the heating time are managed with high accuracy, the bonded state of the obtained bonded body is obtained. Variation has occurred. Therefore, depending on the bonded body, the bonding force between the substrates is weak, and both the substrates may be easily peeled off.
In particular, when microchips are obtained by joining microchip substrates having flow channel grooves formed on at least one microchip substrate using ultraviolet rays, the bonding force is weak depending on the obtained microchips. It is also conceivable that a problem that the liquid passing through the micro flow channel leaks from the portion occurs.
Such a problem is remarkable when the joined body is stored in a high temperature and high humidity environment.
 而して、本発明の発明者らは紫外線を利用して2枚の基板を接合する方法について鋭意研究を重ねた。その結果、前述したような接合力が必ずしも十分でない接合体が得られるという不具合の原因は、必ずしも明らかではないが、例えば、以下のようなことが原因ではないかと考えた。
 図10および図11を用いて説明する。
Thus, the inventors of the present invention have made extensive studies on a method of joining two substrates using ultraviolet rays. As a result, the cause of the problem of obtaining a bonded body with insufficient bonding force as described above is not necessarily clear, but for example, it was considered that the following may be the cause.
This will be described with reference to FIGS. 10 and 11.
 紫外線を利用して2枚の基板を接合する方法においては、まず、図10(a)に示すように、2枚の基板31,32(例えば、COP(Cyclo-Olefin Polymer)基板)の接合面31A,32Aに、紫外線L(例えば、波長172nmの真空紫外線)を、酸素を含む雰囲気中(例えば、大気中)で照射する。
 このようにして紫外線Lが照射された基板31,32の接合面31A,32Aは活性化される。具体的には、下記(1)~(3)に示すような状態となる。すなわち、基板31,32の接合面31A,32Aは、化学反応が生じやすい状態となる。
In the method of bonding two substrates using ultraviolet rays, first, as shown in FIG. 10A, the bonding surfaces of two substrates 31, 32 (for example, a COP (Cyclo-Olefin Polymer) substrate). 31A and 32A are irradiated with ultraviolet light L (for example, vacuum ultraviolet light having a wavelength of 172 nm) in an atmosphere containing oxygen (for example, in the air).
In this way, the bonding surfaces 31A and 32A of the substrates 31 and 32 irradiated with the ultraviolet light L are activated. Specifically, the following states (1) to (3) are obtained. That is, the bonding surfaces 31A and 32A of the substrates 31 and 32 are in a state where a chemical reaction is likely to occur.
(1)接合面31A,32Aに付着していた有機物が分解・除去される。
(2)接合面31A,32Aにおいて高分子主鎖が切断されてラジカルが生成される。
(3)接合面31A,32Aに反応性の高い官能基(具体的には、酸素原子を含む官能基)が生成される。
(1) Organic substances adhering to the joint surfaces 31A and 32A are decomposed and removed.
(2) The polymer main chain is cut at the bonding surfaces 31A and 32A to generate radicals.
(3) Functional groups having high reactivity (specifically, functional groups containing oxygen atoms) are generated on the bonding surfaces 31A and 32A.
 ここに、基板31,32がCOP基板である場合には、図10(b)に示すように、基板31,32の接合面31A,32Aは、ヒドロキシ基(-OH)、カルボキシ基(-COOH)およびアルデヒド基(-CHO)などの官能基が結合した状態になる。 When the substrates 31 and 32 are COP substrates, as shown in FIG. 10B, the bonding surfaces 31A and 32A of the substrates 31 and 32 have a hydroxy group (—OH), a carboxy group (—COOH). ) And an aldehyde group (—CHO).
 次に、図10(c)に示すように、基板31,32における活性化した接合面31A,32A同士が密着するように、両基板を積層する。
 このようにして積層した基板31,32を、適宜、加圧・加熱することにより、図10(d)に示すように、接合面31A,32B同士が接触した領域において脱水縮合反応が生じて酸素(O)の共有結合が生成され、その酸素の共有結合により、両ワークが強固に接合される。なお、脱水縮合反応の過程においては、図10(d)に示されているように、水(HO)と二酸化炭素(CO)が生成される。
Next, as shown in FIG. 10C, both the substrates are laminated so that the activated bonding surfaces 31A and 32A of the substrates 31 and 32 are in close contact with each other.
By appropriately pressing and heating the substrates 31 and 32 thus laminated, a dehydration condensation reaction occurs in the region where the bonding surfaces 31A and 32B are in contact with each other as shown in FIG. A covalent bond of (O) is generated, and both workpieces are firmly joined by the covalent bond of oxygen. In the course of the dehydration condensation reaction, water (H 2 O) and carbon dioxide (C 2 O) are generated as shown in FIG.
 而して、図11に示すように、得られた接合体においては、接合界面に、脱水縮合反応に寄与しなかった官能基(図11においては、ヒドロキシ基およびカルボキシ基が示されている。)が存在し、その官能基により、水分からの影響を受けやすい、具体的には、水分が浸透しやすい境界層が形成される場合がある。この境界層は、湿度条件によっては水分(HO)の浸透量が増加して、当該境界層に存在する水分量が多くなり、その結果、接合力(密着力)が低下し、場合によっては接合された両基板が容易に剥離するものと考えられる。 Thus, as shown in FIG. 11, in the obtained bonded body, functional groups that did not contribute to the dehydration condensation reaction (hydroxy group and carboxy group are shown in FIG. 11) at the bonding interface. ), And the functional group may form a boundary layer that is easily affected by moisture, specifically, easily penetrated by moisture. Depending on the humidity conditions, this boundary layer has an increased amount of moisture (H 2 O) penetration, and the amount of moisture present in the boundary layer increases, resulting in a decrease in bonding strength (adhesion), It is considered that both bonded substrates easily peel off.
 また、前述した境界層は、再現性よく形成されるものではないことから、基板31,32の接合面31A,32Aに照射される紫外線の放射照度、基板31,32同士を接合する際における加圧圧力、加熱温度および加熱時間などの条件を高い精度で管理しても、得られる接合体の接合状態にばらつきが生じていたものと考えられる。 In addition, since the boundary layer described above is not formed with good reproducibility, the irradiance of ultraviolet rays applied to the bonding surfaces 31A and 32A of the substrates 31 and 32, and the added value when bonding the substrates 31 and 32 to each other. Even if the conditions such as the pressure and pressure, the heating temperature, and the heating time are managed with high accuracy, it is considered that the joining state of the obtained joined body has varied.
 そして、例えば、図12に示すように、マイクロチップ40は、表面(図12における上面)に試料が注入される注入口43Aと試料が排出される排出口44Aとが設けられており、当該注入口43Aおよび当該排出口44Aに連通する微小流路Rを内部に有するものである。このマイクロチップ40は、注入口用貫通孔43、排出口用貫通孔44およびこれらの貫通孔に連通する流路溝42が形成された第1のマイクロチップ基板41と、平板状の第2のマイクロチップ基板46とを接合することによって得られたものである。 For example, as shown in FIG. 12, the microchip 40 is provided with an inlet 43A for injecting a sample and an outlet 44A for discharging the sample on the surface (the upper surface in FIG. 12). A minute channel R communicating with the inlet 43A and the outlet 44A is provided inside. The microchip 40 includes a first microchip substrate 41 formed with an inlet through hole 43, an outlet through hole 44, and a flow channel 42 communicating with these through holes, and a flat plate-like second hole. This is obtained by bonding the microchip substrate 46.
 このようなマイクロチップ40においては、第1のマイクロチップ基板41と第2のマイクロチップ基板46との接合部48(接合界面)において、前述した境界層が形成されている場合には、図13(a)に示すように、周囲環境雰囲気および微小流路Rの雰囲気を構成する気体中に存在する水分W(HO分子)、並びに微小流路Rを流動する液体を構成する水分が、図13(b)に示すように、境界層に浸透する。そして、場合によっては、図13(c)に示すように、マイクロチップ40が、第1のマイクロチップ基板41と第2のマイクロチップ基板46とに分離してしまう事態も生じるおそれがある。 In such a microchip 40, when the boundary layer described above is formed in the joint portion 48 (joint interface) between the first microchip substrate 41 and the second microchip substrate 46, FIG. (a), the water W present in the gas constituting the atmosphere surrounding environmental atmosphere and fine channel R (H 2 O molecules), as well as water constituting the liquid flowing through the fine channel R are, As shown in FIG. 13B, it penetrates into the boundary layer. In some cases, as shown in FIG. 13C, the microchip 40 may be separated into the first microchip substrate 41 and the second microchip substrate 46.
 さらに、紫外線を利用して2枚の基板を接合する方法においては、各基板にうねりが生じること、あるいは基板表面(接合面)に微細な凹凸が存在していることなどに起因して、2枚の基板を高い均一性をもって接合することが容易ではない。而して、2枚の基板の接合界面に微小な隙間が生じ、その隙間に水分が侵入しやすくなる。そのため、接合界面に水分が侵入することに起因して、2枚の基板が剥離する事態が生じるおそれがある。このようなおそれは、基板同士を接合する際において、2枚の基板の積層体を加圧・加熱した場合に顕著である。 Further, in the method of bonding two substrates using ultraviolet rays, swells are generated on each substrate, or minute irregularities exist on the substrate surface (bonding surface). It is not easy to bond a single substrate with high uniformity. Thus, a minute gap is formed at the bonding interface between the two substrates, and moisture easily enters the gap. Therefore, there is a possibility that two substrates may be peeled off due to moisture entering the bonding interface. Such a fear is remarkable when the laminated body of two board | substrates is pressurized and heated when joining board | substrates.
本発明は上記したような事情を鑑みてなされたものであって、その目的は、2枚の基板の接合部において高い強度の接合状態が達成され、貼り合わせ状態を長期間にわたって維持することが可能なマイクロチップを提供することにある。 The present invention has been made in view of the circumstances as described above, and the object thereof is to achieve a high-strength bonding state at a bonding portion of two substrates and maintain the bonded state for a long period of time. It is to provide a possible microchip.
 本発明のマイクロチップは、第1のマイクロチップ基板および第2のマイクロチップ基板が接合されてなり、当該第1のマイクロチップ基板の表面に設けられた注入口および排出口に連通する、当該第1のマイクロチップ基板および第2のマイクロチップ基板の少なくとも一方の基板に形成された流路溝よりなる流路を内部に有するマイクロチップにおいて、
 前記第1のマイクロチップ基板と前記第2のマイクロチップ基板との間には、前記流路に沿って形成された内側接合部と、当該第1のマイクロチップ基板および当該第2のマイクロチップ基板のそれぞれの外周縁部に沿って形成された外側接合部とが形成されており、当該内側接合部と当該外側接合部との間に、当該流路を囲繞するように密閉空間が形成されていることを特徴とする。
In the microchip of the present invention, the first microchip substrate and the second microchip substrate are joined, and the first microchip substrate communicates with the inlet and the outlet provided on the surface of the first microchip substrate. In a microchip having a flow path formed by a flow path groove formed in at least one of the first microchip substrate and the second microchip substrate,
Between the first microchip substrate and the second microchip substrate, an inner joint formed along the flow path, the first microchip substrate, and the second microchip substrate. And an outer joint formed along each outer peripheral edge of each of the first and second outer joints, and a sealed space is formed between the inner joint and the outer joint so as to surround the flow path. It is characterized by being.
 本発明のマイクロチップにおいては、前記密閉空間に、吸湿剤が充填されていることが好ましい。 In the microchip of the present invention, it is preferable that the sealed space is filled with a hygroscopic agent.
 本発明のマイクロチップにおいては、前記密閉空間が減圧状態とされていることが好ましい。
 また、このような構成の本発明のマイクロチップにおいては、前記密閉空間の圧力が50kPa以下であることが好ましい。
In the microchip of the present invention, it is preferable that the sealed space is in a reduced pressure state.
In the microchip of the present invention having such a configuration, the pressure in the sealed space is preferably 50 kPa or less.
 本発明のマイクロチップにおいては、前記密閉空間に、乾燥不活性ガスが充填されていることが好ましい。
 また、このような構成の本発明のマイクロチップにおいては、前記密閉空間の圧力が0.1MPa~0.5MPaであればよく、0.1MPa~0.2MPaであることがより好ましい。
In the microchip of the present invention, it is preferable that the sealed space is filled with a dry inert gas.
In the microchip of the present invention having such a configuration, the pressure in the sealed space may be 0.1 MPa to 0.5 MPa, and more preferably 0.1 MPa to 0.2 MPa.
 本発明のマイクロチップにおいては、第1のマイクロチップ基板と第2のマイクロチップ基板との間において、流路と共に、当該流路を囲繞するように密閉空間が設けられており、両基板が内側接合部と外側接合部とによって接合されている。そのため、マイクロチップの外寸法が一定の場合、密閉空間の大きさによって接合面積を制御することができる。両基板を紫外線を利用して接合する場合には、両基板を積層後、加圧したり、加圧および加熱などを行う。ここで、両基板の全面が接合領域である場合には、両基板の全面を加圧することになるが、上記のように接合面積を制御して接合領域を適宜設定して加圧する場合には、両基板の全面を加圧する場合よりも接合面に対して高い圧力分布均一性をもって接合することができ、よって接合界面(内側接合部および外側接合部)における微小な隙間の形成を抑制しつつ、密閉空間を形成することが可能となる。
 しかも、密閉空間において、吸湿剤を充填すること、減圧状態とすること、乾燥不活性ガスを充填することによって、水分吸着機能または水分ブロック機能を付与して水分制御空間とすることにより、接合界面(内側接合部および外側接合部)に水分が浸透しやすい境界層が形成された場合であっても、当該水分制御空間の作用によって当該境界層における水分量の増加を抑制することができる。
 従って、本発明のマイクロチップによれば、第1のマイクロチップ基板と第2のマイクロチップ基板との接合部において、水分量が大きくなることに起因する2枚の基板の間の剥離の発生を抑制することができることから、2枚の基板の接合部に、高い強度の接合状態が得られ、また貼り合わせ状態を長期間にわたって維持することが可能となる。
 また、本発明のマイクロチップにおいては、密閉空間が流路を囲繞するように設けられていることから、当該密閉空間の作用により、保温効果および断熱効果が得られる。
In the microchip according to the present invention, a sealed space is provided between the first microchip substrate and the second microchip substrate so as to surround the flow channel together with the flow channel. It joins by the junction part and the outside junction part. Therefore, when the outer dimension of the microchip is constant, the bonding area can be controlled by the size of the sealed space. When bonding both substrates using ultraviolet rays, the substrates are laminated and then pressed, or pressurized and heated. Here, when the entire surface of both substrates is a bonding region, the entire surface of both substrates is pressurized. However, when the bonding area is appropriately set and pressurized as described above, the bonding area is controlled. In addition, it is possible to bond to the bonding surface with a higher pressure distribution uniformity than in the case where the entire surfaces of both substrates are pressurized, and thus suppress the formation of minute gaps at the bonding interface (inner bonding portion and outer bonding portion). It becomes possible to form a sealed space.
Moreover, in the sealed space, filling the moisture absorbing agent, making the pressure reduced, filling the dry inert gas, providing the moisture adsorption function or the moisture blocking function to form the moisture control space, the bonding interface. Even when a boundary layer in which moisture easily permeates is formed in the (inner joint portion and outer joint portion), an increase in the amount of moisture in the boundary layer can be suppressed by the action of the moisture control space.
Therefore, according to the microchip of the present invention, the occurrence of peeling between the two substrates due to the increased amount of moisture at the joint between the first microchip substrate and the second microchip substrate. Since it can suppress, the joining state of a high intensity | strength is obtained in the junction part of two board | substrates, and it becomes possible to maintain a bonding state over a long period of time.
Moreover, in the microchip of the present invention, since the sealed space is provided so as to surround the flow path, a heat retaining effect and a heat insulating effect can be obtained by the action of the sealed space.
本発明のマイクロチップの構成の一例を、第1のマイクロチップ基板側から見た状態を示す説明図である。It is explanatory drawing which shows the state which looked at the example of the structure of the microchip of this invention from the 1st microchip board | substrate side. 図1のA-A線断面を示す断面図である。FIG. 2 is a cross-sectional view showing a cross section taken along line AA of FIG. 本発明のマイクロチップにおいて、接合部に水分が浸透する状態を示す説明図である。In the microchip of this invention, it is explanatory drawing which shows the state which a water | moisture content osmose | permeates a junction part. 本発明のマイクロチップにおける密閉空間に水分吸着機能が付与された状態を示す説明図である。It is explanatory drawing which shows the state by which the water | moisture-content adsorption | suction function was provided to the sealed space in the microchip of this invention. 本発明のマイクロチップにおける密閉空間に水分ブロック機能が付与された状態を示す説明図である。It is explanatory drawing which shows the state by which the water | moisture-content block function was provided to the sealed space in the microchip of this invention. 本発明のマイクロチップを製造する方法の製造工程の一例を示す説明図である。It is explanatory drawing which shows an example of the manufacturing process of the method of manufacturing the microchip of this invention. 本発明のマイクロチップを製造する方法の製造工程の他の例を示す説明図である。It is explanatory drawing which shows the other example of the manufacturing process of the method of manufacturing the microchip of this invention. 本発明のマイクロチップを製造する方法の製造工程のさらに他の例を示す説明図である。It is explanatory drawing which shows the further another example of the manufacturing process of the method of manufacturing the microchip of this invention. 本発明のマイクロチップの構成の他の例を示す説明図である。It is explanatory drawing which shows the other example of a structure of the microchip of this invention. 紫外線を利用して2枚の基板を接合する方法における工程を示す説明図である。It is explanatory drawing which shows the process in the method of joining two board | substrates using an ultraviolet-ray. 図10に示した工程を経ることによって得られたマイクロチップにおける2枚の基板の接合界面を模式的に示す説明図である。It is explanatory drawing which shows typically the joining interface of two board | substrates in the microchip obtained by passing through the process shown in FIG. 従来のマイクロチップの構成の一例を示す説明図である。It is explanatory drawing which shows an example of a structure of the conventional microchip. 従来のマイクロチップにおいて2枚の基板の間に剥離が生じる過程を示す説明図である。It is explanatory drawing which shows the process in which peeling arises between two board | substrates in the conventional microchip.
 以下、本発明の実施の形態について説明する。
 図1は、本発明のマイクロチップの構成の一例を、第1のマイクロチップ基板側から見た状態を示す説明図である。図2は、図1のA-A線断面を示す断面図である。
 このマイクロチップ10は、第1のマイクロチップ基板11と第2のマイクロチップ基板16とが厚み方向に積層された状態で接合された略平板状のものであり、第1のマイクロチップ基板11の一面(図2における上面)が当該マイクロチップ10の表面とされている。マイクロチップ10の内部には、第1のマイクロチップ基板11の接合面(図2における下面)に形成された流路溝12よりなる微小流路Rが形成されている。すなわち、第1のマイクロチップ基板11と第2のマイクロチップ基板16との間には、第1のマイクロチップ基板11および第2のマイクロチップ基板16の面方向に伸びる微小流路Rが形成されている。この微小流路Rは、一端において第1のマイクロチップ基板11の一面(マイクロチップ10の表面)に設けられた注入口13Aに連通し、他端において当該第1のマイクロチップ基板11の表面に設けられた排出口14Aに連通している。
 第1のマイクロチップ基板11および第2のマイクロチップ基板16は、光透過性材料よりなる板状体である。この第1のマイクロチップ基板11および第2のマイクロチップ基板16を構成する光透過性材料としては、例えば、COP、ポリメタクリル酸メチル(PMMA)等のアクリル樹脂などの光透過性を有するプラスチック材料、および、石英ガラス等のガラス材料などが挙げられる。また、第1のマイクロチップ基板11と第2のマイクロチップ基板16とは、同一の構成材料からなるものであってもよく、また異なる構成材料からなるものであってもよい。
 この図の例において、第1のマイクロチップ基板11および第2のマイクロチップ基板16は、いずれも、COPよりなるものである。第1のマイクロチップ基板11は、接合面の中央部に、直線状に伸びる、断面が矩形状の流路溝12が形成されており、また、当該流路溝12に連通する、円柱状の注入口用貫通孔13および円柱状の排出口用貫通孔14が形成された略矩形平板状のものである。また、第2のマイクロチップ基板16は、第1のマイクロチップ基板11の接合面と同等の縦横寸法の接合面(図2における上面)を有する矩形平板状のものである。そして、第1のマイクロチップ基板11に形成された流路溝12が、第2のマイクロチップ基板16によって閉塞されることにより微小流路Rが形成されている。
Embodiments of the present invention will be described below.
FIG. 1 is an explanatory view showing an example of the configuration of the microchip of the present invention as viewed from the first microchip substrate side. 2 is a cross-sectional view showing a cross section taken along line AA of FIG.
The microchip 10 has a substantially flat plate shape in which a first microchip substrate 11 and a second microchip substrate 16 are joined in a stacked state in the thickness direction. One surface (the upper surface in FIG. 2) is the surface of the microchip 10. Inside the microchip 10, a micro flow path R is formed that includes a flow path groove 12 formed on the bonding surface (the lower surface in FIG. 2) of the first microchip substrate 11. That is, a minute flow path R extending in the surface direction of the first microchip substrate 11 and the second microchip substrate 16 is formed between the first microchip substrate 11 and the second microchip substrate 16. ing. The minute channel R communicates with an inlet 13A provided on one surface of the first microchip substrate 11 (the surface of the microchip 10) at one end, and communicates with the surface of the first microchip substrate 11 at the other end. It communicates with the provided outlet 14A.
The first microchip substrate 11 and the second microchip substrate 16 are plate-like bodies made of a light transmissive material. Examples of the light transmissive material constituting the first microchip substrate 11 and the second microchip substrate 16 include a light transmissive plastic material such as an acrylic resin such as COP or polymethyl methacrylate (PMMA). And glass materials such as quartz glass. The first microchip substrate 11 and the second microchip substrate 16 may be made of the same constituent material, or may be made of different constituent materials.
In the example of this figure, both the first microchip substrate 11 and the second microchip substrate 16 are made of COP. The first microchip substrate 11 is formed with a channel groove 12 having a rectangular cross section that extends in a straight line at the center portion of the bonding surface, and has a cylindrical shape that communicates with the channel groove 12. It has a substantially rectangular flat plate shape in which an inlet through hole 13 and a cylindrical outlet through hole 14 are formed. The second microchip substrate 16 has a rectangular flat plate shape having a bonding surface (upper surface in FIG. 2) having the same vertical and horizontal dimensions as the bonding surface of the first microchip substrate 11. Then, the flow channel 12 formed in the first microchip substrate 11 is closed by the second microchip substrate 16 to form the micro flow channel R.
 また、マイクロチップ10においては、当該マイクロチップ10の内部に、微小流路Rを囲繞するように環状の密閉空間Sが形成されている。この密閉空間Sは、第1のマイクロチップ基板11と第2のマイクロチップ基板16との間に形成されており、微小流路Rに沿って伸びる環状の内側接合部21とマイクロチップ10の外周面10Aに沿って伸びる環状の外側接合部26との間に位置している。外側接合部26は、第1のマイクロチップ基板11および第2およびマイクロチップ基板16のそれぞれの接合面の外周縁部が接合されることによって形成されたものである。また、密閉空間Sは、内側障壁部22によって微小流路Rと隔てられている。
 この図の例において、第1のマイクロチップ基板11の接合面には、流路溝12を囲繞するように矩形環状の密閉空間用凹所15が形成されており、この密閉空間用凹所15が第2のマイクロチップ基板16によって閉塞されることにより密閉空間Sが形成されている。また、微小流路Rと密閉空間Sとを隔てる内側障壁部22は、第1のマイクロチップ基板11の接合面における流路溝12と密閉空間用凹所15との間に形成された内側土手部分によって構成されている。そして、その内側土手部分と第2のマイクロチップ基板16の接合面とが接合されることによって内側接合部21が形成されている。また、第1のマイクロチップ基板11の接合面においては、密閉空間用凹所15の外方側、すなわち外周縁部に外側土手部分が形成されており、その外側土手部分と第2のマイクロチップ基板16の接合面(具体的には、第2のマイクロチップ基板16の接合面の外周縁部)とが接合されることによって外側接合部26が形成されている。そして、外側土手部分により、外側障壁部27が構成されている。
 図2においては、内側接合部21と外側接合部26とが、破線によって囲まれて示されている。
Further, in the microchip 10, an annular sealed space S is formed inside the microchip 10 so as to surround the minute flow path R. The sealed space S is formed between the first microchip substrate 11 and the second microchip substrate 16, and has an annular inner joint portion 21 extending along the microchannel R and the outer periphery of the microchip 10. It is located between the annular outer joint 26 extending along the surface 10A. The outer bonding portion 26 is formed by bonding the outer peripheral edge portions of the bonding surfaces of the first microchip substrate 11 and the second and microchip substrates 16. The sealed space S is separated from the minute flow path R by the inner barrier portion 22.
In the example of this figure, a rectangular annular sealed space recess 15 is formed on the bonding surface of the first microchip substrate 11 so as to surround the flow channel groove 12, and this sealed space recess 15. Is closed by the second microchip substrate 16 to form a sealed space S. The inner barrier portion 22 that separates the microchannel R and the sealed space S is an inner bank formed between the channel groove 12 and the sealed space recess 15 in the joint surface of the first microchip substrate 11. It is composed of parts. And the inner side junction part 21 is formed by joining the inner bank part and the joining surface of the 2nd microchip board | substrate 16. FIG. In addition, an outer bank portion is formed on the outer side of the recessed portion 15 for the sealed space, that is, the outer peripheral edge portion, on the bonding surface of the first microchip substrate 11, and the outer bank portion and the second microchip are formed. The outer bonding portion 26 is formed by bonding the bonding surface of the substrate 16 (specifically, the outer peripheral edge portion of the bonding surface of the second microchip substrate 16). And the outer side barrier part 27 is comprised by the outer side bank part.
In FIG. 2, the inner joint portion 21 and the outer joint portion 26 are surrounded by a broken line.
 密閉空間Sの容積は、マイクロチップ10において必要とされる接合面積(具体的には、内側接合部21に係る接合面積と外側接合部26に係る接合面積との合計面積)に応じ、第1のマイクロチップ基板11および第2のマイクロチップ基板16の構成材料などを考慮して適宜に定められる。 The volume of the sealed space S depends on the bonding area required in the microchip 10 (specifically, the total area of the bonding area related to the inner bonding portion 21 and the bonding area related to the outer bonding portion 26). These are determined appropriately in consideration of the constituent materials of the microchip substrate 11 and the second microchip substrate 16.
 マイクロチップ10において、接合面積は、接合性(接合強さ)の観点から、接合面の面積(具体的には、第1のマイクロチップ基板11および第2のマイクロチップ基板16の接合面の面積)の10%以上であることが好ましく、さらに好ましくは10~40%である。
 接合面積が接合面の面積の10%未満の場合には、接合性が必ずしも良好とはならないおそれがある。また、接合面積が接合面の面積の40%を超える場合には、密閉空間Sの体積が相対的に小さくなり、結果として水分制御機能が不十分となるおそれがある。
In the microchip 10, the bonding area is the area of the bonding surface (specifically, the area of the bonding surfaces of the first microchip substrate 11 and the second microchip substrate 16 from the viewpoint of bonding properties (bonding strength). ) Is preferably 10% or more, more preferably 10 to 40%.
When the bonding area is less than 10% of the area of the bonding surface, the bonding property may not necessarily be good. Further, when the bonding area exceeds 40% of the area of the bonding surface, the volume of the sealed space S becomes relatively small, and as a result, the moisture control function may be insufficient.
 内側障壁部22の厚み(幅寸法)、すなわち微小流路Rと密閉空間Sとの離間距離は、少なくとも0.5mm以上であることが好ましい。
 内側障壁部22の厚みが過小である場合には、マイクロチップ基板成形用の金型における微細加工が必要になり製造コストが高くなる。また金型において精密な端部処理を行う必要がある。精密な端部処理を怠るとヒケやバリなど、貼り合わせにとって阻害要因となる形状を含んだマイクロチップ基板が成形されてしまうという問題が生じる。また貼り合わせ面積が微小になるため、接合によっては製造したマイクロチップの機械的強さ(接合強さ)が低下するほか、形成した流路をマイクロチップの微小流路Rとして使用する際に、流れる流体の注入圧力等で生じる外力によって内側障壁部が破断してしまう。従って、マイクロチップとしての品質に問題が生じるおそれがある。
 この図の例において、内側障壁部22の厚みは、0.5mmである。
The thickness (width dimension) of the inner barrier portion 22, that is, the separation distance between the micro flow path R and the sealed space S is preferably at least 0.5 mm or more.
When the thickness of the inner barrier portion 22 is too small, fine processing in a mold for forming a microchip substrate is required, resulting in an increase in manufacturing cost. In addition, it is necessary to perform precise edge processing in the mold. If precise end processing is neglected, there arises a problem that a microchip substrate including a shape that becomes an obstructive factor for bonding, such as sink marks and burrs, is formed. In addition, since the bonding area becomes small, the mechanical strength (bonding strength) of the manufactured microchip is reduced depending on the bonding, and when the formed channel is used as the microchannel R of the microchip, The inner barrier portion is broken by an external force generated by an injection pressure or the like of the flowing fluid. Therefore, there may be a problem in quality as a microchip.
In the example of this figure, the thickness of the inner barrier portion 22 is 0.5 mm.
 また、外側障壁部27の厚み(幅寸法)も、内側障壁部22の厚みと同様に、0.5mm以上であることが好ましい。
 外側障壁部27の厚みが過小である場合には、貼り合わせ面積が微小になるため、内側障壁部26のときと同様に、接合によって製造したマイクロチップの機械的強さ(接合強さ)が低下するほか、外側障壁部の破断に対する耐性に余裕がなくなるなど、マイクロチップとしての品質に問題が生じるおそれがある。
 この図の例において、外側障壁部27の厚みは、0.5mmである。
Further, the thickness (width dimension) of the outer barrier portion 27 is preferably 0.5 mm or more, similarly to the thickness of the inner barrier portion 22.
When the thickness of the outer barrier portion 27 is too small, the bonding area becomes very small. Therefore, as in the case of the inner barrier portion 26, the mechanical strength (bonding strength) of the microchip manufactured by bonding is small. In addition to the reduction, there is a risk that the quality of the microchip may be problematic, such as no more room for resistance to breakage of the outer barrier portion.
In the example of this figure, the thickness of the outer barrier portion 27 is 0.5 mm.
 密閉空間Sは、内側接合部21および外側接合部26において、マイクロチップ10の周囲環境雰囲気および微小流路Rの雰囲気を構成する気体中に存在する水分(HO分子)、並びに微小流路Rを流動する液体を構成する水分が浸透することに起因して水分量が増加することを抑制するための水分制御空間として用いられる。この水分制御空間は、水分吸着機能または水分ブロック機能を有するものである。 The sealed space S includes moisture (H 2 O molecules) present in the gas constituting the ambient atmosphere of the microchip 10 and the atmosphere of the microchannel R, and the microchannel in the inner joint portion 21 and the outer joint portion 26. It is used as a moisture control space for suppressing an increase in the amount of moisture due to the penetration of moisture constituting the liquid flowing through R. This moisture control space has a moisture adsorption function or a moisture blocking function.
 密閉空間Sが水分制御空間とされることにより、内側接合部21および外側接合部26における水分量が大きくなることに起因する第1のマイクロチップ基板11と第2のマイクロチップ基板16との間の剥離の発生を抑制することができる。
 具体的に説明すると、マイクロチップ10が、紫外線を照射した、第1のマイクロチップ基板11および第2のマイクロチップ基板16の接合面を密着する過程を経て接合されたものである場合には、接合界面(具体的には、内側接合部21および外側接合部26)において、境界層が形成されることがある。その境界層は、活性化された接合面に存在していた官能基(具体的には、ヒドロキシ基(-OH)、カルボキシ基(-COOH)およびアルデヒド基(-CHO)など)の一部が、脱水縮合反応、すなわち酸素の共有結合の生成に寄与せずに、接合界面に残存することに起因して形成され、水分からの影響を受けやすい、具体的には、水分が浸透しやすいものである。然るに、密閉空間Sが水分制御空間とされることによれば、水分吸着機能または水分ブロック機能により、境界層における水分量の増加を抑制することができるため、当該境界層の水分量が大きくなることに起因する第1のマイクロチップ基板11と第2のマイクロチップ基板16との間の剥離の発生を抑制することができる。
By making the sealed space S a moisture control space, the amount of moisture in the inner joint portion 21 and the outer joint portion 26 is increased, resulting in a space between the first microchip substrate 11 and the second microchip substrate 16. Generation | occurrence | production of peeling can be suppressed.
More specifically, when the microchip 10 is bonded through a process of closely contacting the bonding surfaces of the first microchip substrate 11 and the second microchip substrate 16 irradiated with ultraviolet rays, A boundary layer may be formed at the bonding interface (specifically, the inner bonding portion 21 and the outer bonding portion 26). The boundary layer includes a part of functional groups (specifically, hydroxy group (—OH), carboxy group (—COOH), aldehyde group (—CHO), etc.) present on the activated bonding surface. , Which is formed due to dehydration condensation reaction, that is, it does not contribute to the formation of covalent bonds of oxygen and remains at the bonding interface, and is susceptible to moisture, specifically, moisture easily penetrates It is. However, if the sealed space S is a moisture control space, an increase in the amount of moisture in the boundary layer can be suppressed by the moisture adsorption function or the moisture blocking function, so that the amount of moisture in the boundary layer increases. The occurrence of peeling between the first microchip substrate 11 and the second microchip substrate 16 can be suppressed.
 水分制御空間における水分吸着機能とは、内側接合部21に浸透した水分および外側接合部26に浸透した水分を吸着する機能である。
 而して、水分制御空間が水分吸着機能を有する場合には、内側接合部21および外側接合部26に浸透した水分が、水分制御空間に吸着される。具体的に説明すると、図3に示すように、マイクロチップ10においては、当該マイクロチップ10の周囲環境雰囲気を構成する気体中に存在する水分Wが外側接合部26(境界層)に浸透する場合、および、微小流路Rの雰囲気を構成する気体中に存在する水分Wや微小流路Rを流動する液体を構成する水分が内側接合部21(境界層)に浸透する場合がある。そのような場合において、水分制御空間が水分吸着機能を有することによれば、図4に示すように、内側接合部21および外側接合部26に浸透した水分Wが、水分制御空間に吸着される。そのため、内側接合部21および外側接合部26の水分量、すなわち残留する浸透水分量を低減させることができる。
The moisture adsorption function in the moisture control space is a function of adsorbing moisture that has penetrated into the inner joint portion 21 and moisture that has penetrated into the outer joint portion 26.
Thus, when the moisture control space has a moisture adsorption function, moisture that has penetrated into the inner joint portion 21 and the outer joint portion 26 is adsorbed to the moisture control space. Specifically, as shown in FIG. 3, in the microchip 10, when moisture W present in the gas constituting the ambient atmosphere of the microchip 10 penetrates the outer joint portion 26 (boundary layer). In some cases, moisture W present in the gas constituting the atmosphere of the minute flow path R and moisture constituting the liquid flowing through the minute flow path R permeate the inner joint portion 21 (boundary layer). In such a case, according to the moisture control space having a moisture adsorption function, as shown in FIG. 4, moisture W that has penetrated into the inner joint portion 21 and the outer joint portion 26 is adsorbed to the moisture control space. . Therefore, it is possible to reduce the moisture content of the inner joint portion 21 and the outer joint portion 26, that is, the remaining permeated moisture amount.
 密閉空間Sに水分吸着機能を付与して、当該密閉空間Sを水分制御空間として利用するための手法としては、例えば、密閉空間Sに吸湿剤を充填する手法、および、密閉空間Sを減圧状態、すなわち減圧雰囲気(真空雰囲気)とする手法が挙げられる。 As a technique for providing a moisture adsorption function to the sealed space S and using the sealed space S as a moisture control space, for example, a technique of filling the sealed space S with a hygroscopic agent, That is, there is a method of reducing the pressure (vacuum atmosphere).
 密閉空間Sに吸湿剤を充填する手法において、吸湿剤としては、種々の乾燥剤を用いることができる。乾燥剤の具体例としては、シリカゲルなどが挙げられる。また、乾燥剤の形状は、粉末状体、繊維体、フィルム体およびその他の形状であってもよく、また、乾燥剤は、密閉空間Sにおいて塗布膜に含有された状態で充填されていてもよい。 In the method of filling the sealed space S with a hygroscopic agent, various desiccants can be used as the hygroscopic agent. Specific examples of the desiccant include silica gel. Further, the shape of the desiccant may be a powdery body, a fiber body, a film body, and other shapes, and the desiccant may be filled in a state of being contained in the coating film in the sealed space S. Good.
 密閉空間Sを減圧状態とする手法において、減圧雰囲気における雰囲気圧力は、50kPa以下であることが好ましい。
 本発明者らの実験によれば、減圧状態の密閉空間Sの圧力を50kPa以下とすることにより、内側接合部21および外側接合部26に浸透した水分の水分吸着機能を十分に密閉空間Sに持たせることが可能となり、水分に起因するマイクロチップ基板同士の剥離を十分に低減できることが分かった。
In the method of bringing the sealed space S into a reduced pressure state, the atmospheric pressure in the reduced pressure atmosphere is preferably 50 kPa or less.
According to the experiments by the present inventors, by setting the pressure in the sealed space S in a reduced pressure state to 50 kPa or less, the moisture adsorption function of moisture that has permeated the inner joint portion 21 and the outer joint portion 26 is sufficiently set in the sealed space S. It was found that separation between microchip substrates due to moisture can be sufficiently reduced.
 また、水分制御空間における水分ブロック機能とは、内側接合部21および外側接合部26に、マイクロチップ10の周囲環境雰囲気および微小流路Rの雰囲気を構成する気体中に存在する水分(HO分子)、並びに微小流路Rを流動する液体を構成する水分が浸透することを抑制する機能である。
 而して、水分制御空間が水分ブロック機能を有する場合には、図5に示すように、内側接合部21において、微小流路Rの雰囲気を構成する気体中に存在する水分Wや微小流路Rを流動する液体を構成する水分Wが浸透することを防止または十分に抑制することができる。また、外側接合部26において、マイクロチップ10の周囲環境雰囲気を構成する気体中に存在する水分Wが浸透することを防止または十分に抑制することができる。
In addition, the moisture blocking function in the moisture control space refers to the moisture (H 2 O) present in the gas constituting the ambient environment atmosphere of the microchip 10 and the atmosphere of the microchannel R at the inner joint portion 21 and the outer joint portion 26. Molecule), and a function of suppressing the penetration of moisture constituting the liquid flowing through the microchannel R.
Thus, when the moisture control space has a moisture blocking function, as shown in FIG. 5, the moisture W or the minute channel present in the gas constituting the atmosphere of the minute channel R at the inner joint portion 21. It is possible to prevent or sufficiently suppress the penetration of moisture W constituting the liquid flowing through R. In addition, it is possible to prevent or sufficiently suppress the penetration of moisture W present in the gas constituting the ambient environment atmosphere of the microchip 10 in the outer joint portion 26.
 密閉空間Sに水分ブロック機能を付与して、当該密閉空間Sを水分制御空間として利用するための手法としては、例えば、密閉空間Sに含有水分量が著しく低い乾燥不活性ガスを充填する、具体的には、密閉空間Sに、乾燥不活性ガスを、大気圧または大気圧より高い圧力(陽圧)で封入する手法が挙げられる。 As a method for providing the sealed space S with a moisture blocking function and using the sealed space S as a moisture control space, for example, the sealed space S is filled with a dry inert gas having a remarkably low moisture content. Specifically, a method in which the dry inert gas is sealed in the sealed space S at an atmospheric pressure or a pressure higher than the atmospheric pressure (positive pressure) can be mentioned.
 密閉空間Sに大気圧または陽圧で乾燥不活性ガスを封入する手法において、乾燥不活性ガスを構成する不活性ガスとしては、窒素ガスが挙げられる。
 また、乾燥不活性ガスにおける含有水分量は、露点温度-40℃以下であることが好ましい。
In the method of sealing the dry inert gas in the sealed space S at atmospheric pressure or positive pressure, nitrogen gas is an example of the inert gas constituting the dry inert gas.
The water content in the dry inert gas is preferably a dew point temperature of −40 ° C. or lower.
 密閉空間Sに大気圧または陽圧で乾燥不活性ガスを封入する手法において、乾燥不活性ガスが封入された密閉空間Sの圧力は、0.1MPa~0.5MPaであればよく、0.1MPa~0.2MPaであることがより好ましい。
 乾燥不活性ガスが充填された密閉空間Sの圧力が過小である場合には、水分ブロック機能が低下するおそれがある。
 一方、乾燥不活性ガスが充填された密閉空間Sの圧力が過大である場合には、マイクロチップ基板同士の接合力が弱くなるおそれがある。
In the method of sealing the dry inert gas in the sealed space S at atmospheric pressure or positive pressure, the pressure in the sealed space S in which the dry inert gas is sealed may be 0.1 MPa to 0.5 MPa, More preferably, it is -0.2 MPa.
If the pressure in the sealed space S filled with the dry inert gas is too low, the moisture blocking function may be lowered.
On the other hand, when the pressure in the sealed space S filled with the dry inert gas is excessive, the bonding force between the microchip substrates may be weakened.
 このような構成を有するマイクロチップ10は、密閉空間Sに付与する機能に応じた適宜の方法によって製造することができる。
 以下、マイクロチップ10の製造方法の具体例を、図を用いて説明する。
 以下において、第1の製造方法は、密閉空間Sを、吸湿剤を充填することによって水分吸着機能を有する水分制御空間として用いるマイクロチップ10を製造する方法である。第2の製造方法は、密閉空間Sを、減圧状態とすることによって水分吸着機能を有する水分制御空間として用いるマイクロチップ10を製造する方法である。また、第3の製造方法は、密閉空間Sに、大気圧または陽圧で乾燥不活性ガスを封入することによって、当該密閉空間Sを水分ブロック機能を有する水分制御空間として用いるマイクロチップ10を製造する方法である。
The microchip 10 having such a configuration can be manufactured by an appropriate method according to the function to be imparted to the sealed space S.
Hereinafter, a specific example of the manufacturing method of the microchip 10 will be described with reference to the drawings.
In the following, the first manufacturing method is a method of manufacturing the microchip 10 that uses the sealed space S as a moisture control space having a moisture adsorption function by filling a hygroscopic agent. The second manufacturing method is a method of manufacturing the microchip 10 that is used as a moisture control space having a moisture adsorption function by making the sealed space S into a reduced pressure state. Further, the third manufacturing method manufactures the microchip 10 using the sealed space S as a moisture control space having a moisture blocking function by enclosing the dry inert gas in the sealed space S at atmospheric pressure or positive pressure. It is a method to do.
〔第1の製造方法〕
 まず、図6に示すように、例えばCOPよりなる第1のマイクロチップ基板11と、例えばCOPよりなる第2のマイクロチップ基板16と、例えばシリカゲルよりなる吸湿剤29とを用意する。第1のマイクロチップ基板11は、接合面(図6(a)、図6(b)および図6(d)における上面)に流路溝12および密閉空間用凹所15が形成され、また注入口用貫通孔13および排出口用貫通孔14が形成された略矩形平板状のものである。また、第2のマイクロチップ基板16は、第1のマイクロチップ基板11の接合面と同等の縦横寸法の接合面(図6(c)における上面であって図6(d)における下面)を有する矩形平板状のものである。
[First production method]
First, as shown in FIG. 6, a first microchip substrate 11 made of, for example, COP, a second microchip substrate 16 made of, for example, COP, and a hygroscopic agent 29 made of, for example, silica gel are prepared. The first microchip substrate 11 has a channel groove 12 and a sealed space recess 15 formed on a bonding surface (upper surface in FIGS. 6A, 6B, and 6D). It has a substantially rectangular flat plate shape in which the inlet through hole 13 and the outlet through hole 14 are formed. Further, the second microchip substrate 16 has a joint surface (an upper surface in FIG. 6C and a lower surface in FIG. 6D) having the same vertical and horizontal dimensions as the joint surface of the first microchip substrate 11. It is a rectangular flat plate.
(吸湿剤充填工程)
 吸湿剤充填工程においては、図6(a)に示すように、第1のマイクロチップ基板11における密閉空間用凹所15に吸湿剤29を充填する。
 この吸湿剤充填工程において、密閉空間用凹所15に吸湿剤29を充填する具体的な方法としては、例えば、粉末状の乾燥剤粉末をエタノールに分散させ、この分散液をピンセットや筆、ディスペンサーで密閉空間用凹所15の表面に塗布し、この塗布工程後の乾燥工程により溶媒であるエタノールを乾燥、除去することにより、当該密閉空間用凹所15に吸湿剤29を充填する手法が用いられる。
(Hygroscopic agent filling process)
In the hygroscopic agent filling step, as shown in FIG. 6A, the hygroscopic agent 29 is filled in the sealed space recess 15 in the first microchip substrate 11.
In this hygroscopic agent filling step, as a specific method for filling the recessed space 15 with the hygroscopic agent 29, for example, a powdery desiccant powder is dispersed in ethanol, and this dispersion is used for tweezers, brushes, dispensers The method of filling the recessed space 15 with the hygroscopic agent 29 by applying ethanol on the surface of the sealed space recess 15 and drying and removing ethanol as a solvent in the drying process after the coating process. It is done.
(紫外線照射工程)
 紫外線照射工程においては、図6(b)および図6(c)に示すように、吸湿剤充填工程を経た第1のマイクロチップ基板11の接合面および第2のマイクロチップ基板16の接合面のそれぞれに対して、酸素を含む雰囲気中(例えば、大気中)において、波長200nm以下の真空紫外線L1,L2を照射する。
 この紫外線照射工程を経ることにより、真空紫外線L1,L2が照射された第1のマイクロチップ基板11の接合面および第2のマイクロチップ基板16の接合面が活性化される。具体的には、接合面に付着していた有機物が分解・除去され、また、接合面においてラジカルが生成されると共に、反応性の高い官能基(具体的には、酸素原子を含む官能基)が生成される。ここに、第1のマイクロチップ基板11および第2のマイクロチップ基板16がCOPよりなる場合には、第1のマイクロチップ基板11の接合面および第2のマイクロチップ基板16の接合面は、紫外線照射工程を経ることにより、ヒドロキシ基(-OH)、カルボキシ基(-COOH)およびアルデヒド基(-CHO)などの官能基が結合した状態となる。
(UV irradiation process)
In the ultraviolet irradiation process, as shown in FIG. 6B and FIG. 6C, the bonding surface of the first microchip substrate 11 and the bonding surface of the second microchip substrate 16 that have undergone the hygroscopic agent filling step. Each is irradiated with vacuum ultraviolet rays L1 and L2 having a wavelength of 200 nm or less in an oxygen-containing atmosphere (for example, in the air).
Through this ultraviolet irradiation process, the bonding surface of the first microchip substrate 11 and the bonding surface of the second microchip substrate 16 irradiated with the vacuum ultraviolet rays L1 and L2 are activated. Specifically, organic substances adhering to the bonding surface are decomposed and removed, radicals are generated on the bonding surface, and highly reactive functional groups (specifically, functional groups containing oxygen atoms). Is generated. Here, when the first microchip substrate 11 and the second microchip substrate 16 are made of COP, the bonding surface of the first microchip substrate 11 and the bonding surface of the second microchip substrate 16 are ultraviolet rays. Through the irradiation step, functional groups such as a hydroxy group (—OH), a carboxy group (—COOH), and an aldehyde group (—CHO) are bonded.
 紫外線照射工程において、真空紫外線L1,L2を放射する光源としては、波長172nmに中心波長を有する真空紫外線を放射するキセノンエキシマランプなどのエキシマランプを好適に用いることができる。
 第1のマイクロチップ基板11の接合面および第2のマイクロチップ基板16の接合面の各々に照射される真空紫外線L1,L2の放射照度は、例えば10~100mW/cmであり、特に40mW/cmが好ましい。
 また、第1のマイクロチップ基板11の接合面および第2のマイクロチップ16の接合面の各々に対する真空紫外線L1,L2の照射時間は、第1のマイクロチップ基板11および第2のマクロチップ基板16の構成材料、および第1のマイクロチップ基板11および第2のマイクロチップ基板16の接合面の状態などに応じ、吸湿剤29の種類を考慮して適宜設定されるが、例えば5~120秒間であり、特に60秒間が好ましい。
In the ultraviolet irradiation step, an excimer lamp such as a xenon excimer lamp that emits a vacuum ultraviolet ray having a central wavelength at a wavelength of 172 nm can be suitably used as a light source that emits the vacuum ultraviolet rays L1 and L2.
The irradiance of the vacuum ultraviolet rays L1 and L2 applied to each of the bonding surface of the first microchip substrate 11 and the bonding surface of the second microchip substrate 16 is, for example, 10 to 100 mW / cm 2 , particularly 40 mW / cm 2. cm 2 is preferred.
In addition, the irradiation time of the vacuum ultraviolet rays L1 and L2 on each of the bonding surface of the first microchip substrate 11 and the bonding surface of the second microchip 16 is determined by the first microchip substrate 11 and the second macrochip substrate 16. Depending on the constituent materials and the state of the bonding surfaces of the first microchip substrate 11 and the second microchip substrate 16, the type of the hygroscopic agent 29 is appropriately set. In particular, 60 seconds is preferable.
(接合工程)
 接合工程においては、図6(d)に示すように、紫外線照射工程を経た第1のマイクロチップ基板11および第2のマイクロチップ基板16を、それぞれの接合面が互いに密着した状態となるように積層する。その後、第1のマイクロチップ基板11と第2のマイクロチップ基板16との積層体を、加圧または加熱する。あるいは、第1のマイクロチップ基板11と第2のマイクロチップ基板16との積層体を、加圧しながら加熱する。
 この接合工程を経ることにより、第1のマイクロチップ基板11および第2のマイクロチップ基板16の接合面同士が接触した領域、すなわち接合界面において、脱水縮合反応が生じて酸素(O)の共有結合が生成され、その酸素の共有結合により、両マイクロチップ基板が強固に接合される。その結果、第1のマイクロチップ基板11と第2のマイクロチップ基板16とが接合され、密閉空間Sが、吸湿剤29の充填によって水分吸着機能を有する水分制御空間とされてなるマイクロチップ10が得られる。
(Joining process)
In the bonding step, as shown in FIG. 6D, the first microchip substrate 11 and the second microchip substrate 16 that have undergone the ultraviolet irradiation step are brought into a state in which their respective bonding surfaces are in close contact with each other. Laminate. Thereafter, the laminated body of the first microchip substrate 11 and the second microchip substrate 16 is pressurized or heated. Or the laminated body of the 1st microchip board | substrate 11 and the 2nd microchip board | substrate 16 is heated, pressing.
Through this bonding step, a dehydration condensation reaction occurs in the region where the bonding surfaces of the first microchip substrate 11 and the second microchip substrate 16 are in contact with each other, that is, the bonding interface, so that oxygen (O) is covalently bonded. And the microchip substrates are firmly bonded to each other by the covalent bond of oxygen. As a result, the microchip 10 in which the first microchip substrate 11 and the second microchip substrate 16 are joined and the sealed space S is made into a moisture control space having a moisture adsorption function by filling the moisture absorbent 29 is obtained. can get.
 接合工程において、加圧条件や加熱条件は、第1のマイクロチップ基板11の構成材料および第2のマイクロチップ基板16の構成材料に応じ、吸湿剤29の種類を考慮して適宜設定される。また、加圧時間および加熱時間は、加圧条件や加熱条件に応じた所定時間とされる。ここに、所定時間とは、基本的に、両マイクロチップ基板の接合界面において脱水縮合反応が進行し、両マイクロチップ基板の接合が十分になされるまでに要する時間である。 In the bonding step, the pressurizing condition and heating condition are appropriately set in consideration of the type of the moisture absorbent 29 according to the constituent material of the first microchip substrate 11 and the constituent material of the second microchip substrate 16. Further, the pressurizing time and the heating time are set to a predetermined time according to the pressurizing condition and the heating condition. Here, the predetermined time is basically the time required for the dehydration condensation reaction to proceed at the bonding interface between the two microchip substrates and sufficient bonding between the two microchip substrates.
 また、接合工程においては、第1のマイクロチップ基板11と第2のマイクロチップ基板16との積層体を加圧する場合には、必要に応じて、積層体を所定時間加圧した後、さらに所定時間加熱してもよい。具体的には、積層体の加圧状態を所定時間にわたって維持し、その後、その加圧状態を解除し、積層体の温度を所定温度まで上昇させ、その温度を、所期の接合状態が得られるまで維持するようにしてもよい。ここに、所定温度とは、積層体(第1のマイクロチップ基板11および第2のマイクロチップ基板16)に変形が生じることのない温度である。
 積層体を加圧した後に加熱することによれば、加圧後の積層体における接合界面に、十分な接合状態が得られている部分と、十分な接合状態が得られていない部分とが混在している場合であっても、加熱により、十分な接合状態が得られていない部分において、その接合状態を、所期の状態とすることができる。
In the bonding step, when the laminate of the first microchip substrate 11 and the second microchip substrate 16 is pressurized, the laminate is pressurized for a predetermined time as necessary, and then further predetermined. You may heat for hours. Specifically, the pressurization state of the laminate is maintained for a predetermined time, and thereafter, the pressurization state is released, the temperature of the laminate is increased to a predetermined temperature, and the desired bonding state is obtained. You may make it maintain until it is done. Here, the predetermined temperature is a temperature at which the laminated body (the first microchip substrate 11 and the second microchip substrate 16) is not deformed.
According to heating after pressurizing the laminated body, a part where a sufficient bonding state is obtained and a part where a sufficient bonding state is not obtained are mixed in the bonding interface in the laminated body after pressing. Even if it is the case where it is doing, the joining state can be made into an intended state in the part in which sufficient joining state was not obtained by heating.
 また、接合工程は、紫外線照射工程が完了してから10分間以内に行うことが好ましい。
 紫外線照射工程が完了してから接合工程を開始するまでの時間が10分間を超える場合には、第1のマイクロチップ基板11の接合面および第2のマイクロチップ基板16の接合面に、水分(余剰水分)や不純物が再付着するおそれがある。そのため、得られるマイクロチップ10において、第1のマイクロチップ基板11と第2のマイクロチップ基板16との間に、高い強度の接合状態を確実に達成することが困難となるおそれがある。
Moreover, it is preferable to perform a joining process within 10 minutes after an ultraviolet irradiation process is completed.
When the time from the completion of the ultraviolet irradiation process to the start of the bonding process exceeds 10 minutes, moisture (on the bonding surface of the first microchip substrate 11 and the bonding surface of the second microchip substrate 16) There is a risk that excess water) and impurities will re-adhere. Therefore, in the obtained microchip 10, it may be difficult to reliably achieve a high-strength bonding state between the first microchip substrate 11 and the second microchip substrate 16.
〔第2の製造方法〕
 まず、図7に示すように、例えばCOPよりなる第1のマイクロチップ基板11と、例えばCOPよりなる第2のマイクロチップ基板16とを用意する。第1のマイクロチップ基板11は、接合面(図7(a)および図7(c)における上面)に流路溝12および密閉空間用凹所15が形成され、また注入口用貫通孔13および排出口用貫通孔14が形成された略矩形平板状のものである。また、第2のマイクロチップ基板16は、第1のマイクロチップ基板11の接合面と同等の縦横寸法の接合面(図7(b)における上面であって図7(c)における下面)を有する矩形平板状のものである。
[Second production method]
First, as shown in FIG. 7, a first microchip substrate 11 made of, for example, COP and a second microchip substrate 16 made of, for example, COP are prepared. The first microchip substrate 11 has a channel groove 12 and a sealed space recess 15 formed in the joint surface (the upper surface in FIGS. 7A and 7C), and the inlet through-hole 13 and It has a substantially rectangular flat plate shape in which the discharge port through hole 14 is formed. Further, the second microchip substrate 16 has a bonding surface (the upper surface in FIG. 7B and the lower surface in FIG. 7C) having the same vertical and horizontal dimensions as the bonding surface of the first microchip substrate 11. It is a rectangular flat plate.
(紫外線照射工程)
 紫外線照射工程においては、図7(a)および図7(b)に示すように、第1のマイクロチップ基板11の接合面および第2のマイクロチップ基板16の接合面のそれぞれに対して、酸素を含む雰囲気中(例えば大気中)において、波長200nm以下の真空紫外線L1,L2を照射する。
 この紫外線照射工程を経ることにより、真空紫外線L1,L2が照射された第1のマイクロチップ基板11の接合面および第2のマイクロチップ基板16の接合面が活性化される。具体的には、接合面に付着していた有機物が分解・除去され、また、接合面においてラジカルが生成されると共に、反応性の高い官能基(具体的には、酸素原子を含む官能基)が生成される。
(UV irradiation process)
In the ultraviolet irradiation process, as shown in FIGS. 7A and 7B, oxygen is applied to each of the bonding surface of the first microchip substrate 11 and the bonding surface of the second microchip substrate 16. In an atmosphere including the atmosphere (for example, in the atmosphere), vacuum ultraviolet rays L1 and L2 having a wavelength of 200 nm or less are irradiated.
Through this ultraviolet irradiation process, the bonding surface of the first microchip substrate 11 and the bonding surface of the second microchip substrate 16 irradiated with the vacuum ultraviolet rays L1 and L2 are activated. Specifically, organic substances adhering to the bonding surface are decomposed and removed, radicals are generated on the bonding surface, and highly reactive functional groups (specifically, functional groups containing oxygen atoms). Is generated.
 紫外線照射工程において、真空紫外線L1,L2を放射する光源としては、波長172nmに中心波長を有する真空紫外線を放射するキセノンエキシマランプなどのエキシマランプを好適に用いることができる。
 第1のマイクロチップ基板11の接合面および第2のマイクロチップ基板16の接合面の各々に照射される真空紫外線L1,L2の放射照度は、例えば10~100mW/cmであり、特に40mW/cmが好ましい。
 また、第1のマイクロチップ基板11の接合面および第2のマイクロチップ16の接合面の各々に対する真空紫外線L1,L2の照射時間は、第1のマイクロチップ基板11および第2のマクロチップ基板16の構成材料、および第1のマイクロチップ基板11および第2のマイクロチップ基板16の接合面の状態などに応じて適宜設定されるが、例えば5~120秒間であり、特に60秒間が好ましい。
In the ultraviolet irradiation step, an excimer lamp such as a xenon excimer lamp that emits a vacuum ultraviolet ray having a central wavelength at a wavelength of 172 nm can be suitably used as a light source that emits the vacuum ultraviolet rays L1 and L2.
The irradiance of the vacuum ultraviolet rays L1 and L2 applied to each of the bonding surface of the first microchip substrate 11 and the bonding surface of the second microchip substrate 16 is, for example, 10 to 100 mW / cm 2 , particularly 40 mW / cm 2. cm 2 is preferred.
In addition, the irradiation time of the vacuum ultraviolet rays L1 and L2 on each of the bonding surface of the first microchip substrate 11 and the bonding surface of the second microchip 16 is determined by the first microchip substrate 11 and the second macrochip substrate 16. Depending on the constituent materials and the state of the bonding surfaces of the first microchip substrate 11 and the second microchip substrate 16, etc., it is appropriately set. For example, it is 5 to 120 seconds, and particularly preferably 60 seconds.
(接合工程)
 接合工程においては、まず、紫外線照射工程を経た第1のマイクロチップ基板11および第2のマイクロチップ基板16が存在する雰囲気、すなわち第1のマイクロチップ基板11と第2のマイクロチップ16との接合を行う雰囲気を、減圧雰囲気(真空雰囲気)とする。次いで、図7(c)に示すように、第1のマイクロチップ基板11および第2のマイクロチップ基板16を、それぞれの接合面が互いに密着した状態となるように積層する。その後、第1のマイクロチップ基板11と第2のマイクロチップ基板16との積層体を、加圧または加熱する。あるいは、第1のマイクロチップ基板11と第2のマイクロチップ基板16との積層体を、加圧しながら加熱する。
 この接合工程を経ることにより、第1のマイクロチップ基板11および第2のマイクロチップ基板16の接合面同士が接触した領域、すなわち接合界面において、脱水縮合反応が生じて酸素(O)の共有結合が生成され、その酸素の共有結合により、両マイクロチップ基板が強固に接合される。その結果、第1のマイクロチップ基板11と第2のマイクロチップ基板16とが接合され、密閉空間Sが、減圧状態とされることによって水分吸着機能を有する水分制御空間とされてなるマイクロチップ10が得られる。
(Joining process)
In the bonding step, first, the atmosphere in which the first microchip substrate 11 and the second microchip substrate 16 that have undergone the ultraviolet irradiation step exist, that is, the bonding between the first microchip substrate 11 and the second microchip 16. The atmosphere in which is performed is a reduced pressure atmosphere (vacuum atmosphere). Next, as shown in FIG. 7C, the first microchip substrate 11 and the second microchip substrate 16 are laminated so that their bonding surfaces are in close contact with each other. Thereafter, the laminated body of the first microchip substrate 11 and the second microchip substrate 16 is pressurized or heated. Or the laminated body of the 1st microchip board | substrate 11 and the 2nd microchip board | substrate 16 is heated, pressing.
Through this bonding step, a dehydration condensation reaction occurs in the region where the bonding surfaces of the first microchip substrate 11 and the second microchip substrate 16 are in contact with each other, that is, the bonding interface, so that oxygen (O) is covalently bonded. And the microchip substrates are firmly bonded to each other by the covalent bond of oxygen. As a result, the first microchip substrate 11 and the second microchip substrate 16 are joined, and the sealed space S is made into a moisture control space having a moisture adsorption function by being in a reduced pressure state. Is obtained.
 接合工程において、接合を行う雰囲気(減圧雰囲気)の雰囲気圧力は、50kPa以下とされる。
 減圧雰囲気の雰囲気圧力が過大である場合には、得られるマイクロチップ10において、密閉空間Sに、所期の水分吸着機能を付与することができなくなるおそれがある。
In the bonding step, the atmospheric pressure of the atmosphere for performing the bonding (reduced pressure atmosphere) is set to 50 kPa or less.
When the atmospheric pressure of the reduced-pressure atmosphere is excessive, there is a possibility that the desired moisture adsorption function cannot be imparted to the sealed space S in the obtained microchip 10.
 また、接合工程において、加圧条件や加熱条件は、第1のマイクロチップ基板11の構成材料および第2のマイクロチップ基板16の構成材料に応じて適宜設定される。また、加圧時間および加熱時間は、加圧条件や加熱条件に応じた所定時間とされる。 In the bonding process, the pressurizing condition and heating condition are appropriately set according to the constituent material of the first microchip substrate 11 and the constituent material of the second microchip substrate 16. Further, the pressurizing time and the heating time are set to a predetermined time according to the pressurizing condition and the heating condition.
 また、接合工程においては、第1のマイクロチップ基板11と第2のマイクロチップ基板16との積層体を加圧する場合には、必要に応じて、積層体を所定時間加圧した後、さらに所定時間加熱してもよい。具体的には、積層体の加圧状態を所定時間にわたって維持し、その後、その加圧状態を解除し、積層体の温度を所定温度まで上昇させ、その温度を、所期の接合状態が得られるまで維持するようにしてもよい。ここに、所定温度とは、積層体(第1のマイクロチップ基板11および第2のマイクロチップ基板16)に変形が生じることのない温度である。
 積層体を加圧した後に加熱することによれば、加圧後の積層体における接合界面に、十分な接合状態が得られている部分と、十分な接合状態が得られていない部分とが混在している場合であっても、加熱により、十分な接合状態が得られていない部分において、その接合状態を、所期の状態とすることができる。
In the bonding step, when the laminate of the first microchip substrate 11 and the second microchip substrate 16 is pressurized, the laminate is pressurized for a predetermined time as necessary, and then further predetermined. You may heat for hours. Specifically, the pressurization state of the laminate is maintained for a predetermined time, and thereafter, the pressurization state is released, the temperature of the laminate is increased to a predetermined temperature, and the desired bonding state is obtained. You may make it maintain until it is done. Here, the predetermined temperature is a temperature at which the laminated body (the first microchip substrate 11 and the second microchip substrate 16) is not deformed.
According to heating after pressurizing the laminated body, a part where a sufficient bonding state is obtained and a part where a sufficient bonding state is not obtained are mixed in the bonding interface in the laminated body after pressing. Even if it is the case where it is doing, the joining state can be made into an intended state in the part in which sufficient joining state was not obtained by heating.
 また、接合工程は、紫外線照射工程が完了してから10分間以内に行うことが好ましい。
 紫外線照射工程が完了してから接合工程を開始するまでの時間が10分間を超える場合には、第1のマイクロチップ基板11の接合面および第2のマイクロチップ基板16の接合面に、水分(余剰水分)や不純物が再付着するおそれがある。そのため、得られるマイクロチップ10において、第1のマイクロチップ基板11と第2のマイクロチップ基板16との間に、高い強度の接合状態を確実に達成することが困難となるおそれがある。
Moreover, it is preferable to perform a joining process within 10 minutes after an ultraviolet irradiation process is completed.
When the time from the completion of the ultraviolet irradiation process to the start of the bonding process exceeds 10 minutes, moisture (on the bonding surface of the first microchip substrate 11 and the bonding surface of the second microchip substrate 16) There is a risk that excess water) and impurities will re-adhere. Therefore, in the obtained microchip 10, it may be difficult to reliably achieve a high-strength bonding state between the first microchip substrate 11 and the second microchip substrate 16.
〔第3の製造方法〕
 まず、図8に示すように、例えばCOPよりなる第1のマイクロチップ基板11と、例えばCOPよりなる第2のマイクロチップ基板16とを用意する。第1のマイクロチップ基板11は、接合面(図8(a)および図8(c)における上面)に流路溝12および密閉空間用凹所15が形成され、また注入口用貫通孔13および排出口用貫通孔14が形成された略矩形平板状のものである。また、第2のマイクロチップ基板16は、第1のマイクロチップ基板11の接合面と同等の縦横寸法の接合面(図8(b)における上面であって図8(c)における下面)を有する矩形平板状のものである。
[Third production method]
First, as shown in FIG. 8, a first microchip substrate 11 made of COP, for example, and a second microchip substrate 16 made of COP, for example, are prepared. The first microchip substrate 11 has a channel groove 12 and a sealed space recess 15 formed in the bonding surface (upper surface in FIGS. 8A and 8C), and the inlet through-hole 13 and It has a substantially rectangular flat plate shape in which the discharge port through hole 14 is formed. The second microchip substrate 16 has a bonding surface (the upper surface in FIG. 8B and the lower surface in FIG. 8C) having the same vertical and horizontal dimensions as the bonding surface of the first microchip substrate 11. It is a rectangular flat plate.
(紫外線照射工程)
 紫外線照射工程においては、図8(a)および図8(b)に示すように、第1のマイクロチップ基板11の接合面および第2のマイクロチップ基板16の接合面のそれぞれに対して、酸素を含む雰囲気中(大気中)において、波長200nm以下の真空紫外線L1,L2を照射する。
 この紫外線照射工程を経ることにより、真空紫外線L1,L2が照射された第1のマイクロチップ基板11の接合面および第2のマイクロチップ基板16の接合面が活性化される。具体的には、接合面に付着していた有機物が分解・除去され、また、接合面においてラジカルが生成されると共に、反応性の高い官能基(具体的には、酸素原子を含む官能基)が生成される。
(UV irradiation process)
In the ultraviolet irradiation process, as shown in FIGS. 8A and 8B, oxygen is applied to each of the bonding surface of the first microchip substrate 11 and the bonding surface of the second microchip substrate 16. In the atmosphere (in the atmosphere) containing, vacuum ultraviolet rays L1 and L2 having a wavelength of 200 nm or less are irradiated.
Through this ultraviolet irradiation process, the bonding surface of the first microchip substrate 11 and the bonding surface of the second microchip substrate 16 irradiated with the vacuum ultraviolet rays L1 and L2 are activated. Specifically, organic substances adhering to the bonding surface are decomposed and removed, radicals are generated on the bonding surface, and highly reactive functional groups (specifically, functional groups containing oxygen atoms). Is generated.
 紫外線照射工程において、真空紫外線L1,L2を放射する光源としては、波長172nmに中心波長を有する真空紫外線を放射するキセノンエキシマランプなどのエキシマランプを好適に用いることができる。
 第1のマイクロチップ基板11の接合面および第2のマイクロチップ基板16の接合面の各々に照射される真空紫外線L1,L2の放射照度は、例えば10~100mW/cmであり、特に40mW/cmが好ましい。
 また、第1のマイクロチップ基板11の接合面および第2のマイクロチップ16の接合面の各々に対する真空紫外線L1,L2の照射時間は、第1のマイクロチップ基板11および第2のマクロチップ基板16の構成材料、および第1のマイクロチップ基板11および第2のマイクロチップ基板16の接合面の状態などに応じて適宜設定されるが、例えば5~120秒間であり、特に60秒間が好ましい。
In the ultraviolet irradiation step, an excimer lamp such as a xenon excimer lamp that emits a vacuum ultraviolet ray having a central wavelength at a wavelength of 172 nm can be suitably used as a light source that emits the vacuum ultraviolet rays L1 and L2.
The irradiance of the vacuum ultraviolet rays L1 and L2 applied to each of the bonding surface of the first microchip substrate 11 and the bonding surface of the second microchip substrate 16 is, for example, 10 to 100 mW / cm 2 , particularly 40 mW / cm 2. cm 2 is preferred.
In addition, the irradiation time of the vacuum ultraviolet rays L1 and L2 on each of the bonding surface of the first microchip substrate 11 and the bonding surface of the second microchip 16 is determined by the first microchip substrate 11 and the second macrochip substrate 16. Depending on the constituent materials and the state of the bonding surfaces of the first microchip substrate 11 and the second microchip substrate 16, etc., it is appropriately set. For example, it is 5 to 120 seconds, and particularly preferably 60 seconds.
(接合工程)
 接合工程においては、まず、紫外線照射工程を経た第1のマイクロチップ基板11および第2のマイクロチップ基板16が存在する雰囲気、すなわち第1のマイクロチップ基板11と第2のマイクロチップ16との接合を行う雰囲気を、含有水分量が著しく低い乾燥不活性ガスよりなる乾燥不活性ガス雰囲気とする。次いで、図8(c)に示すように、第1のマイクロチップ基板11および第2のマイクロチップ基板16を、それぞれの接合面が互いに密着した状態となるように積層する。その後、第1のマイクロチップ基板11と第2のマイクロチップ基板16との積層体を、加圧または加熱する。あるいは、第1のマイクロチップ基板11と第2のマイクロチップ基板16との積層体を、加圧しながら加熱する。
 この接合工程を経ることにより、第1のマイクロチップ基板11および第2のマイクロチップ基板16の接合面同士が接触した領域、すなわち接合界面において、脱水縮合反応が生じて酸素(O)の共有結合が生成され、その酸素の共有結合により、両マイクロチップ基板が強固に接合される。その結果、第1のマイクロチップ基板11と第2のマイクロチップ基板16とが接合され、密閉空間Sが、乾燥不活性ガスが充填されることによって水分ブロック機能を有する水分制御空間とされてなるマイクロチップ10が得られる。
(Joining process)
In the bonding step, first, the atmosphere in which the first microchip substrate 11 and the second microchip substrate 16 that have undergone the ultraviolet irradiation step exist, that is, the bonding between the first microchip substrate 11 and the second microchip 16. The atmosphere to perform is a dry inert gas atmosphere made of a dry inert gas having a remarkably low water content. Next, as shown in FIG. 8C, the first microchip substrate 11 and the second microchip substrate 16 are laminated so that their bonding surfaces are in close contact with each other. Thereafter, the laminated body of the first microchip substrate 11 and the second microchip substrate 16 is pressurized or heated. Or the laminated body of the 1st microchip board | substrate 11 and the 2nd microchip board | substrate 16 is heated, pressing.
Through this bonding step, a dehydration condensation reaction occurs in the region where the bonding surfaces of the first microchip substrate 11 and the second microchip substrate 16 are in contact with each other, that is, the bonding interface, so that oxygen (O) is covalently bonded. And the microchip substrates are firmly bonded to each other by the covalent bond of oxygen. As a result, the first microchip substrate 11 and the second microchip substrate 16 are joined, and the sealed space S is made into a moisture control space having a moisture blocking function by being filled with a dry inert gas. A microchip 10 is obtained.
 接合工程において、乾燥不活性ガスとしては、含有水分量が露点温度で-40℃以下のガスが好適に用いられる。乾燥不活性ガスを構成する不活性ガスの具体例としては、例えば窒素ガスが挙げられる。 In the joining step, a gas having a moisture content of −40 ° C. or lower is suitably used as the dry inert gas. Specific examples of the inert gas constituting the dry inert gas include, for example, nitrogen gas.
 また、接合を行う雰囲気(乾燥不活性ガス雰囲気)の雰囲気圧力は、大気圧または大気圧より高い圧力(陽圧)とされ、具体的には、0.1MPa~0.5MPaであればよく、0.1MPa~0.2MPaであることがより好ましい。
 乾燥不活性ガス雰囲気の雰囲気圧力が上記の範囲外である場合には、得られるマイクロチップ10において、密閉空間Sに、所期の水分ブロック機能を付与することができなくなったり、マイクロチップ基板同士の接合力が弱くなるおそれがある。
In addition, the atmospheric pressure of the atmosphere in which the bonding is performed (dry inert gas atmosphere) is set to atmospheric pressure or a pressure higher than atmospheric pressure (positive pressure), specifically, 0.1 MPa to 0.5 MPa may be sufficient. More preferably, the pressure is 0.1 MPa to 0.2 MPa.
When the atmospheric pressure of the dry inert gas atmosphere is out of the above range, in the obtained microchip 10, it is impossible to give the desired moisture blocking function to the sealed space S, or between the microchip substrates. There is a possibility that the bonding force of the is weakened.
 また、接合工程において、加圧条件や加熱条件は、第1のマイクロチップ基板11の構成材料および第2のマイクロチップ基板16の構成材料に応じて適宜設定される。また、加圧時間および加熱時間は、加圧条件や加熱条件に応じた所定時間とされる。 In the bonding process, the pressurizing condition and heating condition are appropriately set according to the constituent material of the first microchip substrate 11 and the constituent material of the second microchip substrate 16. Further, the pressurizing time and the heating time are set to a predetermined time according to the pressurizing condition and the heating condition.
 また、接合工程においては、第1のマイクロチップ基板11と第2のマイクロチップ基板16との積層体を加圧する場合には、必要に応じて、積層体を所定時間加圧した後、さらに所定時間加熱してもよい。具体的には、積層体に対して所定時間加圧状態を維持し、その後、その加圧状態を解除し、積層体の温度を所定温度まで上昇させ、その温度を、所期の接合状態が得られるまで維持するようにしてもよい。ここに、所定温度とは、積層体(第1のマイクロチップ基板11および第2のマイクロチップ基板16)に変形が生じることのない温度である。
 積層体を加圧した後に加熱することによれば、加圧後の積層体における接合界面に、十分な接合状態が得られている部分と、十分な接合状態が得られていない部分とが混在している場合であっても、加熱により、十分な接合状態が得られていない部分において、その接合状態を、所期の状態とすることができる。
In the bonding step, when the laminate of the first microchip substrate 11 and the second microchip substrate 16 is pressurized, the laminate is pressurized for a predetermined time as necessary, and then further predetermined. You may heat for hours. Specifically, the pressurized state is maintained for a predetermined time with respect to the laminated body, and then the pressurized state is released, and the temperature of the laminated body is increased to a predetermined temperature. It may be maintained until it is obtained. Here, the predetermined temperature is a temperature at which the laminated body (the first microchip substrate 11 and the second microchip substrate 16) is not deformed.
According to heating after pressurizing the laminated body, a part where a sufficient bonding state is obtained and a part where a sufficient bonding state is not obtained are mixed in the bonding interface in the laminated body after pressing. Even if it is the case where it is doing, the joining state can be made into an intended state in the part in which sufficient joining state was not obtained by heating.
 また、接合工程は、紫外線照射工程が完了してから10分間以内に行うことが好ましい。
 紫外線照射工程が完了してから接合工程を開始するまでの時間が10分間を超える場合には、第1のマイクロチップ基板11の接合面および第2のマイクロチップ基板16の接合面に、水分(余剰水分)や不純物が再付着するおそれがある。そのため、得られるマイクロチップ10において、第1のマイクロチップ基板11と第2のマイクロチップ基板16との間に、高い強度の接合状態を確実に達成することが困難となるおそれがある。
Moreover, it is preferable to perform a joining process within 10 minutes after an ultraviolet irradiation process is completed.
When the time from the completion of the ultraviolet irradiation process to the start of the bonding process exceeds 10 minutes, moisture (on the bonding surface of the first microchip substrate 11 and the bonding surface of the second microchip substrate 16) There is a risk that excess water) and impurities will re-adhere. Therefore, in the obtained microchip 10, it may be difficult to reliably achieve a high-strength bonding state between the first microchip substrate 11 and the second microchip substrate 16.
 以上のマイクロチップ10においては、第1のマイクロチップ基板11と第2のマイクロチップ基板16との間において、微小流路Rと共に、当該微小流路Rを囲繞するように密閉空間Sが設けられており、両基板が内側接合部21と外側接合部26とによって接合されている。そのため、密閉空間Sの大きさによって接合面積を制御することができることから、紫外線を利用して両基板を接合することによっても、両基板を高い均一性をもって接合することができる。すなわち、紫外線照射後に両基板を積層して接合する製造過程(接合工程)において、両基板の積層体を加圧する場合には、加圧時において、内側土手部分および外側土手部分に係る領域に加圧集中を生じさせることができるため、両基板をより高い均一性をもって接合することができると共に、内側接合部21および外側接合部26においてより大きな接合強さを得ることもできる。その結果、内側接合部21および外側接合部26(接合界面)における微小な隙間の形成が抑制される。
 しかも、密閉空間Sに水分吸着機能または水分ブロック機能を付与して水分制御空間とすることにより、接合界面(内側接合部21および外側接合部26)に水分が浸透しやすい境界層が形成された場合であっても、当該水分制御空間の作用によって当該境界層における水分量の増加を抑制することができる。
 従って、マイクロチップ10によれば、内側接合部21および外側接合部26において、水分量が大きくなることに起因する、第1のマイクロチップ基板11と第2のマイクロチップ基板16との間の剥離の発生を抑制することができることから、当該内側接合部21および外側接合部26に、高い強度の接合状態が得られ、また貼り合わせ状態を長期間にわたって維持することが可能となる。
 また、本発明のマイクロチップによれば、密閉空間Sが微小流路Rを囲繞するように設けられていることから、当該密閉空間Sの作用により、保温効果および断熱効果が得られる。
In the microchip 10 described above, a sealed space S is provided between the first microchip substrate 11 and the second microchip substrate 16 so as to surround the microchannel R together with the microchannel R. Both substrates are joined by the inner joint 21 and the outer joint 26. Therefore, since the bonding area can be controlled by the size of the sealed space S, both substrates can be bonded with high uniformity by bonding both substrates using ultraviolet rays. That is, in the manufacturing process (bonding process) in which both substrates are stacked after ultraviolet irradiation, when the laminate of both substrates is pressed, it is added to the areas related to the inner bank portion and the outer bank portion at the time of pressing. Since pressure concentration can be generated, both substrates can be bonded with higher uniformity, and greater bonding strength can be obtained at the inner bonding portion 21 and the outer bonding portion 26. As a result, the formation of minute gaps at the inner joint 21 and the outer joint 26 (joint interface) is suppressed.
Moreover, by providing the sealed space S with a moisture adsorption function or a moisture blocking function to form a moisture control space, a boundary layer in which moisture easily penetrates into the bonding interface (the inner bonding portion 21 and the outer bonding portion 26) is formed. Even in this case, an increase in the amount of moisture in the boundary layer can be suppressed by the action of the moisture control space.
Therefore, according to the microchip 10, the separation between the first microchip substrate 11 and the second microchip substrate 16 due to the increased amount of water in the inner joint portion 21 and the outer joint portion 26. Since generation | occurrence | production of this can be suppressed, the joining state of high intensity | strength is obtained for the said inner side junction part 21 and the outer side junction part 26, and it becomes possible to maintain a bonding state over a long period of time.
Further, according to the microchip of the present invention, since the sealed space S is provided so as to surround the minute flow path R, the heat retaining effect and the heat insulating effect can be obtained by the action of the sealed space S.
 そして、マイクロチップ10においては、密閉空間Sの水分制御空間としての機能(水分吸着機能および水分ブロック機能)は、有限のものであり、一定時間(有限時間)の経過後にはその機能が得られなくなる。しかしながら、通常、マイクロチップ10は、ディスポーザブル品であって、上記の有限時間よりも短い時間内において使い捨てされるものであることから、実用上、問題ない。 In the microchip 10, the function (moisture adsorption function and moisture block function) of the sealed space S as the moisture control space is limited, and the function is obtained after a certain time (finite time) has elapsed. Disappear. However, since the microchip 10 is normally a disposable product and is disposable within a time shorter than the finite time, there is no practical problem.
 また、マイクロチップ10においては、密閉空間Sを、減圧状態とすることによって水分吸着機能を有する水分制御空間として用いる場合には、減圧状態の密閉空間Sの吸引作用により、第1のマイクロチップ基板11と第2のマイクロチップ基板16との間における剥離の発生がより抑制される。なお、密閉空間Sには内側接合部21および外側接合部26を介して水分が侵入しやすくなるが、密閉空間Sに侵入した水分内側接合部21および外側接合部26を介して当該密閉空間Sの外部に排出されることはない。 Further, in the microchip 10, when the sealed space S is used as a moisture control space having a moisture adsorption function by bringing the sealed space S into a decompressed state, the first microchip substrate is brought about by the suction action of the sealed space S in the decompressed state. The occurrence of peeling between the first microchip substrate 11 and the second microchip substrate 16 is further suppressed. Although moisture easily enters the sealed space S through the inner joint portion 21 and the outer joint portion 26, the sealed space S enters through the moisture inner joint portion 21 and the outer joint portion 26 that has entered the sealed space S. Will not be discharged outside.
 本発明のマイクロチップにおいては、上記の実施の形態に限定されず、種々の変更を加えることが可能である。
 例えば、第2のマイクロチップ基板は、光透過性材料よりなるフィルム状体であってもよい。第2のマイクロチップ基板を構成するフィルム状体においては、接合性(接合強さ)および水分制御性(水分吸着機能)の観点から、厚みが小さいことが好ましく、例えば、フィルム状体の厚みは、50~200μmである。このような構成の第2のマイクロチップ基板を備えたマイクロチップにおいて、密閉空間は、当該密閉空間を減圧状態とする手法によって水分吸着機能が付与されて、水分制御空間として利用される。このマイクロチップにおいては、図9に示すように、密閉空間Sの圧力と周囲環境雰囲気の雰囲気圧力との差の作用によって第2のマイクロチップ基板19(フィルム状体)が密閉空間用凹所15の底面15Aに向かう方向に撓み、当該第2のマイクロチップ基板19の接合面が当該底面15Aに接触した状態となる。そのため、密閉空間Sは、内側障壁部22による壁面に沿って環状に伸びる、断面が略直角三角形状の環状空間と、外側障壁部27による壁面に沿って環状に伸びる、断面が略直角三角形状の環状空間とにより構成されることとなる。ここに、内側障壁部22または外側障壁部27と第2のマイクロチップ基板19との最大離間距離は、当該第2のマイクロチップ基板19の厚みに応じて、例えば0.1~2mm程度となる。
 このような構成のマイクロチップによれば、密閉空間Sにおいて水分制御性(水分吸着機能)を得ることができると共に、内側接合部21および外側接合部26においてより一層高い接合強さを得ることができる。
The microchip of the present invention is not limited to the above embodiment, and various modifications can be made.
For example, the second microchip substrate may be a film-like body made of a light transmissive material. In the film-like body constituting the second microchip substrate, the thickness is preferably small from the viewpoint of bondability (bonding strength) and moisture controllability (moisture adsorption function). For example, the thickness of the film-like body is 50 to 200 μm. In the microchip including the second microchip substrate having such a configuration, the sealed space is used as a moisture control space by being provided with a moisture adsorption function by a method of reducing the sealed space to a reduced pressure state. In this microchip, as shown in FIG. 9, the second microchip substrate 19 (film-like body) is formed in the sealed space recess 15 by the action of the difference between the pressure in the sealed space S and the ambient pressure in the surrounding environment. Is bent in the direction toward the bottom surface 15A, and the bonding surface of the second microchip substrate 19 is in contact with the bottom surface 15A. Therefore, the sealed space S extends in a ring shape along the wall surface formed by the inner barrier portion 22, and the cross section extends in a ring shape along the wall surface formed by the outer barrier portion 27. It will be comprised by this annular space. Here, the maximum separation distance between the inner barrier portion 22 or the outer barrier portion 27 and the second microchip substrate 19 is, for example, about 0.1 to 2 mm according to the thickness of the second microchip substrate 19. .
According to the microchip having such a configuration, moisture controllability (moisture adsorption function) can be obtained in the sealed space S, and even higher joint strength can be obtained in the inner joint portion 21 and the outer joint portion 26. it can.
 また、微小流路は、第1のマイクロチップ基板および第2のマイクロチップ基板の少なくとも一方の基板に形成された流路溝よりなるものであればよい。すなわち、流路溝は、第2のマイクロチップ基板のみに形成されていてもよく、また両マイクロチップ基板に形成されていてもよい。 Further, the micro flow path may be formed of a flow path groove formed on at least one of the first microchip substrate and the second microchip substrate. That is, the channel groove may be formed only on the second microchip substrate, or may be formed on both microchip substrates.
 以下、本発明の具体的な実施例について説明するが、本発明はこれらに限定されるものではない。 Hereinafter, specific examples of the present invention will be described, but the present invention is not limited thereto.
〔実施例1〕
(マイクロチップの製造例1)
 図1および図2に示した構成に基いて、マイクロチップを作製した。
 具体的には、まず、第1のマイクロチップ基板、第2のマイクロチップ基板および吸湿剤を用意した。
 また、第1のマイクロチップ基板としては、接合面とされる一面に、流路溝、当該流路溝に連通する貫通孔(注入口用貫通孔および排出口用貫通孔)および密閉空間用凹所が形成された略矩形平板状のCOP基板(縦寸法75.5mm×横寸法25.5mm×厚み3mm)を用意した。この第1のマイクロチップ基板において、流路溝は、幅800μm、長さ9000μm、深さ200μmの断面矩形状のものであり、接合面の中央部に形成されている。また、密閉空間用凹所は、幅1000μmの内側土手部分と幅1000μmの外側土手部分との間において、流路溝を囲繞するように形成された矩形環状のものであり、その断面形状は矩形状であって、深さは50μmである。
 また、第2のマイクロチップ基板としては、矩形平板状のCOP基板(縦寸法75.5mm×横寸法25.5mm×厚み1mm)を用意し、また、吸湿剤(乾燥剤)としては、粉末状のシリカゲル、すなわちシリカゲル微粒子(平均粒径5.0μm)を用意した。
[Example 1]
(Microchip production example 1)
A microchip was fabricated based on the configuration shown in FIGS.
Specifically, first, a first microchip substrate, a second microchip substrate, and a hygroscopic agent were prepared.
Further, as the first microchip substrate, a channel groove, a through hole communicating with the channel groove (a through hole for an inlet and a through hole for a discharge port), and a concave for a sealed space are formed on one surface as a bonding surface. A substantially rectangular flat plate-shaped COP substrate (longitudinal dimension: 75.5 mm × horizontal dimension: 25.5 mm × thickness: 3 mm) was prepared. In the first microchip substrate, the channel groove has a rectangular cross section with a width of 800 μm, a length of 9000 μm, and a depth of 200 μm, and is formed at the center of the joint surface. The recess for the sealed space is a rectangular ring formed so as to surround the channel groove between the inner bank portion having a width of 1000 μm and the outer bank portion having a width of 1000 μm, and the cross-sectional shape thereof is rectangular. The shape is 50 μm deep.
In addition, as the second microchip substrate, a rectangular flat plate-shaped COP substrate (longitudinal dimension 75.5 mm × horizontal dimension 25.5 mm × thickness 1 mm) is prepared, and as the hygroscopic agent (desiccant), a powder form is prepared. Silica gel, that is, silica gel fine particles (average particle size 5.0 μm) were prepared.
 次いで、シリカゲル微粒子をエタノール中に分散させることによってシリカゲル分散液を調製し、そのシリカゲル分散液を、第1のマイクロチップ基板の密閉空間用凹所に塗布し乾燥することにより、当該密閉空間用凹所をシリカゲルで充填した(吸湿剤充填工程)。 Next, a silica gel dispersion liquid is prepared by dispersing silica gel fine particles in ethanol, and the silica gel dispersion liquid is applied to the recessed area for the sealed space of the first microchip substrate and dried to thereby form the recessed space for the sealed space. The place was filled with silica gel (a hygroscopic agent filling step).
 さらに、吸湿剤充填工程を経た第1のマイクロチップ基板の接合面、および第2のマイクロチップ基板における接合面とされる一面に、各々、大気中において、紫外線照射装置を用いて、真空紫外線を照射した(紫外線照射工程)。用いた紫外線照射装置は、波長172nmの真空紫外線を、一辺が300mmの正方形状の照射エリアに対して紫外線透過窓を介して照射する構成のものである。この紫外線照射装置について、紫外線照度計「UIT-205+VUV-S172」(ウシオ電機株式会社製)を用いて窓面照度(放射照度)を確認したところ、およそ40mW/cmであった。また、照射時間は60秒間とした。また、真空紫外線照射に際して、紫外線照射装置における紫外線透過窓と接合面(具体的には、第1のマイクロチップ基板および第2のマイクロチップ基板の接合面)との離間距離(照射距離)は、大気中の酸素による真空紫外線の吸収を考慮して、3mmとした。また、真空紫外線照射に際して、紫外線照射装置における紫外線透過窓と接合面との間の処理雰囲気は、当該紫外線照射装置に係る照射空間の背面に配設した排気ダクトの吸気を使用して、周囲環境雰囲気を構成する気体(空気)を取り込むことによって構成した。 Further, vacuum ultraviolet rays are applied to the bonding surface of the first microchip substrate that has undergone the hygroscopic agent filling step and the bonding surface of the second microchip substrate using an ultraviolet irradiation device in the atmosphere, respectively. Irradiation (ultraviolet irradiation process). The ultraviolet irradiation device used is configured to irradiate vacuum ultraviolet rays having a wavelength of 172 nm through a ultraviolet transmission window to a square irradiation area having a side of 300 mm. With respect to this ultraviolet irradiation device, when the window surface illuminance (irradiance) was confirmed using an ultraviolet illuminance meter “UIT-205 + VUV-S172” (manufactured by USHIO INC.), It was about 40 mW / cm 2 . The irradiation time was 60 seconds. Further, when the vacuum ultraviolet irradiation is performed, the separation distance (irradiation distance) between the ultraviolet transmission window and the bonding surface (specifically, the bonding surface of the first microchip substrate and the second microchip substrate) in the ultraviolet irradiation apparatus is: In consideration of absorption of vacuum ultraviolet rays by atmospheric oxygen, the thickness is set to 3 mm. In addition, when the vacuum ultraviolet irradiation is performed, the processing atmosphere between the ultraviolet transmission window and the joint surface in the ultraviolet irradiation apparatus uses the intake air of the exhaust duct disposed on the back surface of the irradiation space related to the ultraviolet irradiation apparatus, and the ambient environment. It comprised by taking in the gas (air) which comprises atmosphere.
 その後、アドテックエンジニアリング社製の貼り合わせ装置を用いて、第1のマイクロチップ基板と第2のマイクロチップ基板とを接合した。
 具体的に説明すると、紫外線照射工程を経た第1のマイクロチップ基板と、紫外線照射工程を経た第2のマイクロチップ基板とを、接合面が互いに対向し、その間に、密閉空間に適合した大きさの塩化コバルト紙(塩化コバルト(II)六水和物の試験紙)を挟んだ状態で積層した。塩化コバルト紙としては、予め乾燥させたものを用いた。そして、得られた積層体を、貼り合わせ装置の加圧ステージ上に載置し、当該加圧ステージ上において、当該積層体を構成する2枚のマイクロチップ基板の水分を除去するために、200秒間以下の条件によって予備加熱を行った。また、それと同時に、貼り合わせ装置の処理空間において真空排気を行った後、当該処理空間の雰囲気を適宜調整した。その後、貼り合わせ装置によって、積層体を、加圧力3000Nおよび加熱温度130℃の条件によって300秒間にわたって加熱しながら加圧した。
 このようにして、第1のマイクロチップ基板と第2のマイクロチップ基板とが接合されており、密閉空間に塩化コバルト紙が配設されたマイクロチップ(以下、「マイクロチップ(1)」ともいう。)を得た。このマイクロチップ(1)は、密閉空間に吸湿剤が充填されることによって当該密閉空間が水分吸着機能を有する水分制御空間とされたものである。
 なお、密閉空間に塩化コバルト紙が配設された構造としたのは、下記に示すようにマイクロチップを評価するためである。
Then, the 1st microchip board | substrate and the 2nd microchip board | substrate were joined using the bonding apparatus by an ad tech engineering company.
More specifically, the first microchip substrate that has been subjected to the ultraviolet irradiation step and the second microchip substrate that has been subjected to the ultraviolet irradiation step have a bonding surface facing each other, and a size suitable for the sealed space therebetween. Of cobalt chloride paper (cobalt chloride (II) hexahydrate test paper). Cobalt chloride paper that had been dried in advance was used. Then, the obtained laminated body is placed on the pressure stage of the bonding apparatus, and in order to remove moisture from the two microchip substrates constituting the laminated body on the pressure stage, 200 is used. Preheating was performed under the following conditions for 2 seconds. At the same time, after evacuation was performed in the processing space of the bonding apparatus, the atmosphere of the processing space was appropriately adjusted. Then, the laminated body was pressurized with the bonding apparatus, heating for 300 seconds on the conditions of the applied pressure 3000N and the heating temperature of 130 degreeC.
In this way, the first microchip substrate and the second microchip substrate are joined, and the microchip (hereinafter also referred to as “microchip (1)”) in which cobalt chloride paper is disposed in the sealed space. .) In this microchip (1), a sealed space is filled with a hygroscopic agent so that the sealed space is a moisture control space having a moisture adsorption function.
The reason why cobalt chloride paper is provided in the sealed space is to evaluate the microchip as described below.
(マイクロチップの評価)
 作製したマイクロチップ(1)を、恒温恒湿槽内に配置し、温度40℃、湿度95%RHの環境条件下において最大で2週間放置した後、塩化コバルト紙における呈色反応の発生の有無および呈色反応発生箇所の分布、並びに、剥離の発生の有無を目視にて確認した。結果を表1に示す。
(Evaluation of microchip)
The prepared microchip (1) is placed in a constant temperature and humidity chamber and left to stand for two weeks at maximum in an environment of a temperature of 40 ° C. and a humidity of 95% RH. In addition, the distribution of the color reaction occurrence locations and the presence or absence of peeling were confirmed visually. The results are shown in Table 1.
〔実施例2〕
(マイクロチップの製造例2)
 実施例1のマイクロチップの製造例1において、吸湿剤充填工程を経なかったこと、および、接合工程において、貼り合わせ装置の処理空間の雰囲気を真空雰囲気(雰囲気圧力100Pa)としたこと以外は当該マイクロチップの製造例1と同様にして、マイクロチップ(以下、「マイクロチップ(2)」ともいう。)を作製した。このマイクロチップ(2)は、密閉空間を減圧状態(雰囲気圧が100Paの真空状態)とすることによって当該密閉空間が水分吸着機能を有する水分制御空間とされたものである。
[Example 2]
(Microchip production example 2)
In microchip production example 1 of Example 1, the hygroscopic agent filling process was not performed, and the bonding process was performed except that the atmosphere in the processing space of the bonding apparatus was changed to a vacuum atmosphere (atmospheric pressure 100 Pa). A microchip (hereinafter also referred to as “microchip (2)”) was produced in the same manner as in Microchip Production Example 1. In the microchip (2), the sealed space is made into a moisture control space having a moisture adsorption function by bringing the sealed space into a reduced pressure state (vacuum state with an atmospheric pressure of 100 Pa).
(マイクロチップの評価)
 作製したマイクロチップ(2)について、実施例1と同様の手法によって、塩化コバルト紙における呈色反応の発生の有無および呈色反応発生箇所の分布、並びに、剥離の発生の有無を目視にて確認した。結果を表1に示す。
(Evaluation of microchip)
About the produced microchip (2), by the same method as Example 1, the presence or absence of the occurrence of a color reaction in the cobalt chloride paper, the distribution of the color reaction occurrence place, and the presence or absence of the occurrence of peeling were visually confirmed. did. The results are shown in Table 1.
〔実施例3〕
(マイクロチップの製造例3)
 実施例2のマイクロチップの製造例2において、接合工程において、貼り合わせ装置の処理空間内の雰囲気を、含有水分量が露点温度換算で-40℃である乾燥窒素ガスの陽圧雰囲気(雰囲気圧力0.15MPa)としたこと以外は当該マイクロチップの製造例2と同様にして、マイクロチップ(以下、「マイクロチップ(3)」ともいう。)を作製した。このマイクロチップ(3)は、密閉空間に乾燥窒素ガスを陽圧(雰囲気圧0.15MPa)で封入することによって当該密閉空間が水分ブロック機能を有する水分制御空間とされたものである。
Example 3
(Production example 3 of microchip)
In the microchip production example 2 of Example 2, in the bonding process, the atmosphere in the processing space of the bonding apparatus is a positive pressure atmosphere (atmospheric pressure) of dry nitrogen gas whose moisture content is −40 ° C. in terms of dew point temperature. A microchip (hereinafter also referred to as “microchip (3)”) was produced in the same manner as in Microchip Production Example 2 except that the pressure was 0.15 MPa. In this microchip (3), dry nitrogen gas is sealed in a sealed space at a positive pressure (atmospheric pressure 0.15 MPa), whereby the sealed space is made into a moisture control space having a moisture blocking function.
(マイクロチップの評価)
 作製したマイクロチップ(3)について、実施例1と同様の手法によって、塩化コバルト紙における呈色反応の発生の有無および呈色反応発生箇所の分布、並びに、剥離の発生の有無を目視にて確認した。結果を表1に示す。
(Evaluation of microchip)
About the produced microchip (3), by the same method as Example 1, the presence or absence of the color reaction in the cobalt chloride paper, the distribution of the color reaction occurrence site, and the presence or absence of the peeling were visually confirmed. did. The results are shown in Table 1.
〔実施例4〕
(マイクロチップの製造例4)
 実施例2のマイクロチップの製造例2において、第2のマイクロチップ基板として、COP基板に代えて、厚みが100μmのCOP製のフィルム状体を用いたこと以外は当該マイクロチップの製造例2と同様にして、マイクロチップ(以下、「マイクロチップ(4)」ともいう。)を作製した。このマイクロチップ(4)は、密閉空間を減圧状態(雰囲気圧が100Paの真空状態)とすることによって当該密閉空間が水分吸着機能を有する水分制御空間とされたものである。
Example 4
(Microchip production example 4)
In microchip production example 2 of example 2, in place of the COP substrate, a COP film-like body having a thickness of 100 μm was used as the second microchip substrate. Similarly, a microchip (hereinafter also referred to as “microchip (4)”) was manufactured. In this microchip (4), the sealed space is made into a moisture control space having a moisture adsorption function by bringing the sealed space into a reduced pressure state (vacuum state with an atmospheric pressure of 100 Pa).
(マイクロチップの評価)
 作製したマイクロチップ(4)について、実施例1と同様の手法によって、塩化コバルト紙における呈色反応の発生の有無および呈色反応発生箇所の分布、並びに、剥離の発生の有無を目視にて確認した。結果を表1に示す。
(Evaluation of microchip)
About the produced microchip (4), by the same method as Example 1, the presence or absence of the occurrence of the color reaction in the cobalt chloride paper, the distribution of the color reaction occurrence location, and the presence or absence of the occurrence of peeling were visually confirmed. did. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、マイクロチップ(1)、マイクロチップ(2)、マイクロチップ(3)およびマイクロチップ(4)のいずれの場合においても、温度40℃、湿度95%RHの環境条件下において2週間放置しても、塩化コバルト紙における呈色反応は発生しなかった。また、剥離も確認されなかった。 As is apparent from Table 1, in any of the microchip (1), microchip (2), microchip (3), and microchip (4), the environmental conditions are a temperature of 40 ° C. and a humidity of 95% RH. Even when left for 2 weeks, no color reaction occurred in the cobalt chloride paper. Moreover, peeling was not confirmed.
10  マイクロチップ
10A  外周面
11  第1のマイクロチップ基板
12  流路溝
13  注入口用貫通孔
13A  注入口
14  排出口用貫通孔
14A  排出口
15  密閉空間用凹所
15A  底面
16  第2のマイクロチップ基板
19  第2のマイクロチップ基板
21  内側接合部
22  内側障壁部
26  外側接合部
27  外側障壁部
29  吸湿剤
31  基板
31A  接合面
32  基板
32A  接合面
40  マイクロチップ
41  第1のマイクロチップ基板
42  流路溝
43  注入口用貫通孔
43A  注入口
44  排出口用貫通孔
44A  排出口
46  第2のマイクロチップ基板
48  接合部
R  微小流路
S  密閉空間
10 Microchip 10A Outer peripheral surface 11 First microchip substrate 12 Channel groove 13 Inlet through hole 13A Inlet 14 Outlet through hole 14A Outlet 15 Sealed recess 15A Bottom surface 16 Second microchip substrate 19 Second microchip substrate 21 Inner bonding portion 22 Inner barrier portion 26 Outer bonding portion 27 Outer barrier portion 29 Hygroscopic agent 31 Substrate 31A Bonding surface 32 Substrate 32A Bonding surface 40 Microchip 41 First microchip substrate 42 Channel groove 43 Inlet through hole 43A Inlet 44 Outlet through hole 44A Outlet 46 Second microchip substrate 48 Joint R Micro flow path S Sealed space

Claims (6)

  1.  第1のマイクロチップ基板および第2のマイクロチップ基板が接合されてなり、当該第1のマイクロチップ基板の表面に設けられた注入口および排出口に連通する、当該第1のマイクロチップ基板および第2のマイクロチップ基板の少なくとも一方の基板に形成された流路溝よりなる流路を内部に有するマイクロチップにおいて、
     前記第1のマイクロチップ基板と前記第2のマイクロチップ基板との間には、前記流路に沿って形成された内側接合部と、当該第1のマイクロチップ基板および当該第2のマイクロチップ基板のそれぞれの外周縁部に沿って形成された外側接合部とが形成されており、当該内側接合部と当該外側接合部との間に、当該流路を囲繞するように密閉空間が形成されていることを特徴とするマイクロチップ。
    The first microchip substrate and the second microchip substrate are joined to each other and communicated with the inlet and the outlet provided on the surface of the first microchip substrate. In a microchip having a flow path formed of flow path grooves formed in at least one of the two microchip substrates,
    Between the first microchip substrate and the second microchip substrate, an inner joint formed along the flow path, the first microchip substrate, and the second microchip substrate. And an outer joint formed along each outer peripheral edge of each of the first and second outer joints, and a sealed space is formed between the inner joint and the outer joint so as to surround the flow path. A microchip characterized by
  2.  前記密閉空間に、吸湿剤が充填されていることを特徴とする請求項1に記載のマイクロチップ。 The microchip according to claim 1, wherein the sealed space is filled with a hygroscopic agent.
  3.  前記密閉空間が減圧状態とされていることを特徴とする請求項1に記載のマイクロチップ。 The microchip according to claim 1, wherein the sealed space is in a reduced pressure state.
  4.  前記密閉空間の圧力が50kPa以下であることを特徴とする請求項3に記載のマイクロチップ。 The microchip according to claim 3, wherein the pressure in the sealed space is 50 kPa or less.
  5.  前記密閉空間に、乾燥不活性ガスが充填されていることを特徴とする請求項1に記載のマイクロチップ。 The microchip according to claim 1, wherein the sealed space is filled with a dry inert gas.
  6.  前記密閉空間の圧力が0.1MPa~0.2MPaであることを特徴とする請求項5に記載のマイクロチップ。 6. The microchip according to claim 5, wherein the pressure in the sealed space is 0.1 MPa to 0.2 MPa.
PCT/JP2018/019577 2017-05-23 2018-05-22 Microchip WO2018216673A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-101568 2017-05-23
JP2017101568A JP6801584B2 (en) 2017-05-23 2017-05-23 Microchip

Publications (1)

Publication Number Publication Date
WO2018216673A1 true WO2018216673A1 (en) 2018-11-29

Family

ID=64395703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019577 WO2018216673A1 (en) 2017-05-23 2018-05-22 Microchip

Country Status (2)

Country Link
JP (1) JP6801584B2 (en)
WO (1) WO2018216673A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020235398A1 (en) * 2019-05-23 2020-11-26 ウシオ電機株式会社 Microchip

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005329333A (en) * 2004-05-20 2005-12-02 Japan Science & Technology Agency Microdegassing device
JP2006053094A (en) * 2004-08-13 2006-02-23 Alps Electric Co Ltd Plate for use in inspection
JP2006119051A (en) * 2004-10-22 2006-05-11 Shimadzu Corp Microparticle filling type microchip
JP2010043928A (en) * 2008-08-12 2010-02-25 Seiko Epson Corp Manufacturing method of biochip, and the biochip
JP2010078402A (en) * 2008-09-25 2010-04-08 Rohm Co Ltd Microchip
WO2012057099A1 (en) * 2010-10-29 2012-05-03 コニカミノルタオプト株式会社 Microchip
JP2014020920A (en) * 2012-07-18 2014-02-03 Canon Inc Passage device for detecting light emission

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3880931B2 (en) * 2002-08-23 2007-02-14 株式会社エンプラス Plate assembly structure
JP2006325537A (en) * 2005-05-30 2006-12-07 Yamaha Corp Cell culture chip and method for producing the same
JP2014122831A (en) * 2012-12-21 2014-07-03 Sumitomo Bakelite Co Ltd Microfluidic device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005329333A (en) * 2004-05-20 2005-12-02 Japan Science & Technology Agency Microdegassing device
JP2006053094A (en) * 2004-08-13 2006-02-23 Alps Electric Co Ltd Plate for use in inspection
JP2006119051A (en) * 2004-10-22 2006-05-11 Shimadzu Corp Microparticle filling type microchip
JP2010043928A (en) * 2008-08-12 2010-02-25 Seiko Epson Corp Manufacturing method of biochip, and the biochip
JP2010078402A (en) * 2008-09-25 2010-04-08 Rohm Co Ltd Microchip
WO2012057099A1 (en) * 2010-10-29 2012-05-03 コニカミノルタオプト株式会社 Microchip
JP2014020920A (en) * 2012-07-18 2014-02-03 Canon Inc Passage device for detecting light emission

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020235398A1 (en) * 2019-05-23 2020-11-26 ウシオ電機株式会社 Microchip
JP2020188738A (en) * 2019-05-23 2020-11-26 ウシオ電機株式会社 Microchip
EP3964840A4 (en) * 2019-05-23 2022-06-29 Ushio Denki Kabushiki Kaisha Microchip
JP7311834B2 (en) 2019-05-23 2023-07-20 ウシオ電機株式会社 microchip

Also Published As

Publication number Publication date
JP6801584B2 (en) 2020-12-16
JP2018197663A (en) 2018-12-13

Similar Documents

Publication Publication Date Title
US6814859B2 (en) Frit material and bonding method for microfluidic separation devices
JP4993243B2 (en) Manufacturing method of resin microchannel chemical device and resin microchannel chemical device structure manufactured by the manufacturing method
JP4760315B2 (en) Joining method
JP6394651B2 (en) Substrate bonding method and microchip manufacturing method
WO2011089892A1 (en) Method for bonding hardened silicone resin, method for joining substrate having fine structure, and method for manufacturing micro fluid device using the method for joining.
US8246774B2 (en) Resin bonding method by photoirradiation, method for producing resin article, resin article produced by the same method, method for producing microchip, and microchip produced by the same method
JPWO2008087800A1 (en) Microchip manufacturing method and microchip
EP2236575A1 (en) Method for bonding resin by vacuum ultraviolet irradiation, process for producing resin article or microchip using the method, and resin article or microchip produced by the process.
WO2018216673A1 (en) Microchip
WO2016060080A1 (en) Workpiece bonding method
Jeong et al. On the role of oxygen in fabricating microfluidic channels with ultraviolet curable materials
WO2016147828A1 (en) Method for laminating workpieces together
CN111295591B (en) microchip
JP5001203B2 (en) Manufacturing method of microchip having non-adhesive part
JP6699903B2 (en) Pattern forming method, semiconductor device and manufacturing method thereof
JPWO2008090701A1 (en) Microchip manufacturing method and microchip substrate bonding apparatus
JP2006310828A (en) Method of bonding substrates, method of forming chip, and chip
CN108027383A (en) The method of micro-channel device and manufacture micro-channel device
WO2018180508A1 (en) Microchannel chip manufacturing method
JP2022190586A (en) Method for bonding cycloolefin polymer (cop) plate (cop plate) and method for producing cop microfluidic chip
JP6112140B2 (en) Work bonding method and light irradiation device
Tuomikoski Fabrication of SU-8 microstructures for analytical microfluidic applications
JP4942094B2 (en) Method for manufacturing glass microchip substrate with electrodes
Shinohara et al. Low-Temperature polymer bonding using surface hydrophilic treatment for chemical/bio microchips

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18806495

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18806495

Country of ref document: EP

Kind code of ref document: A1