JP2008167252A - 熱励起型の音波発生装置 - Google Patents
熱励起型の音波発生装置 Download PDFInfo
- Publication number
- JP2008167252A JP2008167252A JP2006355679A JP2006355679A JP2008167252A JP 2008167252 A JP2008167252 A JP 2008167252A JP 2006355679 A JP2006355679 A JP 2006355679A JP 2006355679 A JP2006355679 A JP 2006355679A JP 2008167252 A JP2008167252 A JP 2008167252A
- Authority
- JP
- Japan
- Prior art keywords
- sound wave
- wave generator
- thin film
- thermal
- heating element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Obtaining Desirable Characteristics In Audible-Bandwidth Transducers (AREA)
- Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)
Abstract
【課題】従来よりも低周波の可聴周波数帯域の音波を効率よく発生可能な熱励起型の音波発生装置を提供する。
【解決手段】熱伝導性の基板12と、該基板上の一方の面に形成された所定の厚さの熱絶縁層14と、該熱絶縁層上に形成されて交流の信号電流により電気的に駆動される抵抗体よりなる発熱体薄膜16と、を有する熱励起型の音波発生装置10であって、前記発熱体薄膜上にヘルムホルツ共鳴器18を備える。これにより、従来よりも低周波の可聴周波数帯域の音波を効率よく発生する。
【選択図】図1
【解決手段】熱伝導性の基板12と、該基板上の一方の面に形成された所定の厚さの熱絶縁層14と、該熱絶縁層上に形成されて交流の信号電流により電気的に駆動される抵抗体よりなる発熱体薄膜16と、を有する熱励起型の音波発生装置10であって、前記発熱体薄膜上にヘルムホルツ共鳴器18を備える。これにより、従来よりも低周波の可聴周波数帯域の音波を効率よく発生する。
【選択図】図1
Description
本発明は、例えば音響再生器等のスピーカとして適用される熱励起型の音波発生装置に係り、さらに詳しくは、空気に熱を与えることで空気の粗密を作って音波を発生させ、ヘルムホルツ共鳴器を組み合わせることにより、効率よく音波を発生させる熱励起型の音波発生装置に関する。
従来の典型的なスピーカ等の音波発生装置としては、電磁駆動の音波発生装置が知られている。この音波発生装置は、アンプの出力電圧によりボイスコイルに電流が流れ、磁石が作る磁場によるローレンツ力を受けて、上記ボイスコイルと一体となった振動板が振動することによって音波を発生させるものであり、音響用途を始め広く一般に使用されている。このような従来から広く一般に使用されてきた電磁駆動型の音波発生装置は、下記に挙げるような課題を有していた。
<第1の課題>
この音波発生装置は、機械的振動を利用した音波発生装置であり、振動体の質量とバネにより固有の共振周波数を持っているのみならず、周波数帯域が狭く、再生周波数特性が平滑でないという問題があった。
<第2の課題>
この音波発生装置は、振動体を持つために、外部振動や外気圧変動の影響を受け易い。具体的には、振動板へ風圧等の外部の気圧変動が大きく加わった際に、ボイスコイルに逆起電力が発生し、発熱により焼損する場合がある、という問題があった。
この音波発生装置は、機械的振動を利用した音波発生装置であり、振動体の質量とバネにより固有の共振周波数を持っているのみならず、周波数帯域が狭く、再生周波数特性が平滑でないという問題があった。
<第2の課題>
この音波発生装置は、振動体を持つために、外部振動や外気圧変動の影響を受け易い。具体的には、振動板へ風圧等の外部の気圧変動が大きく加わった際に、ボイスコイルに逆起電力が発生し、発熱により焼損する場合がある、という問題があった。
<第3の課題>
この音波発生装置は、ボイスコイル、永久磁石、振動板、エンクロージャ、ダンパーエッジ等から構成され、軽量化、小型化、薄体化するには、各部材の構成上限界があった。
そして、上記問題点を解消する音波発生装置として、機械振動を全く伴わない新しい発生原理で動作する音波発生装置が提案されている(特許文献1等)。
この音波発生装置は、ボイスコイル、永久磁石、振動板、エンクロージャ、ダンパーエッジ等から構成され、軽量化、小型化、薄体化するには、各部材の構成上限界があった。
そして、上記問題点を解消する音波発生装置として、機械振動を全く伴わない新しい発生原理で動作する音波発生装置が提案されている(特許文献1等)。
この装置は、外部からの振動や外気圧の変動の影響を受け難く、広い周波数範囲で安定に超音波などの圧力波を発生することができ、且つ集積回路技術を適用しての製造が容易な音波発生装置である。具体的には、この音波発生装置は、図5に示すように、基板2と、この基板2上に設けられた熱絶縁層4と、この熱絶縁層4上に設けられて、電気的に駆動される発熱体薄膜6とから構成されている。そして、上記発熱体薄膜6から発生した熱が熱伝導率の極めて小さい多孔質層や高分子層などの熱絶縁層4を設けることで、発熱体薄膜の表面の空気層の温度変化が大きくなるようにして、音波(超音波)を発生するようにしている。この場合、信号源8から交流の信号電流が発熱体薄膜6へ供給される。この熱励起型の音波発生装置は、上記したように機械振動を伴わないので、周波数帯域が広く、周囲環境の影響を受け難く、微細・アレイ化も比較的容易であるなどの特徴を有している。
このような熱励起による音波発生装置の発生原理について考察すると、電気的に駆動される発熱体薄膜に交流電流を印加した場合の表面温度の変化、すなわち固体表面温度変化T(ω)は、熱絶縁層の熱伝導度をα、体積あたりの熱容量をC、角周波数をωとして、単位面積あたりのエネルギーの出入りq(ω)〔W/cm2 〕があったとき、下記の数式1で与えられる。
また、そのとき発生する音圧は、下記の数式2で与えられる。
ここで(1−j)/√2は印加交流電流を表し、Aは定数である。
すなわち、音波の周波数の信号電流を発生する信号源8から供給された周波数fの信号電流によって、発熱体薄膜6から発生する熱が周囲の媒体である空気との熱交換により、空気の温度変化が起こる。これが空気の粗密波を生み出し、周波数2fの音波を発生する。
すなわち、音波の周波数の信号電流を発生する信号源8から供給された周波数fの信号電流によって、発熱体薄膜6から発生する熱が周囲の媒体である空気との熱交換により、空気の温度変化が起こる。これが空気の粗密波を生み出し、周波数2fの音波を発生する。
ここで、前記数式2より、発生する音圧は、単位面積あたりのエネルギーの出入りq(ω)、すなわち、入力電力に比例する。熱絶縁層4の熱伝導度α、体積あたりの熱容量Cが小さいほど大きくなることがわかる。さらに、熱絶縁層4と基板2の熱的コントラストが重要な役割をする。すなわち、熱伝導率α、体積あたりの熱容量Cをもつ熱絶縁層4の厚さをLとし、その下に熱伝導度α及び体積あたりの熱容量Cが共に十分に大きな熱伝導性の基板2がある場合、下記の数式3で定まる厚さL程度の厚み(交流成分の熱拡散長)に設定すると、発熱の交流成分を断熱し、発熱体薄膜の熱容量のため発生する直流成分の熱を、大きな熱伝導性の基板2へ効率良く逃すことができる。
上述したような熱励起型の音波発生装置は、発熱体を薄膜状に形成して表面積を大きくした発熱体薄膜6と基板2との間に熱伝導率の極めて小さい多孔質層や高分子層などの熱絶縁層4を設けて発熱体薄膜6を基板2から熱的に絶縁することにより、発熱体薄膜6の表面の温度変化が大きくなるようにして、音波発生効率を向上させていることから、発熱体薄膜6の熱容量が極めて小さく、20kHzから100kHz程度の高い周波数領域(超音波領域)に適した音波発生装置として有効である。
しかしながら、この高速に応答する音源を可聴周波数帯域のスピーカ音源として応用させようとした際に、20kHzを下回る低周波帯域、すなわち可聴周波数帯域において、充分な効率で音波を発生させることが困難である、という問題があった。
本発明は上記事由に鑑みて為されたものであり、その目的は従来よりも低周波の可聴周波数帯域の音波を効率よく発生可能な熱励起型の音波発生装置を提供することにある。
本発明は上記事由に鑑みて為されたものであり、その目的は従来よりも低周波の可聴周波数帯域の音波を効率よく発生可能な熱励起型の音波発生装置を提供することにある。
請求項1に係る発明は、熱伝導性の基板と、該基板上の一方の面に形成された所定の厚さの熱絶縁層と、該熱絶縁層上に形成されて交流の信号電流により電気的に駆動される抵抗体よりなる発熱体薄膜と、を有する熱励起型の音波発生装置であって、前記発熱体薄膜上にヘルムホルツ共鳴器を備えたことを特徴とする熱励起型の音波発生装置である。
本発明に係る熱励起型の音波発生装置によれば、従来よりも低周波、例えば20kHzを下回る可聴周波数帯域の音波を効率よく発生させることができる。
以下に、本発明に係る熱励起型の音波発生装置の好適一実施例を添付図面に基づいて詳述する。
図1は本発明に係る熱励起型の音波発生装置を示す構成図、図2は発熱体薄膜に流れる信号電流と発生する音波との関係を示す図、図3はヘルムホルツ共鳴器のダクト内の気柱の運動と共鳴の原理を説明するための説明図である。
図1は本発明に係る熱励起型の音波発生装置を示す構成図、図2は発熱体薄膜に流れる信号電流と発生する音波との関係を示す図、図3はヘルムホルツ共鳴器のダクト内の気柱の運動と共鳴の原理を説明するための説明図である。
図1に示すように、この熱励起型の音波発生装置10は、熱伝導性の基板12と、この基板12上の一方の面に形成された所定の厚さの熱絶縁層(断熱層)14と、この熱絶縁層14上に形成されて交流の信号電流により電気的に駆動される抵抗体よりなる発熱体薄膜16と、この発熱体薄膜16上に形成されたヘルムホルツ共鳴器18とにより主に構成されている。
そして、上記発熱体薄膜16の両端には、電気的に接合された熱伝導率の高い、例えばアルミニウム素材よりなる接続パッド20が設けられる。これにより発熱体薄膜16から効率良く放熱できるようになっている。この接続パッド20には、信号電流(駆動電圧波形)を発生する信号源22がリード線24を介して接続されており、上記所定の波形を持った信号電流で上記発熱体薄膜16を加熱し得るようになっている。
具体的には、上記基板12は、熱伝導率及び体積あたりの熱容量が十分に大きくて放熱性能に優れた材料よりなり、例えば単結晶のシリコン基板等を用いることができる。この基板12の一方の面に形成される上記熱絶縁層14は、熱伝導率が極めて小さい多孔質層や高分子層を用いる。この熱絶縁層14の厚さLは、前記数式3で表される所定の交流成分の熱拡散長の厚みに設定される。
この熱絶縁層14上に形成される上記発熱体薄膜16はジュール熱を発熱する、例えば金属性の抵抗体よりなり、具体的には、CVD(Chemical Vapor Deposition)法やスパッタ法などのPVD(Physical Vapor Deposition)法、或いは真空蒸着法等により形成することができる。また上記ヘルムホルツ共鳴器18は、上記発熱体薄膜16の上方の空間を覆う共鳴箱26と、この共鳴箱26の天井部に形成された、例えば断面円形の貫通孔よりなるダクト28とにより構成されており、この共鳴箱26内に共鳴空間30を形成すると共に、ダクト28を介して外部空間へ連通されている。
この共鳴箱26としては、例えばガラス基板を用いることができる。そして、上記共鳴空間30を形成する凹部やダクト28を形成する貫通孔は、液体中に混濁された微小砥粒を照射するマイクロフォーミング加工やエッチング加工をガラス基板に施すことによって形成することができる。このようなガラス基板よりなる共鳴箱26は、陽極接合を用いて上記基板12上に接合することができる。
このように形成したヘルムホルツ共鳴器18の共鳴周波数を可聴周波数帯域の所望の周波数付近となるように設定することにより、熱励起で発生した空気の粗密波を能率よく放出する事が出来る。
ここでヘルムホルツ共鳴器18の内部容積(共鳴箱26内の容積)をV0、ダクト28の長さをl、円筒状のダクト28の断面半径をr(直径は2r)、ダクト28の断面積をS、ダクト28内の気体の音速をvとすると、ヘルムホルツ共鳴器18の共鳴周波数FH は、下記の数式4で表される。
この共鳴周波数FH を所望の可聴周波数帯域である周波数付近になるように、ヘルムホルツ共鳴器18の内部容積とダクト28の形状をそれそれ選択する。このような熱励起型の音波発生装置10は、本来機械的振動がないため、共振による周波数特性変動が少なく、広い周波数帯域に亘って平滑な特性が得られる事が特徴であるが、本発明によるヘルムホルツ共鳴器18を備える事により、従来よりも低周波の可聴周波数帯域の音波を効率よく発生することができる。
また、上述のヘルムホルツ共鳴器18の有するヘルムホルツ共鳴周波数以下の周波数領域の音圧特性を向上させるためには、後述するように、各々共鳴周波数が異なる複数のヘルムホルツ共鳴器を同一基板上にアレイ化して設け、周波数特性の改善を図っても良い。
次に、上記熱絶縁層14や基板12についてより詳しく説明すると、前述したように、熱伝導率α、体積あたりの熱容量Cをもつ熱絶縁層14の厚さをLとし、その下に熱伝導率及び体積あたりの熱容量が共に十分に大きな熱伝導性の基板12を設けた場合において、前述した数式3で表わされる程度の厚さ(交流成分の熱拡散長)Lに設定すると、発熱の交流成分を断熱し、発熱体薄膜16の熱容量のため発生する直流成分の熱を、大きな熱伝導性の基板12へ効率良く逃すことができる。この場合、基板12の熱伝導率α S、基板12の体積あたり熱容量C S、熱絶縁層14の熱伝導率α I、熱絶縁層14の体積あたり熱容量C Iとすると、α S・C Sの積とα I・C Iの積の比が100:1以上、且つα S・C Sの積が1×108 以上の関係にあるという、国際公開番号WO2004/077881号公報に記載の基板材料と断熱層材料であることが、音波発生の効率から望ましい。
具体的には、例えば、基板12の材料として単結晶シリコンを用いた場合、ポリイミド、ポーラスシリコン、ポリスチレンフォーム、SiO2 薄膜、Si3 N4 薄膜等などを断熱層である熱絶縁層14として使用することができる。これらの組み合わせは、一例に過ぎず、適宜選択できるものである。ただし、より好ましくは、微細・アレイ化加工などの製造プロセスが容易なものを選択するのがよい。また基板12の材料には、単結晶シリコンの他に、多結晶シリコン、銅、窒化アルミニウム等のセラミックス等でもよい。
上記熱絶縁層14をポーラスシリコン層により形成する場合には、上記のように、シリコン表面をフッ素酸溶液中で陽極酸化処理することで形成することができる。この際、電流密度、処理時間を適宜設定することで、所望の多孔度、深さ(厚み)を得ることができる。ポーラスシリコン層は、多孔質材料であり、シリコンに比べて、熱伝導率、熱容量とも非常に小さい値を示す。
具体的には、単結晶シリコンが熱伝導率α=168W/m・K、熱容量C=1.67×106 J/m3 ・K に対して、多孔度70%程度のポーラスシリコンは、熱伝導率α=0.012W/m・K、熱容量C=0.06×106 J/m3・Kである。α S・C Sが 286×106 α I・C1 が0.26×106 であり、α S・C Sの積とα I・C Iの積の比が1100:1であり、且つα S・C Sの積が1×108 以上となる。従って、上記国際公開公報に記載された条件を満たすので、音波発生効率を向上させることができる。
図2は発熱体薄膜16に流れる信号電流と発生する音波との関係を示した図である。図2に示すように、音波周波数の信号を発生する信号源22(図1参照)から供給された周波数fの信号電流(図2(A))によって、発熱体薄膜16から発生する熱(図2(B))が周囲の媒体である空気との熱交換により、空気の温度変化が起こる(図2(C))。これが空気の粗密波を生み出し、周波数2fの音波を発生する(図2(D))。従って、信号電流の周波数の2倍の周波数の音波が発生されることになる。
ここで上記ヘルムホルツ共鳴器18のダクト28内の気柱(空気の柱)の運動と共鳴の原理について図3を参照して説明する。図3は、ヘルムホルツ共鳴器18のダクト28内の気柱28Aの運動と共鳴の原理を示す図であり、図3(A)は図1と同じ図を示し、図3(B)はその等価図を示す。ガラス基板よりなる共鳴箱26で形成されたヘルムホルツ共鳴器18は、前述したように断面積S、半径r、長さlの寸法のダクト28を有しており、ダクト28は、発熱体薄膜16の周囲を覆う共鳴空間30と、外部空間との間を貫通している。
上記ダクト28内の気柱28Aの運動は、図3(B)に示すバネ定数kのバネ32の先端にダクト内気柱の質量mが付いた系の発熱体薄膜付近の励起される振動X0 による運動と等価である。空気の密度をρとすると、ダクト28内の気柱28Aの空気質量mは、下記の数式5で表される。
外気圧力をPo 、空気の比熱比γ≒1.4とすると、バネ定数kは、下記の数式6で表される。
すなわち、ヘルムホルツ共鳴器18のダクト28内の気柱28Aの運動は、数式5の空気質量m、数式6のバネ定数kから、下記の数式7で表される振動数fで、単振動することになる。
次に、本発明の熱励起型の音波発生装置の変形例について説明する。
図4は本発明の熱励起型の音波発生装置の変形例を示す概略斜視図である。ここではヘルムホルツ共鳴器による効率向上と併せて共鳴周波数FH以下の帯域の減衰を補うため、 1つの大きなシリコン基板よりなる基板12上に複数(多数)のヘルムホルツ共鳴器18を設けており、各ヘルムホルツ共鳴器18は、それぞれ異なる共鳴周波数に設定されている。これにより、可聴周波数帯域の広い領域に亘って効率良く音波を発生させることができる。この場合、当然のごとく、ヘルムホルツ共鳴器の内部容積Vo 、ダクトの断面積S、ダクトの半径r、ダクトの長さlの寸法を個々に変化させて、共鳴周波数にバリエーションを持たせている。
図4は本発明の熱励起型の音波発生装置の変形例を示す概略斜視図である。ここではヘルムホルツ共鳴器による効率向上と併せて共鳴周波数FH以下の帯域の減衰を補うため、 1つの大きなシリコン基板よりなる基板12上に複数(多数)のヘルムホルツ共鳴器18を設けており、各ヘルムホルツ共鳴器18は、それぞれ異なる共鳴周波数に設定されている。これにより、可聴周波数帯域の広い領域に亘って効率良く音波を発生させることができる。この場合、当然のごとく、ヘルムホルツ共鳴器の内部容積Vo 、ダクトの断面積S、ダクトの半径r、ダクトの長さlの寸法を個々に変化させて、共鳴周波数にバリエーションを持たせている。
このように本発明の熱励起型の音波発生装置は、従来の音波発生装置のような機械的な振動発生手段を用いることなく音波を発生させるため、外部からの振動や外気圧の変動の影響を受け難く、また音波の発生周波数の範囲を広くとることが可能である。
また、本発明装置では、ヘルムホルツ共鳴器を用いているので、特に可聴周波数帯域の音波を効率よく出力することが可能となる。
また、本発明装置では、ヘルムホルツ共鳴器を用いているので、特に可聴周波数帯域の音波を効率よく出力することが可能となる。
さらに、本発明装置では集積回路技術の利用が容易であり、例えばシリコン基板上に音波発生デバイスの周辺回路も形成することができるので、同一基板上に周辺回路も形成し、機能の集積化が実現出来る。
そして、従来の電磁駆動型の音波発生装置では達成不可能な、軽量コンパクトで薄型の音源を極めて単純な構成で、安価に作ることができる。
そして、従来の電磁駆動型の音波発生装置では達成不可能な、軽量コンパクトで薄型の音源を極めて単純な構成で、安価に作ることができる。
10…熱励起型の音波発生装置、12…基板、14…熱絶縁層、16…発熱体薄膜、18…ヘルムホルツ共鳴器、22…信号源、26…共鳴箱、28…ダクト、28A…気柱、30…共鳴空間。
Claims (1)
- 熱伝導性の基板と、
該基板上の一方の面に形成された所定の厚さの熱絶縁層と、
該熱絶縁層上に形成されて交流の信号電流により電気的に駆動される抵抗体よりなる発熱体薄膜と、
を有する熱励起型の音波発生装置であって、
前記発熱体薄膜上にヘルムホルツ共鳴器を備えたことを特徴とする熱励起型の音波発生装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006355679A JP2008167252A (ja) | 2006-12-28 | 2006-12-28 | 熱励起型の音波発生装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006355679A JP2008167252A (ja) | 2006-12-28 | 2006-12-28 | 熱励起型の音波発生装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008167252A true JP2008167252A (ja) | 2008-07-17 |
Family
ID=39696063
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006355679A Pending JP2008167252A (ja) | 2006-12-28 | 2006-12-28 | 熱励起型の音波発生装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008167252A (ja) |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101959110A (zh) * | 2009-07-16 | 2011-01-26 | 鸿富锦精密工业(深圳)有限公司 | 微机电系统扬声器及电子装置 |
JP2012054762A (ja) * | 2010-09-01 | 2012-03-15 | Nippon Hoso Kyokai <Nhk> | 薄膜音波出力装置 |
JP2013157996A (ja) * | 2009-06-09 | 2013-08-15 | Qinghua Univ | 加熱・音響装置 |
JP2013187845A (ja) * | 2012-03-09 | 2013-09-19 | Nippon Hoso Kyokai <Nhk> | スピーカー素子 |
JP2014103649A (ja) * | 2012-11-20 | 2014-06-05 | Qinghua Univ | 熱音響装置及び熱音響装置アレイ |
JP2014103652A (ja) * | 2012-11-20 | 2014-06-05 | Qinghua Univ | 音響チップ及び音響装置 |
JP2014103654A (ja) * | 2012-11-20 | 2014-06-05 | Qinghua Univ | 熱音響装置の製造方法及び熱音響装置アレイの製造方法 |
US8879757B2 (en) | 2012-11-20 | 2014-11-04 | Tsinghua University | Thermoacoustic device |
US8908888B2 (en) | 2012-11-20 | 2014-12-09 | Tsinghua University | Earphone |
US8913765B2 (en) | 2012-11-20 | 2014-12-16 | Tsinghua University | Earphone |
US8913764B2 (en) | 2012-11-20 | 2014-12-16 | Tsinghua University | Earphone |
US8923534B2 (en) | 2012-11-20 | 2014-12-30 | Tsinghua University | Earphone |
US9088851B2 (en) | 2012-11-20 | 2015-07-21 | Tsinghua University | Thermoacoustic device array |
US9161135B2 (en) | 2012-11-20 | 2015-10-13 | Tsinghua University | Thermoacoustic chip |
US9241221B2 (en) | 2012-11-20 | 2016-01-19 | Tsinghua University | Thermoacoustic chip |
US9264819B2 (en) | 2012-11-20 | 2016-02-16 | Tsinghua University | Thermoacoustic device |
US9402127B2 (en) | 2012-11-20 | 2016-07-26 | Tsinghua University | Earphone |
US9491535B2 (en) | 2012-11-20 | 2016-11-08 | Tsinghua University | Earphone |
JP2017021152A (ja) * | 2015-07-09 | 2017-01-26 | 株式会社リコー | 機器及び画像形成装置 |
TWI578801B (zh) * | 2014-04-30 | 2017-04-11 | 鴻海精密工業股份有限公司 | 耳機 |
US9756442B2 (en) | 2012-11-20 | 2017-09-05 | Tsinghua University | Method for making thermoacoustic device array |
US9774971B2 (en) | 2012-11-20 | 2017-09-26 | Tsinghua University | Method for making thermoacoustic device |
CN109194196A (zh) * | 2018-08-31 | 2019-01-11 | 东南大学 | 一种噪声驱动的光热电转换装置及方法 |
US11350223B2 (en) | 2018-02-19 | 2022-05-31 | Murata Manufacturing Co., Ltd. | Thermal excitation acoustic-wave-generating device and acoustic-wave-generating system |
US11561297B2 (en) | 2018-02-19 | 2023-01-24 | Murata Manufacturing Co., Ltd. | Thermal excitation acoustic-wave-generating device and acoustic-wave-generating system |
-
2006
- 2006-12-28 JP JP2006355679A patent/JP2008167252A/ja active Pending
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013157996A (ja) * | 2009-06-09 | 2013-08-15 | Qinghua Univ | 加熱・音響装置 |
US8905320B2 (en) | 2009-06-09 | 2014-12-09 | Tsinghua University | Room heating device capable of simultaneously producing sound waves |
CN101959110B (zh) * | 2009-07-16 | 2014-07-09 | 鸿富锦精密工业(深圳)有限公司 | 微机电系统扬声器及电子装置 |
CN101959110A (zh) * | 2009-07-16 | 2011-01-26 | 鸿富锦精密工业(深圳)有限公司 | 微机电系统扬声器及电子装置 |
JP2012054762A (ja) * | 2010-09-01 | 2012-03-15 | Nippon Hoso Kyokai <Nhk> | 薄膜音波出力装置 |
JP2013187845A (ja) * | 2012-03-09 | 2013-09-19 | Nippon Hoso Kyokai <Nhk> | スピーカー素子 |
US8913764B2 (en) | 2012-11-20 | 2014-12-16 | Tsinghua University | Earphone |
US9264819B2 (en) | 2012-11-20 | 2016-02-16 | Tsinghua University | Thermoacoustic device |
US8879757B2 (en) | 2012-11-20 | 2014-11-04 | Tsinghua University | Thermoacoustic device |
JP2014103652A (ja) * | 2012-11-20 | 2014-06-05 | Qinghua Univ | 音響チップ及び音響装置 |
US8908888B2 (en) | 2012-11-20 | 2014-12-09 | Tsinghua University | Earphone |
US8913765B2 (en) | 2012-11-20 | 2014-12-16 | Tsinghua University | Earphone |
JP2014103649A (ja) * | 2012-11-20 | 2014-06-05 | Qinghua Univ | 熱音響装置及び熱音響装置アレイ |
US8923534B2 (en) | 2012-11-20 | 2014-12-30 | Tsinghua University | Earphone |
US9088851B2 (en) | 2012-11-20 | 2015-07-21 | Tsinghua University | Thermoacoustic device array |
US9161135B2 (en) | 2012-11-20 | 2015-10-13 | Tsinghua University | Thermoacoustic chip |
US9241221B2 (en) | 2012-11-20 | 2016-01-19 | Tsinghua University | Thermoacoustic chip |
JP2014103654A (ja) * | 2012-11-20 | 2014-06-05 | Qinghua Univ | 熱音響装置の製造方法及び熱音響装置アレイの製造方法 |
US9402127B2 (en) | 2012-11-20 | 2016-07-26 | Tsinghua University | Earphone |
US9491535B2 (en) | 2012-11-20 | 2016-11-08 | Tsinghua University | Earphone |
US9774971B2 (en) | 2012-11-20 | 2017-09-26 | Tsinghua University | Method for making thermoacoustic device |
US9756442B2 (en) | 2012-11-20 | 2017-09-05 | Tsinghua University | Method for making thermoacoustic device array |
TWI578801B (zh) * | 2014-04-30 | 2017-04-11 | 鴻海精密工業股份有限公司 | 耳機 |
JP2017021152A (ja) * | 2015-07-09 | 2017-01-26 | 株式会社リコー | 機器及び画像形成装置 |
US11350223B2 (en) | 2018-02-19 | 2022-05-31 | Murata Manufacturing Co., Ltd. | Thermal excitation acoustic-wave-generating device and acoustic-wave-generating system |
US11561297B2 (en) | 2018-02-19 | 2023-01-24 | Murata Manufacturing Co., Ltd. | Thermal excitation acoustic-wave-generating device and acoustic-wave-generating system |
CN109194196A (zh) * | 2018-08-31 | 2019-01-11 | 东南大学 | 一种噪声驱动的光热电转换装置及方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008167252A (ja) | 熱励起型の音波発生装置 | |
US7793709B2 (en) | Jet generating device and electronic apparatus | |
US8081454B2 (en) | Gas ejector, electronic device, and gas-ejecting method | |
JP3705926B2 (ja) | 圧力波発生装置 | |
JP5086406B2 (ja) | 放熱素子を備えた熱音響装置 | |
KR101217362B1 (ko) | 분류 발생 장치 및 전자 기기 | |
US7861767B2 (en) | Airflow generating device and electronic apparatus | |
US9635468B2 (en) | Encapsulated thermoacoustic projector based on freestanding carbon nanotube film | |
JP2002532913A (ja) | 熱伝達増加装置 | |
TW200839980A (en) | Pulsating cooling system | |
JP2010514396A (ja) | 電磁超音波トランスデューサおよびそのアレイ | |
JP2007518910A (ja) | 媒体流生成装置 | |
TWI308053B (en) | Dissipation device | |
Kontomichos et al. | A thermoacoustic device for sound reproduction | |
JP2008161820A (ja) | 圧力波発生装置 | |
JP2007222727A (ja) | 振動アクチュエータ及び噴流発生装置 | |
JP2007209845A (ja) | 噴流発生装置及び電子機器 | |
Li et al. | Thermal Effect of PMUT and Its Application to the Heat Dissipation of Power Electronics | |
RU2545312C1 (ru) | Термоакустический излучатель | |
JP4900503B2 (ja) | 気体噴出装置及び電子機器 | |
Baughman et al. | Encapsulated thermoacoustic projector based on freestanding carbon nanotube film | |
JP6186622B2 (ja) | 超音波発音体およびパラメトリックスピーカ | |
Wu et al. | 5 EXPERIMENTAL STUDY ON COOLING EFFECTS GENERATED BY PIEZOELECTRIC BIMORPH STRUCTURES | |
KR20050102143A (ko) | 매체의 유용한 스트림을 발생시키는 발생 장치 | |
JP2004312561A (ja) | パラメトリックスピーカ用電気音響変換器およびパラメトリックスピーカ |