JP2008166019A - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP2008166019A
JP2008166019A JP2006351482A JP2006351482A JP2008166019A JP 2008166019 A JP2008166019 A JP 2008166019A JP 2006351482 A JP2006351482 A JP 2006351482A JP 2006351482 A JP2006351482 A JP 2006351482A JP 2008166019 A JP2008166019 A JP 2008166019A
Authority
JP
Japan
Prior art keywords
fuel cell
gas
injector
flow rate
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006351482A
Other languages
English (en)
Other versions
JP5105223B2 (ja
Inventor
Munemasa Ishikawa
統將 石河
Hiroyuki Yumiya
浩之 弓矢
Katsuki Ishigaki
克記 石垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006351482A priority Critical patent/JP5105223B2/ja
Priority to CNA2007800484281A priority patent/CN101595586A/zh
Priority to US12/521,369 priority patent/US20100316926A1/en
Priority to DE112007003165T priority patent/DE112007003165T5/de
Priority to PCT/JP2007/073891 priority patent/WO2008078553A1/ja
Publication of JP2008166019A publication Critical patent/JP2008166019A/ja
Application granted granted Critical
Publication of JP5105223B2 publication Critical patent/JP5105223B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04992Processes for controlling fuel cells or fuel cell systems characterised by the implementation of mathematical or computational algorithms, e.g. feedback control loops, fuzzy logic, neural networks or artificial intelligence
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04328Temperature; Ambient temperature of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04388Pressure; Ambient pressure; Flow of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04395Pressure; Ambient pressure; Flow of cathode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04559Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04574Current
    • H01M8/04589Current of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04761Pressure; Flow of fuel cell exhausts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Fuzzy Systems (AREA)
  • Automation & Control Theory (AREA)
  • Software Systems (AREA)
  • Medical Informatics (AREA)
  • Artificial Intelligence (AREA)
  • Health & Medical Sciences (AREA)
  • Evolutionary Computation (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Fuel Cell (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

【課題】燃料電池の負荷変動が大きい場合における、反応ガスの実流量と目標値との偏差の誤積分を抑制し、反応ガス供給流量のオーバーシュートを抑制する。
【解決手段】燃料電池システムは、反応ガス供給装置から燃料電池に供給される反応ガスの実流量と目標値との偏差に比例ゲインを乗じてなる比例項と、その偏差に積分ゲインを乗じて時間積分してなる積分項とに基づいて、実流量が目標値に一致するように反応ガス供給装置をフィードバック制御するとともに、その偏差の値に応じて積分項の更新演算を変更する。
【選択図】図2

Description

本発明は燃料電池へ反応ガスを供給する反応ガス供給装置を備える燃料電池システムに関する。
近年、環境問題に対する取り組みの一環として、低公害車の開発が進められており、その中の一つに燃料電池を車載電源とする燃料電池車両がある。燃料電池システムは、電解質膜の一方の面にアノード極を配置し、他方の面にカソード極を配置してなる膜−電極接合体に反応ガスを供給することで電気化学反応を起こし、化学エネルギーを電気エネルギーに変換するエネルギー変換システムである。なかでも、固体高分子膜を電解質として用いる固体高分子電解質型燃料電池システムは、低コストでコンパクト化が容易であり、しかも高出力密度を有することから、車載電力源としての用途が期待されている。
燃料電池に供給される燃料ガスの流量及び圧力を高精度に制御するための手段として、例えば、特開2005−302563号公報に示すように応答性に優れたインジェクタを用いる構成が知られている。
特開2005−302563号公報
ところで、燃料電池車両を急加速させる等の場面では、燃料電池の負荷が急激に増大するので、インジェクタ二次圧指令値の時間変化量は過渡的に大きくなる。このような過渡的な状態では、インジェクタ二次圧は、インジェクタ二次圧指令値に追いつくことができず、両者の偏差は一時的に大きくなる。インジェクタによるガス噴射を比例積分動作によりフィードバック制御するシステムにおいて、このような過渡的な状態においても、インジェクタ二次圧とインジェクタ二次圧指令値との偏差を定常偏差と看做して積分項の更新演算を実施すると、積分項の値が必要以上に大きくなってしまうので、インジェクタ二次圧指令値が一定値に安定化したときに、インジェクタ二次圧がオーバーシュートしてしまうという不都合が生じる。
このような問題は、反応ガス供給装置(エアコンプレッサ、水素循環ポンプ等)による燃料電池への反応ガス供給を比例積分動作によりフィードバック制御するシステムに共通する課題である。
そこで、本発明は燃料電池の負荷変動が大きい場合における、反応ガスの実流量と目標値との偏差の誤積分を抑制し、反応ガス供給流量のオーバーシュートを抑制することを課題とする。
上記の課題を解決するため、本発明に係わる燃料電池システムは、燃料電池へ反応ガスを供給する反応ガス供給装置と、反応ガス供給装置から燃料電池に供給される反応ガスの実流量と目標値との偏差に比例ゲインを乗じてなる比例項と、その偏差に積分ゲインを乗じて時間積分してなる積分項とに基づいて、実流量が目標値に一致するように反応ガス供給装置をフィードバック制御するフィードバック制御手段と、その偏差の値に応じて積分項の更新演算を変更する演算制御手段とを備える。
燃料電池に供給される反応ガスの実流量と目標値との偏差に基づいて積分項の更新演算を変更することにより、燃料電池の負荷変動が大きい場合における、反応ガスの実流量と目標値との偏差の誤積分を抑制し、反応ガス供給流量のオーバーシュートを抑制することができる。
反応ガス供給装置は、例えば、燃料電池へ燃料ガスを供給するインジェクタである。演算制御手段は、燃料ガスの実流量と目標値との偏差が所定の閾値以上となるときに積分項の更新演算を禁止する。
燃料ガスの実流量と目標値との偏差が所定の閾値以上となるときには、燃料電池の負荷変動が大きくなるので、そのような場合には、燃料ガスの実流量と目標値との偏差の誤積分を禁止することで、燃料ガス供給流量のオーバーシュートを抑制することができる。
反応ガス供給装置は、例えば、燃料電池へ酸化ガスを供給するエアコンプレッサである。演算制御手段は、酸化ガスの実流量と目標値との偏差が所定の閾値以上となるときに積分ゲインをより小さい値に変更する。
酸化ガスの実流量と目標値との偏差が所定の閾値以上となるときには、燃料電池の負荷変動が大きくなるので、そのような場合には、エアコンプレッサ制御に係わる積分ゲインをより小さい値に変更することで、酸化ガス供給流量のオーバーシュートを抑制することができる。
燃料電池システムは、反応ガス供給装置として、燃料電池へ燃料ガスを供給するインジェクタと、燃料電池へ酸化ガスを供給するエアコンプレッサとを兼備してもよい。フィードバック制御手段は、インジェクタによる燃料ガス供給と、エアコンプレッサによる酸化ガス供給とをフィードバック制御する。
本発明によれば、燃料電池に供給される反応ガスの実流量と目標値との偏差に基づいて積分項の更新演算を変更することにより、燃料電池の負荷変動が大きい場合における、反応ガスの実流量と目標値との偏差の誤積分を抑制し、反応ガス供給流量のオーバーシュートを抑制することができる。
以下、各図を参照しながら本発明の実施形態について説明する。
図1は燃料電池車両の車載電源システムとして機能する燃料電池システム10のシステム構成を示す。
燃料電池システム10は、反応ガス(酸化ガス及び燃料ガス)の供給を受けて発電する燃料電池スタック20と、燃料ガスとしての水素ガスを燃料電池スタック20に供給する燃料ガス配管系30と、酸化ガスとしての空気を燃料電池スタック20に供給する酸化ガス配管系40と、電力の充放電を制御する電力系60と、システム全体を統括制御するコントローラ70と、を備えている。
燃料電池スタック20は、例えば、多数のセルを直列に積層してなる固体高分子電解質型セルスタックである。セルは、イオン交換膜からなる電解質膜の一方の面にカソード極を有し、他方の面にアノード極を有し、更にカソード極及びアノード極を両側から挟みこむように一対のセパレータを有している。一方のセパレータの燃料ガス流路に燃料ガスが供給され、他方のセパレータの酸化ガス流路に酸化ガスが供給され、このガス供給により燃料電池スタック20は発電する。
燃料ガス配管系30は、燃料ガス供給源31と、燃料ガス供給源31から燃料電池スタック20のアノード極に供給される燃料ガス(水素ガス)が流れる燃料ガス供給流路35と、燃料電池スタック20から排出される燃料オフガス(水素オフガス)を燃料ガス供給流路35に還流せしめるための循環流路36と、循環流路36内の燃料オフガスを燃料ガス供給流路35に圧送する循環ポンプ37と、循環流路36に分岐接続される排気流路39とを有している。
燃料ガス供給源31は、例えば、高圧水素タンクや水素吸蔵合金などで構成され、高圧(例えば、35MPa又は70MPa)の水素ガスを貯留する。遮断弁32を開くと、燃料ガス供給源31から燃料ガス供給流路35に水素ガスが流出する。水素ガスは、レギュレータ33やインジェクタ34により、所定圧(例えば、200kPa程度)まで減圧されて、燃料電池スタック20に供給される。
尚、燃料ガス供給源31は、炭化水素系の燃料から水素リッチな改質ガスを生成する改質器と、この改質器で生成した改質ガスを高圧状態にして蓄圧する高圧ガスタンクとから構成してもよい。
レギュレータ33は、その上流側圧力(一次圧)を、予め設定した二次圧に調圧する装置である。本実施形態においては、一次圧を減圧する機械式の減圧弁をレギュレータ33として採用している。機械式の減圧弁の構成としては、背圧室と調圧室とがダイアフラムを隔てて形成された筺体を有し、背圧室内の背圧により調圧室内で一次圧を所定の圧力に減圧して二次圧とする公知の構成を採用することができる。
インジェクタ34の上流側にレギュレータ33を配置することにより、インジェクタ33の上流側圧力を効果的に低減させることができる。このため、インジェクタ34の機械的構造(弁体、筺体、流路、駆動装置等)の設計自由度を高めることができる。また、インジェクタ34の上流側圧力を低減させることができるので、インジェクタ34の上流側圧力と下流側圧力との差圧の増大に起因してインジェクタ34の弁体が移動し難くなることを抑制することができる。そのため、インジェクタ34の下流側圧力の可変調圧幅を広げることができるとともに、インジェクタ34の応答性の低下を抑制することができる。
インジェクタ34は、弁体を電磁駆動力で直接的に所定の駆動周期で駆動して弁座から離隔させることにより、ガス流量やガス圧を調整することが可能な電磁駆動式開閉弁である。インジェクタ34は、燃料ガス供給流路35を開放又は閉鎖するための弁体と、弁体駆動用のソレノイドコイルと、弁体に一体化されてなるアーマチャと、ソレノイドコイルを収容するステータとを有し、ソレノイドコイルへの通電により、アーマチャがステータに吸引されて弁体が所定の開弁位置又は閉弁位置に移動するように構成されている。
本実施形態においては、ソレノイドコイルに給電されるパルス励磁電流のオン/オフにより、インジェクタ34の噴射孔の開口面積を2段階に切り替えることができるようになっている。コントローラ70から出力される噴射指令によってインジェクタ34のガス噴射時間及びガス噴射時期が制御されることにより、燃料ガスの流量及び圧力が高精度に制御される。インジェクタ34は、弁(弁体及び弁座)を電磁駆動力で直接開閉駆動するものであり、その駆動周期が高応答の領域まで制御可能であるため、高い応答性を有する。
インジェクタ34は、その下流に要求されるガス流量を供給するために、インジェクタ34のガス流路に設けられた弁体の開口面積(開度)及び開放時間の少なくとも一方を変更することにより、下流側(燃料電池スタック20側)に供給されるガス流量(又は水素モル濃度)を調整する。
尚、インジェクタ34の弁体の開閉によりガス流量が調整されるとともにインジェクタ34下流に供給されるガス圧力がインジェクタ34上流のガス圧力より減圧されるため、インジェクタ34を調圧弁(減圧弁又はレギュレータ)と解釈することもできる。また、本実施形態では、ガス要求に応じて所定の圧力範囲の中で要求圧力に一致するようにインジェクタ34の上流ガス圧の調圧量(減圧量)を変化させることが可能な可変調圧弁と解釈することもできる。インジェクタ34は、燃料ガス供給流路35の上流側のガス状態(ガス流量、水素モル濃度、ガス圧力)を調整して下流側に供給する可変ガス供給装置として機能する。
燃料ガス供給流路35には、インジェクタ34の上流側圧力(一次圧力)を検出するための一次側圧力センサ81、インジェクタ34の上流側温度を検出するための一次側温度センサ83、インジェクタ34の下流側圧力(二次圧力)を検出するための二次側圧力センサ82がそれぞれ取り付けられている。
循環流路36には、排気弁38を介して、排気流路39が接続されている。排気弁38は、コントローラ70からの指令によって作動することにより、循環流路36内の不純物を含む燃料オフガスと水分を外部に排出する。排気弁38の開弁により、循環流路36内の燃料オフガス中の不純物の濃度が下がり、循環供給される燃料オフガス中の水素濃度が上がる。
希釈器50には、排気弁38及び排気流路39を介して排出される燃料オフガスと、排出流路45を流れる酸化オフガスとが流入し、燃料オフガスを希釈する。希釈化された燃料オフガスの排出音は、マフラー(消音器)51によって消音され、テールパイプ52を流れて車外に排気される。
酸化ガス配管系40は、燃料電池スタック20のカソード極に供給される酸化ガスが流れる酸化ガス供給流路44と、燃料電池スタック20から排出される酸化オフガスが流れる排出流路45とを有している。
酸化ガス供給流路44には、フィルタ41を介して酸化ガスを取り込むエアコンプレッサ42と、エアコンプレッサ42の下流側圧力(二次圧力)を検出するための圧力センサ85と、エアコンプレッサ42により圧送される酸化ガスを加湿するための加湿器43とが設けられている。排出流路45には、酸化ガス供給圧を調整するための背圧調整弁46と、加湿器43とが設けられている。
加湿器43は、多数本の水蒸気透過膜(中空糸膜)から成る水蒸気透過膜束(中空糸膜束)を収容している。水蒸気透過膜の内部には、電池反応により生じた水分を多量に含む高湿潤の酸化オフガス(ウェットガス)が流れる一方で、水上透過膜の外部には、大気から取り込まれた低湿潤の酸化ガス(ドライガス)が流れる。酸化ガスと酸化オフガスとの間で水蒸気透過膜を隔てて水分交換が行われることにより、酸化ガスを加湿することができる。
電力系60は、DC/DCコンバータ61、バッテリ62、トラクションインバータ63、トラクションモータ64、及び電流センサ84を有している。
DC/DCコンバータ61は、直流の電圧変換器であり、バッテリ62からの直流電圧を昇圧してトラクションインバータ63に出力する機能と、燃料電池スタック20又はトラクションモータ64からの直流電圧を降圧してバッテリ62に充電する機能と、を有する。DC/DCコンバータ61のこれらの機能により、バッテリ62の充放電が制御される。また、DC/DCコンバータ61による電圧変換制御により、燃料電池スタック20の運転ポイント(出力電圧、出力電流)が制御される。
バッテリ62は、電力の蓄電及び放電が可能な蓄電装置であり、ブレーキ回生時の回生エネルギー貯蔵源、燃料電池車両の加速又は減速に伴う負荷変動時のエネルギーバッファとして機能する。バッテリ62としては、例えば、ニッケル・カドミウム蓄電池、ニッケル・水素蓄電池、リチウム二次電池等の二次電池が好適である。
トラクションインバータ63は、直流電流を三相交流に変換し、トラクションモータ64に供給する。トラクションモータ64は、例えば、三相交流モータであり、燃料電池車両の動力源を構成する。電流センサ84は、燃料電池スタック20の出力電流(FC電流)を検出する。
コントローラ70は、CPU、ROM、RAM、及び入出力インタフェースを備えるコンピュータシステムであり、燃料電池システム10の各部を制御する。例えば、コントローラ70は、イグニッションスイッチ(図示せず)から出力される起動信号を受信すると、燃料電池システム10の運転を開始し、アクセルセンサ(図示せず)から出力されるアクセル開度信号や、車速センサ(図示せず)から出力される車速信号などを基に、システム全体の要求電力を求める。システム全体の要求電力は、車両走行電力と補機電力との合計値である。
補機電力には、例えば、車載補機類(加湿器、エアコンプレッサ、水素ポンプ、及び冷却水循環ポンプ等)で消費される電力、車両走行に必要な装置(変速機、車輪制御装置、操舵装置、及び懸架装置等)で消費される電力、乗員空間内に配設される装置(空調装置、照明器具、及びオーディオ等)で消費される電力などが含まれる。
そして、コントローラ70は、燃料電池スタック20とバッテリ62の出力電力の配分を決定し、燃料電池スタック20の発電量が目標電力に一致するように、エアコンプレッサ42の回転数やインジェクタ34の弁開度を調整し、燃料電池スタック20への反応ガス供給量を調整するとともに、DC/DCコンバータ61を制御して燃料電池スタック20の出力電圧を調整することにより燃料電池スタック20の運転ポイント(出力電圧、出力電流)を制御する。更に、コントローラ70は、アクセル開度に応じた目標車速が得られるように例えば、スイッチング指令として、U相、V相、及びW相の各交流電圧指令値をトラクションインバータ63に出力し、トラクションモータ64の出力トルク、及び回転数を制御する。
図2はインジェクタ制御に係わる機能ブロックを示している。
コントローラ70は、燃料電池スタック20の運転状態(例えば、電流センサ84で検出した燃料電池スタック20の出力電流)に基づいて、燃料電池スタック20で消費される燃料ガスの量(以下、「燃料消費量」という)を算出する(燃料消費量算出機能:B1)。本実施形態においては、燃料電池スタック20の出力電流値と燃料消費量との関係を表す所定の演算式を用いて、コントローラ70の演算周期毎に燃料消費量を算出して更新することとしている。
コントローラ70は、燃料電池スタック20の運転状態(電流センサ84で検出した燃料電池スタック20の発電時の電流値)に基づいて、インジェクタ34下流位置における燃料ガスの目標圧力値(燃料電池スタック20への目標ガス供給圧)を算出する(目標圧力値算出機能:B2)。本実施形態においては、燃料電池スタック20の電流値と目標圧力値との関係を表すマップデータを用いて、コントローラ70の演算周期毎に、二次側圧力センサ82が配置された位置(圧力調整が要求される位置である圧力調整位置)における目標圧力値を算出して更新することとしている。
コントローラ70は、算出した目標圧力値と、二次側圧力センサ82で検出したインジェクタ34下流位置(圧力調整位置)の圧力値(検出圧力値)との偏差に基づいてフィードバック補正流量を算出する(フィードバック補正流量算出機能:B3)。フィードバック補正流量は、目標圧力値と検出圧力値との偏差を低減させるために燃料消費量に加算される燃料ガス流量(圧力差低減補正流量)である。本実施形態においては、PI型フィードバック制御則を用いて、コントローラ70の演算周期毎にフィードバック補正流量を算出して更新することとしている。
フィードバック補正流量算出機能B3は、燃料ガスの実流量と目標値との偏差(e)に比例ゲイン(KP)を乗じることにより比例型フィードバック補正流量(比例項:P=KP×e)を算出するとともに、偏差の時間積分値(∫(e)dt)に積分ゲイン(KI)を乗じることにより積分型フィードバック補正流量(積分項:I=KI×∫(e)dt)を算出し、これらを加算した値を含むフィードバック補正流量を算出する。
フィードバック補正流量算出機能B3は、インジェクタ34から燃料電池スタック20への燃料ガス供給をフィードバック制御するフィードバック制御手段として機能するとともに、燃料ガスの実流量と目標値との偏差に応じて積分項の更新演算を変更する演算制御手段としても機能する。
コントローラ70は、前回算出した目標圧力値と、今回算出した目標圧力値との偏差に対応するフィードフォワード補正流量を算出する(フィードフォワード補正流量算出機能:B4)。フィードフォワード補正流量は、目標圧力値の変動に起因する燃料ガス流量の変動分(圧力差対応補正流量)である。本実施形態においては、目標圧力値の偏差とフィードフォワード補正流量との関係を表す所定の演算式を用いて、コントローラ70の演算周期毎にフィードフォワード補正流量を算出して更新することとしている。
コントローラ70は、インジェクタ34の上流側のガス状態(一次側圧力センサ81で検出した燃料ガスの圧力、及び一次側温度センサ83で検出した燃料ガスの温度)に基づいてインジェクタ34の上流側の静的流量を算出する(静的流量算出機能:B5)。本実施形態においては、インジェクタ34の上流側の燃料ガスの圧力及び温度と静的流量との関係を表す所定の演算式を用いて、コントローラ70の演算周期毎に静的流量を算出して更新することとしている。
コントローラ70は、インジェクタ34の上流側ガス状態(燃料ガスの圧力及び温度)及び印加電圧に基づいて、インジェクタ34の無効噴射時間を算出する(無効噴射時間算出機能:B6)。ここで、無効噴射時間とは、インジェクタ34がコントローラ70から制御信号を受けてから実際に噴射を開始するまでに要する時間を意味する。本実施形態においては、インジェクタ34の上流側の燃料ガスの圧力及び温度と印加電圧と無効噴射時間との関係を表すマップデータを用いて、コントローラ70の演算周期毎に無効噴射時間を算出して更新することとしている。
コントローラ70は、燃料消費量と、フィードバック補正流量と、フィードフォワード補正流量とを加算することにより、インジェクタ34の噴射流量を算出する(噴射流量算出機能:B7)。そして、コントローラ70は、インジェクタ34の噴射流量を静的流量で除した値にインジェクタ34の駆動周期を乗じることにより、インジェクタ34の基本噴射時間を算出するとともに、この基本噴射時間と無効噴射時間とを加算してインジェクタ34の総噴射時間を算出する(総噴射時間算出機能:B8)。ここで、駆動周期とは、インジェクタ34の噴射孔の開閉状態を表す段状(オン/オフ)波形の周期を意味する。本実施形態においては、コントローラ70により駆動周期を一定の値に設定している。
コントローラ70は、以上の手順を経て算出したインジェクタ34の総噴射時間を実現するための噴射指令をインジェクタ34に出力することにより、インジェクタ34のガス噴射時間及びガス噴射時期を制御して、燃料電池スタック20に供給される燃料ガスの流量及び圧力を調整する。
次に、図3を参照しながらインジェクタ制御に係わるフィードバック補正流量の積分項の更新演算を許可するタイミングについて説明する。
同図はFC電流値、ガス噴射指令時間、インジェクタ二次圧指令値、及びインジェクタ駆動周期のタイミングチャートを示している。それぞれの時刻t3〜t1は、インジェクタ噴射タイミングを示している。FC電流値I3〜I1は、それぞれのインジェクタ噴射タイミングにおいて電流センサ84により検出される電流値である。ガス噴射指令時間τ3〜τ1は、それぞれのインジェクタ噴射タイミングにおいてインジェクタ34から燃料ガスが噴射される時間を示す。インジェクタ二次圧指令値lo_ref3〜lo_ref1は、それぞれのインジェクタ噴射タイミングにおけるインジェクタ二次圧の目標値である。インジェクタ駆動周期は、インジェクタ34のガス噴射間隔を示す。例えば、インジェクタ駆動周期T3は、時刻t3と時刻t2との時間間隔を示しており、ガス噴射指令時間τ3は、インジェクタ駆動周期T3中にガス噴射する時間を示している。同様に、インジェクタ駆動周期T2は、時刻t2と時刻t1との時間間隔を示しており、ガス噴射指令時間τ2は、インジェクタ駆動周期T2中にガス噴射する時間を示している。
本実施形態では、次の条件(1)〜(3)の全てが満たされることを条件として、フィードバック補正流量算出機能B3による積分項の更新演算を許可するものとする。
(1)インジェクタ34が安定してガス噴射していること。
(2)インジェクタ二次圧指令値の時間変化量が所定の閾値未満であること。
(3)FC電流の時間変化量が所定の閾値未満であること。
一方、上記(1)〜(3)のうち何れかの条件が満たされない場合には、フィードバック補正流量算出機能B3による積分項の更新演算を禁止する。
ここで、条件(1)が成立するためには、それぞれのインジェクタ噴射時間がゼロでないこと、つまり、(1A)式が成立する必要がある。
τ1>0 and τ2>0 and τ3>0 …(1A)
(1A)式が成立する場合には、インジェクタ噴射安定フラグはオンとなる。一方、τ1、τ2、τ3の何れか一つがゼロである場合、つまり(1A)式が成立しない場合には、インジェクタ噴射安定フラグはオフになる。
条件(2)が成立するためには、インジェクタ二次圧指令値の時間変化量が所定の閾値未満であること、つまり、以下の(2A)〜(2B)式の全てが成立する必要がある。
Δlo_ref3=│lo_ref3-lo_ref2│/T3≦20Pa/s …(2A)
Δlo_ref2=│lo_ref2-lo_ref1│/T2≦20Pa/s …(2B)
(2A)〜(2B)式の全てが成立する場合には、インジェクタ二次圧安定フラグはオンになる。一方、(2A)〜(2B)式のうち何れか一つでも成立しない場合には、インジェクタ二次圧安定フラグはオフになる。
条件(3)が成立するためには、FC電流の時間変化量が所定の閾値未満であること、つまり、以下の(3A)〜(3B)式の全てが成立する必要がある。
ΔI3=│I3−I2│/T3≦30mA/s …(3A)
ΔI2=│I2−I1│/T2≦30mA/s …(3B)
(3A)〜(3B)式の全てが成立する場合には、FC電流安定フラグはオンになる。一方、(3A)〜(3B)式のうち何れか一つでも成立しない場合には、FC電流安定フラグはオフになる。
インジェクタ噴射安定フラグ、インジェクタ二次圧安定フラグ、及びFC電流安定フラグの全てがオンになるときに積分許可フラグはオンになり、フィードバック補正流量算出機能B3による積分項の更新演算が許可される。一方、インジェクタ噴射安定フラグ、インジェクタ二次圧安定フラグ、及びFC電流安定フラグの何れかがオフになるときに積分許可フラグはオフになり、フィードバック補正流量算出機能B3による積分項の更新演算が禁止される。
このように、条件(1)〜(3)の全てが満たされることを条件として、フィードバック補正流量算出機能B3によるイ積分項の更新演算を許可することにより、インジェクタ二次圧とインジェクタ二次圧指令値との偏差を定常偏差と看做して積分項の更新演算を実施することによる、インジェクタ二次圧のオーバーシュートを抑制できる。
図4はエアコンプレッサ制御に係わる機能ブロックを示している。
コントローラ70は、燃料電池スタック20の運転状態(例えば、電流センサ84で検出した燃料電池スタック20の出力電流)に基づいて、燃料電池スタック20で消費される酸化ガスの量(以下、「酸化ガス消費量」という)を算出する(酸化ガス消費量算出機能:B11)。本実施形態においては、燃料電池スタック20の出力電流値と酸化ガス消費量との関係を表す所定の演算式を用いて、コントローラ70の演算周期毎に酸化ガス消費量を算出して更新することとしている。
コントローラ70は、燃料電池スタック20の運転状態(電流センサ84で検出した燃料電池スタック20の発電時の電流値)に基づいて、エアコンプレッサ42下流位置における酸化ガスの目標圧力値(燃料電池スタック20への目標ガス供給圧)を算出する(目標圧力値算出機能:B12)。本実施形態においては、燃料電池スタック20の電流値と目標圧力値との関係を表すマップデータを用いて、コントローラ70の演算周期毎に、二次側圧力センサ85が配置された位置(圧力調整が要求される位置である圧力調整位置)における目標圧力値を算出して更新することとしている。
コントローラ70は、算出した目標圧力値と、二次側圧力センサ85で検出したエアコンプレッサ42下流位置(圧力調整位置)の圧力値(検出圧力値)との偏差に基づいてフィードバック補正流量を算出する(フィードバック補正流量算出機能:B13)。フィードバック補正流量は、目標圧力値と検出圧力値との偏差を低減させるために酸化ガス消費量に加算される酸化ガス流量(圧力差低減補正流量)である。本実施形態においては、PI型フィードバック制御則を用いて、コントローラ70の演算周期毎にフィードバック補正流量を算出して更新することとしている。
フィードバック補正流量算出機能B13は、酸化ガスの実流量と目標値との偏差(e)に比例ゲイン(KP)を乗じることにより、比例型フィードバック補正流量(比例項:P=KP×e)を算出するとともに、偏差の時間積分値(∫(e)dt)に積分ゲイン(KI)を乗じることにより、積分型フィードバック補正流量(積分項:I=KI×∫(e)dt)を算出し、これらを加算した値を含むフィードバック補正流量を算出する。
フィードバック補正流量算出機能B13は、エアコンプレッサ42から燃料電池スタック20への酸化ガス供給をフィードバック制御するフィードバック制御手段として機能するとともに、酸化ガスの実流量と目標値との偏差に応じて積分項の更新演算を変更する演算制御手段としても機能する。
コントローラ70は、酸化ガス消費量と、フィードバック補正流量とを加算することにより、エアコンプレッサ42から出力される酸化ガスの流量を算出する(酸化ガス流量算出機能:B14)。更にコントローラ70は、酸化ガス流量算出機能B14によって算出された酸化ガス流量をエアコンプレッサ42の回転数に換算し(ガス流量/回転数変換機能:B15)、回転数指令値をエアコンプレッサ42に出力する。
次に、図5を参照しながらエアコンプレッサ制御に係わるフィードバック補正流量の積分項の更新演算を許可するタイミングについて説明する。
本実施形態では、エアコンプレッサ制御に係わる比例項P=KP×eの値が所定の閾値を超えているときには、積分項I=KI×∫(e)dtの比例ゲインKIの値を小さくする。比例項Pの値が所定の閾値を超えているときには、酸化ガス流量の実測値(実線)は、その目標値(点線)に追いつくことができず、両者の偏差eは大きくなる。このような場合に、比例ゲインKIの値を通常値(負荷変動が殆どない運転状態における比例ゲインKIの値)の1/20〜1/10程度の値に変更することにより、偏差eを定常偏差と看做して積分項Iの更新演算を実施したとしても、その過渡的な期間の積分項Iの積算値を小さくすることができる。そのため、目標値が一定値に落ち着いたときの酸化ガス流量のオーバーシュートを抑制できる(説明の便宜上、図5は従来に係わるエアコンプレッサ制御がオーバーシュートを引き起こす例を示している。)。
但し、燃料電池スタック20の負荷が再び安定化する等して、比例項Pの値が所定の閾値を下回る場合には、積分項Iの比例ゲインKIの値を変更前の値に戻す必要がある。比例ゲインKIの値を変更前の値に戻すときには、いきなり変更前の値に戻すのではなく、比例ゲインKIの値を少しずつ大きくしながら変更前の値に戻すのが望ましい。
尚、フィードバック補正流量算出機能B13における比例積分制御の対象は、あくまでも酸化ガス流量であって、エアコンプレッサ42の回転数ではない。酸化ガス流量をエアコンプレッサ42の回転数に変換する際に僅かな誤差が存在すると、その僅かな誤差が積み重なって定常誤差となって現れる。フィードバック制御によって、その定常誤差を低減するには、運転状態に関わらず、積分項Iの更新演算を継続するのが望ましい。つまり、燃料電池スタック20の負荷が過渡的に変動するような場合(比例項Pの値が所定の閾値を超える場合)であっても、比例ゲインKIの値をゼロにしないで積分項Iを更新演算するのが望ましい。
発明の実施形態を通じて説明された実施例は、用途に応じて適宜に組み合わせて、又は変更若しくは改良を加えて用いることができ、本発明は上述した実施形態の記載の記載に限定されるものではない。例えば、燃料電池システム10を各種移動体(ロボット、船舶、航空機など)の電力源として搭載してもよい。また、本実施形態に係わる燃料電池システム10を住宅やビル等の発電設備(定置用発電システム)として運用してもよい。
本実施形態に係わる燃料電池システムのシステム構成図である。 本実施形態に係わるインジェクタ制御の機能ブロック図である。 FC電流値、ガス噴射指令時間、インジェクタ二次圧指令値、及びインジェクタ駆動周期のタイミングチャートである。 本実施形態に係わるエアコンプレッサ制御の機能ブロック図である。 エアコンプレッサの実流量と目標値との関係を示すグラフである。
符号の説明
10…燃料電池システム 20…燃料電池スタック 30…燃料ガス配管系 31…燃料ガス供給源 32…遮断弁 33…レギュレータ 34…インジェクタ 35…燃料ガス供給流路 40…酸化ガス配管系 41…フィルタ 42…エアコンプレッサ 43…加湿器 44…酸化ガス供給流路 60…電力系 61…DC/DCコンバータ 62…バッテリ 63…トラクションインバータ 64…トラクションモータ 70…コントローラ

Claims (4)

  1. 燃料電池へ反応ガスを供給する反応ガス供給装置と、
    前記反応ガス供給装置から前記燃料電池に供給される反応ガスの実流量と目標値との偏差に比例ゲインを乗じてなる比例項と、前記偏差に積分ゲインを乗じて時間積分してなる積分項とに基づいて、前記実流量が前記目標値に一致するように前記反応ガス供給装置をフィードバック制御するフィードバック制御手段と、
    前記偏差の値に応じて前記積分項の更新演算を変更する演算制御手段と、
    を備える燃料電池システム。
  2. 請求項1に記載の燃料電池システムであって、
    前記反応ガス供給装置は、前記燃料電池へ燃料ガスを供給するインジェクタであり、
    前記演算制御手段は、前記燃料ガスの実流量と目標値との偏差が所定の閾値以上となるときに前記積分項の更新演算を禁止する、燃料電池システム。
  3. 請求項1に記載の燃料電池システムであって、
    前記反応ガス供給装置は、前記燃料電池へ酸化ガスを供給するエアコンプレッサであり、
    前記演算制御手段は、前記酸化ガスの実流量と目標値との偏差が所定の閾値以上となるときに前記積分ゲインをより小さい値に変更する、燃料電池システム。
  4. 請求項1に記載の燃料電池システムであって、
    前記反応ガス供給装置として、前記燃料電池へ燃料ガスを供給するインジェクタと、前記燃料電池へ酸化ガスを供給するエアコンプレッサとを備え、
    前記フィードバック制御手段は、前記インジェクタによる燃料ガス供給と、前記エアコンプレッサによる酸化ガス供給とをフィードバック制御する、燃料電池システム。
JP2006351482A 2006-12-27 2006-12-27 燃料電池システム Expired - Fee Related JP5105223B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006351482A JP5105223B2 (ja) 2006-12-27 2006-12-27 燃料電池システム
CNA2007800484281A CN101595586A (zh) 2006-12-27 2007-12-05 燃料电池系统
US12/521,369 US20100316926A1 (en) 2006-12-27 2007-12-05 Fuel cell system
DE112007003165T DE112007003165T5 (de) 2006-12-27 2007-12-05 Brennstoffzellensystem
PCT/JP2007/073891 WO2008078553A1 (ja) 2006-12-27 2007-12-05 燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006351482A JP5105223B2 (ja) 2006-12-27 2006-12-27 燃料電池システム

Publications (2)

Publication Number Publication Date
JP2008166019A true JP2008166019A (ja) 2008-07-17
JP5105223B2 JP5105223B2 (ja) 2012-12-26

Family

ID=39562347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006351482A Expired - Fee Related JP5105223B2 (ja) 2006-12-27 2006-12-27 燃料電池システム

Country Status (5)

Country Link
US (1) US20100316926A1 (ja)
JP (1) JP5105223B2 (ja)
CN (1) CN101595586A (ja)
DE (1) DE112007003165T5 (ja)
WO (1) WO2008078553A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009277620A (ja) * 2008-05-19 2009-11-26 Honda Motor Co Ltd 燃料電池システム
JP2016095948A (ja) * 2014-11-12 2016-05-26 トヨタ自動車株式会社 燃料電池システムおよび燃料電池システムの運転方法
JP2016526774A (ja) * 2013-06-28 2016-09-05 ヌヴェラ・フュエル・セルズ・インコーポレーテッド 燃料電池パワーシステムにおいて空気流動を制御するための方法
JP2017162690A (ja) * 2016-03-10 2017-09-14 トヨタ自動車株式会社 燃料電池システム及びその制御方法
JP2019029100A (ja) * 2017-07-26 2019-02-21 トヨタ自動車株式会社 燃料電池システム及び制御装置
JP2019139913A (ja) * 2018-02-08 2019-08-22 トヨタ自動車株式会社 燃料電池システム
CN113687666A (zh) * 2021-08-19 2021-11-23 上海智能新能源汽车科创功能平台有限公司 一种燃料电池测试系统的气体供给方法、系统和装置

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8906566B2 (en) * 2010-03-03 2014-12-09 GM Global Technology Operations LLC Fuel cell stack shutdown operation controlling anode pressure using discharge fuel consumption estimate
US8409762B2 (en) * 2010-05-06 2013-04-02 GM Global Technology Operations LLC Adaptive method to control fuel delivery injector with modeling uncertainties in a fuel cell system
JP2012003957A (ja) * 2010-06-17 2012-01-05 Toyota Motor Corp 燃料電池システムおよび燃料電池に対するカソードガスの供給量を制御する方法、燃料電池に供給されるカソードガスの供給量を測定する方法
WO2013129521A1 (ja) * 2012-02-29 2013-09-06 日産自動車株式会社 燃料電池システム
EP2834868B1 (en) * 2012-04-02 2023-12-27 Hydrogenics Corporation Fuel cell start up method
KR101417345B1 (ko) * 2012-09-19 2014-07-08 기아자동차주식회사 연료전지 시스템의 제어 방법
CN104885280B (zh) 2012-12-28 2018-01-02 日产自动车株式会社 燃料电池系统
KR101575475B1 (ko) * 2014-05-21 2015-12-08 현대자동차주식회사 연료전지 차량의 급기제어방법 및 시스템
DE102015004677B4 (de) * 2015-04-09 2021-03-18 Daimler Ag Verfahren zur Leistungsregelung eines Brennstoffzellensystems
FR3058268B1 (fr) * 2016-11-02 2018-12-14 Safran Power Units Procede et systeme de regulation pour dispositif de generation d'electricite par pile a combustible
JP6939645B2 (ja) * 2018-02-28 2021-09-22 トヨタ自動車株式会社 プラント制御システム、方法及びプログラム
CN110190303B (zh) * 2019-07-23 2019-10-29 潍柴动力股份有限公司 一种监测方法及装置
CN110190304B (zh) * 2019-07-23 2019-11-01 潍柴动力股份有限公司 一种监测方法以及监测装置
JP7413120B2 (ja) * 2020-03-27 2024-01-15 東京エレクトロン株式会社 ガス供給量算出方法、及び、半導体装置の製造方法
DE102021205250A1 (de) 2021-05-19 2022-11-24 Vitesco Technologies GmbH Ventilanordnung
CN114883609B (zh) * 2022-03-24 2023-09-26 东风汽车集团股份有限公司 一种燃料电池系统的稳态误差计算方法和装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005302489A (ja) * 2004-04-09 2005-10-27 Nissan Motor Co Ltd 燃料電池システムの制御装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6602624B1 (en) * 2000-02-22 2003-08-05 General Motors Corporation Control apparatus and method for efficiently heating a fuel processor in a fuel cell system
US7087335B2 (en) * 2003-01-13 2006-08-08 General Motors Corporation H-infinity control with integrator compensation for anode pressure control in a fuel cell stack
JP4677715B2 (ja) * 2003-12-04 2011-04-27 日産自動車株式会社 燃料電池冷却システム
JP4561155B2 (ja) * 2004-04-13 2010-10-13 トヨタ自動車株式会社 燃料電池の制御装置
JP2006309976A (ja) * 2005-04-26 2006-11-09 Nissan Motor Co Ltd 燃料電池システム
JP5041272B2 (ja) * 2005-12-12 2012-10-03 トヨタ自動車株式会社 燃料電池システム及び移動体
JP5109280B2 (ja) * 2006-04-05 2012-12-26 トヨタ自動車株式会社 燃料電池システム

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005302489A (ja) * 2004-04-09 2005-10-27 Nissan Motor Co Ltd 燃料電池システムの制御装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009277620A (ja) * 2008-05-19 2009-11-26 Honda Motor Co Ltd 燃料電池システム
JP2016526774A (ja) * 2013-06-28 2016-09-05 ヌヴェラ・フュエル・セルズ・インコーポレーテッド 燃料電池パワーシステムにおいて空気流動を制御するための方法
US10033055B2 (en) 2013-06-28 2018-07-24 Nuvera Fuel Cells, LLC Method for controlling air flow in a fuel cell power system
US11695132B2 (en) 2013-06-28 2023-07-04 Nuvera Fuel Cells, LLC Method for controlling air flow in a fuel cell power system
JP2016095948A (ja) * 2014-11-12 2016-05-26 トヨタ自動車株式会社 燃料電池システムおよび燃料電池システムの運転方法
JP2017162690A (ja) * 2016-03-10 2017-09-14 トヨタ自動車株式会社 燃料電池システム及びその制御方法
JP2019029100A (ja) * 2017-07-26 2019-02-21 トヨタ自動車株式会社 燃料電池システム及び制御装置
JP2019139913A (ja) * 2018-02-08 2019-08-22 トヨタ自動車株式会社 燃料電池システム
CN113687666A (zh) * 2021-08-19 2021-11-23 上海智能新能源汽车科创功能平台有限公司 一种燃料电池测试系统的气体供给方法、系统和装置
CN113687666B (zh) * 2021-08-19 2023-11-03 上海智能新能源汽车科创功能平台有限公司 一种燃料电池测试系统的气体供给方法、系统和装置

Also Published As

Publication number Publication date
DE112007003165T5 (de) 2009-12-24
CN101595586A (zh) 2009-12-02
WO2008078553A1 (ja) 2008-07-03
JP5105223B2 (ja) 2012-12-26
US20100316926A1 (en) 2010-12-16

Similar Documents

Publication Publication Date Title
JP5105223B2 (ja) 燃料電池システム
JP4591721B2 (ja) 燃料電池システム
JP5007665B2 (ja) 燃料電池システム
JP5224082B2 (ja) 燃料電池システム及びその排水制御方法
JP4492824B2 (ja) 燃料電池システム
JP6292405B2 (ja) 燃料電池システム及び燃料電池システムの運転制御方法
JP4993293B2 (ja) 燃料電池システム及び移動体
JP4701624B2 (ja) 燃料電池システム
JP5446023B2 (ja) 燃料電池システム
US20160141667A1 (en) Fuel cell system and operation control method of the same
WO2009028340A1 (ja) 燃料電池システム及びその制御方法
WO2006120822A1 (en) Fuel cell system
JP5007797B2 (ja) 燃料電池システム
WO2009016985A1 (ja) 燃料電池システム及びその制御方法
JP2009146618A (ja) 燃料電池システム及び移動体
JP2008130442A (ja) 燃料電池システム
JP5070794B2 (ja) 燃料電池システム
WO2008099743A1 (ja) 燃料電池システム
JP2008041329A (ja) 燃料電池システム
JP5376390B2 (ja) 燃料電池システム
JP2008084603A (ja) 燃料電池システム及びそのパージ方法
JP2007280721A (ja) 燃料電池システム
JP5650919B2 (ja) 燃料電池システム
JP4941641B2 (ja) 燃料電池システム
JP2007165162A (ja) 燃料電池システム及び移動体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120920

R151 Written notification of patent or utility model registration

Ref document number: 5105223

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees