JP2008163873A - Solid fuel gasified gas using plant - Google Patents

Solid fuel gasified gas using plant Download PDF

Info

Publication number
JP2008163873A
JP2008163873A JP2006355669A JP2006355669A JP2008163873A JP 2008163873 A JP2008163873 A JP 2008163873A JP 2006355669 A JP2006355669 A JP 2006355669A JP 2006355669 A JP2006355669 A JP 2006355669A JP 2008163873 A JP2008163873 A JP 2008163873A
Authority
JP
Japan
Prior art keywords
gas
water
gasification
oxygen
solid fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006355669A
Other languages
Japanese (ja)
Other versions
JP4981439B2 (en
Inventor
Tomonori Koyama
智規 小山
Katsuhiko Yokohama
克彦 横濱
Osamu Shinada
治 品田
Hiromi Ishii
弘実 石井
Kimiyo Tokuda
君代 徳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2006355669A priority Critical patent/JP4981439B2/en
Publication of JP2008163873A publication Critical patent/JP2008163873A/en
Application granted granted Critical
Publication of JP4981439B2 publication Critical patent/JP4981439B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid fuel gasified gas using plant for improving plant efficiency in synthesis of liquid fuel by gasified gas and power generation by gas turbine driving, by reducing a heat loss of the gasified gas caused by such a temperature change, by reducing temperature variation in a temperature change between respective elements for conducting the gasified gas, in the plant used for both the synthesis of the liquid fuel by the gasified gas and the power generation by the gas turbine driving. <P>SOLUTION: This solid fuel gasified gas using plant is constituted so as to gasify solid fuel by using oxygen in a gasification furnace, and to drive a gas turbine by off-gas from a liquid fuel synthesizing means, and is characterized by being constituted so as to supply hydrogen generated by a water electrolyzing device to a gasified gas passage on the upstream side of the liquid fuel synthesizing means, and to supply the oxygen generated by the water electrolyzing device to the gasification furnace by setting operation pressure of the water electrolyzing device larger than pressure in the gasification furnace, by arranging the water electrolyzing device for generating the hydrogen and the oxygen by electrolyzing water. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、石炭ガス化複合プラント、バイオマス原料ガス化複合プラント等に適用され、石炭、バイオマス原料等の固体燃料をガス化炉に供給し、該ガス化炉において酸素供給手段から供給される酸素を用いて前記固体燃料をガス化し、前記ガス化ガスによりガスタービンを駆動し、あるいはこのガス化ガスを液体燃料合成手段で液体燃料を合成製造するように構成された固体燃料ガス化ガス利用プラントに関する。   The present invention is applied to a coal gasification complex plant, a biomass feedstock gasification complex plant, etc., supplying solid fuel such as coal and biomass feedstock to a gasification furnace, and oxygen supplied from an oxygen supply means in the gasification furnace A solid fuel gasification gas utilization plant configured to gasify the solid fuel using a gas and drive a gas turbine with the gasification gas, or to synthesize and produce the liquid fuel with the liquid fuel synthesizing means. About.

図5は石炭、バイオマス原料等の固体燃料のガス化ガス利用プラントの従来の一例を示す系統図である。
図5において、微粉炭、バイオマス原料等の固体燃料は固体燃料供給手段1によってガス化炉2に供給される。該ガス化炉2においては、空気分離装置で窒素と分離された酸素を炉内に噴出させることにより前記固体燃料をガス化する。該ガス化炉2の出口温度が400℃程度のガス化ガスは、低温でガス化ガス中の硫黄、ハロゲン等を除去するガス精製を行うガス精製装置3に導入される。
該ガス精製装置3においては、作動温度40〜−15℃程度まで降温させて、湿式の低温ガス精製技術(化学吸収法、物理吸収法等)によって、ガス化ガス中の硫黄、ハロゲン等を除去する。かかる有害物が除去されたガス化ガスは、COシフト反応器41に導入される。
FIG. 5 is a system diagram showing a conventional example of a gasification gas utilization plant for solid fuel such as coal and biomass raw material.
In FIG. 5, solid fuel such as pulverized coal and biomass material is supplied to the gasifier 2 by the solid fuel supply means 1. In the gasification furnace 2, the solid fuel is gasified by ejecting oxygen separated from nitrogen by an air separation device into the furnace. The gasification gas having an outlet temperature of about 400 ° C. of the gasification furnace 2 is introduced into a gas purification apparatus 3 that performs gas purification to remove sulfur, halogen, and the like in the gasification gas at a low temperature.
In the gas purifier 3, the operating temperature is lowered to about 40 to -15 ° C., and sulfur, halogen, etc. in the gasification gas are removed by wet low-temperature gas purification technology (chemical absorption method, physical absorption method, etc.). To do. The gasified gas from which such harmful substances have been removed is introduced into the CO shift reactor 41.

COシフト反応器41においては、ガス化ガス中の水素不足を補うため、COシフト触媒を使用し、500℃程度の高温反応でCO濃度5%程度までH(水素)に変換した後、250℃程度の下記低温反応でCO濃度1%程度まで変換する。
CO+HO⇔H+CO
前記COシフト反応器41におけるCOシフト反応では、前記式のようにCOと当量の水が反応に必要であり、実際の反応では水が余剰な条件が必要なため、水蒸気供給手段42によってCOシフト反応器41に大量の水蒸気を供給するか、あるいは該COシフト反応器41出口のガス化ガスを冷却器43で冷却して余剰水を凝縮回収した水を循環供給する。
In the CO shift reactor 41, in order to compensate for the shortage of hydrogen in the gasification gas, a CO shift catalyst is used, and after conversion to H 2 (hydrogen) to a CO concentration of about 5% by a high temperature reaction of about 500 ° C., 250 It is converted to a CO concentration of about 1% by the following low-temperature reaction at about ° C.
CO + H 2 O⇔H 2 + CO 2
In the CO shift reaction in the CO shift reactor 41, water equivalent to CO is required for the reaction as shown in the above equation, and in the actual reaction, an excessive amount of water is required. A large amount of water vapor is supplied to the reactor 41, or water obtained by condensing and recovering excess water by cooling the gasification gas at the outlet of the CO shift reactor 41 with a cooler 43 is circulated and supplied.

前記COシフト反応器41において、COのHシフトがなされたガス化ガスは液体燃料合成反応器6に導入され、該液体燃料合成反応器6においてメタノール等の液体燃料に変換され、液体燃料取出手段7によって取り出される。該液体燃料合成反応器6からの約300℃のオフガスはガスタービン8に供給されて、該ガスタービン8を駆動する。
該ガスタービン8から排出された排ガスは、排熱回収ボイラ9で給水を加熱することにより蒸気を発生せしめた後、排ガス浄化装置等の排ガス排出手段12を経て大気中に排出される。該排熱回収ボイラ9で発生した蒸気は、蒸気タービン10に導入されて該蒸気タービン10を駆動する。該蒸気タービン10の復水は前記排熱回収ボイラ9に戻される。
In the CO shift reactor 41, the gasified gas that has undergone CO H 2 shift is introduced into the liquid fuel synthesis reactor 6, where it is converted into a liquid fuel such as methanol, and the liquid fuel is taken out. Retrieved by means 7. About 300 ° C. off-gas from the liquid fuel synthesis reactor 6 is supplied to the gas turbine 8 to drive the gas turbine 8.
The exhaust gas discharged from the gas turbine 8 generates steam by heating the feed water with the exhaust heat recovery boiler 9, and then is discharged into the atmosphere through the exhaust gas discharging means 12 such as an exhaust gas purification device. Steam generated in the exhaust heat recovery boiler 9 is introduced into the steam turbine 10 to drive the steam turbine 10. Condensate from the steam turbine 10 is returned to the exhaust heat recovery boiler 9.

また、本件出願人の出願に係る特許文献1(特開2002−193858号公報)には、バイオマス原料をガス化炉に供給し、該ガス化炉において酸素供給手段から供給される酸素を用いて前記バイオマス原料をガス化し、このガス化ガスをメタノール合成手段で液化してメタノールを精製するように構成されたバイオマス原料からメタノールを精製するプラントであって、水を電気分解して水素と酸素を生成する水電気分解装置を設け、該水電気分解装置で生成された水素を前記メタノール合成手段に供給するとともに、前記水電気分解装置で生成された酸素を前記ガス化炉に供給するように構成したバイオマス原料からのメタノール精製プラントが開示されている。   Moreover, in patent document 1 (Unexamined-Japanese-Patent No. 2002-193858) which concerns the application of this applicant, biomass raw material is supplied to a gasification furnace, and oxygen supplied from an oxygen supply means in this gasification furnace is used. A plant for purifying methanol from a biomass raw material configured to gasify the biomass raw material and liquefy the gasified gas by methanol synthesis means to purify methanol, and electrolyze water to produce hydrogen and oxygen. A water electrolysis device to be generated is provided, and hydrogen generated by the water electrolysis device is supplied to the methanol synthesis means, and oxygen generated by the water electrolysis device is supplied to the gasifier A methanol refining plant from the finished biomass feedstock is disclosed.

特開2002−193858号公報JP 2002-193858 A

図5に示される石炭、バイオマス原料等の固体燃料のガス化ガス利用プラントにおいて、該固体燃料を石炭とした場合、液体燃料合成反応器6において液体燃料を合成するためには、ガス化ガス中のCO(一酸化炭素)とH(水素)とのモル比が1:2が望ましい値であるが、石炭ガス化ガスの場合、1:1〜3:1のモル比となり、H(水素)が不足する。
そこで、図5に示される従来のガス化ガス利用プラントにおいては、液体燃料合成反応器6の上流側にCOシフト触媒を使用するCOシフト反応器41を設け、該COシフト反応器41に水蒸気供給手段42によって余剰水を含む大量の水蒸気を供給するかあるいは該COシフト反応器41出口のガス化ガスを冷却器43で冷却し余剰水を凝縮回収した水を循環供給することにより、500℃程度の高温反応でCO濃度5%程度までH(水素)に変換した後、250℃程度の下記低温反応でCO濃度1%程度まで変換することにより前記H(水素)を補充している。
In the gasification gas utilization plant of solid fuel such as coal and biomass raw material shown in FIG. 5, when the solid fuel is coal, in order to synthesize the liquid fuel in the liquid fuel synthesis reactor 6, The molar ratio of CO (carbon monoxide) to H 2 (hydrogen) is preferably 1: 2, but in the case of coal gasification gas, the molar ratio is 1: 1 to 3: 1, and H 2 ( Hydrogen) is insufficient.
Therefore, in the conventional gasification gas utilization plant shown in FIG. 5, a CO shift reactor 41 using a CO shift catalyst is provided upstream of the liquid fuel synthesis reactor 6, and steam is supplied to the CO shift reactor 41. By supplying a large amount of water vapor containing surplus water by means 42 or cooling the gasification gas at the outlet of the CO shift reactor 41 with a cooler 43 and circulatingly supplying water obtained by condensing and recovering surplus water, about 500 ° C. after conversion to CO concentration of about 5% to H 2 (hydrogen) at a high temperature reaction, it is supplemented with the H 2 (hydrogen) by converting to about CO concentration of 1 percent below the low temperature reaction of about 250 ° C..

従って、図5に示される従来のガス化ガス利用プラントにあっては、ガス化炉2出口のガス化ガスをガス精製装置3において最高作動温度40℃程度まで降温させた後、COシフト反応器41では500℃程度の反応温度まで昇温させてから、さらに250℃程度の低温反応でCO濃度1%程度までH(水素)変換しており、ガス化ガスが通流する各要素の温度操作を、約400℃(ガス化炉2)→40〜−15℃(ガス精製装置3)→500℃→250℃(COシフト反応器41)のように大きな温度振幅で変化させる必要がある。 Therefore, in the conventional gasification gas utilization plant shown in FIG. 5, after the gasification gas at the outlet of the gasification furnace 2 is lowered to the maximum operating temperature of about 40 ° C. in the gas purification apparatus 3, the CO shift reactor is used. In 41, the temperature is raised to a reaction temperature of about 500 ° C., and then H 2 (hydrogen) is converted to a CO concentration of about 1% by a low-temperature reaction of about 250 ° C., and the temperature of each element through which the gasification gas flows. It is necessary to change the operation with a large temperature amplitude such as about 400 ° C. (gasification furnace 2) → 40 to −15 ° C. (gas purification device 3) → 500 ° C. → 250 ° C. (CO shift reactor 41).

従って、かかる従来のガス化ガス利用プラントにあっては、上記のようなガス化ガスが通流する各要素間の大きな温度振幅での温度変化があるため、ガス化ガスの熱損失が大きくなって、ガス化ガスによる液体燃料の合成及びガスタービン駆動による発電に係るプラント効率が低くなる、という解決すべき課題を抱えている。   Therefore, in such a conventional gasification gas utilization plant, since there is a temperature change with a large temperature amplitude between the elements through which the gasification gas flows, the heat loss of the gasification gas becomes large. Thus, there is a problem to be solved that the plant efficiency related to the synthesis of liquid fuel by gasification gas and the power generation by gas turbine drive is lowered.

また、前記特許文献1(特開2002−193858号公報)の技術においては、水を電気分解して水素と酸素を生成する水電気分解装置で生成された水素をメタノール合成手段に供給するとともに、水電気分解装置で生成された酸素を前記ガス化炉に供給するように構成しているので、液体燃料合成手段(メタノール合成手段)での水素の補充が可能で、図5に示従来のガス化ガス利用プラントのようなCOシフト反応器41を用いなくても所要の水素を得ることは可能であるが、特許文献1の技術は、バイオマス原料から液体燃料合成手段(メタノール合成手段)で液体燃料(メタノール)を生成する技術であり、特許文献1には、ガス化ガスを液体燃料の合成及びガスタービン駆動による発電の双方に利用する固体燃料ガス化ガス利用プラントにおいて、前記のような問題を解決する点には言及していない。   In the technique of Patent Document 1 (Japanese Patent Application Laid-Open No. 2002-193858), hydrogen generated by a water electrolysis apparatus that electrolyzes water to generate hydrogen and oxygen is supplied to the methanol synthesis means. Since oxygen generated in the water electrolysis apparatus is supplied to the gasifier, hydrogen can be replenished in the liquid fuel synthesizing means (methanol synthesizing means), and the conventional gas shown in FIG. Although it is possible to obtain the required hydrogen without using the CO shift reactor 41 such as a conversion gas utilization plant, the technique of Patent Document 1 uses liquid fuel synthesizing means (methanol synthesizing means) from biomass raw material. This is a technology for producing fuel (methanol). Patent Document 1 discloses the use of gasified gas that uses gasified gas for both synthesis of liquid fuel and power generation by driving a gas turbine. In Holland, to the point of solving the above problems are not mentioned.

本発明はこのような従来技術の課題に鑑み、ガス化ガスを液体燃料の合成及びガスタービン駆動による発電の双方に利用するプラントにおいて、ガス化ガスが通流する各要素間の温度変化の温度振幅を縮小してかかる温度変化に伴うガス化ガスの熱損失を低減し、ガス化ガスによる液体燃料の合成及びガスタービン駆動による発電に係るプラント効率を向上せしめた固体燃料ガス化ガス利用プラントを提供することを目的とする。   In view of such a problem of the prior art, the present invention is a plant that uses gasified gas for both synthesis of liquid fuel and power generation by driving a gas turbine, and the temperature of temperature change between each element through which the gasified gas flows. A solid fuel gasification gas utilization plant that reduces the heat loss of gasification gas due to such temperature changes by reducing the amplitude, and improves the plant efficiency related to synthesis of liquid fuel by gasification gas and power generation by gas turbine drive The purpose is to provide.

本発明は前述の目的を達成するもので、石炭を含む固体燃料をガス化炉に供給し、該ガス化炉において酸素供給手段から供給される酸素を用いて前記固体燃料をガス化し、このガス化ガスを液体燃料合成手段で液化して液体燃料を精製するとともに、該液体燃料合成手段からのオフガスによりガスタービンを駆動するように構成された固体燃料ガス化ガス利用プラントにおいて、水を電気分解して水素と酸素を生成する水電気分解装置を設け、該水電気分解装置で生成された水素を前記液体燃料合成手段の上流側のガス化ガス通路に供給するとともに、前記水電気分解装置の操作圧力を前記ガス化炉内の圧力よりも大きく設定して該水電気分解装置で生成された酸素を前記ガス化炉に供給するように構成したことを特徴とする。   The present invention achieves the above-mentioned object. A solid fuel containing coal is supplied to a gasification furnace, and the solid fuel is gasified using oxygen supplied from an oxygen supply means in the gasification furnace. In the solid fuel gasification gas utilization plant configured to liquefy the gasified gas by the liquid fuel synthesizing means to purify the liquid fuel and to drive the gas turbine by the off-gas from the liquid fuel synthesizing means, water is electrolyzed. A hydrogen electrolyzer for generating hydrogen and oxygen is supplied to the gasified gas passage on the upstream side of the liquid fuel synthesizing means, and the water electrolyzer The operation pressure is set larger than the pressure in the gasification furnace, and oxygen generated by the water electrolysis apparatus is supplied to the gasification furnace.

また本発明は、前記ガスタービンから抽気された空気及び前記ガス化ガスのエネルギーにより生成される空気のいずれか一方又は双方を用いて前記ガス化炉の起動を行う起動空気供給手段をそなえたことを特徴とする。
この発明において、好ましくは、前記ガス化ガスのエネルギーによって生成される空気を、前記ガスタービンに付設される排熱回収ボイラからの蒸気のエネルギーで駆動されるコンプレッサで生成するように構成する。
In addition, the present invention further includes start-up air supply means for starting up the gasification furnace using one or both of air extracted from the gas turbine and air generated by the energy of the gasification gas. It is characterized by.
In the present invention, preferably, the air generated by the energy of the gasified gas is generated by a compressor driven by the energy of steam from an exhaust heat recovery boiler attached to the gas turbine.

また本発明は、前記ガスタービン駆動後の排ガスを冷却、圧縮してCOリッチガス及び水を生成する水、CO回収手段を設け、該水、CO回収手段からの水を前記水電気分解装置に供給して電気分解用水に用いるとともに、該水、CO回収手段からのCOリッチガスを前記ガス化炉に供給するように構成されたされたことを特徴とする。 The present invention, the exhaust gas cooling after the gas turbine driven, water compressed to produce a CO 2 rich gas and water, the CO 2 recovery unit provided, the water electrolysis of water from the aqueous, the CO 2 recovery unit with use in the electrolysis of water is supplied to the apparatus, water, characterized in that the CO 2 rich gas from the CO 2 recovery unit is arranged to supply to said gasification furnace.

また本発明は、前記水電気分解装置で生成された酸素を前記ガス化炉に供給する酸素通路に該酸素で駆動される酸素膨張タービンを設けるとともに、前記水電気分解装置で生成された水素を前記液体燃料合成手段に供給する水素通路に該水素で駆動される水素膨張タービンを設けたことを特徴とする。   In the present invention, an oxygen expansion turbine driven by the oxygen is provided in an oxygen passage for supplying oxygen generated by the water electrolyzer to the gasifier, and hydrogen generated by the water electrolyzer is A hydrogen expansion turbine driven by the hydrogen is provided in a hydrogen passage supplied to the liquid fuel synthesizing means.

以上のように、本発明によれば、水電気分解装置で生成された水素を液体燃料合成手段に導入してガス化ガスから液体燃料の生成に供するので、前記従来技術のようなCO(一酸化炭素)をH(水素)に変換するCOシフト反応器が不要となる。
このため、ガス精製装置(操作温度40〜−15℃)を出たガス化ガスの温度を、液体燃料合成の反応温度である約300℃程度まで上昇させれば済み、前記従来技術のように該COシフト反応器の反応温度である500℃程度まで上昇させることが不要となり、従って、ガス化ガスが通流する各要素の温度は、約400℃(ガス化炉)→40〜−15℃(ガス精製装置)→300℃(液体燃料合成手段)となり、前記従来技術よりも温度変化量が小さくなる。
これにより、前記従来技術に比べて、ガス化ガスの熱損失を低減できて、ガス化ガスによる液体燃料の合成及びガスタービン駆動による発電に係るプラント効率が向上する。
As described above, according to the present invention, hydrogen produced by the water electrolysis apparatus is introduced into the liquid fuel synthesizing means and used for producing liquid fuel from the gasification gas. A CO shift reactor for converting (carbon oxide) to H 2 (hydrogen) becomes unnecessary.
For this reason, it is sufficient to raise the temperature of the gasification gas leaving the gas purification apparatus (operation temperature 40 to −15 ° C.) to about 300 ° C., which is the reaction temperature of the liquid fuel synthesis, as in the prior art. It is not necessary to raise the reaction temperature of the CO shift reactor to about 500 ° C. Therefore, the temperature of each element through which the gasification gas flows is about 400 ° C. (gasification furnace) → 40 to −15 ° C. (Gas purification device) → 300 ° C. (liquid fuel synthesizing means), and the temperature change amount becomes smaller than that of the conventional technique.
Thereby, compared with the said prior art, the heat loss of gasification gas can be reduced and the plant efficiency concerning the synthesis | combination of the liquid fuel by gasification gas and the electric power generation by a gas turbine drive improves.

また、前記のように、前記従来技術におけるCOシフト反応器及び該COシフト反応器への水蒸気供給手段及び冷却器が不要となって、系統の圧力損失が低減されプラント効率が向上するとともに、装置が簡単化され、経済性の向上(低コスト化)できる。   Further, as described above, the CO shift reactor, the steam supply means to the CO shift reactor and the cooler in the prior art are unnecessary, the pressure loss of the system is reduced, the plant efficiency is improved, and the apparatus Can be simplified and the economy can be improved (cost reduction).

また、本発明によれば、前記水電気分解装置で生成された酸素を、前記ガス化炉内に噴出して、前記空気分離装置からの酸素とともに固体燃料のガス化に供するので、該空気分離装置からガス化炉に供給する酸素量を低減できて、該空気分離装置の駆動動力を低減できる。   Further, according to the present invention, oxygen generated in the water electrolysis apparatus is jetted into the gasification furnace and used for gasification of solid fuel together with oxygen from the air separation apparatus. The amount of oxygen supplied from the apparatus to the gasification furnace can be reduced, and the driving power of the air separation apparatus can be reduced.

また、前記ガスタービンから抽気された空気及び前記ガス化ガスのエネルギーにより生成される空気のいずれか一方又は双方を用いて前記ガス化炉の起動を行う起動空気供給手段を設け、特に、前記ガス化ガスのエネルギーによって生成される空気を、前記ガスタービンに付設される排熱回収ボイラからの蒸気のエネルギーで駆動されるコンプレッサで生成するように構成すれば、ガス化炉のガス化剤の酸素として、ガスタービンから抽気された圧縮空気、及び蒸気タービンから抽気された蒸気により駆動される起動補助コンプレッサからの圧縮空気等のガス化ガスのエネルギーにより生成される空気を利用するので、空気分離装置の容量をプラントに必要なユーティリテイの容量まで小さくすることが可能となり、装置コストを低減できる。   In addition, a starting air supply means for starting the gasification furnace using either one or both of air extracted from the gas turbine and air generated by the energy of the gasification gas is provided. If the air generated by the energy of the gasification gas is generated by a compressor driven by the energy of the steam from the exhaust heat recovery boiler attached to the gas turbine, the oxygen of the gasification agent of the gasification furnace As the air separation device uses air generated by the energy of gasified gas such as compressed air extracted from the gas turbine and compressed air from the start-up auxiliary compressor driven by the steam extracted from the steam turbine. The capacity of the system can be reduced to the capacity of the utility required for the plant, and the equipment cost can be reduced.

また、前記ガスタービン駆動後の排ガスを冷却、圧縮してCOリッチガス及び水を生成する水、CO回収手段を設け、該水、CO回収手段からの水を前記水電気分解装置に供給して電気分解用水に用いるとともに、該水、CO回収手段からのCOリッチガスを前記ガス化炉に供給するように構成すれば、排ガスの出口側に排ガスを冷却、圧縮してCOリッチガス及び水を生成する水、CO回収設備及びCO圧縮貯蔵設備からなる前記水、CO回収手段を設けて、排ガス中のCOを回収するので、プラントからのCOの排出量を低減できる。 In addition, CO 2 rich gas and water for generating CO 2 rich gas and water by cooling and compressing the exhaust gas after driving the gas turbine, and CO 2 recovery means are provided, and water from the CO 2 recovery means is supplied to the water electrolyzer If the gas is used for electrolysis water and CO 2 rich gas from the water and CO 2 recovery means is supplied to the gasification furnace, the exhaust gas is cooled and compressed on the outlet side of the exhaust gas, and the CO 2 rich gas and water to produce water, the water comprising a CO 2 recovery facility and CO 2 compression storage facility, provided with a CO 2 recovery unit, since the recovery of CO 2 in the exhaust gas, reduce the emission of CO 2 from the plant it can.

また、水、CO回収手段からのCOを、ガス化炉のガス化剤として利用できるので、ガス化炉にガス化剤(酸素)を供給するための空気分離装置が不要となる。
さらに、水、CO回収手段からの回収水を水電気分解装置の電解水に利用することにより、水電気分解装置での生成水素量を増加できて、液体燃料の製造量を増加できる。
The water, the CO 2 from the CO 2 recovery unit, so can be used as a gasifying agent in the gasification furnace, air separation unit for supplying gasifying agent (oxygen) to the gasification furnace is not required.
Furthermore, by using the water and the recovered water from the CO 2 recovery means as the electrolyzed water of the water electrolysis apparatus, the amount of hydrogen produced in the water electrolysis apparatus can be increased, and the production amount of liquid fuel can be increased.

以下、本発明を図に示した実施例を用いて詳細に説明する。但し、この実施例に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。   Hereinafter, the present invention will be described in detail with reference to the embodiments shown in the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in this example are not intended to limit the scope of the present invention only to specific examples unless otherwise specified. Only.

図1は、本発明の第1実施例に係る固体燃料のガス化ガス利用プラントの全体構成を示す系統図である。この実施例では、固体燃料として石炭の微粉炭を用いる場合について説明するが、この発明は石炭に限らず、バイオマス原料、その他、ガス化炉でガス化するエネルギー源としての固体燃料全般に適用可能である。   FIG. 1 is a system diagram showing an overall configuration of a solid fuel gasification gas utilization plant according to a first embodiment of the present invention. In this embodiment, a case where pulverized coal is used as the solid fuel will be described. It is.

図1において、微粉炭で構成される固体燃料は、固体燃料供給手段1によってガス化炉2に供給される。該ガス化炉2においては、空気分離装置4で窒素と分離された酸素(O)及び後述する水電気分解装置5からの酸素を炉内に噴出させることにより、前記固体燃料をガス化してCO+Hからなるガス化ガスを生成する。
該ガス化炉2の出口温度が400℃程度のガス化ガスは、低温でガス化ガス中の硫黄、塩素等を除去するガス精製を行うガス精製装置3に導入される。
該ガス精製装置3においては、ガス化ガスを作動温度40〜−15℃程度まで降温させて、湿式の低温ガス精製技術(化学吸収法、物理吸収法等)によって、該ガス化ガス中の硫黄、ハロゲン等を除去する。かかる有害物が除去されたガス化ガスは、後述する水電気分解装置5で生成された水素(H)を供給された後、液体燃料合成手段を構成する液体燃料合成反応器6に導入される。
In FIG. 1, a solid fuel composed of pulverized coal is supplied to a gasification furnace 2 by a solid fuel supply means 1. In the gasification furnace 2, the solid fuel is gasified by jetting oxygen (O 2 ) separated from nitrogen by the air separation device 4 and oxygen from a water electrolysis device 5 described later into the furnace. A gasification gas composed of CO + H 2 is generated.
A gasification gas having an outlet temperature of about 400 ° C. of the gasification furnace 2 is introduced into a gas purification apparatus 3 that performs gas purification to remove sulfur, chlorine, and the like in the gasification gas at a low temperature.
In the gas purification apparatus 3, the gasified gas is cooled to an operating temperature of about 40 to −15 ° C., and sulfur in the gasified gas is obtained by wet low-temperature gas purification technology (chemical absorption method, physical absorption method, etc.). Remove halogen, etc. The gasified gas from which such harmful substances have been removed is supplied with hydrogen (H 2 ) generated by a water electrolysis apparatus 5 to be described later and then introduced into a liquid fuel synthesis reactor 6 constituting liquid fuel synthesizing means. The

前記水電気分解装置5は水を水素(H)と酸素(O)に分解する公知の装置であり、該水電気分解装置5(操作温度約100℃)で生成された水素は前記液体燃料合成反応器6の上流側のガス化ガス通路3aに供給されて該液体燃料合成反応器6に導入される。
また、前記水電気分解装置5で生成された酸素は、前記ガス化炉2内に噴出されて前記空気分離装置4からの酸素とともに固体燃料のガス化に供される。
この場合、前記水電気分解装置5の操作圧力を前記ガス化炉2内の圧力よりも大きく設定して該水電気分解装置5で生成された酸素を前記ガス化炉2に供給する。このような圧力レベルを設定することにより、水電気分解装置5で生成された酸素を該ガス化炉2内からの吹き返しを生ずることなくスムーズにガス化炉2に供給できる。
The water electrolysis apparatus 5 is a known apparatus for decomposing water into hydrogen (H 2 ) and oxygen (O 2 ), and the hydrogen produced in the water electrolysis apparatus 5 (operation temperature about 100 ° C.) is the liquid. The gas is supplied to the gasification gas passage 3 a upstream of the fuel synthesis reactor 6 and introduced into the liquid fuel synthesis reactor 6.
The oxygen generated by the water electrolysis device 5 is jetted into the gasification furnace 2 and used for gasification of solid fuel together with oxygen from the air separation device 4.
In this case, the operation pressure of the water electrolysis apparatus 5 is set to be larger than the pressure in the gasification furnace 2, and oxygen generated by the water electrolysis apparatus 5 is supplied to the gasification furnace 2. By setting such a pressure level, the oxygen generated by the water electrolysis apparatus 5 can be smoothly supplied to the gasification furnace 2 without blowing back from the gasification furnace 2.

前記水電気分解装置5で生成され前記ガス化ガス通路3aに供給された水素は前記液体燃料合成反応器6に導入される。該液体燃料合成反応器6においては、約300℃の操作温度で前記ガス化ガスのメタノール等の液体燃料への合成反応が行われて、該液体燃料が合成製造される。この液体燃料は液体燃料取出手段7によって取り出されて、各種機関の燃料として利用される。
一方、該液体燃料合成反応器6からの約300℃のオフガスはガスタービン8に供給されて、該ガスタービン8を駆動する。
該ガスタービン8から排出された排ガスは、排熱回収ボイラ9で給水を加熱することにより蒸気を発生せしめた後、排ガス浄化装置等の排ガス排出手段12を経て大気中に排出される。また、該排熱回収ボイラ9で発生した蒸気は、蒸気タービン10に導入されて該蒸気タービン10を駆動する。該蒸気タービン10の復水は前記排熱回収ボイラ9に戻される。
Hydrogen produced by the water electrolysis apparatus 5 and supplied to the gasification gas passage 3 a is introduced into the liquid fuel synthesis reactor 6. In the liquid fuel synthesis reactor 6, the gasification gas is synthesized into a liquid fuel such as methanol at an operating temperature of about 300 ° C., and the liquid fuel is synthesized and manufactured. This liquid fuel is taken out by the liquid fuel take-out means 7 and used as fuel for various engines.
On the other hand, about 300 ° C. off-gas from the liquid fuel synthesis reactor 6 is supplied to the gas turbine 8 to drive the gas turbine 8.
The exhaust gas discharged from the gas turbine 8 generates steam by heating the feed water with the exhaust heat recovery boiler 9, and then is discharged into the atmosphere through the exhaust gas discharging means 12 such as an exhaust gas purification device. The steam generated in the exhaust heat recovery boiler 9 is introduced into the steam turbine 10 to drive the steam turbine 10. Condensate from the steam turbine 10 is returned to the exhaust heat recovery boiler 9.

かかる第1実施例によれば、水電気分解装置5で生成された水素を液体燃料合成反応器6に導入してガス化ガスからの液体燃料の生成に供するので、前記従来技術のようなCO(一酸化炭素)をH(水素)に変換するCOシフト反応器41が不要となる。
このため、ガス精製装置3(操作温度40〜−15℃)を出たガス化ガスの温度を、液体燃料合成反応器6の反応温度である約300℃程度まで上昇させれば済み、前記従来技術のように該COシフト反応器41の反応温度である500℃程度まで上昇させることが不要となり、従って、ガス化ガスが通流する各要素の温度は、約400℃(ガス化炉2)→40〜−15℃(ガス精製装置3)→300℃(液体燃料合成反応器6)となり、前記従来技術よりも温度変化の温度振幅が小さくなる。
これにより、前記従来技術に比べて、ガス化ガスの熱損失を低減できて、ガス化ガスによる液体燃料の合成及びガスタービン駆動による発電に係るプラント効率が向上する。
According to the first embodiment, the hydrogen produced in the water electrolysis apparatus 5 is introduced into the liquid fuel synthesis reactor 6 to be used for producing liquid fuel from the gasification gas. The CO shift reactor 41 for converting (carbon monoxide) to H 2 (hydrogen) is not necessary.
For this reason, it is sufficient to raise the temperature of the gasification gas leaving the gas purification apparatus 3 (operation temperature 40 to -15 ° C.) to about 300 ° C., which is the reaction temperature of the liquid fuel synthesis reactor 6, It is not necessary to raise to about 500 ° C., which is the reaction temperature of the CO shift reactor 41 as in the technology, and therefore the temperature of each element through which the gasification gas flows is about 400 ° C. (gasification furnace 2). → 40 to -15 ° C. (gas purification device 3) → 300 ° C. (liquid fuel synthesis reactor 6), and the temperature amplitude of the temperature change is smaller than that in the conventional technique.
Thereby, compared with the said prior art, the heat loss of gasification gas can be reduced and the plant efficiency concerning the synthesis | combination of the liquid fuel by gasification gas and the electric power generation by a gas turbine drive improves.

また、前記のように、前記従来技術におけるCOシフト反応器41及び該COシフト反応器41への水蒸気供給手段42及び冷却器43が不要となって、系統の圧力損失が低減紙プラント効率向上とともに、装置が簡単化されるとともに、経済性向上(低コスト化)ができる。   Further, as described above, the CO shift reactor 41 and the steam supply means 42 and the cooler 43 to the CO shift reactor 41 in the prior art are unnecessary, and the pressure loss of the system is reduced and the paper plant efficiency is improved. In addition to simplifying the device, it is possible to improve economy (lower costs).

また、かかる第1実施例によれば、前記水電気分解装置5で生成された酸素を、前記ガス化炉2内に噴出して、前記空気分離装置4からの酸素とともに固体燃料のガス化に供するので、該空気分離装置4からガス化炉2に供給する酸素量を低減できて、該空気分離装置4の駆動動力を低減できる。   Further, according to the first embodiment, oxygen generated by the water electrolysis apparatus 5 is jetted into the gasification furnace 2 to gasify the solid fuel together with oxygen from the air separation apparatus 4. Therefore, the amount of oxygen supplied from the air separation device 4 to the gasification furnace 2 can be reduced, and the driving power of the air separation device 4 can be reduced.

図2は、本発明の第2実施例に係る固体燃料のガス化ガス利用プラントの全体構成を示す系統図である。
この第2実施例においては、前記水電気分解装置5で生成された水素で駆動される水素用動力回収タービン14、及び前記水電気分解装置5で生成された酸素で駆動される酸素用動力回収タービン13を設けている。そして、前記水電気分解装置5で生成された水素の膨張仕事によって水素用動力回収タービン14を駆動することにより、十分に膨張した水素を液体燃料合成反応器6に供給し、そして、前記水電気分解装置5で生成された酸素の膨張仕事によって酸素用動力回収タービン1を駆動することにより、十分に膨張した酸素をガス化炉2に供給する。
この場合、前記水電気分解装置5での水の電気分解圧力は、前記ガス化炉2の圧力を超え、水の亜臨界状態の範囲に保持する。
その他の構成は前記第1実施例と同様であり、これと同一の部材は同一の符号で示す。
FIG. 2 is a system diagram showing an overall configuration of a solid fuel gasification gas utilization plant according to a second embodiment of the present invention.
In the second embodiment, a hydrogen power recovery turbine 14 driven by hydrogen generated by the water electrolyzer 5 and an oxygen power recovery driven by oxygen generated by the water electrolyzer 5. A turbine 13 is provided. Then, the hydrogen power recovery turbine 14 is driven by the expansion work of the hydrogen generated by the water electrolysis apparatus 5 to supply sufficiently expanded hydrogen to the liquid fuel synthesis reactor 6, and the water electricity The oxygen power recovery turbine 1 is driven by the expansion work of oxygen generated by the decomposition apparatus 5, thereby supplying sufficiently expanded oxygen to the gasifier 2.
In this case, the electrolysis pressure of water in the water electrolysis apparatus 5 exceeds the pressure of the gasifier 2 and is maintained in the subcritical range of water.
Other configurations are the same as those of the first embodiment, and the same members are denoted by the same reference numerals.

かかる第2実施例によれば、水電気分解装置5で水の圧縮による電気分解圧力の上昇により生成された水素で水素用動力回収タービン14を駆動し、該水電気分解装置5で生成された酸素で酸素用動力回収タービン13を駆動することにより、水電気分解装置5のエネルギーを水素用動力回収タービン14及び酸素用動力回収タービン13で回収できて、ガス化ガスによる液体燃料の合成及びガスタービン駆動による発電に係るプラント効率を向上できる。   According to the second embodiment, the hydrogen power recovery turbine 14 is driven by the hydrogen generated by the increase in the electrolysis pressure due to the compression of water in the water electrolyzer 5, and the water electrolyzer 5 generates the water. By driving the oxygen power recovery turbine 13 with oxygen, the energy of the water electrolyzer 5 can be recovered by the hydrogen power recovery turbine 14 and the oxygen power recovery turbine 13. Plant efficiency related to power generation by turbine drive can be improved.

図3は、本発明の第3実施例に係る固体燃料のガス化ガス利用プラントの全体構成を示す系統図である。
この第3実施例においては、前記ガス化炉2の起動時に、前記ガスタービン8から圧縮空気の一部を抽気し、この空気を開閉弁17をそなえた空気管8aを通して該ガス化炉2に供給している。
また、この第3実施例においては、前記ガス化炉2の起動時に、前記蒸気タービン10から抽気した蒸気をコンプレッサ駆動動力に変換するコンプレッサ駆動手段16に導き、該コンプレッサ駆動手段16によって起動補助コンプレッサ15を駆動し、該起動補助コンプレッサ15からの圧縮空気を開閉弁18をそなえた空気管10aを通して該ガス化炉2に供給している。
前記ガスタービン8からの圧縮空気をガス化炉2に送るときは開閉弁17を開き、起動補助コンプレッサ15からの圧縮空気をガス化炉2に送るときは開閉弁18を開く。
なお、ガスタービンからガス化炉への空気供給手段(8a〜17)および蒸気タービン抽気蒸気による空気供給手段(16〜15〜10a〜18)については、双方またはどちらか1方の手段を構成することでもよい。
尚、この実施例は、前記液体燃料合成反応器6を備えず、前記ガス化ガスを直接にガスタービン8に送り込む固体燃料ガス化ガス利用プラントにも適用できる。
その他の構成は前記第1実施例と同様であり、これと同一の部材は同一の符号で示す。
FIG. 3 is a system diagram showing an overall configuration of a solid fuel gasification gas utilization plant according to a third embodiment of the present invention.
In the third embodiment, when the gasification furnace 2 is started, a part of the compressed air is extracted from the gas turbine 8, and this air is supplied to the gasification furnace 2 through an air pipe 8 a provided with an opening / closing valve 17. Supply.
Further, in the third embodiment, when the gasification furnace 2 is started, the steam extracted from the steam turbine 10 is led to the compressor driving means 16 that converts it into compressor driving power, and the compressor driving means 16 starts the auxiliary auxiliary compressor. 15 is driven, and compressed air from the starting auxiliary compressor 15 is supplied to the gasifier 2 through an air pipe 10 a provided with an on-off valve 18.
The on-off valve 17 is opened when the compressed air from the gas turbine 8 is sent to the gasification furnace 2, and the on-off valve 18 is opened when the compressed air from the auxiliary start compressor 15 is sent to the gasification furnace 2.
In addition, about the air supply means (8a-17) from a gas turbine to a gasifier, and the air supply means (16-15-10a-18) by steam turbine extraction steam, both or any one means is comprised. It may be.
This embodiment can also be applied to a solid fuel gasification gas utilization plant in which the liquid fuel synthesis reactor 6 is not provided and the gasification gas is directly fed to the gas turbine 8.
Other configurations are the same as those of the first embodiment, and the same members are denoted by the same reference numerals.

かかる第3実施例によれば、ガス化炉2のガス化剤の酸素として、ガスタービン8から抽気された圧縮空気及び蒸気タービンから抽気された蒸気により駆動される起動補助コンプレッサ15からの圧縮空気を利用するので、空気分離装置4の容量をプラントに必要なユーティリテイの容量まで小さくすることが可能となり、装置コストを低減できる。   According to the third embodiment, the compressed air extracted from the gas turbine 8 and compressed air from the start-up auxiliary compressor 15 driven by the steam extracted from the steam turbine as oxygen of the gasifying agent of the gasifier 2. Therefore, the capacity of the air separation device 4 can be reduced to the capacity of the utility required for the plant, and the device cost can be reduced.

尚、この第3実施例において、図3に鎖線で示されるように、前記第2実施例と同様に、前記水電気分解装置5で生成された水素で駆動される水素用動力回収タービン14、及び前記水電気分解装置5で生成された酸素で駆動される酸素用動力回収タービン13を設け、前記水電気分解装置5で生成された水素の膨張仕事によって水素用動力回収タービン14を駆動することにより十分に膨張した水素を液体燃料合成反応器6に供給し、前記水電気分解装置5で生成された酸素の膨張仕事によって酸素用動力回収タービン13を駆動することにより十分に膨張した酸素をガス化炉に供給するように構成することも可能である。   In the third embodiment, as indicated by a chain line in FIG. 3, as in the second embodiment, a hydrogen power recovery turbine 14 driven by hydrogen generated by the water electrolyzer 5; And an oxygen power recovery turbine 13 driven by oxygen generated by the water electrolyzer 5, and the hydrogen power recovery turbine 14 is driven by the expansion work of hydrogen generated by the water electrolyzer 5. The fully expanded hydrogen is supplied to the liquid fuel synthesizing reactor 6 and the oxygen power recovery turbine 13 is driven by the expansion work of the oxygen generated in the water electrolysis apparatus 5 to sufficiently expand the oxygen gas. It is also possible to configure so as to supply to the chemical furnace.

図4は、本発明の第4実施例に係る固体燃料のガス化ガス利用プラントの全体構成を示す系統図である。
この第4実施例においては、排ガスの出口側つまり前記排ガス排出手段12の下流側に、前記ガスタービン8駆動後の排ガスを冷却、圧縮してCOリッチガス及び水を生成する水、CO回収設備20及びCO圧縮貯蔵設備21を設けている。
そして該水、CO回収手段からの水は、水管20aを通して前記水電気分解装置5に供給して電気分解用水に用いる。
また、該CO圧縮貯蔵設備21で圧縮、貯蔵されたCOリッチガスは、ガス管21aを通して前記ガス化炉2に供給してガス化剤として用いられるとともに、ユーティリティ用ガスとして用いられる。
FIG. 4 is a system diagram showing an overall configuration of a solid fuel gasification gas utilization plant according to a fourth embodiment of the present invention.
In the fourth embodiment, on the outlet side of exhaust gas, that is, on the downstream side of the exhaust gas discharge means 12, the exhaust gas after driving the gas turbine 8 is cooled and compressed to generate CO 2 rich gas and water, CO 2 recovery A facility 20 and a CO 2 compression storage facility 21 are provided.
The water and water from the CO 2 recovery means are supplied to the water electrolyzer 5 through the water pipe 20a and used for electrolysis water.
Further, the CO 2 rich gas compressed and stored in the CO 2 compression storage facility 21 is supplied to the gasification furnace 2 through the gas pipe 21a and used as a gasifying agent and also as a utility gas.

以上の第4実施例によれば、排ガスの出口側に排ガスを冷却、圧縮してCOリッチガス及び水を生成する水、CO回収設備20及びCO圧縮貯蔵設備21を設けて、排ガス中のCOを回収するので、プラントからのCOの排出量を低減できる。
また、CO回収設備20及びCO圧縮貯蔵設備21からのCOを、ガス化炉2のガス化剤として利用できるので、ガス化炉2にガス化剤(酸素)を供給するための空気分離装置4が不要となる。
さらに、CO回収設備20及びCO圧縮貯蔵設備21からの回収水を水電気分解装置5の電解水に利用することにより、水電気分解装置5での生成水素量を増加できて、液体燃料の製造量を増加できる。
その他の構成は前記第1実施例と同様であり、これと同一の部材は同一の符号で示す。
According to the above fourth embodiment, the exhaust gas is cooled and compressed on the outlet side of the exhaust gas to provide the CO 2 rich gas and water, the CO 2 recovery facility 20 and the CO 2 compression storage facility 21, Since CO 2 is recovered, CO 2 emission from the plant can be reduced.
Further, the CO 2 from the CO 2 recovery facility 20 and CO 2 compression storage facility 21 enables utilization as a gasifying agent for gasifying furnace 2, air for supplying gasifying agent (oxygen) to the gasifier 2 Separation device 4 becomes unnecessary.
Furthermore, by using the recovered water from the CO 2 recovery facility 20 and the CO 2 compression storage facility 21 as the electrolyzed water of the water electrolysis device 5, the amount of hydrogen produced in the water electrolysis device 5 can be increased, and the liquid fuel The production amount of can be increased.
Other configurations are the same as those of the first embodiment, and the same members are denoted by the same reference numerals.

尚、この第4実施例において、図4に鎖線で示されるように、前記第2実施例と同様に、前記水電気分解装置5で生成された水素で駆動される水素用動力回収タービン14、及び前記水電気分解装置5で生成された酸素で駆動される酸素用動力回収タービン13を設け、前記水電気分解装置5で生成された水素の膨張仕事によって水素用動力回収タービン14を駆動することにより十分に膨張した水素を液体燃料合成反応器6に供給し、前記水電気分解装置5で生成された酸素の膨張仕事によって酸素用動力回収タービン13を駆動することにより十分に膨張した酸素をガス化炉に供給するように構成することも可能である。   In the fourth embodiment, as indicated by a chain line in FIG. 4, as in the second embodiment, a hydrogen power recovery turbine 14 driven by hydrogen generated by the water electrolyzer 5; And an oxygen power recovery turbine 13 driven by oxygen generated by the water electrolyzer 5, and the hydrogen power recovery turbine 14 is driven by the expansion work of hydrogen generated by the water electrolyzer 5. The fully expanded hydrogen is supplied to the liquid fuel synthesizing reactor 6 and the oxygen power recovery turbine 13 is driven by the expansion work of the oxygen generated in the water electrolysis apparatus 5 to sufficiently expand the oxygen gas. It is also possible to configure so as to supply to the chemical furnace.

本発明によれば、ガス化ガスを液体燃料の合成及びガスタービン駆動による発電の双方に利用するプラントにおいて、ガス化ガスが通流する各要素間の温度変化の温度振幅を縮小してかかる温度変化に伴うガス化ガスの熱損失を低減し、ガス化ガスによる液体燃料の合成及びガスタービン駆動による発電に係るプラント効率を向上せしめた固体燃料ガス化ガス利用プラントを提供できる。   According to the present invention, in a plant that uses gasified gas for both synthesis of liquid fuel and power generation by gas turbine drive, the temperature amplitude of the temperature change between each element through which the gasified gas flows is reduced and applied. It is possible to provide a solid fuel gasification gas utilization plant in which heat loss of gasification gas due to change is reduced and plant efficiency related to synthesis of liquid fuel by gasification gas and power generation by gas turbine drive is improved.

本発明の第1実施例に係る固体燃料のガス化ガス利用プラントの全体構成を示す系統図である。1 is a system diagram showing an overall configuration of a solid fuel gasification gas utilization plant according to a first embodiment of the present invention. FIG. 本発明の第2実施例を示す図1対応図である。FIG. 3 is a view corresponding to FIG. 1 showing a second embodiment of the present invention. 本発明の第3実施例を示す図1対応図である。FIG. 6 is a view corresponding to FIG. 1 showing a third embodiment of the present invention. 本発明の第4実施例を示す図1対応図である。FIG. 6 is a view corresponding to FIG. 1 showing a fourth embodiment of the present invention. 固体燃料のガス化ガス利用プラントの従来の一例を示す系統図である。It is a systematic diagram which shows an example of the conventional of the gasification gas utilization plant of solid fuel.

符号の説明Explanation of symbols

1 固体燃料供給手段
2 ガス化炉
3 ガス精製装置
4 空気分離装置
5 水電気分解装置
6 液体燃料合成反応器
8 ガスタービン
8a 空気管
9 排熱回収ボイラ
10 蒸気タービン
10a 空気管
13 酸素用動力回収タービン
14 水素用動力回収タービン
15 起動補助コンプレッサ
16 コンプレッサ駆動手段
20 水、CO回収設備
21 CO圧縮貯蔵設備
DESCRIPTION OF SYMBOLS 1 Solid fuel supply means 2 Gasification furnace 3 Gas purification apparatus 4 Air separation apparatus 5 Water electrolysis apparatus 6 Liquid fuel synthesis reactor 8 Gas turbine 8a Air pipe 9 Waste heat recovery boiler 10 Steam turbine 10a Air pipe 13 Power recovery for oxygen Turbine 14 Power recovery turbine for hydrogen 15 Start-up auxiliary compressor 16 Compressor drive means 20 Water, CO 2 recovery facility 21 CO 2 compression storage facility

Claims (6)

石炭を含む固体燃料をガス化炉に供給し、該ガス化炉において酸素供給手段から供給される酸素を用いて前記固体燃料をガス化し、このガス化ガスを液体燃料合成手段で液体燃料を合成製造するとともに、該液体燃料合成手段からのオフガスによりガスタービンを駆動するように構成された固体燃料ガス化ガス利用プラントにおいて、水を電気分解して水素と酸素を生成する水電気分解装置を設け、該水電気分解装置で生成された水素を前記液体燃料合成手段の上流側のガス化ガス通路に供給するとともに、前記水電気分解装置の操作圧力を前記ガス化炉内の圧力よりも高く設定して該水電気分解装置で生成された酸素を前記ガス化炉に供給するように構成したことを特徴とする固体燃料ガス化ガス利用プラント。   A solid fuel containing coal is supplied to a gasification furnace, the solid fuel is gasified using oxygen supplied from an oxygen supply means in the gasification furnace, and the liquid fuel is synthesized by the liquid fuel synthesizing means. In a solid fuel gasification gas utilization plant that is manufactured and configured to drive a gas turbine by off-gas from the liquid fuel synthesizing means, a water electrolysis apparatus is provided that electrolyzes water to generate hydrogen and oxygen. Supplying hydrogen generated in the water electrolyzer to the gasified gas passage upstream of the liquid fuel synthesizing means, and setting the operation pressure of the water electrolyzer higher than the pressure in the gasifier Then, the solid fuel gasification gas utilization plant is configured to supply oxygen generated by the water electrolysis apparatus to the gasification furnace. 前記ガスタービンから抽気された空気及び前記ガス化ガスのエネルギーにより生成される空気のいずれか一方又は双方を用いて前記ガス化炉の起動を行う起動空気供給手段をそなえたことを特徴とする請求項1記載の固体燃料ガス化ガス利用プラント。   The apparatus further comprises start air supply means for starting the gasification furnace using one or both of air extracted from the gas turbine and air generated by the energy of the gasification gas. Item 6. The solid fuel gasification gas utilization plant according to Item 1. 石炭を含む固体燃料をガス化炉に供給し、該ガス化炉において酸素供給手段から供給される酸素を用いて前記固体燃料をガス化し、このガス化ガスによりガスタービンを駆動するように構成された固体燃料ガス化ガス利用プラントにおいて、前記ガスタービンから抽気された空気及び前記ガス化ガスのエネルギーによって生成される空気のいずれか一方又は双方を用いて前記ガス化炉の起動を行う起動空気供給手段をそなえたことを特徴とする固体燃料ガス化ガス利用プラント。   A solid fuel containing coal is supplied to a gasification furnace, the solid fuel is gasified using oxygen supplied from an oxygen supply means in the gasification furnace, and a gas turbine is driven by the gasification gas. In the solid fuel gasification gas utilization plant, the start-up air supply for starting up the gasification furnace using one or both of the air extracted from the gas turbine and the air generated by the energy of the gasification gas A solid fuel gasification gas utilization plant characterized by comprising means. 前記ガス化ガスのエネルギーによって生成される空気を、前記ガスタービンに付設される排熱回収ボイラからの蒸気のエネルギーで駆動されるコンプレッサで生成するように構成されたことを特徴とする請求項2もしくは3のいずれかの項に記載の固体燃料ガス化ガス利用プラント。   The air generated by the energy of the gasified gas is configured to be generated by a compressor driven by the energy of steam from an exhaust heat recovery boiler attached to the gas turbine. Or the solid fuel gasification gas utilization plant of any one of claim | item 3. 前記ガスタービン駆動後の排ガスを冷却、圧縮してCOリッチガス及び水を生成する水、CO回収手段を設け、該水、CO回収手段からの水を前記水電気分解装置に供給して電気分解用水に用いるとともに、該水、CO回収手段からのCOリッチガスを前記ガス化炉に供給するように構成されたされたことを特徴とする請求項1記載の固体燃料ガス化ガス利用プラント。 The exhaust gas after the gas turbine driving cooling water compressed to produce a CO 2-rich gas and water, the CO 2 recovery unit provided, water, and supplies the water from the CO 2 recovery unit to the water electrolyzer with use in the electrolysis of water, water, CO 2 rich gas to the solid fuel gasification gas utilization according to claim 1, characterized in that it is arranged to supply to said gasification furnace from the CO 2 recovery unit plant. 前記水電気分解装置で生成された酸素を前記ガス化炉に供給する酸素通路に該酸素で駆動される酸素膨張タービンを設けるとともに、前記水電気分解装置で生成された水素を前記液体燃料合成手段に供給する水素通路に該水素で駆動される水素膨張タービンを設けたことを特徴とする請求項1、2、5のいずれかの項に記載の固体燃料ガス化ガス利用プラント。   An oxygen expansion turbine that is driven by oxygen is provided in an oxygen passage that supplies oxygen generated by the water electrolyzer to the gasifier, and hydrogen generated by the water electrolyzer is supplied to the liquid fuel synthesizing means. 6. The solid fuel gasification gas utilization plant according to any one of claims 1, 2, and 5, wherein a hydrogen expansion turbine driven by the hydrogen is provided in a hydrogen passage to be supplied to the plant.
JP2006355669A 2006-12-28 2006-12-28 Solid fuel gasification gas utilization plant Active JP4981439B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006355669A JP4981439B2 (en) 2006-12-28 2006-12-28 Solid fuel gasification gas utilization plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006355669A JP4981439B2 (en) 2006-12-28 2006-12-28 Solid fuel gasification gas utilization plant

Publications (2)

Publication Number Publication Date
JP2008163873A true JP2008163873A (en) 2008-07-17
JP4981439B2 JP4981439B2 (en) 2012-07-18

Family

ID=39693659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006355669A Active JP4981439B2 (en) 2006-12-28 2006-12-28 Solid fuel gasification gas utilization plant

Country Status (1)

Country Link
JP (1) JP4981439B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2206762A1 (en) * 2009-01-13 2010-07-14 Areva A system and a process for producing at least one hydrocarbon fuel from a carbonaceous material
JP2012036863A (en) * 2010-08-10 2012-02-23 Hitachi Ltd Gasification power generation system
WO2014045871A1 (en) * 2012-09-21 2014-03-27 三菱重工業株式会社 Method and system for producing liquid fuel and generating electric power
KR101824267B1 (en) 2009-11-20 2018-01-31 알브이 리첸츠 아게 Thermal-chemical utilization of carbon-containing materials, in particular for the emission-free generation of energy
WO2019151461A1 (en) * 2018-02-05 2019-08-08 三菱瓦斯化学株式会社 Biomass gasification power generation system and power generation method
CN113048465A (en) * 2021-03-26 2021-06-29 中国科学院工程热物理研究所 Coal-fired power generation system and method for coal gasification with supercritical water
CN113512444A (en) * 2020-03-19 2021-10-19 本田技研工业株式会社 Fuel manufacturing system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7077908B2 (en) 2018-07-12 2022-05-31 東洋インキScホールディングス株式会社 Coloring compositions and color filters for color filters

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5797023A (en) * 1980-10-17 1982-06-16 Gen Electric Power plant, operation and control method thereof and control system thereof
JPS58211511A (en) * 1982-06-02 1983-12-09 Hitachi Ltd Composite power generating plant using gasifyed coal
JPS603432A (en) * 1983-06-03 1985-01-09 シーメンス、アクチエンゲゼルシヤフト Steam power plant equipped with coal gasifying equipment
JPH04116232A (en) * 1990-09-07 1992-04-16 Babcock Hitachi Kk Coal gasification compound power generation method
JPH0571362A (en) * 1991-09-11 1993-03-23 Hitachi Ltd Coal gasifying plant and operation method thereof
JPH0899921A (en) * 1994-09-30 1996-04-16 Hitachi Ltd Device for producing methanol
JPH0972544A (en) * 1995-09-04 1997-03-18 Hitachi Ltd Coal gasifying gas turbine power generation equipment and its gasifying gas processing method
JPH09221686A (en) * 1996-02-14 1997-08-26 Mitsubishi Heavy Ind Ltd Coal gasification power plant
JPH11173112A (en) * 1997-12-10 1999-06-29 Central Res Inst Of Electric Power Ind Coal gasification combined cycle power generation plant
JP2000073706A (en) * 1998-08-28 2000-03-07 Toshiba Corp Coal gasification combined cycle power generation plant
JP2000297656A (en) * 1999-04-15 2000-10-24 Toshiba Corp Thermal power generation plant
JP2000337108A (en) * 1999-05-27 2000-12-05 Mitsubishi Heavy Ind Ltd Carbon dioxide recovery type combined generating system
JP2002193858A (en) * 2000-12-28 2002-07-10 Mitsubishi Heavy Ind Ltd Method and plant for producing methanol using biomass feedstock
JP2004315474A (en) * 2003-04-18 2004-11-11 Mitsubishi Heavy Ind Ltd Method for producing acetic acid and apparatus for producing acetic acid
JP2005180406A (en) * 2003-12-24 2005-07-07 Ishikawajima Harima Heavy Ind Co Ltd Enclosure facility
JP2005213631A (en) * 2004-02-02 2005-08-11 Takuma Co Ltd Production method and production apparatus for hydrogen and oxygen from biomass resource

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5797023A (en) * 1980-10-17 1982-06-16 Gen Electric Power plant, operation and control method thereof and control system thereof
JPS58211511A (en) * 1982-06-02 1983-12-09 Hitachi Ltd Composite power generating plant using gasifyed coal
JPS603432A (en) * 1983-06-03 1985-01-09 シーメンス、アクチエンゲゼルシヤフト Steam power plant equipped with coal gasifying equipment
JPH04116232A (en) * 1990-09-07 1992-04-16 Babcock Hitachi Kk Coal gasification compound power generation method
JPH0571362A (en) * 1991-09-11 1993-03-23 Hitachi Ltd Coal gasifying plant and operation method thereof
JPH0899921A (en) * 1994-09-30 1996-04-16 Hitachi Ltd Device for producing methanol
JPH0972544A (en) * 1995-09-04 1997-03-18 Hitachi Ltd Coal gasifying gas turbine power generation equipment and its gasifying gas processing method
JPH09221686A (en) * 1996-02-14 1997-08-26 Mitsubishi Heavy Ind Ltd Coal gasification power plant
JPH11173112A (en) * 1997-12-10 1999-06-29 Central Res Inst Of Electric Power Ind Coal gasification combined cycle power generation plant
JP2000073706A (en) * 1998-08-28 2000-03-07 Toshiba Corp Coal gasification combined cycle power generation plant
JP2000297656A (en) * 1999-04-15 2000-10-24 Toshiba Corp Thermal power generation plant
JP2000337108A (en) * 1999-05-27 2000-12-05 Mitsubishi Heavy Ind Ltd Carbon dioxide recovery type combined generating system
JP2002193858A (en) * 2000-12-28 2002-07-10 Mitsubishi Heavy Ind Ltd Method and plant for producing methanol using biomass feedstock
JP2004315474A (en) * 2003-04-18 2004-11-11 Mitsubishi Heavy Ind Ltd Method for producing acetic acid and apparatus for producing acetic acid
JP2005180406A (en) * 2003-12-24 2005-07-07 Ishikawajima Harima Heavy Ind Co Ltd Enclosure facility
JP2005213631A (en) * 2004-02-02 2005-08-11 Takuma Co Ltd Production method and production apparatus for hydrogen and oxygen from biomass resource

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2206762A1 (en) * 2009-01-13 2010-07-14 Areva A system and a process for producing at least one hydrocarbon fuel from a carbonaceous material
WO2010081829A1 (en) * 2009-01-13 2010-07-22 Areva A system and a process for producing at least one hydrocarbon fuel from a carbonaceous material
US8184763B2 (en) 2009-01-13 2012-05-22 Areva Sa System and a process for producing at least one hydrocarbon fuel from a carbonaceous material
KR101824267B1 (en) 2009-11-20 2018-01-31 알브이 리첸츠 아게 Thermal-chemical utilization of carbon-containing materials, in particular for the emission-free generation of energy
JP2012036863A (en) * 2010-08-10 2012-02-23 Hitachi Ltd Gasification power generation system
WO2014045871A1 (en) * 2012-09-21 2014-03-27 三菱重工業株式会社 Method and system for producing liquid fuel and generating electric power
JP2014062499A (en) * 2012-09-21 2014-04-10 Mitsubishi Heavy Ind Ltd Method and system for producing liquid fuel and generating power
US9611438B2 (en) 2012-09-21 2017-04-04 Mitsubishi Heavy Industries, Ltd. Method and system for producing liquid fuel and generating power
WO2019151461A1 (en) * 2018-02-05 2019-08-08 三菱瓦斯化学株式会社 Biomass gasification power generation system and power generation method
CN113512444A (en) * 2020-03-19 2021-10-19 本田技研工业株式会社 Fuel manufacturing system
CN113048465A (en) * 2021-03-26 2021-06-29 中国科学院工程热物理研究所 Coal-fired power generation system and method for coal gasification with supercritical water
CN113048465B (en) * 2021-03-26 2022-08-12 中国科学院工程热物理研究所 Coal-fired power generation system and method for coal gasification with supercritical water

Also Published As

Publication number Publication date
JP4981439B2 (en) 2012-07-18

Similar Documents

Publication Publication Date Title
JP4981439B2 (en) Solid fuel gasification gas utilization plant
JP5686803B2 (en) Method for gasifying carbon-containing materials including methane pyrolysis and carbon dioxide conversion reaction
AU2010292313B2 (en) Integration of reforming/water splitting and electrochemical systems for power generation with integrated carbon capture
US20080098654A1 (en) Synthetic fuel production methods and apparatuses
EP2166064A1 (en) A chemical product providing system and method for providing a chemical product
US20080103220A1 (en) Synthetic fuel production using coal and nuclear energy
KR20160030559A (en) Methanation method and power plant comprising co_2 methanation of power plant flue gas
JPH0472044B2 (en)
EP1154008A2 (en) Method for the gasification of coal
JP7353163B2 (en) Ammonia derivative manufacturing plant and ammonia derivative manufacturing method
JP6999213B1 (en) Carbon neutral liquid fuel manufacturing system
KR101441491B1 (en) Intergrated gasification combined cycle coupled fuel cells system and gas supplying method thereto
JP4030846B2 (en) Methanol production method and apparatus
CN109181776B (en) Coal-based poly-generation system and method for integrated fuel cell power generation
JP2008069017A (en) Method for producing hydrogen
KR20140038672A (en) Igcc with co2 removal system
JP2009215608A (en) Hydrogen production plant
WO2022122371A1 (en) Method for operation of an industrial plant and an industrial plant
JP2007138900A (en) Electric power generation system combined with hydrogen production facility, electric power generating method
WO2019215925A1 (en) Ammonia production plant and method for producing ammonia
WO2024075831A1 (en) Bio-multi-stage-type hydrogen generation method and bio-multi-stage-type hydrogen generation system
JP2002050387A (en) Energy generating device from solid organic substance
WO2023286730A1 (en) Synthetic fuel production method
JP2005336076A (en) Liquid fuel production plant
TW202348548A (en) Process and plant for producing renewable fuels

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110225

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120420

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4981439

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250