JP2005213631A - Production method and production apparatus for hydrogen and oxygen from biomass resource - Google Patents

Production method and production apparatus for hydrogen and oxygen from biomass resource Download PDF

Info

Publication number
JP2005213631A
JP2005213631A JP2004025307A JP2004025307A JP2005213631A JP 2005213631 A JP2005213631 A JP 2005213631A JP 2004025307 A JP2004025307 A JP 2004025307A JP 2004025307 A JP2004025307 A JP 2004025307A JP 2005213631 A JP2005213631 A JP 2005213631A
Authority
JP
Japan
Prior art keywords
combustion
oxygen
water
hydrogen
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004025307A
Other languages
Japanese (ja)
Other versions
JP4441281B2 (en
Inventor
Haruo Nogami
晴男 野上
Keiji Tatsumi
圭司 巽
Shizuo Kataoka
静夫 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Co Ltd
Original Assignee
Takuma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Co Ltd filed Critical Takuma Co Ltd
Priority to JP2004025307A priority Critical patent/JP4441281B2/en
Publication of JP2005213631A publication Critical patent/JP2005213631A/en
Application granted granted Critical
Publication of JP4441281B2 publication Critical patent/JP4441281B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/40Valorisation of by-products of wastewater, sewage or sludge processing

Landscapes

  • Air Supply (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To inexpensively, efficiently and stably produce hydrogen which is high-quality energy from a biomass resource which is low-quality energy. <P>SOLUTION: The biomass resource is combusted and power generation is performed by the steam obtained from the combustion heat thereof. Water is electrolyzed by using the generated electric power and the hydrogen and oxygen are obtained. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明はエネルギー資源としては低品質な食品廃棄物、農林産廃棄物、下水汚泥などのバイオマス資源を活用することにより、より経済的にしかも高効率で水素及び酸素を安定して製造できるようにしたバイオマス資源からの水素及び酸素の製造システムに関するものである。   By utilizing biomass resources such as low-quality food waste, agricultural and forestry waste, sewage sludge, etc. as energy resources, the present invention can stably produce hydrogen and oxygen more economically and with high efficiency. The present invention relates to a system for producing hydrogen and oxygen from biomass resources.

世界的に偏在する食品廃棄物や農林水産廃棄物、下水汚泥等のバイオマスのエネルギー(以下バイオマス資源と記す)を有効に活用する方策として、バイオマス資源を用いて高品質のエネルギー源である水素を製造し、この製造した水素をエネルギー消費量の多い地域へ供給する方式が創案され、その実用化のための開発が多方面で進められている。   As a measure to effectively use biomass energy (hereinafter referred to as biomass resources) such as food waste, agriculture, forestry and fisheries waste, sewage sludge, etc., which are ubiquitous worldwide, hydrogen, which is a high-quality energy source using biomass resources, is used. A method for producing and supplying the produced hydrogen to an area where energy consumption is high has been devised, and development for practical use is being promoted in various fields.

例えば、(1)バイオマス資源を部分燃焼又は乾留熱分解させ、発生した水素や一酸化炭素等を主体とする熱分解ガスを精製して高純度のH2 を得る方法や(2)バイオマス資源を流動層内で燃焼させ、発生した燃焼ガス内から直接に水素成分を分離精製する方法等の開発が進められている。 For example, (1) a method of obtaining high purity H 2 by purifying pyrolysis gas mainly composed of hydrogen or carbon monoxide by partially burning or dry distillation pyrolysis of biomass resources, or (2) The development of a method for separating and purifying a hydrogen component directly from the generated combustion gas by burning in a fluidized bed is underway.

しかし、前記(1)の方法は、熱分解ガス内の一酸化炭素の水素への交換を行なうCO転化装置や水素の分離・精製を行なう水素分離・精製装置を必要とし、設備費が嵩むと共にバイオマス資源の熱分解等にも多量の熱エネルギーを必要とし、水素の製造コストが大幅に高騰するという難点がある。   However, the method (1) requires a CO conversion device for exchanging carbon monoxide in the pyrolysis gas with hydrogen, and a hydrogen separation / purification device for separating and purifying hydrogen, which increases equipment costs. A large amount of heat energy is also required for pyrolysis of biomass resources, and the production cost of hydrogen is greatly increased.

また、前記(2)の方法も同様であり、特殊な構造のバイオマスの流動層燃焼装置を必要とするうえ、燃焼ガス内からの水素の分離・精製に必要とする設備費が嵩み、水素製造コストの引下げを図れないと云う難点がある。   The method (2) is also the same, and requires a fluidized-bed combustion apparatus for biomass with a special structure, and the equipment costs necessary for the separation and purification of hydrogen from the combustion gas increase. There is a difficulty that the manufacturing cost cannot be reduced.

一方、上記(1)及び(2)の方法に於ける各問題点を避ける方策として、(3)石炭等を原料とするガス化・ガス精製装置を用いて可燃性ガスを発生させ、この可燃性ガスを燃焼器で燃焼させて高温の燃焼ガスを生成し、当該高温の燃焼ガスによりガスタービン発電機を駆動させると共に、発生した電力でもって水を電気分解させ、水素と酸素を得る技術が開発されている。   On the other hand, as a measure for avoiding the problems in the methods (1) and (2), (3) a combustible gas is generated using a gasification / gas refining apparatus using coal or the like as a raw material, and this combustible A technology to generate hydrogen and oxygen by burning gas with a combustor to generate high-temperature combustion gas, driving a gas turbine generator with the high-temperature combustion gas, and electrolyzing water with the generated power Has been developed.

前記(3)の方法は、水の電気分解を活用するため、技術の安定性と云う点では優れている。しかし、石炭を可燃性ガス発生源(燃料)とするものであるため、石炭に替えてバイオマスを燃料とした場合には、ガスタービン発電設備の安定した運転に必要とする燃焼ガスが容易に得られず、ガスタービンの運転が困難になるだけでなく、電気分解用の純水の供給やバイオマス資源の効率的な熱分解、燃焼残滓の効率的な溶融処理等の点に、新たに多くの問題が起生することになる。   The method (3) is superior in terms of technical stability because it utilizes electrolysis of water. However, because coal is used as a combustible gas generation source (fuel), when biomass is used instead of coal, combustion gas necessary for stable operation of the gas turbine power generation facility can be easily obtained. In addition to making gas turbine operation difficult, there are many new features such as the supply of pure water for electrolysis, efficient thermal decomposition of biomass resources, and efficient melting treatment of combustion residues. Problems will arise.

特開2003−226501号公報JP 2003-226501 A 特開2003−207110号公報JP 2003-207110 A 特開平10−17301号公報Japanese Patent Laid-Open No. 10-17301

一方、出願人はこれ迄に、都市ごみや汚泥等の廃棄物を対象とする各種の焼却処理装置や溶融燃焼処理装置を多数実施して来ており、その中には所謂ごみ発電設備を備えた施設も多く存在している。
例えば、特開平11−14029号に示した流動層式ごみ焼却炉やストーカ式ごみ焼却炉では、焼却炉に付設した廃熱ボイラからの蒸気によりタービン発電機を作動させて電力を発生すると共に、焼却炉から排出した燃焼残滓(主灰)を別途に設けた溶融炉により溶融処理する構成としている。
On the other hand, the applicant has so far implemented a large number of various incineration treatment equipment and melting combustion treatment equipment for waste such as municipal waste and sludge, including so-called waste power generation equipment. There are many other facilities.
For example, in the fluidized bed type waste incinerator and the stoker type waste incinerator shown in JP-A-11-14029, the turbine generator is operated by the steam from the waste heat boiler attached to the incinerator to generate electric power, The combustion residue (main ash) discharged from the incinerator is melted by a separate melting furnace.

また、特開平12−15210号に示した熱分解ドラムを用いる都市ごみ等の溶融燃焼処理装置では、熱分解ドラムからの熱分解ガスと可燃性の熱分解残滓を溶融燃焼炉で溶融燃焼処理すると共に、燃焼排ガスの熱により発生した蒸気でタービン発電機を作動させる構成としている。   Further, in a melting combustion processing apparatus such as municipal waste using a pyrolysis drum as disclosed in JP-A-12-15210, the pyrolysis gas from the pyrolysis drum and the combustible pyrolysis residue are melted and burned in a melting combustion furnace. At the same time, the turbine generator is operated by steam generated by the heat of the combustion exhaust gas.

従前のこれ等発電設備を備えたごみ焼却処理設備(ごみ発電設備と呼ぶ)は運転実績も豊富であり、また被処理物が汚泥等のバイオマス資源であっても安定した運転を行なうことが出来る。その結果、ごみ発電設備の発生電力でもって水の電気分解を行なえば、水素及び酸素を比較的安価にしかも安定して発生させることが出来る。   The conventional waste incineration treatment equipment (referred to as waste power generation equipment) equipped with these power generation facilities has abundant operation results, and even if the material to be treated is biomass resources such as sludge, stable operation can be performed. . As a result, if water is electrolyzed with the power generated by the waste power generation facility, hydrogen and oxygen can be generated relatively inexpensively and stably.

しかし、水の電気分解により水素を得るためには、高純度の水を大量に必要とし、別途純水製造装置等が必要となる。
また、バイオマス資源の燃焼や焼却残渣の溶融燃焼処理に必要とする燃焼用空気の供給動力費も比較的高額となり、これ等のランニングコストの引下げが図り難いという問題がある。
更に、水素と同時に多量の酸素が発生するが、この酸素の消費対象が水素に比較して少ないために、酸素が余剰になるという問題がある。
However, in order to obtain hydrogen by electrolysis of water, a large amount of high-purity water is required, and a separate pure water production apparatus or the like is required.
In addition, the power for supplying combustion air required for burning biomass resources and melting and burning incineration residues is relatively high, and it is difficult to reduce the running cost.
Furthermore, although a large amount of oxygen is generated simultaneously with hydrogen, there is a problem that oxygen is surplus because the consumption target of oxygen is smaller than that of hydrogen.

本願発明は、従前のバイオマス資源からの水素及び酸素の製造に於ける上述の如き問題、(イ)即ちバイオマス資源を熱分解してこれから直接的に水素を得る場合には、水素の分離・精製装置等に費用がかかり、水素の製造コストの引下げを図り難いこと、また、(ロ)バイオマスを熱分解して熱分解ガスを発生させ、この発生せしめた熱分解ガスを燃焼させて生成した高温燃焼ガスによりガスタービン発電機を駆動する方式にあっては、石炭等の化石燃料を熱分解させる場合に比較して発生する熱分解ガスのエネルギー保有密度が低いうえに発生量そのものも変動し易く、その結果タービン発電機の運転が不安定になり易いうえ、バイオマス資源の燃焼残渣の溶融燃焼処理費等が嵩むこと、更に、(ハ)バイオマス資源の燃焼熱により蒸気タービン発電機を駆動し、その発生電力で水の電気分解を行なう方法では、純水製造装置を必要としたり、発生酸素の処分に手数がかかる等の問題を解決せんとするものであり、発生した酸素をバイオマス資源の燃焼や燃焼残渣の溶融燃焼処理に活用すると共に、バイオマス資源の燃焼排ガス内から回収した水分を電気分解用の水源とすることにより、より高能率でしかも経済的に水の電気分解によりバイオマス資源から水素と酸素を発生できるようにした、バイオマス資源による水素及び酸素の製造方法及び製造装置を提供せんとするものである。   The present invention has the above-mentioned problems in the production of hydrogen and oxygen from conventional biomass resources. (I) In other words, when hydrogen is directly obtained by pyrolyzing biomass resources, hydrogen separation and purification It is difficult to reduce the production cost of hydrogen due to the cost of equipment, etc. (b) The high temperature produced by pyrolyzing biomass to generate pyrolysis gas and burning the generated pyrolysis gas In a system in which a gas turbine generator is driven by combustion gas, the energy holding density of the pyrolysis gas generated is lower than when fossil fuel such as coal is pyrolyzed, and the generated amount itself is likely to fluctuate. As a result, the operation of the turbine generator is likely to be unstable, and the cost of melting and burning the biomass residue is increased, and (c) steam due to the combustion heat of the biomass resource. -The method of driving a bin generator and electrolyzing water using the generated power is intended to solve problems such as the need for pure water production equipment and the disposal of generated oxygen. By using the recovered oxygen for the combustion of biomass resources and the melting and combustion treatment of combustion residues, and using the water recovered from the combustion exhaust gas of the biomass resources as a water source for electrolysis, water can be produced more efficiently and economically. It is an object of the present invention to provide a method and an apparatus for producing hydrogen and oxygen from biomass resources, which can generate hydrogen and oxygen from biomass resources by electrolysis.

請求項1の発明は、 バイオマス資源を燃焼させ、その燃焼熱により得た蒸気により発電を行なうと共に、発電電力を用いて水を電気分解し、水素及び酸素を得ることを発明の基本構成とするものである。   The invention of claim 1 is based on the basic configuration of burning biomass resources, generating electricity with steam obtained from the combustion heat, and electrolyzing water using the generated power to obtain hydrogen and oxygen. Is.

請求項2の発明は、請求項1の発明に於いて、燃焼排ガス内の水蒸気を冷却により回収し、回収した水を電気分解用の水とすると共に、発生した酸素を燃焼用の酸化剤として利用するようにしたことを発明の基本構成とするものである。   The invention of claim 2 is the invention of claim 1, wherein the water vapor in the combustion exhaust gas is recovered by cooling, the recovered water is used as electrolysis water, and the generated oxygen is used as an oxidizing agent for combustion. The basic configuration of the invention is that it is used.

請求項3の発明は、請求項1の発明に於いて、水の電気分解用電力の一部又は全部として、外部からの商用電力又は自然エネルギを用いた発電設備からの電力を使用するようにしたものである。   According to a third aspect of the present invention, in the first aspect of the present invention, as part or all of the electric power for electrolysis of water, the electric power from the power generation facility using the commercial power from the outside or the natural energy is used. It is a thing.

請求項4の発明は、バイオマス資源を燃焼させる燃焼装置と、燃焼装置で生じた燃焼熱を回収する熱回収装置と、熱回収装置からの蒸気により発電をする発電装置と、熱回収装置からの燃焼排ガス内の水分を回収する水分回収装置と、水分回収装置からの水を前記発電装置からの電力により電気分解する水電気分解装置と、水電気分解装置で発生した水素及び酸素を回収貯留する水素貯留槽及び酸素貯留槽とを発明の基本構成とするものである。   The invention of claim 4 includes a combustion device for burning biomass resources, a heat recovery device for recovering combustion heat generated in the combustion device, a power generation device for generating power with steam from the heat recovery device, and a heat recovery device. A water recovery device that recovers water in the combustion exhaust gas, a water electrolysis device that electrolyzes water from the water recovery device using the power from the power generation device, and recovers and stores hydrogen and oxygen generated in the water electrolysis device The hydrogen storage tank and the oxygen storage tank are the basic components of the invention.

請求項5の発明は、請求項4の発明に於いて燃焼装置を、水電気分解装置からの酸素ガスを燃焼用酸化剤として用いる燃焼装置としたものである。   The invention of claim 5 is the combustion apparatus according to claim 4, wherein the combustion apparatus uses oxygen gas from the water electrolysis apparatus as an oxidizing agent for combustion.

請求項6の発明は、請求項4の発明に於いて、燃焼装置からの燃焼残滓の溶融燃焼装置を設けると共に、当該溶融燃焼装置を水電気分解装置からの酸素ガスを燃焼用酸化剤として用いる溶融燃焼装置としたものである。   According to a sixth aspect of the present invention, in the fourth aspect of the present invention, a molten combustion apparatus for combustion residue from the combustion apparatus is provided, and the molten combustion apparatus uses oxygen gas from the water electrolysis apparatus as an oxidant for combustion. This is a melt combustion apparatus.

本発明に於いては、ガス分離・精製設備等を用いることなしに、従前のごみ発電設備として確立された技術と水の電気分解技術とを有機的に組み合せ、バイオマス資源から水素及び酸素を発生させる構成としている。その結果、水素及び酸素をバイオマス資源から経済的にしかも安定して製造し、供給することができる。   In the present invention, without using a gas separation / purification facility, etc., hydrogen and oxygen are generated from biomass resources by organically combining the technology established as a conventional waste power generation facility and water electrolysis technology. The configuration is to let As a result, hydrogen and oxygen can be produced and supplied economically and stably from biomass resources.

また、本発明に於いては、燃焼排ガス内の水蒸気を回収すると共に、当該回収した水を電気分解用の原料水として用いる構成としているため、一般の工業用水を使用する場合に比較して、安価に清浄水を得ることができる。   In the present invention, the steam in the combustion exhaust gas is recovered and the recovered water is used as the raw water for electrolysis. Therefore, compared to the case of using general industrial water, Clean water can be obtained at low cost.

更に、本願発明に於いては、水の電気分解により発生した酸素をバイオマス資源の燃焼装置や燃焼残滓の溶融燃焼装置の酸化剤(燃焼用空気の一部)として利用するようにしている。その結果、前記各燃焼装置の小型化を図れると共に燃焼排ガス内のCO2 量の減少等が可能となる。 Further, in the present invention, oxygen generated by electrolysis of water is used as an oxidant (a part of combustion air) of a biomass resource combustion apparatus or a combustion residue melting combustion apparatus. As a result, each combustion apparatus can be miniaturized and the amount of CO 2 in the combustion exhaust gas can be reduced.

加えて、太陽光、地熱、風力、水力など自然エネルギーなど変動の大きい発電システムと組み合わせることにより、より安定したエネルギー供給システムを構築することができると共に、夜間など電力の安い時期に電気分解に必要な電力を購入して水素を製造することにより、電力消費量の平準化が行なえる。   In addition, a more stable energy supply system can be constructed by combining with a power generation system with large fluctuations such as natural energy such as sunlight, geothermal, wind power, hydropower, etc. Electricity consumption can be leveled by purchasing new electricity and producing hydrogen.

以下、図面に基づいて本発明の各実施形態を説明する。
図1は本願発明のバイオマス資源からの水素及び酸素の製造システムの構成図であり、図1に於いて、1はバイオマス資源、2はバイオマス資源の燃焼装置、3は廃熱回収装置、4は排ガス処理装置、5は水分回収装置、6は発電装置、7は溶融燃焼装置、8は燃焼残渣冷却装置、9は水電気分解装置、10は水素貯留槽、11は酸素貯留槽、G1 〜G4 は燃焼排ガス、Sは蒸気、Eは発生電力、H2 は水素ガス、Aは燃焼用空気、O2 は酸素ガス、Cは燃焼残滓、C1 は溶融スラグ、C2 は水砕スラグ、Wは冷却水である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a configuration diagram of a system for producing hydrogen and oxygen from biomass resources according to the present invention. In FIG. 1, 1 is a biomass resource, 2 is a biomass resource combustion device, 3 is a waste heat recovery device, Exhaust gas treatment device, 5 is a moisture recovery device, 6 is a power generation device, 7 is a melting combustion device, 8 is a combustion residue cooling device, 9 is a water electrolysis device, 10 is a hydrogen storage tank, 11 is an oxygen storage tank, G 1 to G 4 is combustion exhaust gas, S is steam, E is generated power, H 2 is hydrogen gas, A is combustion air, O 2 is oxygen gas, C is combustion residue, C 1 is molten slag, C 2 is granulated slag , W is cooling water.

前記バイオマス資源は主として食品廃棄物、農林産廃棄物、下水汚泥等であり、分別収集された有機性生活廃棄物(生ごみ)等もこれに含まれる。   The biomass resources are mainly food waste, agricultural and forestry waste, sewage sludge, and the like, and organic living waste (garbage) collected separately is included in this.

前記燃焼装置2はバイオマス資源を直接に燃焼させるものであり、ストーカ式燃焼炉や流動層式燃焼炉等が主として用いられる。
また、前記廃熱回収装置3はバイオマス資源1の燃焼熱を回収するものであり、廃熱ボイラや蒸気過熱器等の熱交換器が一般に使用されている。
The combustion apparatus 2 directly burns biomass resources, and a stoker type combustion furnace, a fluidized bed type combustion furnace, or the like is mainly used.
The waste heat recovery device 3 recovers the combustion heat of the biomass resource 1, and a heat exchanger such as a waste heat boiler or a steam superheater is generally used.

熱回収をした後の燃焼排ガスG2 は、排ガス処理装置4で浄化されたあと、水分回収装置5へ送られる。当該水分回収装置5は、浄化処理後の燃焼排ガスG3 を冷却することにより、排ガスG3 内に含有されている水蒸気を水として回収するものであり、回収された水はほぼ純水に近い純度を有している。尚、本実施形態では、排ガス処理装置4で処理した後の燃焼排ガスG3 から水分回収を行なうようにしているため、排ガス内の有害物質の回収水に及ぼす影響が略零になり、水の回収効率が向上する。
また、水蒸気成分を回収された後の低温排ガスG4 は、煙突等から大気中へ放散される。
The combustion exhaust gas G 2 after heat recovery is purified by the exhaust gas treatment device 4 and then sent to the moisture recovery device 5. The water recovery device 5 recovers the water vapor contained in the exhaust gas G 3 as water by cooling the combustion exhaust gas G 3 after the purification treatment, and the recovered water is almost pure water. It has purity. In the present embodiment, since water is recovered from the combustion exhaust gas G 3 after being processed by the exhaust gas treatment device 4, the influence of harmful substances in the exhaust gas on the recovered water becomes substantially zero. Recovery efficiency is improved.
Further, the low-temperature exhaust gas G 4 after the water vapor component is recovered is diffused into the atmosphere from a chimney or the like.

尚、前記燃焼排ガスG2 の冷却には冷却水Wを必要とする。しかし、当該冷却水Wは通常の工業用水が使用できるうえ、燃焼排ガスG2 の浄化をバクフィルタ等を用いて行なう場合には、排ガス温度は約200℃以下に冷却されている。更に、本件発明に於いては冷却水Wの使用量が若干増加するものの水分回収装置5で高純度の電気分解用水WEを回収することができる。そのため、水の経済性が悪化することは殆んどない。 Incidentally, said cooling of the combustion exhaust gas G 2 require cooling water W. However, as the cooling water W, normal industrial water can be used, and when the combustion exhaust gas G 2 is purified using a back filter or the like, the exhaust gas temperature is cooled to about 200 ° C. or less. Furthermore, in the present invention, although the amount of the cooling water W used is slightly increased, the water recovery device 5 can recover the high-purity electrolysis water WE. For this reason, the economics of water hardly deteriorates.

前記燃焼装置2で燃焼されたバイオマス資源1の燃焼残渣Cは燃焼残渣冷却装置8を通して水砕スラグC2 として回収されるか、又は溶融燃焼装置7へ供給され、ここで溶融燃焼をされることにより溶融スラグC1 として回収されることになる。 The combustion residue C of the biomass resource 1 combusted by the combustion device 2 is recovered as granulated slag C 2 through the combustion residue cooling device 8 or supplied to the molten combustion device 7 where it is melted and combusted. As a result, the molten slag C 1 is recovered.

前記廃熱回収装置3で発生された蒸気Sは、発電装置6へ供給され、発生された電力Eは水電気分解装置9へ供給される。
また、当該水電気分解装置9へは、前記水分回収装置5で回収された清浄水WEが供給されており、ここで所謂水の電気分解が行なわれる。また、発生した水素は水素貯留槽10へ、また酸素は酸素貯留槽11へ夫々貯留される。
The steam S generated in the waste heat recovery device 3 is supplied to the power generation device 6, and the generated electric power E is supplied to the water electrolysis device 9.
In addition, the water electrolyzer 9 is supplied with clean water WE recovered by the moisture recovery device 5, where so-called water electrolysis is performed. The generated hydrogen is stored in the hydrogen storage tank 10 and the oxygen is stored in the oxygen storage tank 11, respectively.

尚、前記発電装置6からの発生電力Eに余裕のあるときには、これを所内電力として利用したり、或いは外部の電力系統へ返還してもよい。
また、外部電力系統がピーク負荷用の電力を必要とする場合には、水の電気分解を一時的に中止して水電気分解用の電力Eを外部へ融通することも可能である。更に、夜間の安価な外部電力や別途に設けた風力発電、太陽光発電及び地熱発電等の自然エネルギーを用いた発生電力を併用して水の電気分解を行なうことも可能であり、電力系統の運用は経済性を考慮して自在に行なうことが可能となる。
When the generated electric power E from the power generator 6 has a margin, it may be used as in-house electric power or returned to an external electric power system.
In addition, when the external power system requires power for peak load, it is possible to temporarily stop water electrolysis and allow water electrolysis power E to be supplied to the outside. Furthermore, it is also possible to perform electrolysis of water using cheap external power at night and generated power using natural energy such as wind power generation, solar power generation and geothermal power generation provided separately. Operation can be performed freely in consideration of economy.

同様に、電気分解用の水WEが不足した場合には、工業用水Wの一部を浄化処理して電気分解用に供してもよいことは勿論である。   Similarly, when the electrolysis water WE is insufficient, it is needless to say that a part of the industrial water W may be purified and used for electrolysis.

本発明に於いては、前記水の電気分解により生じた酸素ガスO2 が燃焼装置3へ(また、溶融燃焼装置7が備えられているときには、当該溶融燃焼装置7へ)供給され、このO2 の有効利用により、燃焼排ガスG(又はG0 )内のCO2 量の減少を図ることが可能となる。
即ち、水の電気分解により副次的に発生されるO2 を利用して所謂酸素富化ガスを利用した燃焼(又は溶融燃焼)を行なうことにより、燃焼装置等の小型化が図れるため、水素製造プラントの大幅な小型化が可能となる。
In the present invention, the oxygen gas O 2 generated by the electrolysis of water is supplied to the combustion device 3 (or to the molten combustion device 7 when the molten combustion device 7 is provided). the effective use of 2, it is possible to achieve a reduction of the combustion exhaust gas G (or G 0) CO 2 amount in the.
That is, since combustion (or melt combustion) using so-called oxygen-enriched gas is performed using O 2 that is secondary generated by electrolysis of water, the combustion apparatus and the like can be downsized. The manufacturing plant can be greatly downsized.

前記水素貯留装置10内へ貯留された水素ガスは液化され、高カロリ・高品質エネルギーとして燃料消費地へ搬出されて行く。
また、余剰の酸素は、同様に工業用として各種の用途に供給されて行く。
The hydrogen gas stored in the hydrogen storage device 10 is liquefied and transported to a fuel consumption area as high calorie and high quality energy.
Moreover, surplus oxygen is similarly supplied to various uses as industrial use.

本発明は、低級なバイオマス資源エネルギーを高品質なエネルギー資源である水素に、水の電気分解を介して経済的に変換することができ、大都会のエネルギー消費密度の高い地域に於ける水素エネルギーの供給基地としては勿論のこと、比較的遠隔地であるバイオマス資源の供給地に於ける水素エネルギーの供給基地としても使用できるものである。
また、本発明は、設備の大幅な小型化を図ることにより、水素燃料自動車の水素供給基地や半導体製造用工場等に付属する水素供給装置としても活用可能なものである。
The present invention can economically convert low-grade biomass resource energy into hydrogen, which is a high-quality energy resource, through the electrolysis of water, and hydrogen energy in a large city where energy consumption density is high. It can also be used as a supply base for hydrogen energy in a biomass resource supply area that is relatively remote.
The present invention can also be used as a hydrogen supply device attached to a hydrogen supply base of a hydrogen-fueled vehicle, a factory for manufacturing semiconductors, etc., by greatly downsizing the equipment.

本願発明のバイオマス資源からの水素及び酸素の製造方法及びこれに用いる水素及び酸素の製造装置の構成図である。It is a block diagram of the manufacturing method of hydrogen and oxygen from biomass resources of this invention, and the manufacturing apparatus of hydrogen and oxygen used for this.

符号の説明Explanation of symbols

1はバイオマス資源、2は燃焼装置、3は廃熱回収装置、4は排ガス処理装置、5は水分回収装置、6は発電装置、7は溶融燃焼装置、8は焼却残渣冷却装置、9は水電気分解装置、10は水素貯留槽、11は酸素貯留槽、12は外部電力供給源、G0 ・G1 ・G2 ・G3 ・G4 は燃焼排ガス、Sは蒸気、Eは発生電力、H2 は水素ガス、Aは燃焼用空気、O2 は酸素ガス、Cは燃焼残渣、C1 は溶融スラグ、C2 は水砕スラグ、Wは冷却水、WEは回収水、Fは助燃料、WBはボイラ給水である。 1 is a biomass resource, 2 is a combustion device, 3 is a waste heat recovery device, 4 is an exhaust gas treatment device, 5 is a moisture recovery device, 6 is a power generation device, 7 is a melting combustion device, 8 is an incineration residue cooling device, and 9 is water Electrolyzer, 10 is hydrogen storage tank, 11 is oxygen storage tank, 12 is an external power supply source, G 0 · G 1 · G 2 · G 3 · G 4 are combustion exhaust gas, S is steam, E is generated power, H 2 is hydrogen gas, A is combustion air, O 2 is oxygen gas, C is combustion residue, C 1 is molten slag, C 2 is granulated slag, W is cooling water, WE is recovered water, and F is auxiliary fuel WB is boiler water supply.

Claims (6)

バイオマス資源を燃焼させ、その燃焼熱により得た蒸気により発電を行なうと共に、発電電力を用いて水を電気分解し、水素及び酸素を得る構成としたことを特徴としたバイオマス資源からの水素及び酸素の製造方法。   Hydrogen and oxygen from biomass resources, characterized in that biomass resources are burned and power is generated by steam obtained from the heat of combustion, and water is electrolyzed using the generated power to obtain hydrogen and oxygen. Manufacturing method. 燃焼排ガス内の水蒸気を冷却して回収し、回収した水を電気分解用の水とすると共に、発生した酸素を燃焼用の酸化剤として利用するようにした請求項1に記載のバイオマス資源からの水素及び酸素の製造方法。   The water vapor in the combustion exhaust gas is cooled and recovered, and the recovered water is used as electrolysis water, and the generated oxygen is used as an oxidizing agent for combustion. A method for producing hydrogen and oxygen. 水の電気分解用電力の一部又は全部として、外部からの商用電力又は自然エネルギを用いた発電設備からの電力を使用するようにした請求項1に記載のバイオマス資源からの水素及び酸素の製造方法。   The production of hydrogen and oxygen from biomass resources according to claim 1, wherein externally commercial power or power from a power generation facility using natural energy is used as part or all of the power for electrolysis of water. Method. バイオマス資源を燃焼させる燃焼装置と、燃焼装置で生じた燃焼熱を回収する熱回収装置と、熱回収装置からの蒸気により発電をする発電装置と、熱回収装置からの燃焼排ガス内の水分を回収する水分回収装置と、水分回収装置からの水を前記発電装置からの電力により電気分解する水電気分解装置と、水電気分解装置で発生した水素及び酸素を回収貯留する水素貯留槽及び酸素貯留槽とから構成したことを特徴とするバイオマス資源からの水素及び酸素の製造装置。   A combustion device that burns biomass resources, a heat recovery device that recovers combustion heat generated in the combustion device, a power generation device that generates electricity using steam from the heat recovery device, and recovers moisture in the combustion exhaust gas from the heat recovery device Water recovery device, water electrolysis device for electrolyzing water from the water recovery device with electric power from the power generation device, hydrogen storage tank and oxygen storage tank for recovering and storing hydrogen and oxygen generated in the water electrolysis device An apparatus for producing hydrogen and oxygen from biomass resources characterized by comprising: 燃焼装置を、水電気分解装置からの酸素を燃焼用酸化剤として用いる燃焼装置とした請求項1に記載のバイオマス資源からの水素及び酸素の製造装置。   The apparatus for producing hydrogen and oxygen from biomass resources according to claim 1, wherein the combustion apparatus is a combustion apparatus that uses oxygen from a water electrolysis apparatus as an oxidizing agent for combustion. 燃焼装置からの燃焼残滓の溶融燃焼装置を設けると共に、当該溶融燃焼装置を水電気分解装置からの酸素を燃焼用酸化剤として用いる溶融燃焼装置とした請求項1に記載のバイオマス資源からの水素及び酸素の製造装置。   The hydrogen from the biomass resource according to claim 1, wherein a melt combustion device for combustion residue from the combustion device is provided, and the melt combustion device is a melt combustion device using oxygen from the water electrolysis device as an oxidizing agent for combustion, and Oxygen production equipment.
JP2004025307A 2004-02-02 2004-02-02 Method and apparatus for producing hydrogen and oxygen from biomass resources Expired - Fee Related JP4441281B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004025307A JP4441281B2 (en) 2004-02-02 2004-02-02 Method and apparatus for producing hydrogen and oxygen from biomass resources

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004025307A JP4441281B2 (en) 2004-02-02 2004-02-02 Method and apparatus for producing hydrogen and oxygen from biomass resources

Publications (2)

Publication Number Publication Date
JP2005213631A true JP2005213631A (en) 2005-08-11
JP4441281B2 JP4441281B2 (en) 2010-03-31

Family

ID=34907727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004025307A Expired - Fee Related JP4441281B2 (en) 2004-02-02 2004-02-02 Method and apparatus for producing hydrogen and oxygen from biomass resources

Country Status (1)

Country Link
JP (1) JP4441281B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008163873A (en) * 2006-12-28 2008-07-17 Mitsubishi Heavy Ind Ltd Solid fuel gasified gas using plant
JP2016530235A (en) * 2013-07-09 2016-09-29 ミツビシ ヒタチ パワー システムズ ヨーロッパ ゲーエムベーハー Flexible power plant and method for its operation
JP2017023896A (en) * 2015-07-16 2017-02-02 株式会社タクマ Waste treatment facility and method for controlling power transmission amount from the facility
JP2017089916A (en) * 2015-11-04 2017-05-25 Jfeエンジニアリング株式会社 Waste incineration and hydrogen production device and method
JP2018184631A (en) * 2017-04-25 2018-11-22 国立大学法人九州大学 Hydrogen production method and produced hydrogen supplying apparatus
RU2757044C1 (en) * 2021-02-17 2021-10-11 Федеральное государственное бюджетное образовательное учреждение высшего образования «Юго-Западный государственный университет» (ЮЗГУ) (RU) Thermal hydrogen generator
CN115259086A (en) * 2022-07-22 2022-11-01 北京华能长江环保科技研究院有限公司 System and method for producing green hydrogen by treating household garbage
JP7477198B2 (en) 2022-09-01 2024-05-01 株式会社プランテック Combustion system and combustion method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008163873A (en) * 2006-12-28 2008-07-17 Mitsubishi Heavy Ind Ltd Solid fuel gasified gas using plant
JP2016530235A (en) * 2013-07-09 2016-09-29 ミツビシ ヒタチ パワー システムズ ヨーロッパ ゲーエムベーハー Flexible power plant and method for its operation
JP2017023896A (en) * 2015-07-16 2017-02-02 株式会社タクマ Waste treatment facility and method for controlling power transmission amount from the facility
JP2017089916A (en) * 2015-11-04 2017-05-25 Jfeエンジニアリング株式会社 Waste incineration and hydrogen production device and method
JP2018184631A (en) * 2017-04-25 2018-11-22 国立大学法人九州大学 Hydrogen production method and produced hydrogen supplying apparatus
RU2757044C1 (en) * 2021-02-17 2021-10-11 Федеральное государственное бюджетное образовательное учреждение высшего образования «Юго-Западный государственный университет» (ЮЗГУ) (RU) Thermal hydrogen generator
CN115259086A (en) * 2022-07-22 2022-11-01 北京华能长江环保科技研究院有限公司 System and method for producing green hydrogen by treating household garbage
CN115259086B (en) * 2022-07-22 2023-12-08 北京华能长江环保科技研究院有限公司 System for producing green hydrogen by treating household garbage and hydrogen production method
JP7477198B2 (en) 2022-09-01 2024-05-01 株式会社プランテック Combustion system and combustion method

Also Published As

Publication number Publication date
JP4441281B2 (en) 2010-03-31

Similar Documents

Publication Publication Date Title
US20170058710A1 (en) Generating steam from carbonaceous material
US8747501B2 (en) Fuel gasification system
JPH10156314A (en) Method of recovering energy from waste
EP1154008A2 (en) Method for the gasification of coal
JP2006128006A (en) High temperature type fuel cell power generation system by carbonizing and gasifying biomass
HUE032469T2 (en) Generating steam from carbonaceous material
JP4441281B2 (en) Method and apparatus for producing hydrogen and oxygen from biomass resources
JP5963239B2 (en) Coal gasification facility and coal gasification power generation system
JP2007229563A (en) Treatment method of organic waste
JP2004014124A (en) Method for power generation and generator
CN113975927A (en) Garbage energy treatment process with negative carbon emission
JP2006275328A (en) Waste treatment device and method
JP2008101066A (en) Fuel gas purification installation and power generation equipment
Van der Walt et al. Plasma-assisted treatment of municipal solid waste: a scenario analysis
JP2009215608A (en) Hydrogen production plant
WO2022244659A1 (en) Hydrogen production system
JP4220811B2 (en) Waste gasification method and apparatus
JP2022001644A (en) Hydrogen gas power generation
JP2007002825A (en) Waste power generation method
JP2005349392A (en) Waste treatment system
JP2003243019A (en) Waste power generating system
JP4379995B2 (en) Char reformed gas production method
Vecten et al. Integrated plasma gasification and SOFC system simulation using Aspen Plus
JP2003243021A (en) Waste power generating system
Khan et al. Gasification of solid waste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4441281

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees